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Abstract

Hegarty conjectured for n 6= 2, 3, 5, 7 that Z/nZ has a permutation which de-
stroys all arithmetic progressions mod n. For n > n0, Hegarty and Martinsson
demonstrated that Z/nZ has a permutation destroying arithmetic progressions.
However n0 ≈ 1.4 × 1014 and thus resolving the conjecture in full remained out
of reach of any computational techniques. Using constructions modeled after those
used by Elkies and Swaminathan for the case of Z/pZ with p being prime, this
paper establishes the conjecture in full. Furthermore, our results are completely
independent of the proof given by Hegarty and Martinsson.

Mathematics Subject Classifications: 11B75, 11L40

1 Background

In 2004 Hegarty [2] introduced the notion of permutations that destroy arithmetic pro-
gressions in finite cyclic groups.

Definition 1. Given a permutation π : Z/nZ→ Z/nZ, a three term arithmetic progres-
sion (a, a+ r, a+ 2r), with not all terms equal, is called preserved in π if π (a+ 2r) −
2π (a+ r) + π (a) = 0. A permutation is said to destroy all arithmetic progressions if it
has no preserved arithmetic progressions.

For the sake of simplicity, a three-term arithmetic progression will be denoted an AP
and a permutation that destroys all APs will be called AP-Destroying. This notion can
be extended to permutations which destroy k-term arithmetic progressions and Hegarty
[2] demonstrated that for n 6= 3, 4 there exists a permutation of Z/nZ that destroys all k-
term arithmetic progressions for all k > 4. However, classifying which cyclic groups have
an AP-Destroying permutation has been resistant to proof. In particular Hegarty [2] gave
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the following conjecture regarding AP-Destroying permutations based on computational
evidence.

Conjecture 2. For n 6∈ {2, 3, 5, 7}, there exists an AP-Destroying permutation π :
Z/nZ→ Z/nZ.

This conjecture was proved for sufficiently large n by Hegarty and Martinsson [3] in
2015.

Theorem 3. For n > (9× 11× 16× 17× 19× 23)2, there exists a AP-Destroying per-
mutation π : Z/nZ→ Z/nZ.

However given that (9× 11× 16× 17× 19× 23)2 ≈ 1.4× 1014, any purely computa-
tional approach is out of reach in order to establish Hegarty’s original conjecture. We
instead base our construction on that of Elkies and Swaminathan [1], who proved the
following result.

Theorem 4. Let p be a prime with p > 11. Then there exists an AP-Destroying permu-
tation π : Z/pZ→ Z/pZ.

Following this approach we establish the original conjecture of Hegarty [2].

Theorem 5. For n 6∈ {2, 3, 5, 7}, there exists a AP-Destroying permutation π : Z/nZ→
Z/nZ.

Note that Hegarty [2] computationally checked that each of the values n ∈ {2, 3, 5, 7}
does not have an AP-Destroying permutation, so it suffices to prove that the remaining
values do have an AP-Destroying permutation.

2 Preliminary Reductions

The starting point for our proof is a theorem from Hegarty [2] that can be used to simplify
the general case to five infinite classes of integers and a finite exceptional set. (Note that
the theorem given by Hegarty [2] applies more generally for abelian groups; see Theorem
20 below.)

Theorem 6. If there exists an AP-Destroying permutation for Z/mZ and Z/nZ, there
exists a AP-Destroying permutation for Z/mnZ. Note that m and n are not necessarily
coprime.

Given this theorem it is possible to reduce the set of integers necessary to prove the
desired result. This reduction is given without proof in Hegarty [2]. (There appears to be
a slight error in the version given by Hegarty [2] as it excludes the case when n = 343.)

Theorem 7. In order to prove Theorem 5, it suffices to prove the cases {p, 2p, 3p, 5p, 7p | p
prime and p > 11} and the integers {p1p2, p1p2p3} with pi ∈ {2, 3, 5, 7}, not necessarily
distinct.
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Proof. Suppose that n = 2a13a25a37a4pb11 . . . p
bk
k . If 2a13a25a37a4 6∈ {1, 2, 3, 5, 7} then find

a AP-Destroying permutation for each pbii and 2a13a25a37a4 and the result follows from
the previous lemma. The last integer can be constructed as a1 + a2 + a3 + a4 > 2 so we
can represent a1 + a2 + a3 + a4 as a sum of 2’s and 3’s and using this we can construct
2a13a25a37a4 as a product of products of 2 or 3 primes in {2, 3, 5, 7}. Otherwise we take
2a13a25a37a4p1 and n

2a13a25a37a4p1
in order to represent n and find a permutation for each

of the integers independently.

To prove the result for the cases {2p, 3p, 5p, 7p | p prime and p > 11} we model
our construction based on the one used by Elkies and Swaminathan [1] to demonstrate
Theorem 4. The key similarity is the following lemma of Elkies and Swaminathan from [1],
which we will rely heavily on as well. Note that in the statement below, and elsewhere in
this paper we will not distinguish between an aritheoremetic progression and its reverse.

Lemma 8. Suppose that π : Z/pZ→ Z/pZ is the following permutation with t 6= 0:

π :=


t x = 0

0 x = 1
t
x

x /∈ 0, 1

.

Then the only APs preserved by π are
(
0, 3

2
, 3
)
,
(
1
3
, 2
3
, 1
)
.

Elkies and Swaminathan [1] then performed two transpositions in order to eliminate
these preserved APs and this demonstrated the case when n is prime. In the case n = 2p
we will “glue” together two such permutations in a careful manner so that there is exactly
one preserved AP, and then using a single transposition we eliminate the preserved AP. In
the remaining cases however we are able to significantly simplify this approach by directly
giving an AP that has no arithmetic progression, avoiding the need for a transposition.
In each of these cases however we will not simply be able to show 2p, 3p, 5p, 7p for all
primes p directly; instead, certain character estimates will show it for p sufficiently large.
Thus we show the conjecture to be true for all n 6 2500 using computational techniques,
and this will be a starting point for the analysis in the remaining cases. Note that the 5p
case, where p > 500 is assumed, is the limiting case here. All mentioned computational
files can be found in the corresponding arXiv submission (arXiv:1708.00144).

