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Abstract

We introduce graph-dependent covering arrays which generalize covering arrays
on graphs, introduced by Meagher and Stevens (2005), and graph-dependent par-
tition systems, studied by Gargano, Körner, and Vaccaro (1994). A covering array
CA(n; 2, G,H) (of strength 2) on column graph G and alphabet graph H is an
n× |V (G)| array with symbols V (H) such that for every arc ij ∈ E(G) and for ev-
ery arc ab ∈ E(H), there exists a row ~r = (r1, . . . , r|V (G)|) such that (ri, rj) = (a, b).
We prove bounds on n when G is a tournament graph and E(H) consists of the edge
(0, 1), which corresponds to a directed version of Sperner’s 1928 theorem. For two
infinite families of column graphs, transitive and so-called circular tournaments, we
give constructions of covering arrays which are optimal infinitely often.

Mathematics Subject Classifications: 05D05, 05B30

1 Introduction

Covering arrays are generalizations of orthogonal arrays that have been largely studied
for their combinatorial interest and applications to software and network testing (see [1]
and references therein).

Meagher and Stevens [9] extended the definition of a covering array to include a graph
structure related to its columns, which we call a column graph. While covering arrays
optimize the number of tests required to test all pairwise interactions between parameters
of a system, the graph structure introduced in [9] is used to specify pairs of parameters that
are known not to interact, yielding further reductions in the number of tests required. In
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addition to this increase in efficiency, their paper provides interesting connections between
graph homomorphisms and Sperner systems.

Tracing back to the work of Gargano, Körner, and Vaccaro [2, 3] on Sperner capacities,
another generalization of covering arrays, different from that introduced in [9], is implicitly
considered. A graph (which we call an alphabet graph to distinguish it from the column
graphs considered in [9]) is used to encode pairs of symbols which must appear in every two
distinct columns of the array. Using the terminology given in [3], classical covering arrays
of strength 2 correspond to “graph-dependent partition systems”, where the alphabet
graph being considered is complete with a loop on every vertex. While their work includes
the case of classical covering arrays, it also implicitly defines another generalization of
covering arrays, where the pairwise coverage requirement is restricted to pairs of symbols
specified by the edges of the alphabet graph.

In this paper, we unify both types of graphs associated with covering arrays, general-
izing the definition of covering arrays to graph-dependent covering arrays. Like in [9], the
binary alphabet case provides interesting connections with extremal set theory. We also
consider the more general case of directed alphabet graphs.

For a positive integer n, we write [n] to denote the set of integers {1, . . . , n}. Through-
out, the symbols n, v, and k are used to represent positive integers. A complete graph on
k vertices is denoted Kk, and K loop

v denotes the graph Kv with a loop on each vertex.

Definition 1. (Graph-dependent Covering Array) Let G be a loopless directed
graph with no parallel arcs, and let V (G) = [k]. Let H be a directed graph with no
parallel arcs, and let V (H) = [v]. A covering array on G and H, denoted CA(n; 2, G,H),
is an n×k array with symbols from the alphabet [v] and satisfying the following property:
for every arc ij ∈ E(G) and for every arc ab ∈ E(H), there exists a row rl = (rl1, . . . , rlk)
such that (rli, rlj) = (a, b). The graphs G and H of a CA(n; 2, G,H) are called the column
graph and alphabet graph, respectively. The covering array number for G and H, denoted
CAN(2, G,H), is the smallest integer n for which a CA(n; 2, G,H) exists.
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Figure 1: Graph-dependent covering arrays.

In Figure 1, we give two examples of column–alphabet graph pairs with corresponding
covering arrays. The left example has undirected column and alphabet graphs, whereas
the right example is directed; the underlying graphs of G′ and H ′ are G and H, respec-
tively.
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Let ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn) be two v-ary n-tuples, that is, ~x, ~y ∈ [v]n. If,
for every arc ab ∈ E(H), there exists an index i ∈ [n] such that xi = a and yi = b, then
we say that ~x is H-dependent with ~y. In a CA(n; 2, G,H), for all arcs ij ∈ E(G), the ith
column must be H-dependent with the jth column.

