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Abstract

Tesler matrices are certain integral matrices counted by the Kostant partition
function and have appeared recently in Haglund’s study of diagonal harmonics. In
2014, Drew Armstrong defined a poset on such matrices and conjectured that the
characteristic polynomial of this poset is a power of q − 1. We use a method of
Hallam and Sagan to prove a stronger version of this conjecture for posets of a
certain class of generalized Tesler matrices. We also study bounds for the number
of Tesler matrices and how they compare to the number of parking functions, the
dimension of the space of diagonal harmonics.
Mathematics Subject Classifications: 05A05, 05A16

1 Introduction

Tesler matrices were introduced by Glenn Tesler to study Macdonald polynomials.
They have been recently studied due to their relationship with diagonal harmonics.
Haglund proved in [9] that the bigraded Hilbert series for the space of diagonal harmonics,
denoted DHn, is the sum over Tesler matrices of a bivariate weight.

Hilb(DHn; q, t) =
∑
A

wtq,t(A) (1)

where A = (ai,j) is a Tesler matrix and the weight wtq,t(·) is

wtq,t(A) := (−M)|{ai,j>0}|−n ∏
ai,j>0

[ai,j]q,t with M = t− 1
q − 1 and [b]q,t = qb − tb

q − t
. (2)

In Equation (1), the Hilbert series is over the space DHn which has dimension
(n+ 1)n−1. For more on this space, see [6,8]. Although the enumeration and asymptotics
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of Tesler matrices are not known, there are some nice product formulas when considering
specializations of the alternating weight wtq,t(·). For instance, it was shown in [3] that

q(
n
2)∑

A

wtq,q−1(A) = [n+ 1]n−1
q (3)

where [n]q = 1 + q + · · ·+ qn−1. Furthermore, it was also shown in [14] that∑
A

wtq,0(A) = [n]q!. (4)

Equations (3) and (4) show product formulas involving alternating sums of Tesler
matrices. In this paper, we prove another such result that was initially conjectured by
Armstrong in [1] by using a different alternating sum. He defines a poset on the set of
Tesler matrices which we will denote as P (1n) and refer to as the Tesler poset. Recall
that the characteristic polynomial on the poset (P,�), denoted χ(P ; q), is a Möbius
function weighted rank generating function. That is,

χ(P ; q) =
∑
A∈P

µ(0̂, A)qρ(P )−ρ(A)

where we use the terminology and notation of [20, Ch.3] for the Möbius function µ(·),
the rank of an element A ∈ P and of a poset P as ρ(A), ρ(P ) respectively, and 0̂ for the
unique least element. We will look at the characteristic polynomial of the Tesler poset,
but we first need to give necessary definitions and conventions to discuss Tesler matrices
in a precise manner.

Let Un be the set of n×n upper-triangular matrices with non-negative integer entries.
Given A ∈ Un, where A = (ai,j), we define the hook sum hk for 1 6 k 6 n to be the
sum of all entries weakly right of ak,k minus all entries strictly above it. That is,

hk := (ak,k + ak,k+1 + · · ·+ ak,n)− (a1,k + a2,k + · · ·+ ak−1,k).

We define the hook sum vector as the n-dimensional vector (h1, . . . , hn). A Tesler
matrix A ∈ Un is such that hk = 1 for all 1 6 k 6 n.

Example 1. The matrix below is a 3 × 3 Tesler matrix as h3 = 2 − 1 − 0 = 1, h2 =
1 + 1− 1 = 1, and h1 = 0 + 0 + 1 = 1. 0 1 0

1 1
2


We denote the number of matrices in Un with a hook sum vector of (α1, . . . , αn)

as T (α1, . . . , αn) and the set of such matrices as T (α1, . . . , αn) and refer to these as
generalized Tesler matrices. We often use short hand of T (1n) and T (1n) for the
number of and set of Tesler matrices respectively.
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Conjecture 2 (Armstrong [1]). Let P (1n) be the poset on Tesler matrices T (1n), then

χ(P (1n); q) = (q − 1)(
n
2).

The method that we use in this paper extends to the larger class of generalized Tesler
matrices with binary hook sums and settles Armstrong’s conjecture with a simple calcu-
lation.

Theorem 3. Let α = (αn−1, . . . , α0) ∈ {0, 1}n and P (α) be the poset on generalized Tesler
matrices T (α). Then, letting w(α) = ∑n−1

i=0 i · αi, we have that

χ(P (α); q) = (q − 1)w(α).

To see why this theorem settles Armstrong’s conjecture, note that w(1, 1, . . . , 1) =
(
n
2

)
.

In addition, this theorem is also consistent with a well known result on the Boolean
lattice (see Prop. 18). In order to prove this theorem, we will adapt a method [11] of
Joshua Hallam and Bruce Sagan. We also show that certain powers of (q − 1) divide the
characteristic polynomial of the Tesler poset corresponding to a hook sum vector with
either a trailing or a leading binary word. (See Corollary 36.)

Although Tesler matrices have been connected in [8] to diagonal harmonics via a
bivariate weight and in [15] were shown to be a solution to the Kostant partition function,
there are still many enumerative questions on Tesler matrices that have yet to be answered.
The best known bound in the literature for T (1n) is n! 6 T (1n) 6 2(n

2) [15, §4]. In
Section 5, through simple observations of an enumerative tool that we call the Armstrong
polynomial, we are able to improve the lower bound such that

T (1n) > (2n− 3)!!.

In addition, we can similarly get a tighter upper bound. There are also interesting enumer-
ative results when considering generalized Tesler matrices. Let Ci = 1

i+1

(
2i
i

)
∼ 4i/

(√
πi

3
2
)

be the ith Catalan number. Zeilberger [23] showed that

T (1, 2, . . . , n) =
n∏
i=1

Ci.

Thus T (1, 2, . . . , n) = eΘ(n2), which motivated the following question.

Question 4 (Pak). True or False: The number of Tesler matrices have the following
asymptotics

T (1n) = eΘ(n2).

Remark 5. Note that even the improved lower bound needs to be significantly improved
further to give an affirmative answer to Question 4. However, the existing data in the
OEIS A008608 suggests that log(T (1n)) = O(n1.6) as noted in [17].
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We denote the hook sum vector (1, 1, . . . , 1, 0, 0, . . . , 0) with k 1’s and (n − k) 0’s as
(1k, 0n−k). This set of generalized Tesler matrices have previously been studied in [12]
and we analyze the set T (1k, 0n−k) in Section 6 to get some insight into Tesler matrices.
For fixed k, we will show that

T (1k, 0n−k) > (k + 1)n−1 for sufficiently large n.

This leads us to conjecture that for n large enough, the number of Tesler matrices
can be bounded below by the dimension of DHn, which is (n+ 1)n−1 (also the number of
parking functions of size n). We also find generating functions Tk(x) for particular values
of k. When k = 1, T (1, 0n−1) = 2n−1, so this generating function is trivial. However,
when k = 2 we find the generating function in Proposition 47 [12]. While the case where
k = 3 is still open, further study could provide insight about a generating function for
T (1n).
Outline: In Section 2, we will highlight some previous results and methods that will
be pertinent in this paper. Then, in Section 3, we introduce the Tesler poset, some its
properties, and show that a specific hook sum vector yields a poset which is isomorphic
to the well-known Boolean lattice that was initially noticed by Alejandro H. Morales
in [16]. Using these results, we will then prove Theorem 3 in Section 4 and explore
some of its corollaries. Finally, in the last two sections, we will explore asymptotics and
other enumerative questions regarding generalized Tesler matrices. We then conclude by
exploring the significance of settling Conjecture 2 in respect to the asymptotics of Tesler
matrices.

