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Abstract

A plane drawing of a graph is cylindrical if there exist two concentric circles
that contain all the vertices of the graph, and no edge intersects (other than at its
endpoints) any of these circles. The cylindrical crossing number of a graph G is the
minimum number of crossings in a cylindrical drawing of G. In his influential survey
on the variants of the definition of the crossing number of a graph, Schaefer lists
the complexity of computing the cylindrical crossing number of a graph as an open
question. In this paper, we prove that the problem of deciding whether a given graph
admits a cylindrical embedding is NP-complete, and as a consequence we show that
the t-cylindrical crossing number problem is also NP-complete. Moreover, we show
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an analogous result for the natural generalization of the cylindrical crossing number,
namely the t-circle crossing number.

Mathematics Subject Classifications: 05C10, 68R10, 05C85

1 Introduction

This work is motivated by a question posed by Marcus Schaefer in his survey on the
variants of the definition of the crossing number of a graph. In [11], Schaefer listed as
open the problem of the complexity of computing the cylindrical crossing number of a
graph. We recall that a cylindrical drawing of a graph G is a plane drawing where all
the vertices are in two concentric cycles, and no circle is intersected by the interior of an
edge. The cylindrical crossing number cre(G) of a graph G is the minimum number of
crossings in a cylindrical drawing of G.

The concept of a cylindrical drawing is motivated by a family of graph drawings of the
complete graph K, originally conceived by the British artist Anthony Hill. As narrated in
the lively account given in [5], Hill’s construction produces drawings of K, that are cylin-
drical, according to the definition above, and have exactly Z(n) := ﬂgj L"T’lj L"T’QJ L"T’?’J
crossings. It is a long-standing conjecture that the crossing number of K, is Z(n), for
every n >3 [9]. In [1], Abrego et al. proved that cro(K,) = Z(n), for every n > 3.

Let D be a plane drawing of a graph G. We say that a Jordan curve p (that is, a
simple closed curve) is clean (with respect to D) if the interior of no edge of G intersects
p. Now suppose that there are two clean disjoint circles with respect to D, say p; and po,
such that every vertex of G is in p; U py. Note that not only concentricity is not assumed,
but also it is not required that the disk bounded by one of these circles contains the
other circle. It is a straightforward exercise in plane topology that there is a cylindrical
drawing D’ with the same cellular structure as D; in particular, D’ has the same number
of crossings as D. Thus, for crossing number purposes, it is totally valid to adopt the
following definition of a cylindrical drawing.

Definition 1 (Equivalent definition of cylindrical drawing). A plane drawing of a graph
G is cylindrical if there exists two disjoint clean circles py, ps such that every vertex of G
is in p1 U po.

The advantage of adopting this definition of a cylindrical drawing is that it allows us
to generalize this notion to an arbitrary number of circles, as follows. We should mention
that the term “t-circle drawing” has been suggested by Eva Czabarka and Marcus Schaefer
(private communication).

Definition 2 (t-circle drawing and t-circle crossing number). Let ¢ > 1 be an integer.
A plane drawing of a graph G is a t-circle drawing if there exist t pairwise disjoint clean
circles pq,..., pt, such that every vertex of G is in p; U --- U p;. The t-circle crossing
number cry,(G) of a graph G is the minimum number of crossings in a t-circle drawing
of G.
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Thus a cylindrical drawing is simply a 2-circle drawing. Moreover, for ¢ = 1, there is an
immediate connection with 2-page drawings. We recall that a 2-page drawing of a graph
is a drawing in which the vertices lie on the z-axis, and each edge is contained (except for
its endpoints) either in the upper halfplane, or in the lower halfplane. A straightforward
argument shows that a 1-circle drawing can be transformed into a 2-page drawing with
the same cellular structure.

Thus the 1-circle crossing number of a graph coincides with its 2-page crossing number,
and the 2-circle crossing number of a graph is the same as its cylindrical crossing number.
The 3-circle crossing number is related to the pair of pants crossing number [11], but these
are different notions, since in the latter it is required that none of the disks bounded by
the circles contains another circle, and that no edge intersects the interior of any of these
disks.

For the arguments we will use in this paper, it will be useful to relax the condition
that the clean Jordan curves in Definition 2 need to be circles:

Definition 3 (t-curve drawing and t-curve crossing number). Let ¢ > 1 be an integer.
A plane drawing of a graph G is a t-curve drawing if there exist ¢ pairwise disjoint clean
Jordan curves py, ..., p; such that every vertex of G is in pyU- - -Up;. The t-curve crossing
number of a graph G is the minimum number of crossings in a t-curve drawing of G.