Alphabet graphs and column graphs can in fact be undirected; if so, then our con-
vention is to consider them as directed graphs in which each undirected edge corresponds
to two oppositely oriented arcs. With our convention, the notion of H-dependence is a
symmetric relation if and only if H is an undirected alphabet graph. If one of G or H is
undirected, then, in terms of covering arrays on G and H, we can assume that both G
and H are undirected. There may be situations in which it makes sense to allow alpha-
bet graphs and column graphs to have parallel arcs, and to allow column graphs to have
loops. Parallel arcs could encode the desired multiplicities of coverage (for specified pairs
of symbols indicated by parallel arcs of the alphabet graph or entirely between columns
specified by parallel arcs of the column graph). This would be analogous to the “index”
parameter of classical covering arrays. In the present paper, we do not consider these
situations, but mention them as possible lines of future investigation.

Some special cases that have been considered in the literature are the following:

• If the alphabet graph is K2 and the column graph is Kk, then the columns of a
CA(n; 2, Kk, K2) correspond to an antichain of subsets of [n]. In this case, Sperner’s

Theorem [10] gives CAN(2, Kk, K2) = min
{
n : k 6

(
n
bn/2c

)}
.

• If the alphabet graph is complete on v vertices and has a loop on each vertex and
the column graph is complete, then a CA(n; 2, Kk, K

loop
v ) corresponds to a classi-

cal v-ary covering array of strength two, denoted CA(n; 2, k, v). The columns of a
CA(n; 2, k, v) correspond to what is known as a “qualitatively independent” collec-
tion of v-partitions of [n].1 For a survey on classical covering arrays, see [1].

• If the alphabet graph is K loop
v and the column graph is G, then a CA(n; 2, G,K loop

v )
is what is known as a “covering array on G,” which we denote by CA(n; 2, G, v).
Covering arrays on (undirected column) graphs model testing applications where
some factors are known not to interact. See [9] for more details.

• If the alphabet graph is H and the column graph is complete, then the columns of a
CA(n; 2, Kk, H) correspond to an “H-dependent collection” of |V (H)|-ary n-tuples,
that is, a collection C = {~x1, . . . , ~xk} in which ~xi is H-dependent with ~xj for every
ordered pair of two distinct elements ~xi, ~xj ∈ C. Asymptotic information-theoretic
results related to H-dependent collections have been studied in [2, 3].

In Section 2, we define H-dependence graphs and characterize graph-dependent cov-
ering arrays in terms of graph homomorphisms to H-dependence graphs. In the re-
maining sections, we focus on directed column graphs together with the binary alphabet

1For the particular alphabet graph K loop
v , the notion of being K loop

v -dependent corresponds to being
qualitatively independent. Despite this discord in terminology, we adopted “graph-dependent” since it
captures the fact that the symbol coverage of our covering arrays on G and H depends on the edges of
both of these accessory graphs. Moreover, the terminology and definition of “graph-dependent partition
systems” was already introduced in [3] in order to generalize qualitative independence.
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graph T2, where V (T2) = {0, 1} and E(T2) = {(0, 1)}. In Section 3, we give bounds for
CAN(2, G′, T2), where G′ is a directed column graph. In Section 4, we establish bounds
for CAN(2, G′, T2), where G′ is a tournament, that is, an orientation of a complete graph.
In this case, determining CAN(2, G′, T2) corresponds to an oriented version of Sperner’s
Theorem. In Section 4.1, we give optimal constructions for covering arrays on transitive
tournament column graphs, and we use these in Section 4.2 to obtain tight asymptotic
bounds for the covering array number for all tournaments with alphabet graph T2. In
Section 4.3, we consider another particular family of tournament column graphs which
we call circular tournaments. We give constructions for covering arrays on circular tour-
naments and alphabet graph T2; we show that these constructions are optimal infinitely
often. In Section 4.4, we conclude by giving some experimental data and open problems
for binary covering arrays on tournaments.

2 H-dependence graphs

In this section, we give a class of graphs, called H-dependence graphs, which characterizes
the problem of determining CAN(2, G,H) in terms of graph homomorphisms. The H-
dependence graphs are the natural extension of qualitative independence graphs which
were defined by Meagher and Stevens [9] when they characterized covering arrays on
(undirected column) graphs via homomorphisms.