2 Background

2.1 Tesler Generating Algorithm

We will discuss a method for generating generalized Tesler matrices as given by Drew
Armstrong [1]. Fix a generalized Tesler matrix A = (ai,j) of size n with a hook sum vector
(α1, . . . , αn). Then, consider the main-diagonal entries of A as an n-tuple (d1, . . . , dn) with
di := ai,i. We will create a generalized Tesler matrix A′ = (ai,j ′) with hook sum vector
(α1, . . . , αn, αn+1) by first constructing its main-diagonal (d1

′, . . . , dn+1
′). For all i such

that 1 6 i 6 n, we take di and replace it with di′ where 0 6 di
′ 6 di and set an+1,i

′ = di−di′
so that the ith hook sum hi remains unchanged. Then, let dn+1

′ be such that the sum
of our newly constructed main-diagonal (n+ 1)-tuple adds up to

n+1∑
k=1

αk and let the other
entries in the matrix remain unchanged.

Example 6. The Tesler matrix in Example 1 has a main-diagonal tuple (0, 1, 2). We
will consider the Tesler matrices of size 4 that this matrix generates in Figure 1. In
Definition 8, we will define a function that yields the number of Tesler matrices of size
(n+ 1) that a given Tesler matrix of size n generates. By the multiplication principle, the
algorithm applied to our initial Tesler matrix with main-diagonal tuple (0, 1, 2) generates

the electronic journal of combinatorics 25(2) (2018), #P2.4 4



six (1 · 2 · 3) main-diagonal 4-tuples. Thus, this initial size 3 Tesler matrix generates six
Tesler matrices (α4 = 1) of size 4.

 0 1 0
1 1

2




0 1 0 0

0 1 1
0 2

4




0 1 0 0
0 1 1

2 0
2




0 1 0 0
0 1 1

1 1
3




0 1 0 0
1 1 0

2 0
1




0 1 0 0
1 1 0

1 1
2




0 1 0 0
1 1 0

0 2
3


7→

Figure 1: Note that the red triangle is constant and that the blue rectangle corresponds
to what was subtracted from the original main-diagonal.

Proposition 7. Iterating the Tesler Generating Algorithm yields all Tesler matrices.

Proof. Seeking a contradiction, suppose that there exists a least integer z corresponding
to the size of at least one Tesler matrix A that is not generated by this process. By
reversing this process, we can then create a Tesler matrix of a smaller size (z − 1) that
must be generated from this process as it is smaller in size than A. We could then generate
A from a matrix that is generated through this process. Hence, this process generates all
of the Tesler matrices.

Fixing A = (ai,j) with hook sum vector (α1, . . . , αn), we now consider the number of
generalized Tesler matrices of size (n+ 1) that A generates.

Definition 8. Let A = (ai,j) be an n× n generalized Tesler matrix, then let di := ai,i be
the ith main-diagonal entry. We define the diagonal product of A, denoted dpro(A), as

dpro(A) =
n∏
i=1

(di + 1).

Note that
T (α1, . . . , αn, αn+1) =

∑
A∈T (α1,...,αn)

dpro(A). (5)

Remark 9. By looking at the right hand side of Equation (5), we note that there is no
dependency on the term αn+1 and hence for any natural numbers αn+1, βn+1 we have that

T (α1, . . . , αn, αn+1) = T (α1, . . . , αn, βn+1).

This follows since if A = (ai,j) ∈ T (α1, α2, . . . , αn), then by the definition of the nth hook
sum, we have a lower bound on the entry an,n in that an,n > αn.
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2.2 Integral Flow Representation

A Tesler matrix of size n can also be represented as an integral flow on the complete
directed graph on (n+ 1) vertices with net flows equal to (1, 1, . . . , 1,−n) [15]. Given any
generalized Tesler matrix with hook sum vector (α1, . . . , αn), we can represent it as an
integral flow on the complete directed graph on (n + 1) vertices with net flows equal to
(α1, . . . , αn,−

n∑
i=1

αi).
The bijection in [15] shows that these are equivalent notions. They consider the main-

diagonal entry in row i to be the flow sent from the ith vertex to the (n + 1)st vertex,
which is the rightmost vertex. Then for each entry such that i < j, ai,j corresponds to the
flow between the ith and jth vertices. See Figure 2 below for an example of this bijection.

1 1 1 −3

0

1

1 21

0



0 1 0
1 1
2


←→

Figure 2: Net flows depicted underneath the complete directed graph.

2.3 Method of Hallam and Sagan

Sagan [18] has previously done work on why the characteristic polynomial of a poset
factors. Recently, Sagan and Hallam [11] have introduced a method for showing that the
characteristic polynomial of a poset factors. We will apply Hallam and Sagan’s method to
the Boolean lattice to prove Theorem 3. Their method is to take ranked posets P1, . . . , Pk
for which the characteristic polynomial is known, and to consider Q = P1 × · · · × Pk. We
recall the following facts regarding the characteristic polynomial of posets.
1) If P ∼= P ′, then χ(P ; q) = χ(P ′; q).
2) χ(P1 × P2; q) = χ(P1; q) · χ(P2; q)
Then, they define an equivalence relation (∼) to identify elements in Q such that
Q/∼ ∼= P . The process of identifying elements leaves the characteristic polynomial un-
changed if the equivalence relation satisfies certain conditions. First, an equivalence rela-
tion is homogeneous if

1) 0̂ ∈ Q is in an equivalence class by itself
2) If X > Y in Q/∼, then for all x ∈ X, there is a y ∈ Y such that x > y.

Next, we need ∼ to preserve rank so that if x ∼ y, then ρ(x) = ρ(y). Lastly, letting µ(·)
be the Möbius function on Q and considering any nonzero X ∈ Q/∼ with lower order ideal
L(X) ⊆ Q, ∑

y∈L(X)
µ(0̂, y) = 0. (6)

Hallam and Sagan refer to (6) as the summation condition and we adopt this same ter-
minology.
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Lemma 10 (Hallam and Sagan [11]). Let Q be a ranked poset as above and ∼ be an equiv-
alence relation on Q which is homogeneous, preserves rank and satisfies the summation
condition. Then

χ(Q/∼; q) = χ(Q; q).
Remark 11. Hence, given suitable Pi, we see that χ(P ; q) factors. In Hallam and Sagan’s
paper [11], they use claws CLn to construct their products. We will use the Boolean
lattice to construct our product.

3 The Tesler Poset

We first define the cover relation, introduced by Drew Armstrong [1], and will then
use this definition to prove a couple of useful facts which yield some intuition regarding
the Tesler poset.

3.1 Definition of Tesler Poset

There are two cases in the example in Figure 3 of the cover relation for the matrix
representation depending on the location of the entries.
Definition 12. Fix a hook sum vector α. Then A = (ai,j) ∈ T (α) covers
B = (bi,j) ∈ T (α) and we write B � A if there exists i < j < k such that ai,j = bi,j + 1,
aj,k = bj,k + 1, and ai,k = bi,k − 1 or if there exists i < j such that ai,j = bi,j + 1,
aj,j = bj,j + 1, and ai,i = bi,i − 1. Note that the notation B � A differs from Stanley’s
notation in [20].