One piece of machinery that is used multiple times in this paper is the Hasse-Weil
bound. (Elkies and Swaminathan [1] similarly require such character estimates, but they
can make do with the elementary Hasse bound.) Note that the version we are using is
equivalent to counting the number of points on the hyperelliptic curve y2 = g (x) over a
finite field and the bound we are using was proven for curves by Weil in [4].

Theorem 9. Let Fp be the field with p elements, p being prime, and let
(
·
p

)
be the

Legendre symbol. If f ∈ Fp[x] is a polynomial of degree 2g + 1 or 2g + 2 such that g is
not a constant times a perfect square in Fp[x], then∣∣∣ ∑

y∈Z/pZ

(
f (y)

p

)∣∣∣ 6 2g
√
p+ 1.
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3 AP-Destroying Permutations for Z/2pZ

Our initial construction is the following permutation π2 : Z/2Z×Z/pZ→ Z/2Z×Z/pZ,
for a parameter t /∈ {0, 1} to be chosen later:

π2 :=


(0, 0)→ (1, t) (1, 0)→ (0, 1)

(0, 1)→ (1, 0) (1, 1)→ (0, 0)

(0, x)→
(
0, 1

x

)
, x /∈ {0, 1} (1, x)→

(
1, t

x

)
, x /∈ {0, 1}

Lemma 10. Suppose that

t 6∈
{

0, 1,
1

4
, 4,

1

9
, 9

}
and furthermore (

1− 1
t

p

)
=

(
1− t
p

)
= −1.

Then the only three term arithmetic progressions preserved by π2 are {(0, 1) , (1, 1) , (0, 1)}
and {(1, 1) , (0, 1) , (1, 1)}.

Proof. We proceed via contradiction. Suppose that t satisfies the above properties, and
that some other three term arithmetic progression T is preserved. Let U be the image of T .
Furthermore denote by T2 and Tp the mod 2 and mod p components of T , respectively,
and define U2 and Up similarly. We separate cases based on the numbers of elements of
Tp which are in {0, 1}.

Case 1. Tp is of the form (a− r, a, a+ r) with {a− r, a, a+ r}∩{0, 1} = ∅. We take cases
which exhaust the possible values of T2.

Case 1.a. T2 = (0, 0, 0) or (1, 1, 1). Then Up =
(

1
a−r ,

1
a
, 1
a+r

)
or Up =

(
t

a−r ,
t
a
, t
a+r

)
depending on T2. In either case, since t 6≡ 0, Up being an AP is equiva-
lent to 2

a
≡ 1

a−r + 1
a+r

mod p, which is equivalent to r2 ≡ 0. However,
this is impossible as T would then be a degenerate AP.

Case 1.b. T2 = (0, 1, 0) . Then Up =
(

1
a−r ,

t
a
, 1
a+r

)
and Up being an AP is equiva-

lent to 2t
a
≡ 1

a−r + 1
a+r

mod p. This is equivalent to
(
r
a

)2 ≡ 1− 1
t
, which

is impossible as
(

1− 1
t

p

)
= −1.

Case 1.c. T2 = (1, 0, 1) . Then Up =
(

t
a−r ,

1
a
, t
a+r

)
. Hence 2

a
≡ t

a−r + t
a+r

mod p,

which is equivalent with
(
r
a

)2 ≡ 1 − t. However, this is impossible as(
1−t
p

)
= −1.

Case 2. We now consider the case where |Tp ∩ {0, 1}| = 1. It therefore follows, reversing
the AP if necessary, that either Tp = (1, 1 + r, 1 + 2r), Tp = (1− r, 1, 1 + r),
Tp = (0, r, 2r), or Tp = (−r, 0, r).
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Case 2.a. Tp = (1, 1 + r, 1 + 2r) . If T2 = (0, w1, w2) then U2 = (1, w1, w2) or vice
versa and both of these can not be APs.

Case 2.b. Tp = (1− r, 1, 1 + r) . There are now four possible cases of T2. If
T2 = (0, 0, 0) or (0, 1, 0) then Up =

(
1

1−r , 0,
1

1+r

)
. This being an AP is

equivalent to 1
1−r + 1

1+r
≡ 0. Simplifying, this is equivalent to 2

1−r2 ≡ 0

which is impossible. If T2 = (1, 0, 1) or (1, 1, 1) then Up =
(

t
1−r , 0,

t
1+r

)
.

This being an AP is equivalent to t
1−r + t

1+r
≡ 0. Simplifying, this is

equivalent to 2t
1−r2 ≡ 0 which is impossible as t 6≡ 0.

Case 2.c. Tp = (0, r, 2r) . There are now four possible cases of T2. If T2 = (0, 0, 0)
then U2 = (1, 0, 0) which is not an AP modulo 2. If T2 = (1, 1, 1)
then U2 = (0, 1, 1) which is not an AP modulo 2. If T2 = (0, 1, 0) then
U2 = (1, 1, 0) which is not an AP modulo 2. Finally if T2 = (1, 0, 1)
then U2 = (0, 0, 1) which is not an AP modulo 2.

Case 2.d. Tp = (−r, 0, r) . There are now four possible cases of T2. If T2 = (0, 0, 0)
then Up =

(−1
r
, t, 1

r

)
which is not an AP as t 6≡ 0. If T2 = (0, 1, 0) then

Up =
(−1

r
, 1, 1

r

)
which is not an AP as 1 6≡ 0. If T2 = (1, 1, 1) then

Up =
(−t

r
, 1, t

r

)
which is not an AP as 1 6≡ 0. If T2 = (1, 0, 1) then

Up =
(−t

r
, t, t

r

)
which is not an AP as t 6≡ 0.

Case 3. In the final case we have that at least two elements of Tp are in {0, 1}. Reversing
the AP if necessary, this gives the cases Tp = (0, 0, 0), (1, 1, 1),

(
0, 1

2
, 1
)
, (0, 1, 2),

or (−1, 0, 1). The second case gives exactly the APs mentioned in the statement
of the lemma and therefore it suffices to study the other four cases.