Let G and H be graphs. A map f : V (G) → V (H) is a homomorphism of G to H if
f(u)f(v) ∈ E(H) whenever uv ∈ E(G). If there exists a homomorphism of G to H, then
we say that G is homomorphic to H and we write G→ H. If G→ H and H → G, then
we say that G and H are homomorphically equivalent.

Definition 2. Let H be an alphabet graph with V (H) = [v]. The H-dependence graph,
denoted QI(n,H), is the graph with V (QI(n,H)) = [v]n and ~x~y ∈ E(QI(n,H)) if and
only if ~x is H-dependent with ~y.

If H is undirected, then the H-dependence graph is a symmetric digraph, hence we
consider it as an undirected graph.

Remark 3. If the alphabet graph is K loop
v , that is, complete with a loop on every vertex,

then our K loop
v -dependence graph QI(n,K loop

v ) is a proper supergraph of the qualitative
independence graph with parameters n and v, denoted QI(n, v); see [9, Definition 10].
In fact, QI(n,K loop

v ) is homomorphically equivalent to the qualitative independence graph
QI(n, v). That QI(n, v)→ QI(n,K loop

v ) is clear by inclusion. That QI(n,K loop
v )→ QI(n, v)

follows from [9, Theorem 1].

The next two results are straightforward extensions of analogous results given in [9].

Proposition 4. Let G be a column graph and let H be an alphabet graph. Then there exists
a CA(n; 2, G,H) if and only if there is a homomorphism G→ QI(n,H). In particular,

CAN(2, G,H) = min{n : G→ QI(n,H)}.
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Proof. Let V (G) = [k] and let V (H) = [v]. If there exists a CA(n; 2, G,H), then its
columns are vertices of QI(n,H). Define a map f : V (G)→ V (QI(n,H)) given by f(i) =
Ci, where Ci denotes the ith column of the CA(n; 2, G,H) and Ci = (c1i, . . . , cni) ∈ [v]n

for each i ∈ [k]. If ij ∈ E(G), then, for all ab ∈ E(H), there exists an index l ∈ [n] such
that cli = a and clj = b. By definition of the H-dependence graph QI(n,H), the vertex
Ci is adjacent to Cj in QI(n,H). Thus, f defines a homomorphism.

If there exists a homomorphism f : V (G)→ V (QI(n,H)), then we can build an n× k
array with columns C1, . . . , Ck given by Ci = f(i) for each i ∈ [k]. By the definition of
QI(n,H), it follows that this array is a CA(n; 2, G,H).

Proposition 5. Let H be an alphabet graph and let G1 and G2 be column graphs. If there
is a homomorphism G1 → G2, then

CAN(2, G1, H) 6 CAN(2, G2, H).

In particular, for an undirected column graph G, we have

CAN(2, Kω(G), H) 6 CAN(2, G,H) 6 CAN(2, Kχ(G), H),

where ω(G) and χ(G) denote the clique number and chromatic number of G.

IfH1 andH2 are alphabet graphs such that V (H1) = V (H2) = [v] and E(H1) ⊆ E(H2),
then every pair of H2-dependent v-ary n-tuples ~x and ~y are necessarily H1-dependent.
Thus, we have the following lemma.

Lemma 6. Let H1 and H2 be alphabet graphs such that V (H1) = V (H2) and E(H1) ⊆
E(H2). Then, for every n, the H2-dependence graph QI(n,H2) is a subgraph of the H1-
dependence graph QI(n,H1).

Going forward, the focus of this paper is on one particular directed alphabet graph:
the transitive tournament on two vertices, which we denote by T2. The vertex set of T2 is
V (T2) = {0, 1} and its edge set is E(T2) = {(0, 1)}. The alphabet graph T2 is the natural
directed alphabet graph to consider on a binary alphabet.

In Figure 2, we give the T2-dependence graphs QI(2, T2) and QI(3, T2).
A graph that is not homomorphic to any proper subgraph of itself is called a core.

Every graph G is homomorphic to a unique, up to isomorphism, core, denoted G•, such
that G• is an induced subgraph of G; see [4, Corollary 1.32].

Since every pair of distinct vertices in the T2-dependence graph QI(n, T2) is joined by
at least one arc, and since QI(n, T2) has no loops, it follows that QI(n, T2) is a core.

Lemma 7. For each n > 1, the T2-dependence graph QI(n, T2) is a core.