1 0 0 0

0 0 1
1 0

2




1 0 0 0

1 0 0
1 0

1




0 1 0 0

0 0 2
1 0

3




0 0 0 1

0 0 1
1 0

3



Figure 3: The matrix version of the cover relation

The poset has a least element, 0̂, with the main-diagonal corresponding to the hook
sum vector and all other entries equal to zero. Hence, in the case of a hook sum vector
(1, 1, . . . , 1), the minimal element is the identity matrix of size n.
Remark 13. With the equivalent notion of a Tesler matrix as an integral flow on the
complete directed graph, the cover relation for the Tesler poset can also be described in
terms of integral flows. Abusing notation, let A,B be the corresponding integral flows
to Tesler matrices A and B respectively. Then, integral flow A covers B if there exists
vertices i < j < k such that the flow between i and k is 1 more in B than it is in A and
the flow from vertices j to k and i to j is 1 more in A than it is in B.
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+1 +1

−1

i j k

i j k

A

B

Figure 4: The cover relation for the integral flow representation

Example 14. In the poset below, we see that Armstrong’s conjecture is true for the case
where n = 3. Collecting terms from the bottom-up, we get

χ(P (13); q) = q3 − q2 − q2 − q2 + 2q + q − 1 = (q − 1)3.




0 1 0
0 2

3







0 1 0
1 1

2







0 0 1
0 1

3







0 1 0
2 0

1







0 0 1
1 0

2







1 0 0
1 0

1







1 0 0
0 1

2




-1

1 2

-1 -1 -1

1

Figure 5: The Tesler poset P (13) with the values of the Möbius function in red. See
appendix Figure 12 for the Hasse diagram of P (14).

Remark 15. By looking at the Hasse diagram of the Tesler poset P (13) in Figure 5, we
see that it is not a lattice.

3.2 Properties

We will show a few properties of the Tesler poset P (α) for α = (α1, α2, . . . , αn).

Proposition 16. The rank of a matrix in the Tesler poset P (α) exists and is equal to the
sum of the non-main-diagonal entries. That is, for A = (ai,j) ∈ P (α), we have that

ρ(A) =
∑
i>j

ai,j.

Proof. As we see in the definition of the cover relation, for any A,B ∈ T (α), if A covers
B, then we necessarily have that the sum of the non-main-diagonal entries for A is one
more than the sum of the non-main-diagonal entries for B. Note that this yields that the
poset P (α) is a ranked poset. The minimal entry has a non-main-diagonal sum of 0 and
we get the desired result.
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Corollary 17. Let α = (α1, α2, . . . , αn), then the rank of the Tesler poset P (α) is∑n
i=1(n− i)αi

Proof. The maximum element, M ∈ P (α), is such that the entry Mi,i+1 = ∑i
k=1 αk and

Mn,n =
n∑
i=1

αi with all other entries zero. This is easy to see when considering the integral
flow representation. The result then follows from the previous proposition.

3.3 Relation to Boolean Lattice

We now relate the poset formed by generalized Tesler matrices with hook sum vector
an = (1, 0, . . . , 0) to the well-known Boolean lattice for subsets of [n] := {1, 2, . . . , n}
under the inclusion relation. Throughout this subsection, n is the length of the hook sum
vector and hence (n+ 1) is the length of the vector depicting net flow in an integral flow.
In this subsection, we seek to prove the following proposition.

Proposition 18. Let an = (1, 0, . . . , 0), then we have that P (an) ∼= Bn−1 [16].

Recall the bijection presented in [15], establishing the equivalent notion of generalized
Tesler matrices as integral flows on the complete graph on (n+1) vertices as mentioned in
Section 2.2. This bijection, combined with the integral flow cover relation (Figure 4) give
that we can consider the poset P (1, 0, 0, . . . , 0) as the partial order on integral flows. The
integral flows would then have net flows (1, 0, 0, . . . , 0,−1). In order to prove Proposition
18, we need an order-preserving bijection between integral flows on the complete graph
of (n+ 1) vertices and the Boolean lattice Bn−1 as we will do in Proposition 19 below.

To this end, we will now consider integral flows with net flow (1, 0, 0, . . . , 0,−1). Note
that the outward flow from a vertex in such an integral flow is at most 1. (Suppose
there existed a vertex with outward flow of at least 2, then since only the first vertex has
positive net flow, we can follow this flow backwards and get that the net flow of the first
vertex is at least 2.)

Since the outward flow is either 0 or 1 in integral flows with net flow (1, 0, 0, . . . , 0,−1),
we can equivalently denote such an integral flow by drawing an edge between vertices i
and j if there exists an outward flow of 1 from vertex i to vertex j. Otherwise, we draw
no such edge.


0 1 0 0

0 0 1
0 0

1

 ↔

0

0
0

0

1 0 0 1

1 0

1 0 0 0 −1
↔

1 2 3START END

+1 −1

Figure 6: An example with an element from T (1, 0, 0, 0) with the net flows depicted in
blue and the green rectangles in the path hint at the bijection.
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Thus, our integral flows with net flow (1, 0, 0, . . . , 0,−1) can be viewed as a path
between vertex 1 and vertex (n+1). Next, for convenience in defining an order-preserving
bijection, we label our vertices from 0 to n as opposed to 1 to (n+1) as show in the above
Figure 6. We think of vertex 0 as the start of the path and vertex n as the end of the
path. Note that the path either hits or does not hit vertex i for all 1 6 i 6 (n− 1). This
is how we define our order-preserving bijection.

Proposition 19. Let the map Φ : T (1, 0, . . . , 0) → Pw([n − 1]) be given by, for all
1 6 i 6 (n− 1), we have i ∈ Φ(A) if and only if integral flow A, viewed as a path, visits
vertex i. Then, Φ is an order-preserving bijection.

Proof. The map Φ is surjective since given any subset {i1, . . . , ik} ⊆ {1, 2, . . . , (n − 1)}
we can define a path which visits vertices i1, . . . , ik. By filling in the remaining flows with
0’s, we get an integral flow A that corresponds with an element from T (1, 0, . . . , 0) such
that Φ(A) = {i1, . . . , ik}. The map Φ is injective since if Φ(A) = Φ(B), then the path
from vertex 0 to vertex n must be the same. Now, since the outward flows are either 0
or 1, the remaining outward flows must be 0, and hence A = B as integral flows on the
complete graph on (n + 1) vertices. The order-preserving nature of the map Φ follows
immediately from the definition of the integral flow formulation of the cover-relation. (See
Figure 4.)

Proposition 20. Let P (1, 0, . . . , 0, 1) and P (1, 0, . . . , 0) be Tesler posets with hook sum
vectors of length n. Then P (1, 0, . . . , 0, 1) ∼= P (1, 0, . . . , 0) ∼= Bn−1

Proof. As we mentioned in Remark 9, we see that θn : T (1, 0, . . . , 0) → T (1, 0, . . . , 0, 1)
given by Mn,n 7→ (Mn,n + 1) is a bijection.

It also follows that θn is order preserving giving us the first congruence that
P (1, 0, . . . , 0, 1) ∼= P (1, 0, . . . , 0). Thus, by Proposition 18, we have

P (1, 0, . . . , 0, 1) ∼= P (1, 0, . . . , 0) ∼= Bn−1.