Case 3.a. Tp = (0, 0, 0). In order for T to not be a trivial progression, T2 =
(0, 1, 0) or (1, 0, 1) . In the first case, Up = (t, 1, t) which is not an AP
as t 6≡ 1. In the second case, Up = (1, t, 1) which is not an AP as t 6≡ 1.

Case 3.b. Tp =
(
0, 1

2
, 1
)
. If T2 = (0, 0, 0) then Up = (t, 2, 0) but t 6≡ 4. If

T2 = (1, 1, 1) then Up = (1, 2t, 0) but t 6≡ 1
4
. If T2 = (0, 1, 0) then

Up = (t, 2t, 0) but t 6≡ 0. Finally if T2 = (1, 0, 1) then Up = (1, 2, 0)
which is never an AP.

Case 3.c. Tp = (0, 1, 2) . If T2 = (0, 0, 0) then U2 = (1, 1, 0). If T2 = (1, 1, 1)
then U2 = (0, 0, 1). If T2 = (0, 1, 0) then U2 = (1, 0, 0). Finally if
T2 = (1, 0, 1) then U2 = (0, 1, 1). In none of these cases is U2 an AP.

Case 3.d. Tp = (−1, 0, 1) . If T2 = (0, 0, 0) then U2 = (0, 1, 1). If T2 = (1, 1, 1)
then U2 = (1, 0, 0). If T2 = (0, 1, 0) then U2 = (0, 0, 1). Finally if
T2 = (1, 0, 1) then U2 = (1, 1, 0). In none of these cases is U2 an
AP.

Now we claim that a t with the conditions of the previous lemma exists for every prime
p > 31.
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Lemma 11. For p > 31, there exists a t such that

t 6∈
{

0, 1,
1

4
, 4,

1

9
, 9

}
and (

1− 1
t

p

)
=

(
1− t
p

)
= −1.

Proof. First note that
(

1− 1
t

p

)
=
(

t(t−1)
p

)
for t 6≡ 0. Then note that

∑
t∈Z/pZ

(
1−

(
1− t

p

))(
1−

(
t (t− 1)

p

))
=

∑
t∈Z/pZ

1−
(
1− t

p

)
−
(
t (t− 1)

p

)
+

(
−t (t− 1)2

p

)
> p− 4

where we have used that
(

(t−1)2
p

)
= 1 for t 6= 1 and the Hasse-Weil bound. Therefore

the number of t ∈ Z/pZ which satisfy
(

t(t−1)
p

)
=
(

1−t
p

)
= −1 is at least p−5

4
as t = 0, 1

together contribute exactly 1 in total to the sum. For p > 31, we have p−5
4
> 6 so for such

p there exists a t outside of those in the set {0, 1, 1
4
, 4, 1

9
, 9} as required.

Now choose any such fixed t satisfying the above conditions. Consider the following
adjustment of π2:

πy
2 :=


(0, 0)→ (1, t) (1, 0)→ (0, 1)

(0, 1)→
(

0, 1
y

)
(1, 1)→ (0, 0)

(0, y)→ (1, 0) (1, x)→
(
1, t

x

)
, x /∈ {0, 1}

(0, x)→
(
0, 1

x

)
, x /∈ {0, 1, y} .

We claim that there exists a y for which πy
2 , which is π2 with the values of (0, y) and (0, 1)

exchanged, is AP-Destroying permutation for some choice of y. In particular, we claim
the following.

Lemma 12. Suppose that

y 6∈
{

0, 1,−1, 2,
1

2
,
1

3
, 4,

4

t
,

1

2t+ 1

}
,

(
1− ty
p

)
=

(
1− y
p

)
=

(
(4t− 1)2 y2 − 2 (4t+ 1) y + 1

p

)
= −1,

and that (
1− 9y

p

)
= 1.

Then πy
2 is AP.

the electronic journal of combinatorics 25(2) (2018), #P2.42 6



Proof. Note that the only difference between π2 and πy
2 is the exchange of (0, 1) and

(0, y). Observe that this transposition destroys both the APs {(1, 0) , (0, 0) , (1, 0)} and
{(0, 0) , (1, 0) , (0, 0)}, and it suffices to demonstrate that we created no new APs. Due to
Lemma 10 these APs must contain (0, 1) or (0, y). We have four cases.

Case 1. T contains (0, y) and Tp = (y, y + r, y + 2r). We take two cases based on the
possibilities for T2.

Case 1.a. T2 = (0, 0, 0). First note that r 6≡ 0, as otherwise T is a trivial AP.
Then if y + 2r 6≡ 0 it follows that U2 = (1, ·, 0) which is never an AP.

If y+ 2r ≡ 0 then Tp =
(
y, y

2
, 0
)
. Since y 6≡ 2, Up =

(
0, 2

y
, t
)

but y 6≡ 4
t

so this is not an AP.

Case 1.b. T2 = (0, 1, 0). If r ≡ 0, then Up =
(

0, t
y
, 0
)

, which is never an AP since

t 6≡ 0. Otherwise, if y + 2r 6≡ 0 then U2 = (1, ·, 0) which is not an AP.

If y + 2r ≡ 0 then Tp =
(
y, y

2
, 0
)
. Since y 6≡ 2 then Up =

(
0, 2t

y
, t
)

but

y 6≡ 4 so this is not an AP.

Case 2. T contains (0, y) and Tp = (y − r, y, y + r). We take two cases based on the
possibilities for T2.

Case 2.a. T2 = (0, 0, 0). First note that r 6≡ 0, as otherwise T is a trivial AP. If

{y + r, y − r} ∩ {0, 1} = ∅, then Up =
(

1
y−r , 0,

1
y+r

)
, which is not an

AP as y 6≡ 0. By symmetry, it suffices to check the cases y − r ≡ 0, 1.
If y − r ≡ 0 then y + r ≡ 2y 6≡ 1 as y 6≡ 1

2
. Therefore we have

U2 = (1, 1, 0), which is not an AP. In the case y − r ≡ 1, we have
y + r ≡ 2y − 1 /∈ {1, y}. Now 2y − 1 6≡ 0, as y 6≡ 1

2
. Therefore,

Up =
(

1
y
, 0, 1

2y−1

)
, which is not an AP as y 6≡ 1

3
.