The vertex set of QI(n, T2) is the set of binary n-tuples, hence |V (QI(n, T2))| = 2n.
Binary n-tuples are in bijection with the subsets of [n] as follows. If ~x = (x1, . . . , xn) ∈
{0, 1}n, then ~x corresponds to the subset A~x = {i ∈ [n] : xi = 1}.

In terms of subsets of [n], a binary n-tuple ~x is T2-dependent with another binary
n-tuple ~y if and only if the corresponding subsets A~x, A~y ⊆ [n] satisfy A~y * A~x. We often
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Figure 2: The T2-dependence graphs QI(2, T2) and QI(3, T2).

make use of this correspondence and refer to vertices of QI(n, T2) as subsets or n-tuples
interchangeably. The rank of a binary n-tuple ~x is the number of times that ‘1’ is an
entry of ~x. Equivalently, the rank of ~x is the cardinality |A~x|.

Lemma 8. The graph QI(n, T2) has exactly 22n−1 + 2n−1 − 3n pairs of distinct vertices
A and B such that both AB and BA are arcs of QI(n, T2). In particular, as n → ∞,
the proportion (22n−1 + 2n−1 − 3n)/

(
2n

2

)
→ 1, where

(
2n

2

)
is the total number of pairs of

vertices in QI(n, T2).

Proof. First, we show that the number of pairs of distinct vertices A,B ∈ V (QI(n, T2))
such that exactly one of AB and BA is an arc of QI(n, T2) is 3n − 2n.

Consider the vertices of QI(n, T2) as subsets of [n]. Each k-set is a proper subset of(
n−k
i

)
sets of rank k + i. For each fixed k-set A, the number of subsets in which A is

properly contained is thus equal to

n−k∑
i=1

(
n− k
i

)
= 2n−k − 1.

Summing over all sets of rank k and summing over all ranks k ∈ {0, 1, . . . , n}, we have

n∑
k=0

(
n

k

)
(2n−k − 1) =

n∑
k=0

(
n

k

)
2n−k −

n∑
k=0

(
n

k

)
= 2n

n∑
k=0

(
n

k

)(
1

2

)k
− 2n = 3n − 2n

pairs of distinct vertices A,B ∈ V (QI(n, T2)) such that A ⊂ B. These are the only pairs
of vertices for which BA ∈ E(QI(n, T2)) and AB 6∈ E(QI(n, T2)). Thus, there are 3n− 2n

pairs of distinct vertices in V (QI(n, T2)) such that exactly one of AB and BA is an arc
of QI(n, T2).

the electronic journal of combinatorics 25(2) (2018), #P2.47 6



Now, there are
(
2n

2

)
pairs of distinct vertices in QI(n, T2), of which 3n − 2n pairs

are not symmetrically adjacent. Thus, the number of symmetrically adjacent pairs is(
2n

2

)
− [3n − 2n] = 2n−1(2n − 1)− 3n + 2n = 22n−1 + 2n−1 − 3n. Asymptotically, we have

lim
n→∞

22n−1 + 2n−1 − 3n(
2n

2

) = lim
n→∞

4n + 2n − 2 · 3n

4n − 2n
= 1.

3 Bounds for binary covering arrays on directed column graphs

In this section, we investigate the problem of finding CAN(2, G′, T2) for directed column
graphs G′. We give bounds which compare the covering array number for a directed
column graph G′ and alphabet graph T2 with a binary covering array on the underlying
graph G of G′. Throughout this section, we use G to denote the underlying graph of a
given directed graph G′.

For a graph G and integers k, v, we denote CAN(2, Kk, K
loop
v ) simply as CAN(2, k, v),

and we denote CAN(2, G,K loop
v ) by CAN(2, G, v).

Theorem 9. Let G′ be a directed graph with at least one arc, and let G be its underlying
graph. Then

dlog2 χ(G)e 6 CAN(2, G′, T2) 6 CAN(2, G, 2)− 1.

Proof. For the lower bound, let m = CAN(2, G′, T2), and consider a CA(m; 2, G′, T2).
The columns of this array form a proper vertex-colouring of G since adjacent vertices
in G correspond to columns of the CA(m; 2, G′, T2) that must be T2-dependent in some
direction which makes these columns distinct. Therefore χ(G) 6 2m, and so dlog2 χ(G)e 6
m = CAN(2, G′, T2).