Remark 21. The composition of the bijection between the matrix representation and the
integral flow representation given in [15] composed with the bijection Φ above, yields a
bijection from generalized Tesler matrices with hook sum vector (1, 0, . . . , 0) to subsets
of {1, 2, . . . , (n − 1)}. This bijection is i is in the corresponding set to a generalized
Tesler matrix with hook sum vector (1, 0, . . . , 0) if there is a non-zero entry in the (i+1)st
column for 1 6 i 6 (n−1). Note that it is imperative that the domain is generalized Tesler
matrices with hook sum vector (1, 0, . . . , 0) as opposed to hook sum vector (1, 0, . . . , 0, 1)
since otherwise (n− 1) would always be in set for all A ∈ T (1, 0, . . . , 0, 1).

Corollary 22. The characteristic polynomial of the poset P (1, 0, . . . , 0, 1) is (q − 1)n−1.

Proof. The characteristic polynomial of Bn is known to be (q − 1)n, hence the previous
proposition result P (1, 0, . . . , 0, 1) ∼= Bn−1 gives us the desired result.
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4 Application of Hallam-Sagan to the Tesler Poset

4.1 Initial Case

We now can use the Hallam-Sagan method discussed in Section 2.3 for calculating the
characteristic polynomial of the Tesler poset. In this subsection, we consider the initial
case which serves as a motivating example. Let α ∈ {0, 1}n be such that αn−1 = 0,
and let ei be the ith elementary vector. In Figure 7, for instance, we have α = (1, 0, 1)
and α + e2 = (1, 1, 1). We want to compute the characteristic polynomial for the poset
P (α + en−1) using the characteristic polynomials of P (α) and B1.

We construct our product poset by considering a set of maps between T (α) and
T (α + en−1). Let φ∅, φ{1} : T (α) → T (α + en−1) be such that φ∅ : A 7→ A + ε1,1 and
φ{1} : A 7→ A + ε2,1 + ε2,2 where εi,j is the elementary matrix of dimension 2. We define
how to add these matrices of different dimension in Definition 25. It is then easy to check
that these maps are well-defined and that they form a poset isomorphic to B1 in the sense
that φ∅(0) � φ{1}(0) where 0 is the n × n zero matrix. In this motivating example, we
define our equivalence relation ∼ on the product poset P (α)× B1 as (A, φ∅) ∼ (B, φ{1})
if and only if φ∅(A) = φ{1}(B). As we will show in Section 4.2, ∼ satisfies all of the
conditions in Lemma 10 so

χ(P (α)×B1/∼; q) = χ(P (α)×B1; q) = χ(P (α); q) ·χ(B1; q) = (q−1)n−1 · (q−1) = (q−1)n.

 0 1 0
0 2

3


 0 0 1

0 1
3

  0 1 0
1 1

2

  0 1 0
1 1

2


 1 0 0

0 1
2

  0 0 1
1 0

2


 0 1 0

2 0
1



 1 0 0
1 0

1



 0 1 0
0 1

2


 0 0 1

0 0
2

  0 1 0
1 0

1


 1 0 0

0 0
1


[

1 0
0

]

[
0 1

1

]
×

P (1, 0, 1)

B1

P (1, 1, 1)

7→

Figure 7: Our method in the case where n = 3 with the equivalent elements enclosed in a
green rectangle. After identifying the equivalent elements enclosed in the green rectangle,
we are left with the poset P (1, 1, 1) as we see in Figure 5.

4.2 General Case

We will now generalize the idea from the previous section which will lead to our main
theorem. For the rest of the subsection, we will fix n, r ∈ N such that r < n, and also fix
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α ∈ {0, 1}n such that α+ en−r+1 ∈ {0, 1}n. The previous section considers the case where
r = 2. We seek to show that

χ(P (α + en−r+1); q) = (q − 1)r−1χ(P (α); q).

We will consider a poset of maps from T (α) to T (α+ en−r+1). While there are certainly
other such maps, we will consider a natural, intuitive set of maps which have a nice
structure and turn out to be sufficient. In order for φ : T (α) 7→ T (α + en−r+1) to be
well-defined, it must increase the (n − r + 1)st hook sum by 1 while not changing the
other hook sums. As a result, we consider maps which can be thought of as an r × r
upper triangular matrix with a hook sum vector (1, 0r−1), which is exactly an element of
T (1, 0r−1). We previously showed that the poset of these matrices are isomorphic to the
Boolean lattice, so we often label these maps with their corresponding set.

Example 23. Below is the poset of maps in the case where r = 3. This poset is isomorphic
to subsets of {1, 2} under the inclusion relation.

 ∗ +1 ∗
∗ +1

+1


 ∗ ∗ +1

∗ ∗
+1

 ∗ +1 ∗
+1 ∗

∗



 +1 ∗ ∗
∗ ∗
∗



φ{1,2}

φ{1} φ{2}

φ∅

←→

Figure 8: Here we let * indicates no change to the element.

Let QA be the subposet of P (α + en−r+1) of the matrices φA(T (α)).

Proposition 24. We have the following facts:
(1) Let A ⊆ [r − 1], then QA

∼= P (α).
(2) ⋃

A⊆[r−1]
φA(T (α)) = T (α + en−r+1)

Proof. (1) Clearly φA is an injective map and is order preserving, so the posets are there-
fore isomorphic.
(2) By the well-defined nature of all of these maps, we clearly have that⋃
A⊆[r−1]

φA(T (α)) ⊆ T (α + en−r+1). Now, let us consider the other direction. Let A ∈

T (α + en−r+1), then there must be a non-zero element in the (n − r + 1)th row. If this
nonzero element is also in the (n−r+1)th column, then one can check that A ∈ φ∅(T (α)).
Otherwise, by considering the columns with non-zero entries, we can construct a set
B ⊆ [r − 1] in the same manner as we noted in Remark 21 such that A ∈ φB(T (α)).
That is, if and only if there is a non-zero entry in the (n − i + 1)st column of A for
1 6 i 6 (r − 1), then the element r − i is in the set B so that we get a subset of [r − 1]
such that A ∈ φB(T (α)). As a result, we get that T (α+ en−r+1) ⊆ ⋃

A⊆[r−1]
φA(T (α)).
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We can form a poset of the maps φA that is isomorphic to the Boolean lattice as we
did in our motivating example and can consider the product poset P (α) × Br−1. Since
the maps φA are additive maps, we often view φA as a matrix SA ∈ T (1, 0r−1).

Definition 25. We define the equivalence relation ∼ on P (α)×Br−1 by

(A1, S1) ∼ (A2, S2) if A1 + S1 = A2 + S2

where the equality is matrix equality. We have to be careful with how we define the
addition of these matrices as the dimensions of the square matrices do not match. We
extend the matrix Si such that it is an n× n matrix in the following manner. The entry
Si,j becomes the entry Si+(n−r),j+(n−r) and all other entries of S are zero. Essentially, we
are placing our matrix in the lower right corner in order to make addition of matrices
defined.

 0 1 0
1 1

2


 0 1 0

1 0
1

 + [
0 1

1

] =

Figure 9: The entries circled with the same color are added together to get our resulting
(A+ S) matrix.

Clearly this is a homogeneous equivalence relation which preserves rank as it satisfies
the conditions discussed in Section 2.3. Therefore, we have that P (α)×Br−1/∼ is a valid
poset. We now seek to show that the summation condition (6) holds. In order to do this,
we will first need some technical lemmas. The first lemma restricts what elements can be
in the same equivalence class.

Lemma 26. Let A0 be the minimal element of P (α), and S0 be the matrix representation
of φ∅ which is the minimal element of Br−1. Then, for non-minimal A ∈ P (α) and non-
minimal Sd ∈ Br−1, we have that (A0, Sd) and (A, S0) are in different equivalent classes
of the relation ∼.