Case 2.b. T2 = (1, 0, 1). If r ≡ 0, Up =
(

t
y
, 0, t

y

)
which is never an AP as

t 6≡ 0 and thus r 6≡ 0 suffices. If {y + r, y − r} ∩ {0, 1} = ∅, then

Up =
(

t
y−r , 0,

t
y+r

)
, which is not an AP as yt 6≡ 0. If y − r ≡ 0, then

y + r 6≡ 1 as y 6≡ 1
2
. Furthermore since y + r 6≡ 0 it follows that

U2 = (0, 1, 1) which is not an AP. If y− r ≡ 1, then y+ r 6≡ 0 as y 6≡ 1
2
.

Since y + r 6≡ 1 it follows that U2 = (0, 1, 1) which is never an AP.

Note that in the following two cases, we may assume that T does not contain
(0, y) as these have been handled.

Case 3. T contains (0, 1) and Tp = (1, 1 + r, 1 + 2r). We take two cases based on the
possibilities for T2.

Case 3.a. T2 = (0, 0, 0). First note that r 6≡ 0, as otherwise T is a trivial AP.
If 1 + 2r ∈ {0, y}, then U2 = (1, ·, 0) is not an AP. If 1 + r ≡ 0, then
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Up =
(

1
y
, t,−1

)
, which is impossible as y 6≡ 1

2t+1
. Similarly, 1 + r ≡ y

yields Up =
(

1
y
, 0, 1

2y−1

)
, which is not an AP since y 6≡ 1

3
. Therefore

it suffices to study the general case where Up =
(

1
y
, 1
1+r

, 1
1+2r

)
. The

condition for this being an AP is a quadratic in r and has discrimi-

nant (9y − 1) (y − 1). This is not a perfect square as
(

1−9y
p

)
= 1 and(

1−y
p

)
= −1 by assumption.

Case 3.b. T2 = (0, 1, 0). If r ≡ 0, then Up =
(

1
y
, 0, 1

y

)
, which is not an AP. If

1 + 2r ∈ {0, y}, then U2 = (0, ·, 1) is not an AP. If 1 + r ≡ 0, then

since y 6≡ −1, we have Up =
(

1
y
, 1,−1

)
, which is not an AP as y 6≡ 1

3
.

Finally, in the general case we have Up =
(

1
y
, t
1+r

, 1
1+2r

)
. The condition

for this sequence being an AP is a quadratic in r, and its discriminant
is (1− 4t)2 y2 − 2 (4t+ 1) y + 1. However this is not a perfect square
by assumption.

Case 4. T contains (0, 1) and Tp = (1− r, 1, 1 + r). We take two cases based on the
possibilities for T2.

Case 4.a. T2 = (0, 0, 0). First note that r 6≡ 0, as otherwise T is a trivial AP.
If 1 − r ≡ 0, then 2 ≡ 1 + r 6≡ y. It follows that U2 = (1, 0, 0),
which is not an AP. Since we can assume 1 − r 6≡ y due to previous
cases and we can reverse the AP as necessary, it suffices to consider
{1 − r, 1 + r} ∩ {0, 1, y} = ∅. In the remaining cases it follows that

Up =
(

1
1−r ,

1
y
, 1
1+r

)
, which implies y ≡ 1 − r2. But this is impossible

since
(

1−y
p

)
= −1.

Case 4.b. T2 = (1, 0, 1). If r ≡ 0, then Up =
(

0, 1
y
, 0
)

, which is never an AP. If

1− r ≡ 0, then 1 + r ≡ 2, so U2 = (0, 0, 1) which is not an AP. Finally,

in the general case Up =
(

t
1−r ,

1
y
, t
1+r

)
. The condition for this being an

AP is equivalent to r2 ≡ 1− ty, which is impossible as
(

1−ty
p

)
= −1.

This exhausts all possible cases, so the proof is complete.

Having shown this, we finally proceed to showing the existence of y which satisfies the
hypotheses of Lemma 12.

Lemma 13. For p > 500 and a fixed t which satisfies the hypotheses of Lemma 10, there
exists a y which satisfies the hypotheses of Lemma 12.
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Proof. Let f1 = y2 (4t− 1)2 − 2 (4t+ 1) y + 1. We consider∑
y∈Z/pZ

(
1−

(
1− ty
p

))(
1−

(
1− y
p

))(
1−

(
f1
p

))(
1 +

(
(1− 9y)

p

))
.

Expanding this product yields the p plus 15 terms of the form
∑p−1

y=0±
(
±g(y)

p

)
where g (y)

is the product of some terms in the set

{1− y, 9y − 1, 1− ty, f1}.

We claim that none of the g (y) which arise are perfect squares. To see this we instead
prove the stronger claim that no two terms share a root and thus it suffices to show that
the discriminant of the product is nonzero. In particular

∆ ((y − 1) (9y − 1) (ty − 1) f1) = 228t3 (t− 9)2 (t− 4)2 (t− 1)8 (9t− 1)2

and all roots of the discriminant are in the set of excluded t. Hence each of the 15 sums
is at most 4

√
p + 1 in absolute value using the Hasse-Weil bound, so the entire sum is

at least p − 60
√
p − 15. When p > 10000, we have

p−60√p−15
16

> 40
√
p−15
16

> 9. So, more
than 9 values of y contribute a nonzero term to the above sum, which means that some
y outside of the required exceptional set satisfies(

1− ty
p

)
=

(
1− y
p

)
=

(
(1− 4t)2 y2 − 2 (4t+ 1) y + 1

p

)
= −1

and (
1− 9y

p

)
= 1

as required. Hence there exists an AP-Destroying permutation for n = 2p, p > 10000. In
the cases 500 < p < 10000, the existence of y is verified in LegrendeSymbol2p.java.