For the upper bound, let n = CAN(2, G, 2) and consider an optimal CA(n; 2, G, 2).
We may assume without loss of generality that the first row is all zeros. Delete this row
and we are left with a CA(n − 1; 2, G′, K2), for any (directed) subgraph G′ ⊆ G. Thus,
CAN(2, G′, T2) 6 CAN(2, G′, K2) 6 CAN(2, G, 2)− 1.

For G′ with χ(G) = 2, we have a complete characterization of directed graphs that
achieve the lower bound of Theorem 9, based on the following definition and observations.

We call a directed graph G′ a consistently oriented bipartite graph if the underlying
graph of G′ is bipartite and there is a bipartition (X, Y ) of V (G′) such that all arcs of G′

are directed from X to Y .
If G′ is a directed graph, then CAN(2, G′, T2) can be equivalently defined as the min-

imum number of consistently oriented bipartite subgraphs into which one can partition
the arc set of G′. Indeed, the set of arcs of G′ covered by any particular row of a
CA(n; 2, G′, T2) forms a consistently oriented bipartite subgraph. In particular, the con-
dition CAN(2, G′, T2) = 1 is equivalent to there being a homomorphism G′ → QI(1, T2) ∼=
T2, which is equivalent to G′ being a consistently oriented bipartite graph.

For χ(G) = 2, the lower bound of Theorem 9 holds with equality if and only if
CAN(2, G′, T2) = 1, which means the lower bound of Theorem 9 is achieved solely by
consistently oriented bipartite graphs.
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For higher chromatic numbers, we do not have complete characterizations of graphs
achieving the lower bound of Theorem 9; however, for χ(G) = 3, 4, we do have a necessary
condition, as follows. If G′ contains a directed odd cycle, then by [7, Lemma 4.4.11], we
have CAN(2, G′, T2) > 3. For χ(G) = 3, 4, the lower bound of Theorem 9 is given by
CAN(2, G′, T2) > 2. Thus, for these chromatic numbers, a necessary condition to achieve
the lower bound of Theorem 9 is for G′ to be free of any directed odd cycles.

For all chromatic numbers χ > 2, there exist directed graphs G′ for which the
lower bound of Theorem 9 holds with equality. Specifically, if G′ is a transitive k-
tournament, then the underlying graph of G′ is Kk; in this case, CAN(2, G′, T2) =
dlog2 ke = dlog2 χ(G)e (see Section 4.1 for more details).

To see that the upper bound of Theorem 9 holds with equality infinitely often, let G′

be a directed graph such that G′ contains a directed odd cycle ~C2l+1 and the underlying
graph G of G′ satisfies χ(G) = 3. Since χ(G) = 3, it follows from [9, Theorem 1] that
CAN(2, G, 2) = 4. In this case, the upper bound of Theorem 9 is CAN(2, G, 2) − 1 =
4 − 1 = 3. Now, let K∗3 denote K3 in which each undirected edge is considered as two
oppositely oriented arcs. We have that G′ → K∗3 → QI(3, T2) and, since homomorphisms

compose, CAN(2, G′, T2) 6 3 by Proposition 4. Finally, since G′ contains ~C2l+1, it follows
from [7, Lemma 4.4.11] that CAN(2, G′, T2) > 3. Thus CAN(2, G′, T2) = 3, which, in this
case, achieves the upper bound of Theorem 9.

More examples of directed column graphs whose covering array numbers achieve the
upper bound of Theorem 9 can be found in Appendix A; these examples are tournament
column graphs whose underlying graphs have chromatic numbers χ = 3, 5, 9 (see “adja-
cency vectors” given in Table 2 for k = 3, 5, 9). Tournament column graphs are explored
in more detail in Section 4.

4 Bounds for binary covering arrays on tournaments

In this section, we give bounds on CAN(2, G′, T2) where the column graph G′ is a k-
tournament. We consider two specific families of tournaments as column graphs: transi-
tive tournaments and “circular” tournaments. We give constructions which are optimal
infinitely often for these families of column graphs.

A k-tournament is an orientation of the complete graph Kk. Our convention for k-
tournaments is to label the vertices as 1, 2, . . . , k (except when k = 2 in which case we
use 0 and 1).