Proof. We show that A0 + Sd 6= A + S0 by showing they are not equal in the (n −
r + 1)st entry along the main-diagonal. That is, the values (A0 + Sd)(n−r+1,n−r+1) and
(A + S0)(n−r+1,n−r+1) are different. When considering A0 + Sd, we must have that this
entry is equal to 0 as it is 0 in both matrices that we are adding. We know that this
entry in Sd is 0 since otherwise we would necessarily have that φd is the minimal element.
Considering this same entry for A + S0, we know that since S0 has a 1 in this particular
entry, the non-negativity of elements in A gives that this element in the matrix A + S0
must be greater than or equal to 1. Hence, we do not have matrix equality with the sum
and thus the two elements are not equivalent under ∼. See Figure 10 below for a visual
representative of this argument in a particular case.

the electronic journal of combinatorics 25(2) (2018), #P2.4 13




1 0 0 0 0

0 0 0 0
0 0 0

1 0
1




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

∗



 0 ∗ ∗
∗ ∗

∗



 1 0 0
0 0

0



+

+

=

=


1 0 0 0 0

0 0 0 0
0 ∗ ∗

∗ ∗
∗




∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
≥ 1 ∗ ∗

∗ ∗
∗



(A0, Sd) :

(A, S0) :

Figure 10: The case when n = 5 and r = 3. Note that * indicates that we do not know
the particular entry.

Definition 27. We say an element A ∈ P (α) is first coordinate isolated relative to X if
(A, φ∅) is the only element in L(X) with the first coordinate equal to A. Similarly, we
say φd ∈ Br−1 is second coordinate isolated relative to X if (A0, φd) is the only element in
L(X) with the second coordinate equal to φd.

Now, we fix an element X ∈ P (α)×Br−1/∼. The next lemma dictates the elements that
can be in the lower order ideal L(X). For the rest of the section, we let A0 be the minimal
element of P (α) and φ0 be the minimal element of Br−1.

Lemma 28. For our fixed X ∈ P (α)×Br−1/∼, at most one of the conditions hold.
(1) There exists a non-minimal A ∈ P (α) that is first coordinate isolated relative to X.
(2) There exists a non-minimal φd ∈ Br−1 that is second coordinate isolated relative to
X.

Proof. Since we are keeping X fixed, we omit the “relative to X” when referring to first
and second coordinate isolation for the proof. We proceed by contradiction. Suppose
that φd ∈ Br−1 is second coordinate isolated and A ∈ P (α) is first coordinate isolated.
Now, since (A, φ0) and (A0, φd) are in L(X), there exists a path in L(X) between those
elements and a member of the equivalence class X. By a path, we mean a sequence of
covers in the poset. Consider such a path Γ1 : (A, φ0) 7→ (Ml, φl) ∼ X. Note that this
path stays in L(X) and is guaranteed to exist by the fact that we are looking at elements
in a lower order ideal. (See Figure 11 for a pictorial representation of these paths.)

We start at (A, φ0). In the first cover in our path, we necessarily must change the first
coordinate. This is because if we were to change the second coordinate, we would get
that (A, φ1) ∈ L(X) which contradicts our hypothesis that A ∈ P (α) is first coordinate
isolated. Therefore, our first cover in Γ1 must be (A, φ0) 7→ (A1, φ0) for some
A1 > A ∈ P (α). Now, suppose our second cover resulted in our path Γ1 going to (A1, φ1)
for some φ1 ∈ Br−1. This would imply that (A1, φ1) ∈ L(X) and hence (A, φ1) ∈ L(X)
as this is a lower order ideal. This contradicts our hypothesis that A ∈ P (α) is first
coordinate isolated. Hence, our updated path is Γ1 : (A, φ0) 7→ (A1, φ0) 7→ (A2, φ0) for
some A2 > A1 ∈ P (α). Continuing this argument, we see that our path Γ1 must have a
constant second coordinate φ0. As a result, we have that X ∼ (Ml, φl) ∼ (Am, φ0) where
Am > · · · > A1 > A ∈ P (α) for some m ∈ N.
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Now, by a similar argument, we have that Γ2 : (A0, φd) 7→ (Mj, φj) must have constant
first coordinate A0. As a result, we have that X ∼ (Mj, φj) ∼ (A0, φdk

) where for some
k ∈ N φdk

> · · · > φd1 > φd ∈ Br−1. Note that transitivity implies that
(Am, φ0) ∼ (A0, φdk

). In Lemma 26, we showed that these are necessarily in different
equivalence classes, hence we have reached our contradiction.

(A, φ0) (A0, φd)

(Am, φ0) (A0, φdk)

(A1, φ0)

(A2, φ0)

(A0, φd1)

(A0, φd2)

Γ1 Γ2

X

Figure 11: Pictorial representation of paths Γ1,Γ2 in proof of Lemma 28.

Proposition 29. The summation condition (6) holds for the poset P (α)×Br−1/∼.

Proof. Fix a non-minimal equivalence class X ∼ [(A, S)] ∈ P (α)×Br−1/∼. We must show
that ∑

(Y,S)∈L(X)
µ((0̂, 0̂), (Y, S)) = 0.

Observe that we can write the LHS in the following two ways:

∑
(Y,S)∈L(X)

µ
(
(0̂, 0̂), (Y, S)

)
=
∑
Si

 ∑
(Y,Si)∈L(X)

µ
(
(0̂, 0̂

)
, (Y, Si)

) (7)

∑
(Y,S)∈L(X)

µ
(
(0̂, 0̂), (Y, S)

)
=
∑
Yk

 ∑
(Yk,S)∈L(X)

µ
(
(0̂, 0̂), (Yk, S)

) (8)

Now, since we are considering the lower order ideal of a product, it is easy to evaluate∑
(Yk,S)∈L(X)

µ((0̂, 0̂), (Yk, S)). By the product structure of the lower order ideal L(X), there

is a unique maximum Yk ∈ P (α) for elements in L(X) with the second coordinate Si. This
follows by supposing that there are at least two incomparable relative maximal elements
and using a very similar argument from the previous lemmas. By the recursive nature of
the Möbius function, we get that so long as Yk is not the minimal element in P (α), the
inner sum in Equation (8) is always 0 and∑

(Yk,S)∈L(X)
µ
(
(0̂, 0̂), (Yk, S)

)
= 0.
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Similarly, so long as Si is not the minimal element in Br−1 the inner sum in (7) is always
0 so that ∑

(Y,Si)∈L(X)
µ
(
(0̂, 0̂), (Y, Si)

)
= 0.

Thus, it suffices to show that we do not have a A ∈ P (α) which is first coordinate
isolated and a φd ∈ Br−1 which is second coordinate isolated. We showed this precise
statement in Lemma 28. Hence, (6) holds as we are either adding up all zeroes in (7) or
(8).

We are now ready to prove the lemma that we use in our main theorem.

Lemma 30. Let α = (α1, . . . , αn) ∈ {0, 1}n where αn−r+1 = 0. Then

χ(P (α + en−r+1); q) = χ(P (α); q) · (q − 1)r−1.

Proof. It suffices to show that P (α + en−r+1) ∼= P (α)×Br−1/∼. By the result from Propo-
sition 18, we consider the elements in Br−1 as generalized Tesler matrices with the Tesler
cover relation throughout this proof. We have already shown that there is a bijection be-
tween the elements of the poset. We now must show that this bijection is order-preserving.