It follows from the Jordan-Schonflies theorem that if D is a t-curve drawing of a graph
G, then there is a self-homeomorphism of the plane that takes D to a t-circle drawing. In
particular, for any graph G, its t-circle crossing number and its ¢-curve crossing number
are the same. Thus the difference between these notions is rather cosmetic. On the other
hand, as we hinted above, the advantage of dealing with ¢-curve drawings instead of t-
circle drawings is being able to work with arbitrary Jordan curves, instead of exclusively
with circles, which makes our arguments simpler.

As we mentioned above, our motivation in this work is to settle the complexity of
computing the cylindrical crossing number of a graph, that is, the complexity of the de-
cision problem CYLINDRICALCROSSINGNUMBER: “given a graph GG and an integer k, is
cre(G) < k77, As we shall see, this question will be settled as a consequence of Theorem 4,
which establish the computational complexity of the decision problem CYLINDRICALEM-
BEDDING: “given a graph G, is crg(G) = 07”. As it happens, with very little additional
effort we can settle the complexity of the decision problem t-CURVEEMBEDDING, that
considers a fixed integer t and asks “given a graph G, is there a t-curve drawing of GG with
no crossings?”.

Chung, Leighton, and Rosenberg [8] proved that 2-PAGEEMBEDDING is NP-complete.
This implies that 1-CURVEEMBEDDING is NP-complete, as testing if a graph has pa-
genumber 2 is equivalent to testing if it has a 1-curve embedding. As we shall see, the
NP-hardness proof for t > 2 works by reducing it to the case t = 1.

Theorem 4. For each fized integer t > 1, t-CURVEEMBEDDING s NP-complete.

Given that a t-circle embedding of a graph is homeomorphic to a ¢-curve embbeding,
Theorem 4 settles the complexity of the decision problem ¢-CIRCLEEMBEDDING, that
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considers a fixed integer ¢ and asks “given a graph G, is cryo(G) = 07”7, Since a cylin-
drical embedding of G is also a 2-circle embedding of G, Theorem 4 settles in particular
the complexity of cylindrical embedding. For completeness, we state these observations
formally:

Corollary 5. For each fized integer t > 1, t-CIRCLEEMBEDDING is NP-complete. In
particular CYLINDRICALEMBEDDING is NP-complete.

The following corollary is another consequence of Theorem 4, and settles the com-
putational complexity of the decision problem t-CURVECROSSINGNUMBER for each fixed
integer t > 2. We recall that such a problem takes a fixed integer ¢ and asks “given a
graph G and an integer k, is the t-curve crossing number of G at most £7”. For t = 1,
Bannister and Eppstein [4] proved that 2-page crossing number (equivalently, 1-curve
crossing number) is fixed-parameter tractable.

Corollary 6. For each fixed integer t > 2, t-CURVECROSSINGNUMBER is NP-complete.

As we mentioned above, the t-circle crossing number of a graph and the t-curve
crossing number are the same. This fact and Corollary 6 imply that both decision
problems t-CIRCLECROSSINGNUMBER and t-CYLINDRICALCROSSINGNUMBER are NP-
complete whenever ¢ > 2.

Before proceeding to the proof of Theorem 4 (Section 3), we establish in the next
section a result on plane triangulations that are minimal with respect to having a t-curve
embedding.

2 Minimal t-curve embeddings

An essential ingredient in the proof that t--CURVEEMBEDDING is NP-hard is the existence
of plane triangulations that are minimal with respect to having a ¢-curve embedding. Our
aim in this section is to establish this result (Lemma 8 below). We will need the following
statement.

Proposition 7. Let G be a maximal planar graph, and let t be a positive integer. Suppose
that G has a t-curve embedding. Then there is a collection {Hy, ..., H;} of pairwise
disjoint subgraphs of G with the following properties: (i) if H; has at least 3 vertices for
some i € {1,...,t}, then H; is a cycle; and (ii) \J._, H; contains all the vertices of G.

Proof. Let £ be a t-curve embedding of GG, and let py,...,p; be the underlying ¢ clean
Jordan curves of €. Let i € {1,...,t}. If p; does not contain any vertex, then we let H;
be the null graph. If p; contains at least one vertex, let vy, ..., v,,, be the vertices on p;,
in the (cyclic) order in which they appear in p;. If m; = 1, then we let H; be the subgraph
of G that consists only of the vertex v;. If m; > 2, we proceed as follows.