We are interested in k-tournaments as column graphs with T2 as the alphabet graph.
Among all k-tournaments, is there one with the largest covering array number? Do
binary covering arrays on k-tournaments generally require as many rows as classical binary
covering arrays?

First, since the T2-dependence graph QI(n, T2) has no loops while the underlying
graph of a tournament is complete, any homomorphism of a tournament to QI(n, T2)
must be vertex-injective. Thus, the analogue of Proposition 4 for binary covering arrays
on tournaments is the following.
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Proposition 10. Let Ok be any k-tournament. Then there exists a CA(n; 2, Ok, T2) if
and only if Ok is a subgraph of QI(n, T2). In particular,

CAN(2, Ok, T2) = min{n : Ok ⊆ QI(n, T2)}.

Since the underlying graph of a k-tournament is the complete graph Kk with χ(Kk) =
k, Theorem 9 gives the following bound.

Corollary 11. Let Ok be a k-tournament. Then

dlog2 ke 6 CAN(2, Ok, T2) 6 CAN(2, k, 2)− 1.

For k-tournaments, the upper bound of Corollary 11 can be tightened as follows.

Theorem 12. Let k > 2 and let Ok be any k-tournament. Then

dlog2 ke 6 CAN(2, Ok, T2) 6 min
{
n : k 6 2

(
n−1

b(n−1)/2c

)}
.

Proof. The lower bound is given by Corollary 11. To prove the upper bound, we give a
construction as follows. Let n be a positive integer such that 2 6 k 6 2

(
n−1

b(n−1)/2c

)
. Then

bk/2c 6 dk/2e 6
(

n−1
b(n−1)/2c

)
. Take any maximum matching M of Kk (the underlying

graph of Ok). Partition V (Ok) into two parts of sizes dk/2e and bk/2c such that the ends
of all edges in M are oriented from the first part to the second in Ok (if k is odd, we add
the unmatched vertex to the first part). Relabel the vertices of Ok so that the vertices
of the first part of the partition are labelled 1, . . . , dk/2e, and the vertices of the second
part are labelled dk/2e+ 1, . . . , k.

To construct a CA(n; 2, Ok, T2), we first build an (n − 1) × k array with columns
C1, . . . , Ck corresponding to bn−1

2
c-subsets of [n− 1] as follows. Take dk/2e of the bn−1

2
c-

subsets of [n − 1] in some order, followed by the same first bk/2c columns repeated
in the same order, that is, C1, . . . , Cdk/2e are distinct bn−1

2
c-sets and Ci+dk/2e = Ci for

1 6 i 6 bk/2c. Add an nth row to cover the arcs of M . This additional row has zeros as
its first dk/2e entries and ones as its last bk/2c entries.

Since every two distinct bn−1
2
c-sets are K2-dependent, any two distinct columns Ci

and Cj (of length n − 1) are K2-dependent except when |j − i| = dk/2e. The extra row
ensures that we cover the arcs of M . Note, when k = 2, this extra row is in fact the only
row of the constructed array. Thus, we have constructed a CA(n; 2, Ok, T2), and it follows
that CAN(2, Ok, T2) 6 n whenever k 6 2

(
n−1

b(n−1)/2c

)
.

For k-tournament column graphs, the upper bound given in Theorem 12 is an improve-
ment over the upper bound given in Corollary 11 infinitely often. An exact expression for
the upper bound of Corollary 11 is known [5, 6], and this can be rewritten as follows:

CAN(2, k, 2)− 1 = min
{
n : k 6

(
n−1
bn/2c−1

)}
− 1 = min

{
n : k 6

(
n

b(n+1)/2c−1

)}
.

For all n, we have 2
(

n−1
b(n−1)/2c

)
>
(

n
b(n+1)/2c−1

)
. Consequently, for all k > 2, we have

min
{
n : k 6 2

(
n−1

b(n−1)/2c

)}
6 min

{
n : k 6

(
n

b(n+1)/2c−1

)}
= CAN(2, k, 2)− 1. (1)
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For each n > 1, for all k lying in the range
(

n
b(n+1)/2c−1

)
< k 6 2

(
n−1

b(n−1)/2c

)
, the inequal-

ity in (1) is strict. Thus, for infinitely many k-tournaments, the upper bound given in
Theorem 12 is a strict improvement over that given in Corollary 11.