In the forwards direction, if A = (ai,j), B = (bi,j) ∈ P (α + en−r+1) are such that
B � A, then we want to show there exists (A1, A2), (B1, B2) ∈ P (α) × Br−1 such that
(B1, B2) � (A1, A2) with B = B1+B2 and A = A1+A2. This is because the cover relation
in the quotient poset is defined as XB � XA in P (α)×Br−1/∼ if we have (B1, B2) � (A1, A2)
in P (α)×Br−1 for some (B1, B2) ∈ XB and for some (A1, A2) ∈ XA.

Let XB, XA be the corresponding equivalence classes in P (α)×Br−1/∼ and (B1, B2) ∈
XB be an element in the equivalent class so that B = B1 + B2. We will only consider
the first type of matrix cover relation from Definition 12; the other type of matrix cover
relation has a similar proof. Since B � A in P (α + en−r+1), there exists i < j < k such
that ai,j = bi,j + 1, aj,k = bj,k + 1, and ai,k = bi,k − 1. Now since bi,k > 0 we know
that that either (B1)i,k > 0 or (B2)i,k > 0 where (B1)i,k corresponds to the matrix entry
of B1 in the ith row and kth column. Without loss of generality, suppose (B1)i,k > 0.
Then, we can create A1 ∈ P (α) such that (A1)i,j = (B1)i,j + 1, (A1)j,k = (B1)j,k + 1, and
(A1)i,k = (B1)i,k−1 so that B1 � A1 in P (α). Note that since A2 ∈ Br−1 then necessarily
must be so that A2 = B2, we have that (B1, B2) � (A1, A2). Thus, the bijection is
order-preserving in the forwards direction.

In the backwards direction, we have that since XB � XA in P (α)×Br−1/∼, there exists
(B1, B2) � (A1, A2) in P (α)×Br−1 for some (B1, B2) ∈ XB and for some (A1, A2) ∈ XA.
Then, by the definition of the cover relation in a product poset, we must have a cover
in one of the coordinates and the other coordinate fixed. Thus, since the cover relation
used in both coordinates is the Tesler cover relation, the corresponding Tesler matrices
A = A1 +A2, B = B1 +B2 ∈ P (α+en−r+1) are such that B � A, so the bijection is order-
preserving in the backwards direction. Thus, we have that P (α+ en−r+1) ∼= P (α)×Br−1/∼,
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and using Lemma 10 we get

χ(P (α + en−r+1); q) = χ(P (α)×Br−1/∼; q)
= χ(P (α)×Br−1; q)
= χ(P (α); q) · χ(Br−1; q) = χ(P (α); q) · (q − 1)r−1.

We are now ready to state and prove our main theorem. Note that we have a slight
modification in our notation for the hook sum vector α for a more clean result.

Theorem 31. Let α = (αn−1, αn−2, . . . , α1, α0) ∈ {0, 1}n where αn−1 = α0 = 1. Then,
letting w(α) = ∑n−1

i=0 i · αi we have that

χ(P (α); q) = (q − 1)w(α).

Proof. We iterate Lemma 30 for each αi = 1 where i ∈ [2, n − 1]. Note that if αi = 0,
we are not changing the poset, so the characteristic polynomial is unchanged. One way
of representing this using Lemma 30 is to multiply by (q − 1)αi(n−i). This multiplies the
characteristic polynomial of the unchanged poset by 1 when αi = 0 and by the desired
amount when αi = 1. We start with the hook sum vector αn−1 + α0 and then apply
the Lemma 30 to get the characteristic polynomial for αn−1 + α1 + α0 as we did in our
motivating example. We then do the same thing to get αn−1 + α2 + α1 + α0, and iterate
until we have the characteristic polynomial of the poset corresponding to the hook sum
vector α. As a result, we get the following:

χ(P (αn−1 + α1 + α0); q) = (q − 1)n−1 · (q − 1)α1

χ(P (αn−1 + α2 + α1 + α0); q) = (q − 1)n−1 · (q − 1)α1 · (q − 1)2α2·
...

χ(P (α); q) = (q − 1)n−1 · (q − 1)α1 · · · (q − 1)(n−2)αn−2

Collecting powers we obtain (q − 1)w(α) as desired.

Corollary 32. Let P (1n) be the Tesler poset and w(α) be as above. Then

χ(P (1n); q) = (q − 1)(
n
2).

Proof. Since w(1n) =
(
n
2

)
, the result follows by Theorem 31.

Note that Theorem 31 also is consistent with the well-known result on the Boolean
lattice result as the Boolean lattice is isomorphic to the Tesler poset P (1, 0, . . . , 0). We
see this by noting that

w(1, 0, . . . , 0) = w(1, 0, . . . , 0, 1) = n− 1.
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Remark 33. This result also gives another method of generating Tesler matrices T (1n)
that is different from the Tesler generating algorithm discussed in Section 2.1. While this
method is certainly less efficient that the Tesler generating algorithm, it is possible to
construct the set T (1n) in this manner without knowledge of the sets T (11), . . . , T (1n−1)
and only using the well known Boolean lattice.

A natural question is to see if this result extends to all generalized Tesler matrices. In
the general case, Lemma 26 and Lemma 28 do not hold. For other α ∈ Nn, we get other
factors besides (q − 1) as we see in (9). Moreover, in the general case, the characteristic
polynomial need not factor over Z as we see in (10).

Example 34. Let α = (1, 2, 3) and β = (2, 1, 1, 1) and consider the posets P (α) and
P (β). (For the Hasse diagram of the poset P (1, 2, 3), see Figure 13 in the Appendix.)
Then, one can check:

χ(P (α); q) = q(q − 1)3 (9)

χ(P (β); q) = (q − 1)4(q5 − 2q4 + 4q3 − 6q2 + 3q + 1) (10)

However, we do have the following divisibility results as corollaries to Theorem 31. The
question of (q − 1) divisibility in the Tesler poset was initially considered by Drew Arm-
strong and then communicated in [1].

Corollary 35. Let α ∈ Nk and consider the Tesler poset P (1, α), then

(q − 1)k divides χ(P (1, α); q).

Proof. We start off with the posets P (α) and Bk and consider the product P (α) × Bk

and apply the same equivalence relation from Definition 25 and note that the results from
Lemma 26 and Lemma 28 also hold in this case. As a result, we can use Lemma 10 and
Proposition 18 to get that

χ(P (1, α); q) = χ(Bk × P (α)/∼; q) = χ(Bk × P (α); q) = (q − 1)k · χ(P (0, α); q).

We can now use Corollary 35 and Lemma 30 to get some results about factors of the
characteristic polynomial when there are leading and trailing binary words in the hook
sum vector.

Corollary 36. Let α ∈ Nn−k and β = (β1, . . . , βk) ∈ {0, 1}k and consider the Tesler
posets P (α, β) and P (β, α). Then, letting w1(β) =

k∑
i=1

(n− i)βi and w2(β) =
k∑
i=1

(k − i)βi,
we have

(q − 1)w1(β) divides χ(P (β, α); q) and (11)

(q − 1)w2(β) divides χ(P (α, β); q) (12)
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Proof. First, we look at the statement in (11). We iterate through our binary word β by
starting with βk and ending with β1. At the ith step, by Corollary 35, we get a factor
of (q − 1)n−k+i−1. Collecting powers of (q − 1), and then reordering the sum gives us the
desired result of a factor of (q − 1)w1(β). Next, we consider the statement in (12). We
iterate through our binary word β by starting with β1 and ending with βk and use the
result from Lemma 30. After collecting powers, we get a factor of (q − 1)w2(β).