For j = 1,...,m;, there is a subarc of p; whose endpoints are v; and v;;; (indices
are taken modulo m;), and that is otherwise disjoint from G. This implies that for
Jj=1,...,m,, there is a face incident with v; and v;;;. Since G is maximal planar, £ is a
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plane triangulation and it is the unique plane embedding of G (up to homeomorphism).
Therefore the existence of a face incident with v; and v,y implies that v; and v;;; are
adjacent.

If m; = 2, then we let H; be the subgraph of GG that consists of the vertices v; and s,
and the edge joining them. If m; > 3, then vjvy...v,,v1 is a cycle C; of G, and we let

Since each vertex of GG is contained in a curve in {p1,...,p;}, and these curves are
pairwise disjoint, it follows that the collection {Hy,..., H;} satisfies the required condi-
tions. O

Lemma 8. For every t > 2 there is a 3-connected simple graph Gy such that (i) G;
triangulates the plane; (ii) Gy has a t-curve embedding; and (iii) Gy has no (t — 1)-curve
embedding.

Proof. The heart of the proof is the existence of plane triangulations whose longest cycles
are relatively small. Since all graphs under consideration in this proof are plane graphs,
we often make no distinction between a graph and its drawing.

Following Chen and Yu [7], let 77,75, ... be the family of plane triangulations con-
structed as follows. First, 77 is the plane triangulation induced by K,. Now, T;,; is
constructed from T;, for i« = 1,2, ..., as follows: in each inner face of T, add one new
vertex and join it to the vertices of 7; incident with the face containing it. We refer the
reader to Figure 1.

Figure 1: On the left hand side we have the triangulation 7). For each inner face T of
T, we add a (white) vertex inside 7" and join it with edges to the three vertices incident
to T'; the result is the middle triangulation T5. We obtain T3 (right hand side) similarly:
for each inner face T of T, we add a (grey) vertex inside 7', and join it with edges to the
three vertices incident to 7T

In [7] it is proved that, for i > 1, the length of the longest cycle of T; is less than
TIV(T;)|es2. Now let j be an integer large enough such that Z|V/(T})[8s2 - (t — 1) <
|V (T};)|. Toward a contradiction, suppose that 7; has a (¢t — 1)-curve embedding, and
let {Hy,...,H;—1} be the subgraphs of T; guaranteed by Proposition 7. Since V(T}) =
Ut LV(H, -), it follows that there is some H; such that |V (H;)| > Z|V(T})["#s2. Since

Tslgs2 > 3 for every s > 1, it follows from Proposition 7 that H; must be a cycle,
Contradlctmg that the length of the longest cycle of T} is less than £ |V (T;)['°#32. Thus T}
has no (¢t — 1)-curve embedding.
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In the previous paragraph, we have shown that the family of graphs that are not
(t — 1)-curve embeddable is not empty. Now we will choose the required graph from
such a family. Let m be the least integer such that T, has no (¢ — 1)-curve embedding.
Note that m > 3, since T, has a 1-curve embedding, and thus a (f — 1)-curve embedding
for every t > 2. By the minimality of m, T,,_; has a (¢t — 1)-curve embedding. Let
Q1 :=Tn_1,Q2,...,Qk := T,, be a sequence of triangulations (subtriangulations of T,,)
such that ;11 is obtained from @); by adding a new vertex and its three incident edges,
for i € {1,...,k — 1}. Let ¢ be the largest integer such that ¢, has a (¢t — 1)-curve
embedding. Let v be the vertex that gets added (together with its three incident edges)
to @y, in order to get Qyyq.

The maximality of ¢ implies that @y, 1 does not have a (¢t — 1)-curve embedding, and
we claim that QQyy 1 has a t-curve embedding. To see this, let z,y, z be the three vertices
adjacent to v in Qpr1. Thus z,y,z form a 3-cycle, which bounds the face f in @ in
which v is placed. Let py,...,p;—1 be clean Jordan curves that witness the (¢ — 1)-curve
embeddability of ()y. It is easy to see that if one of these Jordan curves intersects f, then
we can slightly perturb it so that it also intersects v (see Figure 2). But this is impossible,

since then @y11 would be a (¢t —1)-curve embedding. Thus none of py, ..., p;_; intersects v
or its incident edges, and so they are also clean Jordan curves in Q)y,1. We now draw in a
small neighborhood of v a clean Jordan curve p; that only contains v, so that pi,..., p; is

a collection of pairwise disjoint clean Jordan curves that contain all the vertices of Q¢ 1.
Therefore (Qy41 is a t-curve embedding, as claimed.