For fixed k, we are interested in the spectrum of covering array numbers which arises
when we consider all k-tournament column graphs. Are the bounds of Theorem 12
achieved for all k? Among all k-tournaments, which ones have the largest or smallest
covering array numbers?

For the lower bound of Theorem 12, we have a complete answer by applying Proposi-
tion 10.

Theorem 13. A k-tournament Ok achieves the lower bound of Theorem 12 if and only
if Ok is a subgraph of the T2-dependence graph QI(dlog2 ke, T2).

4.1 Transitive tournaments

Aside from the general answer given by Theorem 13, we also have a specific infinite family
of tournament column graphs achieving the lower bound of Theorem 12, namely, transitive
tournaments.

Let k > 2. The transitive k-tournament, denoted Tk, is the tournament with V (Tk) =
[k] and arcs ij ∈ E(Tk) if and only if i < j.

Theorem 14. Let k > 2. Then CAN(2, Tk, T2) = dlog2(k)e = min{n : k 6 2n}.

Proof. Let A and B be subsets of [n] (corresponding to vertices of QI(n, T2)). No-
tice that AB ∈ E(QI(n, T2)) if and only if B * A. We can thus order the vertices
of QI(n, T2) in non-descending order of rank, and this ordering has the property that
AB ∈ E(QI(n, T2)) whenever A precedes B. With this ordering in place, it is clear
that QI(n, T2) contains T2n as an induced subgraph since there is a strict total ordering
on the vertices of T2n . It now follows that for all k 6 2n there exist homomorphisms
Tk → T2n → QI(n, T2). By Proposition 4, we have CAN(2, Tk, T2) 6 dlog2 ke. By Theo-
rem 12, we have CAN(2, Tk, T2) > dlog2 ke, which completes the proof.

The proof of Theorem 14 provides a simple construction for CA(dlog2 ke; 2, Tk, T2). If
n = dlog2 ke, then k columns corresponding to subsets of [n] in non-descending order of
rank form the columns of a CA(dlog2 ke; 2, Tk, T2). In the following theorem, we use this
construction for transitive tournaments to build binary covering arrays. The construction
we provide in Theorem 15 is not optimal in general; however, it is optimal asymptotically,
and it produces binary covering arrays built from blocks of rows corresponding to the
simple construction for binary covering arrays on transitive tournaments.

Theorem 15. For each integer k > 2, there exists an integer m 6 dlog2 ke+ 1 such that

CAN(2, k, 2) 6 CAN(2, Tk, T2) + CAN(2, Tm, T2) + 2.

In particular,
CAN(2, k, 2) 6 dlog2 ke+ dlog2(dlog2 ke+ 1)e+ 2.
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Proof. Let n = dlog2 ke, and let m be the minimum number of binomial coefficients
needed to write k 6

(
n
a1

)
+
(
n
a2

)
+ · · ·+

(
n
am

)
, where 0 6 a1 < a2 < · · · < am 6 n. Clearly,

m 6 n+ 1 = dlog2 ke+ 1.
Now, build a CA(n; 2, Tk, T2) as described in the proof of Theorem 14. Without

loss of generality, we may assume that the columns of the CA(n; 2, Tk, T2) correspond to
the subsets of [n] of ranks a1, a2, . . . , am−1 and (as many as needed of) the am-subsets
of [n], sorted in non-decreasing order of rank. Note, for each i ∈ [m], the columns
corresponding to the ai-subsets form an antichain and are thus already K2-dependent.
We extend this CA(n; 2, Tk, T2) into a CA(n + dlog2me; 2, Kk, K2) by appending to it at
most dlog2(dlog2 ke + 1)e additional rows. These additional rows correspond to the rows
of a CA(dlog2me; 2, Tm, T2) whose columns we denote by C1, C2, . . . , Cm. Under each
column of the CA(n; 2, Tk, T2) that corresponds to an ai-subset of [n], we put a copy of
Cm−i+1, as depicted in Figure 3.

a1-sets︷ ︸︸ ︷

Cm · · · Cm︸ ︷︷ ︸(
n
a1

)
times

a2-sets︷ ︸︸ ︷

Cm−1 Cm−1 · · · Cm−1︸ ︷︷ ︸(
n
a2

)
times

· · ·

am-sets︷ ︸︸ ︷

C1 · · · C1︸ ︷︷ ︸
up to

(
n
am

)
times

Figure 3: Construction of CA(dlog2 ke+ dlog2me; 2, Kk, K2), where m 6 dlog2 ke+ 1.