5 Armstrong polynomial

In this section, we introduce the Armstrong polynomial to encode the growth of the
number of Tesler matrices. Questions regarding asymptotics of the Kostant partition
function and hence generalized Tesler matrices have recently appeared in a Math Overflow
post. [21]
Let A = (ai,j) ∈ T (1n) and di = ai,i. Recall the diagonal product of A

dpro(A) =
n∏
i=1

(di + 1).

Definition 37. We define the Armstrong polynomial An(q) to measure the distribution
of diagonal products in T (1n). That is,

An(q) :=
∑

A∈T (1n)
qdpro(A).

Example 38. As we see in Figure 5, the diagonals corresponding to the 7 Tesler matrices
of size 3 are (1, 1, 1), (0, 1, 2), (0, 0, 3), (1, 0, 2), (0, 0, 3), (0, 1, 2), and (0, 2, 1) with diagonals
products: 8, 6, 4, 6, 4, 6, and 6. As a result, we have

A3(q) = 2q4 + 4q6 + q8.

5.1 Previously known bounds

By considering the bijection between the integral flow representation and matrix rep-
resentation of Tesler matrices, we have that the main diagonal of a size n Tesler matrix
necessarily sums to n. It then follows that for all A ∈ T (1n), we have
n + 1 6 dpro(A) 6 2n where the tightness of the lower and upper bound are obtained
with main-diagonals (0, 0, . . . , 0, n) and (1, 1, . . . , 1) respectively. The first approximation
uses Equation (5) and considers all the diagonal products to be (n + 1) to get the lower
bound and 2n to get the upper bound. Through this method we get that

n! 6 T (1n) 6 2(n
2). (13)
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Example 39. For n = 1 through n = 5, we have the following Armstrong polynomials:

A1(q) = 1q2

A2(q) = 1q3 + 1q4

A3(q) = 2q4 + 4q6 + 1q8

A4(q) = 7q5 + 15q8 + 6q9 + 11q12 + 1q16

A5(q) = 40q6 + 93q10 + 67q12 + 75q16 + 55q18 + 26q24 + 1q32

Remark 40. As we will discuss in Section 6, we can also define the Armstrong polynomial
An(α, q) for certain classes of generalized Tesler matrices with hook sum vector α.

Proposition 41. Let [qa]An(q) be the coefficient of the term of degree a in An(q), then:

• [q2n ]An(q) = 1

• [qn+1]An(q) = T (1n−1)

• [q3·2n−2 ]An(q) = 2n − n− 1

Proof. The first statement follows as there is only one diagonal, namely (1, 1, . . . , 1), which
results in a diagonal product of 2n and the identity matrix is the only such matrix with
this diagonal. By considering the incoming flow to the (n + 1)st vertex of the integral
flow representation of a Tesler matrix, we get that the sum of the main-diagonal entries
must add up to n. Also, since αn = 1, we necessarily must have that an,n > 1 for
A = (ai,j) ∈ T (1n). Thus, when considering the second statement, the only possible
main-diagonal with diagonal product (n+ 1) is (0, . . . , 0, n). Using the Tesler generating
algorithm discussed in Section 2.1, the only way to get such a diagonal is to start out with
any main-diagonal of size (n − 1) and then taking everything away from all elements of
the original diagonal. As a result, for each Tesler matrix of size (n− 1), we have a unique
Tesler matrix of size n with diagonal (0, . . . , 0, n), thus proving the second statement.

Finally, considering the last part of our proposition, let the coefficient of the term with
degree 3·2n−2 in An(q) be an. We simply need to show that an satisfies the same recurrence
relation as the sequence {2n−n−1}. Namely, we need to show that an = (n−1)+2an−1.
One can check that the terms with degree 3 · 2n−2 in An(q) come from the diagonal
(2, 1, . . . 1, 0) and valid rearrangements of those terms. Starting with diagonals in the
form (2, 1, . . . 1, 0) of the previous size, we can either do nothing, or subtract 2 from the
2 term in the diagonal (2, 1, . . . 1, 0). This accounts for the 2an−1. We get the (n − 1)
from noting that we can also generate the diagonal (2, 1, . . . 1, 0) by starting from the
unique Tesler matrix with main-diagonal (1, . . . , 1) and subtracting any one of the (n−1)
main-diagonal entries that are 1.

Note that given k ∈ N and the Armstrong polynomial, Ak(q), it is possible to read off
T (1k−1), T (1k), and T (1k+1) from this polynomial as we show in the following proposition.

the electronic journal of combinatorics 25(2) (2018), #P2.4 20



Proposition 42. The Armstrong polynomial is so that

T (1n+1) = d

dq
An(q)|q=1

and An(1) = T (1n).

Proof. First, we note that dpro(A) > 2 for all n. Then,

d

dq
An(q)

∣∣∣
q=1

= d

dq

∑
A∈T (1n)

qdpro(A)
∣∣∣
q=1

=
∑

A∈T (1n)

d

dq
qdpro(A)

∣∣∣
q=1

=
∑

A∈T (1n)
dpro(A) · qdpro(A)−1

∣∣∣
q=1

=
∑

A∈T (1n)
dpro(A) = T (1n+1).

The second statement is immediate.

We can now use the observations in Proposition 41 regarding the Armstrong polyno-
mial to get the following bounds on the number of Tesler matrices.

Theorem 43.
n−1∏
i=1

(2i− 1) 6 T (1n) 6 2(n−2
2 )−1 · 3n. (14)

Proof. We use a similar method as we did in our first approximation. This time, however,
we know that we have exactly T (1n−1) of our terms to have a diagonal product of (n+ 1)
by Proposition 41. We now assume that the remaining Tesler matrices have a diagonal
product of 2n, the second lowest diagonal product. Using this, we note that

T (1n+1) =
∑

A∈T (1n)
dpro(A)

> T (1n−1)(n+ 1) +
[
T (1n)− T (1n−1)

]
(2n).

We now use the previously known bounds in (13) that T (1n) > nT (1n−1) to get that

T (1n+1) > T (1n)
[
T (1n−1)
T (1n) (n+ 1) + T (1n)− T (1n−1)

T (1n) (2n)
]

> T (1n)
[ 1
n

(n+ 1) + n− 1
n

(2n)
]
> T (1n)(2n− 1).
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Iterating this, we get our desired lower bound that

T (1n+1) >
n∏
i=1

(2i− 1) = (2n− 1)!!.

We get the upper bound by the same method and further reductions.

Remark 44. We note that the lower bound in (14) is better than n! since
n−1∏
i=1

(2i − 1) > 2n−2 · (n − 2)! and is O((2n
e

)n−1). Note that this still does not give an

affirmative answer to Question 4 and that the upper bound in (14) is still eΘ(n2), but is
slightly tighter.

6 Understanding Different Hook Sum Vectors

Recall that T (1k, 0n−k) denotes the set of generalized Tesler matrices with hook sum
vector equal to (1, . . . , 1, 0, . . . , 0) where there are k 1’s and (n−k) 0’s and that T (1k, 0n−k)
denotes the number of such matrices. In this section, we will refer to Armstrong poly-
nomials for generalized Tesler matrices with hook sum vector α as An(α, q) where the
Armstrong polynomial from the previous section is such that An(q) := An(1, 1, . . . , 1, q).