X T xT

y z y z Y z

Figure 2: A slightly perturbation of a Jordan curve (dashed line) passing through the
vertex v.

Let G; be the underlying graph of the triangulation Q)y;. It is readily checked that
(G is 3-connected and simple, and )y11 witnesses that G, triangulates the plane, and that
G, has a t-curve embedding. Since G} is 3-connected, it follows that )y, is its unique
embedding (up to isomorphism) in the plane. Since Q41 is not a (¢t — 1)-curve embedding,
it follows that Gy does not have a (t — 1)-curve embedding. O

3 Proof of Theorem 4

First we prove membership in NP, and then we prove NP-hardness.

(A) t-CURVEEMBEDDING is in NP.
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Proof. Let D be an embedding of a graph G, and let R be a collection of ¢ clean Jordan
curves with respect to D. Now we regard each of these curves as the edge set of a cycle
that gets added to D. (We remark that, for this purpose, we regard a graph that consists
of a pair of vertices joined by two parallel edges, or of a vertex with a loop-edge, as a
cycle.) We let D’ denote the drawing that is obtained from D by adding the edges these
t cycles, which we color blue to help comprehension.

The fact that G has a t-curve embedding can be attested in polynomial time by
verifying the existence of such an embedding D', with the properties that the blue cycles
are pairwise disjoint, and each vertex of G is contained in a blue cycle. O]

(B) t-CURVEEMBEDDING is NP-hard.

Proof. Let t > 2 be fixed and consider G and G’ two graphs such that G’ is the disjoint
union of G and a graph G, that satisfies the conditions in Lemma 8. It was proved in [§]
that testing if a graph has a 2-page embedding is NP-complete. Since the size of G’ is
bounded by a polynomial function of |V (G)|+|E(G)| (the size of G is a constant, for each
fixed t), it follows that to prove (B), it suffices to show that G has a 2-page embedding
if and only if G’ has a t-curve embedding.

Suppose that G has pagenumber 2. Let £ be a t-curve embedding of G;. Let p be one
of the ¢ clean Jordan curves that witness that £ is a t-curve embedding, and let p be a
point on p that is not a vertex of G. Let § be a disk with center p, small enough so that
0 does not intersect any vertex or edge of GG;. Then we can embed G in the interior of 4,
with the vertices lying on p N . This yields a t-curve embedding of G’.

For the other direction, suppose that D’ is a t-curve embedding of G’. Let R :=
{p1.-..,pt} be a set of clean Jordan curves that witness that D’ is a t-curve embedding.
We let & denote the restriction of D’ to G;. Then obviously the collection R witnesses
that & is a t-curve embedding.

CLAIM. Let f be any face of &. Then there is at most one curve in R that intersects f.

Proof. Let f be any face of &. By Lemma 8, every face in an embedding of G; is a
triangle, and so f is bounded by a 3-cycle C'. Let u, v, w be the vertices of C.

To prove the claim, first note that at most three curves in R can intersect f; this
follows simply because C' has exactly three vertices, and the curves in R are pairwise
disjoint and clean with respect to &. Suppose that exactly two curves p;, p; in R intersect
f. Since the curves in R are pairwise disjoint, it is not possible that each of p; and p;
intersects two vertices of C'. Thus at least one of these curves, say p;, must be a loop based
on a vertex of C, say u. In fact, the loop p; is the whole clean Jordan curve, otherwise p;
would have a self-intersecction at u. The other curve p; either contains both v and w, or
exactly one of them. Suppose first that p; contains both v and w. Thus the scenario is as
depicted on the left side of Figure 3. We can then remove p;, and reroute the part of p;
inside f, so that the resulting curve p;» contains v, u, and w, as illustrated on the right side
of Figure 3. Hence (R\ {p;, p;})Up} is a set of t — 1 pairwise disjoint clean Jordan curves
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Figure 3: The curve p; intersects the (shaded) face f, and contains v and w. Since the
clean curve p; contains u, then p; \ {u} must be contained in f. In this case, we can
replace these two curves by a single curve p} that contains u, v, and w, as shown on the
right-hand side.

whose union contains all the vertices of G;. Therefore G; has a (¢ — 1)-curve embedding,
contradicting (iii) in Lemma 8.

v w (% w

Figure 4: The curve p; contains u, and is otherwise contained in f. The curve p; contains
v, and is otherwise contained in f. In this case, p; can be re-routed inside f, as illustrated
on the right-hand side, so that the result is a clean Jordan curve p} that contains both u
and v.