4 AP-Destroying Permutations for Z/3pZ

For each constant t ∈ Z/pZ, t /∈ {0, 1}, we can define the following permutation:

π3 :=


(0, 0)→ (1, 0) (0, 1)→ (1, 1) (0, x)→

(
0, 1

x

)
, x /∈ {0, 1}

(1, 0)→ (2, t) (1, 1)→ (2, 0) (1, x)→
(
1, 1

x

)
, x /∈ {0, 1}

(2, 0)→ (0, 1) (2, 1)→ (0, 0) (2, x)→
(
2, t

x

)
, x /∈ {0, 1}

Lemma 14. Suppose that t ∈ Z/pZ such that

t /∈
{
−1, 0, 1,

1

2
, 2, 9

}
and (

t (t− 1)

p

)
=

(
(t− 1) (t− 9)

p

)
= −1.

Then π3 is AP.
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Proof. Suppose for the sake of contradiction that some arithmetic progression T is pre-
served, and let U be its image. Denote by T3, Tp, U3, Up the projections of T and U modulo
3 and p respectively. We take three cases:

Case 1. Three elements of Tp are in {0, 1}. Then since Tp is an AP and p > 2, this implies
Tp = (0, 0, 0) or Tp = (1, 1, 1). In the former case, Up is a permutation of (0, 1, t),
which is not an AP as t /∈ {−1, 1

2
, 2}. In the latter case, Up is a permutation of

(1, 0, 0), which is not an AP. Hence case 1 is impossible.

Case 2. One or two elements of Tp are in {0, 1}. Consider the triple T ′3 obtained by
incrementing each of the three elements in T3. Note that π3 increments the mod
3 value of its input if that input is 0 or 1 mod p, and otherwise the mod 3 value
stays the same. It follows that if one element of Tp is in {0, 1}, then U3 differs
from T3 in exactly one element, and if two elements of Tp are in {0, 1}, then U3

differs from T ′3 in exactly one element. In both cases, U3 cannot be an AP.

Case 3. None of the elements of Tp are in {0, 1}. Let Tp = (a− r, a, a+ r). Then we take
four cases based on the possible values of T3.

Case 3.a. T3 = (0, 0, 0) or (1, 1, 1). Then Up =
(

1
a−r ,

1
a
, 1
a+r

)
. It follows that

1
a−r + 1

a+r
= 2

a
, so r ≡ 0, which is impossible.

Case 3.b. T3 = (2, 2, 2). Then Up =
(

t
a−r ,

t
a
, t
a+r

)
. Since t 6≡ 0, this reduces to

the previous case.

Case 3.c. T3 = (0, 1, 2) , (1, 0, 2) , (2, 0, 1) , or (2, 1, 0). By symmetry, we may sup-
pose T3 is of one of the first two triplets. Then Up =

(
1

a−r ,
1
a
, t
a+r

)
.

Solving the AP condition as a quadratic in r, we obtain a discrimi-
nant (t− 1) (t− 9). This, however, is not a perfect square mod p by
assumption.

Case 3.d. T3 = (0, 2, 1) or (1, 2, 0). Then Up =
(

1
a−r ,

t
a
, 1
a+r

)
. Solving the AP

condition as a quadratic in r, we obtain a discriminant 16t (t− 1).
This, however, is not a perfect square mod p by assumption.

Now we prove that for p > 31, some t satisfying the conditions of Lemma 14 exists.

Lemma 15. For p > 31, there exists a t ∈ Z/pZ such that

t /∈ {−1, 0, 1,
1

2
, 2, 9}

and (
t (t− 1)

p

)
=

(
(t− 1) (t− 9)

p

)
= −1.

Proof. We may calculate∑
t∈Z/pZ

(
1−

(
(t− 1) (t− 9)

p

))(
1−

(
t (t− 1)

p

))
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= p+
∑

t∈Z/pZ

((
t (t− 9) (t− 1)2

p

)
−
(
t (t− 1)

p

)
−
(

(t− 1) (t− 9)

p

))
> p− 4

where we have used the Hasse-Weil Bound and that
(

(t−1)2
p

)
= 1 for t 6≡ 1. It follows

that the number of solutions to
(

t(t−1)
p

)
=
(

(t−1)(t−9)
p

)
= −1 over t ∈ Z/pZ is at least

p−5
4

> 6, so that there is in particular some t outside of the exceptional set satisfying
these conditions. For this value of t, π3 is an AP-Destroying permutation, as desired.

5 AP-Destroying Permutations for Z/5pZ

For each constant t ∈ Z/pZ, t /∈ {−1, 0, 1}, we can define the following permutation:

π5 :=



(0, 0)→ (3, 1) (0, 1)→ (3, 0) (0, x)→
(
0, t

x

)
, x /∈ {0, 1}

(1, 0)→ (2, 0) (1, 1)→ (2, t) (1, x)→
(
1, t+1

x

)
, x /∈ {0, 1}

(2, 0)→ (1, t+ 1) (2, 1)→ (1, 0) (2, x)→
(
2, t

x

)
, x /∈ {0, 1}

(3, 0)→ (4, 1) (3, 1)→ (4, 0) (3, x)→
(
3, 1

x

)
, x /∈ {0, 1}

(4, 0)→ (0, t) (4, 1)→ (0, 0) (4, x)→
(
4, 1

x

)
, x /∈ {0, 1}.

We first note two properties of the permutation σ : Z/5Z→ Z/5Z defined by σ (0) =
3, σ (1) = 2, σ (2) = 1, σ (3) = 4, σ (4) = 0. The first is that σ (i) 6= i for each i, so that
in particular no AP with exactly two elements in the rightmost column can be preserved.
Also, the only APs preserved by σ are (3, 1, 4) , (0, 1, 2), and their reverses. In particular,
every AP preserved by σ contains 1.

Lemma 16. Suppose that t ∈ Z/pZ such that

t /∈ {−3,−2,−1, 0, 1, 2, 3, 4,−3

2
,−4

3
,−3

4
,−2

3
,−1

2
,−1

3
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
3

2
}

and(
9t− 16

p

)
=

(
9− 16t

p

)
=

(
t+ 1

p

)
=

(
(t− 1) (t− 9)

p

)
=

(
(t− 1) (9t− 1)

p

)
= −1,

(
t

p

)
= 1.