First, we consider T (1, 0n−1). Taking αk+1 = 0 from the method discussed in Section
2.1, it follows that T (1, 0n−1) can be produced by the Tesler generating process. Now,
we note that there is only one possible diagonal up to reordering of (1, 0, . . . , 0), so all
elements have the same diagonal product and as a result the Armstrong polynomial is
always in the form An(1, 0, . . . , 0, q) = (T (1, 0n−2))q2 which yields that T (1, 0n−1) = 2n−1

by the first part in Proposition 42. Hence, letting T1(x) be the generating function for
the number of generalized Tesler matrices with hook sum vector (1, 0n−1) we get that

T1(x) :=
∑
n>0

T (1, 0n)xn = 1
1− 2x.

Now, let us consider T (12, 0n−2). These matrices have been recently studied in [5,12].
For the same reason as above, we can consider the corresponding Armstrong polynomial.
There are only two possible diagonals up to reordering of (2, 0, . . . , 0) and (1, 1, 0, . . . , 0)
with diagonal products 3 and 4 respectively. We now consider the corresponding Arm-
strong polynomial An(12, 0n−2, q).

Proposition 45. Let An−1(12, 0n−3, q) = an−1q
3 + bn−1q

4. Then, we have

An(12, 0n−2, q) = (2an−1 + bn−1)q3 + (an−1 + 3bn−1)q4.

Proof. We only need to that prove the value of the coefficient of q3 is as stated as the
other coefficient is determined by the fact we know the total number of matrices that are
in this set from the An−1(12, 0n−2, q) term. Thus, we consider the ways to get the diagonal
(2, 0, . . . , 0) from the previous set. First, we can do nothing in the diagonal part of the
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Tesler generating process and add a zero to each of the (2, 0, . . . , 0) of the previous case.
Second, for all of the previous size matrices, we subtract everything from the diagonal
and then add 2 yielding the diagonal (0, . . . , 0, 2). As a result, we generate 2an−1 + bn−1
distinct terms with diagonal (2, 0, . . . , 0).
Proposition 46. Let tn := T (12, 0n). Then tn > 3n+1 for n > 5.
Proof. Generating these matrices through a computer program, we note that t3 = 90.
Thus, since 3 is the smallest possible diagonal product we have
tn > 3tn−1 · · · > 3n−3t3 = 90(3n−3) > 3n+1.
Proposition 47 (See also [12]). The ordinary generating function for tn is

T2(x) :=
∑
n>0

T (12, 0n)xn = 2− 3x
1− 5x+ 5x2 .

Proof. Using the results from Proposition 42 and applying it to Proposition 45 with the
Armstrong polynomial An−1(12, 0n−3, q) = an−1q

3 + bn−1q
4, we can explicitly compute the

values for tn−1, tn, tn+1 in terms of an−1 and bn−1. From this, we get that tn satisfies the
following recurrence relation tn+1 = 5tn − 5tn−1. From this difference equation, and the
initial conditions t0 = 2 and t1 = 7, we can find the generating function for tn via standard
methods.
Proposition 48. For all k, there exists some Nk ∈ N such that for all n > Nk we have

T (1k, 0n−k) > (k + 1)n−1.

Proof. For a given k, the smallest possible diagonal product in T (1k, 0n−k) is (k + 1).
Using similar methods of generating the diagonals of the form (0, 0, . . . , 0, k), we can see
that less than half of the terms in the set T (1k, 0n−k) have a diagonal product of (k + 1).
Hence, noting that the next lowest diagonal product is 2k, the expected value of the
diagonal product is at least (3k + 1)/2. Since (3k + 1)/(2k + 2) > 1 for k > 2, we will eventually
have an Nk such that T (1k, 0Nk−k) > (k + 1)Nk−1.

6.1 Conjectures and Future Work

The sequence {T (1n)} appears in the OEIS A008608. Based on the 25 entries in this
sequence, and the insight from Proposition 48, we make the following conjecture.
Conjecture 49. Let n, k ∈ Z be such that n > k > 11. Then, we have

T (1k, 0n−k) > (k + 1)n−1.

Remark 50. This conjecture would prove that for n > 11, we have T (1n) > (n + 1)n−1

which is a significant because (n+ 1)n−1 is the value of (1) with t = 1 and q = 1 (i.e. the
dimension of DHn). We note that for k = 11, this conjecture is true as
T (111) = 515, 564, 231, 770 which is bigger than 1210. Thus if we can show that
T (1n+1) > e · (n + 2)T (1n) for k > 11, then we have proven the conjecture. Here the
number e comes from looking at the fraction of the next term over the previous term
which gives us (n+2

n+1)n−1 · (n+ 2) where the first term is bounded below by e.
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The statistics dinv and area, which are mentioned in more detail in [8], are used in
the now settled Haglund-Loehr conjecture [10]. Carlsson and Mellit show in [4] that

Hilb(DHn; q, t) =
∑
π

qdinv(π)tarea(π) (15)

where the sum is over parking functions π of size n.
Haglund’s Tesler matrix approach to showing (15) reduces to proving that∑

π

qdinv(π)tarea(π) =
∑

A=(ai,j)∈T (1n)
wtq,t(A). (16)

where wtq,t(·) is as in (2).
It was shown in [3] that by plugging in t = 1 and q = 1 we get

(n+ 1)n−1 =
∑

A=(ai,j)∈PT (1n)

∏
ai,j>0

[ai,j]q,t. (17)

We note here that the only terms that survive on the RHS of (16) after plugging in t = 1
and q = 1 are Tesler matrices with exactly one nonzero element in each row. These
are called Permutation Tesler matrices. This relationship between parking functions and
Tesler matrices adds intrigue to having the number of parking functions eventually be a
lower bound for Tesler matrices since this would imply there is a lot of cancellation in the
alternating sum on the RHS of (16). We will now explore a way to affirmatively answer
Question 4 using χ(P (1n); q).

Proposition 51. Let µ(·) be the Möbius function for the Tesler poset P (1n). If for all
A ∈ T (1n) we have that |µ(0̂, A)| 6 f(n), then we have that:

T (1n) > 2(n
2)

f(n) .

Proof. We note that by Corollary 32, we have∑
A

|µ(0̂, A)| > 2(n
2).

Hence, if for all A ∈ T (1n) we have that |µ(0̂, A)| 6 f(n), then we would have that
T (1n) · f(n) > 2(n

2) which gives the desired result.

Remark 52. We would find such a bound on the Möbius function for the Tesler poset
P (1n) by analyzing the size of the equivalence classes that we get when we use Hallam-
Sagan’s method from Section 2.3. In their Lemma 10, they show that the Möbius function
of the equivalence class [X] is equal to the sum of the Möbius function evaluated at the
elements in the equivalence class [X].
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Conjecture 53. Let α = (1, 1, . . . , 1) and P (α) be the Tesler poset with Möbius function
µ(·). Then we can have the following lower bound on the Möbius function

|µ(0̂, A)| 6 n!.

We have been able to computationally able to verify Conjecture 53 in the Tesler poset
corresponding to hook sum vectors (1, 1, . . . , 1) up to size 5. A proof of this conjecture
would give an affirmative answer to Question 4 since

T (1n) > 2(n
2)
n! = eΘ(n2).

Figure 12: The Tesler poset corresponding to hook sum vector (1, 1, 1, 1). Note that the
numbers in the image signify the order in which the matrices were generated in SAGE.

Figure 13: The Tesler poset corresponding to hook sum vector (1, 2, 3).
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