Now, if p; contains exactly one of v and w (say v, without loss of generality), then
the scenario is as shown on the left side of Figure 4. In this case we can replace p; and
pj by a curve p; that contains both u and v (as in the right side of Figure 4). Thus
(R\ {pi,pj}) U p} is a set of t — 1 pairwise disjoint clean Jordan curves whose union
contains all the vertices of Gy, again contradicting (iii) in Lemma 8.

O

In the remaining case, exactly three curves p;, p;, p, intersect f. In this case each
of these curves must contain exactly one of u, v, and w, as illustrated on the left side of
Figure 5. We can then replace these three curves by a curve p contained in f, as shown on
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(Y w

Figure 5: If the clean Jordan curves p;, p;, pe contain u, v, and w, respectively, and each
of these curves intersects f, then p; \ {u}, p; \ {v}, and p, \ {w} are contained in f, as
shown in the left-hand side figure. These three curves can then be replaced by a single
curve p that contains u, v, and w.

the right side of Figure 5. Thus (R\ {p:, p;, p¢}) Up is a set of t —2 pairwise disjoint clean
Jordan curves whose union contains all the vertices of G;. Hence G, has a (t — 2)-curve
embedding, (and therefore, a (t — 1)-curve embedding), contradicting (iii) in Lemma 8.

Since G and G; are disjoint, it follows that there is a face f of & such that, in D', G
is drawn inside f. Thus it follows that some curve in R must intersect f.

From the Claim, there is exactly one curve p,, in R that intersects f. Since G is
contained in f, it follows that all the vertices of G are contained in p,,. Since p,, is clean
in D', it follows that p,, does not intersect any edge of G. Thus p,, witnesses that the
restriction of D’ to G is a 1-curve embedding. Hence we are done, since G has a 1-curve
embedding if and only if it has a 2-page embedding. O]

Finally we show that t~-CURVECROSSINGINUMBER is NP-complete, as claimed in Coro-
llary 6.

Proof of Corollary 6. Let t > 2 be a fixed integer. Given a graph G, let G’ be the
disjoint union of G and k disjoint copies of K33. Since the (2-page) crossing number
of K33 is 1, then G has a t-curve embedding if and only if G’ has a t-curve drawing
with at most k crossings. Therefore t-CURVECROSSINGINUMBER is at least as hard as ¢-
CURVEEMBEDDING. The membership of --CURVECROSSINGNUMBER in NP follows from
the fact that the time required to test whether a graph has a plane drawing with at most
k crossing is polynomial. O

4 Concluding remarks

It follows from the proof of Theorem 4 that, for each fixed ¢ > 2, even the problem of
deciding whether a given graph admits a t-curve embedding, is already NP-complete. As
we have observed, this is also true for ¢ = 1, as testing if a graph has pagenumber 2 (which
is equivalent to testing if it has a 1-curve embedding) is NP-complete.
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We recall that a p-page book consists of p halfplanes (the pages) whose boundaries lie
on a common line (the spine). In a p-page drawing, all the vertices lie on the spine, and
each edge (except for its endpoints) lies on a single page [6]. The p-page crossing number
bker,(G) of a graph G is the minimum number of crossings in a p-page drawing of G [12].

In the Book Crossing Number entry in [11], Schaefer mentions that testing if a graph
G satisfies bker,(G) = 0 is NP-complete, for every integer p > 2,p # 3 (the case p = 3
remains open). We note that analogous arguments to those we used in part (B) of the
proof of Theorem 4 can be used to prove the following.

Observation 9. The decision problem “given a graph G, is bker,(G) < k?” is NP-
complete for fired p > 2,p # 3, and fized k > 0.

It is reasonable to argue that, alternatively to the definition of a t-circle drawing, we
could obtain a generalization of the definition of a cylindrical drawing by asking that
the vertices are contained in t > 2 clean concentric circles. To illustrate an issue with
such a definition, let us consider drawings of the complete graph in which the vertices
are placed on three clean concentric circles. Then there cannot be a vertex in the inner
circle and a vertex in the outer circle, as then an edge joining these two vertices would
necessarily cross the middle circle. Thus either all the vertices must lie in the union
of the middle circle and the outer circle, or in the union of the middle circle and the
inner circle. That is, any such drawing of the complete graph is necessarily cylindrical.
Thus, for the complete graph, such an alternative definition of a t-circle drawing is not
really more general than the definition of a cylindrical drawing. On the other hand, if we
allow the interior of an edge to intersect each circle at most once, then we arrive at the
radial crossing number [2, 10, 11] (see also the related notion of the cyclic level crossing
number [3]).
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