Then π5 is AP.

Proof. Suppose for the sake of contradiction that some arithmetic progression T is pre-
served, and let U be its image. Denote by T5, Tp, U5, Up the projections of T and U modulo
5 and p respectively. We take four cases:

Case 1. Three of the elements of Tp are in {0, 1}. Then since Tp is an AP , we must
have either Tp = (0, 0, 0) or Tp = (1, 1, 1). In the first case, Up is an AP formed
with elements in {0, 1, t, t + 1} not all equal. But this is impossible as t /∈
{−2,−1, 0, 1, 2, 1

2
,−1

2
}. The second case is also impossible since the only APs

preserved by σ contain 1.
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Case 2. Two of the elements of Tp are in {0, 1}. Then there are three possible values of
Tp up to symmetry.

Case 2.a. Tp =
(
0, 1

2
, 1
)
. Then the first element of Up is in {0, 1, t, t + 1}, the

middle element is in {2, 2t, 2 (t+ 1)}, and the last element is in {0, t}.
Checking the 24 potential combinations, there are no APs for t outside
of the set

{−2,−1, 0, 1, 2, 3, 4,−3

2
,−4

3
,−3

4
,
1

4
,
1

3
,
1

2
,
3

2
}

Case 2.b. Tp = (−1, 0, 1). Then the first element of Up is in {−t− 1,−t,−1}, the
middle element is in {1, 0, t, t + 1}, and the last element is in {0, t}.
One of the 24 possible combinations is (−t, 0, t). However, this can
only be the case if T5 = (0, 1, 1) or (2, 1, 1), neither of which are APs.
Checking the remaining 23 potential combinations, there are no APs
for t outside of the set

{−3,−2,−1, 0, 1, 3,−3

2
,−2

3
,−1

2
,−1

3
}

Case 2.c. Tp = (0, 1, 2). Then the first element of Up is in {0, 1, t, t + 1}, the
second element is in {0, t}, and the third is in {1

2
, t
2
, t+1

2
}. Checking

the 24 potential combinations, there are no APs for t outside of the set

{−3,−2,−1, 0, 1, 2, 3,−3

2
,−2

3
,−1

2
,−1

3
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
}

Case 3. One of the elements of Tp is in {0, 1}. Then since σ (i) 6= i for 0 6 i 6 4, it
follows that U5 cannot be an AP.

Case 4. None of the elements of Tp are in {0, 1}. Let Tp = (a− r, a, a+ r). If all coordi-
nates of T5 are equal, then since t /∈ {0,−1} we would have 1

a−r + 1
a+r
≡ 2

a
. But

this implies r = 0, which is impossible. Then there are six remaining cases based
on the possible values of T5, up to reverses.

Case 4.a. T5 = (0, 1, 2). Then Up =
(

t
a−r ,

t+1
a
, t
a+r

)
. The condition that this is an

AP is a quadratic in r with discriminant t + 1, which isn’t a perfect
square by assumption.

Case 4.b. T5 = (0, 2, 4) or (2, 0, 3). Then Up =
(

t
a−r ,

t
a
, 1
a+r

)
. The condition that

this is an AP is a quadratic in r with discriminant (9t− 1) (t− 1),
which isn’t a perfect square by assumption.

Case 4.c. T5 = (0, 3, 1) or (2, 4, 1). Then Up =
(

t
a−r ,

1
a
, t+1
a+r

)
. The condition that

this is an AP is a quadratic in r with discriminant 9− 16t, which isn’t
a perfect square by assumption.
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Case 4.d. T5 = (0, 4, 3) or (2, 3, 4). Then Up =
(

t
a−r ,

1
a
, 1
a+r

)
. The condition that

this is an AP is a quadratic in r with discriminant (t− 1) (t− 9), which
isn’t a perfect square by assumption.

Case 4.e. T5 = (3, 1, 4). Then Up =
(

1
a−r ,

t+1
a
, 1
a+r

)
. The condition that this is an

AP is a quadratic in r with discriminant t (t+ 1), which isn’t a perfect
square by assumption.

Case 4.f. T5 = (1, 0, 4) or (1, 2, 3). Then Up =
(
t+1
a−r ,

t
a
, 1
a+r

)
. The condition that

this is an AP is a quadratic in r with discriminant t (9t− 16), which
isn’t a perfect square by assumption.

Lemma 17. For p > 500 there exists a t such that

t /∈ {−3,−2,−1, 0, 1, 2, 3, 4,−3

2
,−4

3
,−3

4
,−2

3
,−1

2
,−1

3
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
3

2
}

and(
9t− 16

p

)
=

(
9− 16t

p

)
=

(
t+ 1

p

)
=

(
(t− 1) (t− 9)

p

)
=

(
(t− 1) (9t− 1)

p

)
= −1,

(
t

p

)
= 1.

Proof. We consider∑
t∈Z/pZ

(
1−

(
9t− 16

p

))(
1−

(
9− 16t

p

))(
1−

(
t+ 1

p

))
(

1−
(

(t− 1) (t− 9)

p

))(
1−

(
(9t− 1) (t− 1)

p

))(
1 +

(
t

p

))
.

Expanding this product yields the p plus 63 terms of the form
∑

t∈Z/pZ±
(
±f(t)

p

)
where

f (t) is the product of some terms in the set

{9t− 16, 9− t, 1 + t, (t− 1) (t− 9) , (t− 1) (9t− 1) , t}.

We claim that none of the f (t) which arise are perfect squares. To see this it suffices note
that the roots

{
16
9
, 9
16
, 0, 1,−1, 9, 1

9

}
are all distinct for p > 500 and no terms involving

both (t− 1) (t− 9) and (9t− 1) (t− 1) give perfect squares. Upon expanding it can be
verified that we get 4 terms of degree 1, 9 terms of degree 2, 16 terms of degree 3, 19
terms of degree 4, 12 terms of degree 5, and 3 terms of degree 6. Using the Hasse Weil
bound it follows that∑

t∈Z/pZ

(
1−

(
9t− 16

p

))(
1−

(
9− 16t

p

))(
1−

(
t+ 1

p

))
(

1−
(

(t− 1) (t− 9)

p

))(
1−

(
(9t− 1) (t− 1)

p

))(
1 +

(
t

p

))
> p− 13− 35 (2

√
p+ 1)− 15 (4

√
p+ 1)
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while the sum over the excluded t is at most 20 (64) = 1280 and the sum over the roots
not in the excluded set is at most 4 (64) = 256. It follows that for p > 21000 that the
sum in question is greater than 1280 + 256 so such a t exists and for 500 < p 6 21000 the
existence of such t is verified in LegrendeSymbol5p.java. Note that there exist p < 500 for
which no such t exist and therefore these cases must be handled by other computational
methods.

6 AP-Destroying Permutations for Z/7pZ

For each constant t ∈ Z/pZ, t /∈ {0, 1}, we can define the following permutation:

π7 :=



(0, 0)→ (0, 1) (0, 1)→ (0, 0) (0, x)→
(
6, t

x

)
, x /∈ {0, 1}

(1, 0)→ (1, 1) (1, 1)→ (1, 0) (1, x)→
(
0, 1

x

)
, x /∈ {0, 1}

(2, 0)→ (2, 0) (2, 1)→ (2, t) (2, x)→
(
4, 1

x

)
, x /∈ {0, 1}

(3, 0)→ (3, 1) (3, 1)→ (3, 0) (3, x)→
(
2, t

x

)
, x /∈ {0, 1}

(4, 0)→ (5, 1) (4, 1)→ (5, 0) (4, x)→
(
3, 1

x

)
, x /∈ {0, 1}

(5, 0)→ (6, t) (5, 1)→ (6, 0) (5, x)→
(
5, 1

x

)
, x /∈ {0, 1}

(6, 0)→ (4, 1) (6, 1)→ (4, 0) (6, x)→
(
1, 1

x

)
, x /∈ {0, 1}.

We first note several properties of the permutations σ1, σ2 : Z/7Z→ Z/7Z defined by

σ1 (0) = 0, σ1 (1) = 1, σ1 (2) = 2, σ1 (3) = 3, σ1 (4) = 5, σ1 (5) = 6, σ1 (6) = 4

σ2 (0) = 6, σ2 (1) = 0, σ2 (2) = 4, σ2 (3) = 2, σ2 (4) = 3, σ2 (5) = 5, σ2 (6) = 1

The first is that both σ1 and σ2 are almost AP-Destroying; that is, they each only
preserve two APs up to reversals. Namely, σ1 preserves (0, 1, 2) and (1, 2, 3) while σ2
preserves (1, 4, 0) and (4, 0, 3). Furthermore, for any AP (a, b, c) mod 7, the images
(σ1 (a) , σ2 (b) , σ2 (c)) and (σ2 (a) , σ1 (b) , σ2 (c)) are not APs.

Lemma 18. Suppose that t ∈ Z/pZ such that

t /∈ {−2,−1, 0, 1, 2, 3, 4,−1

2
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
}

and (
(t− 1) (t− 9)

p

)
=

(
(9t− 1) (t− 1)

p

)
= −1.

Then π7 is AP-Destroying.

Proof. Suppose for the sake of contradiction that some arithmetic progression T is pre-
served, and let U be its image. Denote by T7, Tp, U7, Up the projections of T and U modulo
7 and p respectively. We take four cases:
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Case 1. Three of the elements of Tp are in {0, 1}. Then since Tp is an AP, it must be
equal to (0, 0, 0) or (1, 1, 1). Furthermore, σ1 only preserves the APs (0, 1, 2) and
(1, 2, 3). In both cases, neither these nor their reverses yield APs for Up.

Case 2. Two of the elements of Tp are in {0, 1}. Then there are three cases up to symmetry
according to the possible values of Tp.

Case 2.a. Tp =
(
0, 1

2
, 1
)
. Consider Up. The possible values of the first coordinate

are {0, 1, t}, the possible values of the second coordinate are {2, 2t},
and the possible values of the third coordinate are {0, t}. Considering
the 12 possible combinations, there are no APs for

t /∈ {0, 2, 3, 4, 1

4
,
1

3
}.

Case 2.b. Tp = (0, 1, 2). Consider Up. The possible values of the first coordinate
are {0, 1, t}, the possible values of the second coordinate are {0, t}, and
the possible values of the third coordinate are {1

2
, t
2
}. Considering the

12 possible combinations, there are no APs for

t /∈ {−2, 0,−1

2
,
1

4
,
1

2
,
2

3
,
3

4
}

Case 2.c. Tp = (−1, 0, 1). Consider Up. The possible values of the first coordinate
are {−1,−t}, the possible values of the second coordinate are {0, 1, t},
and the possible values of the third coordinate are {0, t}. The AP
(−t, 0, t) never occurs since it forces the second and third coordinates
of T7 to be 2 and the first to be in {0, 3}. Considering the other 11
possible combinations, there are no APs for

t /∈ {−2,−1, 0, 1, 3,−1

2
}

Case 3. One of the elements of Tp is in {0, 1}. Then due to the mentioned properties of
σ1 and σ2, it follows that U7 is not an AP.

Case 4. None of the elements of Tp are in {0, 1}. Let Tp = (a− r, a, a+ r). Note that the
T7 coordinates cannot be equal, since that would force r ≡ 0, which is impossi-
ble. Then since σ2 only preserves (1, 4, 0) and (4, 0, 3), we have two cases up to
symmetry:

Case 4.a. T7 = (1, 4, 0). Then Up =
(

1
a−r ,

1
a
, t
a+r

)
. Solving the AP condition for

r yields a quadratic with discriminant (t− 1) (t− 9), which is not a
perfect square by assumption.

Case 4.b. T7 = (4, 0, 3). Then Up =
(

1
a−r ,

t
a
, t
a+r

)
. Solving the AP condition for

r yields a quadratic with discriminant (t− 1) (9t− 1), which is not a
perfect square by assumption.
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Lemma 19. For p > 66 there exists a t such that t /∈ {−2,−1, 0, 1, 2, 3, 4,−1
2
, 1
4
, 1
3
, 1
2
, 2
3
, 3
4
}

and
(

(t−9)(t−1)
p

)
=
(

(9t−1)(t−1)
p

)
= −1.

Proof. Since there are 13 excluded elements and 2 additional roots of (t− 9) (t− 1) and
(9t− 1) (t− 1), it suffices to demonstrate that∑

t∈Z/pZ

(
1−

(
(t− 9) (t− 1)

p

))(
1−

(
(9t− 1) (t− 1)

p

))
> 15 (4) + 1.

However note that∑
t∈Z/pZ

(
1−

(
(t− 9) (t− 1)

p

))(
1−

(
(9t− 1) (t− 1)

p

))

= p−
∑

t∈Z/pZ

(
(t− 9) (t− 1)

p

)
+

(
(9t− 1) (t− 1)

p

)
−

(
(t− 9) (9t− 1) (t− 1)2

p

)
> p− 4

where the Hasse Weil-Bound and that
(

(t−1)2
p

)
= 1 for t 6≡ 1 is used. Since p − 4 > 61

the result follows.

7 Computational Techniques

In the previous sections, computational techniques are often required to ensure the exis-
tence of AP-Destroying permutations. For n = 2p, 3p, 5p, 7p corresponding to n 6 2500,
we verified the existence of an AP-Destroying permutation via a descent algorithm; see
DescentPermutation.java. In particular, we choose a random starting permutation, and
only administer random transpositions if they decrease the total number of APs preserved.
This condition can be checked in time linear in n for each iteration. Empirically, the run-
ning time of this algorithm appeared to be roughly quadratic in n, which suggests that a
random permutation descends to an AP-Destroying permutation with positive probability.

Whenever larger permutations were required, we calculated the necessary value of t
or y, t directly, and this appears in many of the lemmas scattered throughout the proof.
This was done instead of directly generating permutations due to the run time of this
algorithm being empirically linear in n versus quadratic for the above.

8 Application to Finite Abelian Groups

In the previous sections, we’ve classified which finite cyclic groups have AP-Destroying
permutations. One particularly useful result is the following result of Hegarty which
allows one to quotient out by subgroups with an AP-Destroying permutation.
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Theorem 20. If there exists an AP-Destroying permutation for H and G/H, there exists
an AP-Destroying permutation for G.

Previously Elkies and Swaminathan [1] demonstrated that all finite abelian p-groups
with odd order have an AP-Destroying permutation. We extend their result by classifying
all finite abelian groups with odd order that have an AP-Destroying permutation.

Theorem 21. Let G be a finite abelian group with odd order greater than 7. Then G has
an AP-Destroying permutation.

Proof. We first claim that the result holds if Ω (|G|) 6 2, where Ω (n) denotes the number
of prime factors of n with multiplicity. Indeed, if G is of the form Z/pZ × Z/qZ for
primes p 6= q or Z/pZ or Z/p2Z for a prime p, then the result follows from the main the-
orem. Finally the case G = (Z/pZ)2 follows from the result of Elkies and Swaminathan [1].

Now we consider the case Ω (|G|) = 3. If G is in the set below, then the direct veri-
fication of the existence of an AP-Destroying permutation is in FiniteAbelian.java.

{(Z/3Z)2 × Z/5Z, (Z/3Z)2 × Z/7Z, (Z/5Z)2 × Z/3Z, (Z/5Z)2 × Z/7Z, (Z/7Z)2 × Z/3Z

(Z/7Z)2 × Z/5Z,Z/9Z× Z/3Z,Z/25Z× Z/5Z,Z/49Z× Z/7Z}
Other than the above set and cyclic groups, all other groups G of odd order with
Ω (|G|) = 3 have Zp as a subgroup for some prime p > 11 or are G = (Z/pZ)3 for
p = 3, 5, 7. In the latter case the result follows from the result of Elkies and Swaminathan
[1] while in the former G has an AP-Destroying permutation due to Theorem 20 along
with the case Ω (|G|) 6 2.

Finally, we prove the full result using strong induction on Ω (|G|), with base cases Ω (|G|) ∈
{2, 3} established. Suppose the result holds for 2 6 Ω (|G|) 6 k, and that Ω (|G|) = k+1.
Then there exists some product pq of two possibly equal primes p, q such that there is
an order pq subgroup H of G. Then H and G/H both have an AP-Destroying permuta-
tion by the inductive hypothesis, so G does as well by Theorem 20. This completes the
induction.

We remark that there are infinite families of even-order abelian groups which do not
have an AP-Destroying permutation. For example, the following is true, which is men-
tioned in Remark 4.2 in [2]

Proposition 22. Suppose that H is an abelian group with |H| < 2k. Then G = (Z/2Z)k×
H has no AP-Destroying permutation.

Proof. Suppose otherwise, and let σ : (Z/2Z)k×H → (Z/2Z)k×H be such a permutation.
Let πH : G→ H be the projection of G onto the second coordinate. Then since 2k > |H|,
there exist some a 6= b ∈ (Z/2Z)k such that πH ◦ σ (a, 0) = πH ◦ σ (b, 0). But then
{(a, 0) , (b, 0) , (a, 0)} is an AP preserved by σ, a contradiction. So no such AP-Destroying
permutation exists as required.
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In particular, if the largest odd number dividing a positive integer n is less than
√
n,

then there exists a finite abelian group of order n which does not have an AP-Destroying
permutation.

9 Conclusion

In this paper, we have resolved a conjecture of Hegarty. In particular, we proved that
there exists an AP-Destroying permutation for all cyclic groups of order not in the set
{2, 3, 5, 7}. However, as the last section demonstrates, this result does not immediately
resolve the case for all finite abelian groups, and in fact for every positive integer k
there is a finite abelian group whose order is a multiple of k which does not have any
AP-Destroying permutation. In light of this, the following question is still open.

Question 23. For which even order finite abelian groups do there exist AP-Destroying
permutations?
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