The array given in Figure 3 is indeed a CA(n+ dlog2me; 2, Kk, K2). Thus, we have

CAN(2, Kk, K2) 6 CAN(2, Tk, T2) + CAN(2, Tm, T2)

6 CAN(2, Tk, T2) + CAN(2, Tdlog2 ke+1, T2)

= dlog2 ke+ dlog2(dlog2 ke+ 1)e (2)

By adding two constant rows to the CA(n+dlog2me; 2, Kk, K2), namely a row of all zeros
and another row of all ones, we get a CA(n+ dlog2me+ 2; 2, k, 2).

4.2 Asymptotic bounds

For directed column graphs G′ and alphabet graph T2, we now show that, asymptoti-
cally, CAN(2, G′, T2) grows logarithmically with respect to the chromatic number of the
underlying graph of G′.

Theorem 16. For each c > 2, let G′c be some directed graph with underlying graph Gc

satisfying χ(Gc) = c. Then

lim
c→∞

CAN(2, G′c, T2)/ log2 χ(Gc) = 1.
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Proof. Since CAN(2, G′c, T2) 6 CAN(2, χ(Gc), 2), it follows from Theorems 9 and 15 that,
for each c > 2, we have

dlog2 χ(Gc)e 6 CAN(2, G′c, T2) 6 dlog2 χ(Gc)e+ dlog2(dlog2 χ(Gc)e+ 1)e+ 1.

Clearly, the above bounds are asymptotically equal to log2 χ(Gc), as c→∞.

Corollary 17. For each k > 2, let Ok denote some k-tournament. Then

lim
k→∞

CAN(2, Ok, T2)/ log2 k = 1.

4.3 Circular tournaments

In addition to transitive tournaments, we consider one other infinite family of tournament
column graphs, which we call circular tournaments. We prove that the covering array
number for circular k-tournaments and alphabet graph T2 is always dlog2 ke or dlog2 ke+1.

Definition 18. The circular k-tournament, denoted Ωk, has vertex set V (Ωk) = [k] and
arcs as follows. If k is odd, then ij ∈ E(Ωk) if and only if j = i + t for some t such
that 1 6 t 6 bk/2c (addition is done modulo k). If k is even, then ij ∈ E(Ωk) whenever
j = i + t for some t such that 1 6 t < k/2 (addition is done modulo k); moreover,
(i, i+ k/2) ∈ E(Ωk) for all i such that 1 6 i 6 k/2.

In Figure 4, we depict several circular k-tournaments.

Ω2

1 2

Ω3

1 2

3

Ω4

1 2

34

Ω5

1

2

34

5

Ω6

1

2

3

4

5

6

Figure 4: Circular tournaments.

Determining CAN(2,Ωk, T2) for all k is an interesting extremal problem that corre-
sponds to an oriented version of Sperner’s Theorem [10]. In terms of covering arrays,
Sperner’s Theorem determines CAN(2, Kk, K2) for all k.

Here, we give some important properties of circular tournaments.

Proposition 19. If k is odd, then the circular tournament Ωk is vertex-transitive. If k
is even, then the automorphism group of Ωk is trivial.

Proof. Let k be odd, and let i, j ∈ V (Ωk) be two distinct vertices. We can write j =
i + x (mod k) for a unique x ∈ {1, . . . , k − 1}. The map f : V (Ωk) → V (Ωk) given by
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f(u) = u + x (mod k) is an automorphism such that f(i) = j. Thus, when k is odd, Ωk

is vertex-transitive, as claimed.
Now, let k be even and write k = 2l. The vertices of Ωk are of two types: the vertices

labelled 1, 2, . . . , l which have outdegree l and indegree l − 1, and the vertices labelled
l+1, l+2, . . . , 2l which have outdegree l−1 and indegree l. Suppose f : V (Ωk)→ V (Ωk) is
an automorphism such that f(i) = j for some vertices i, j ∈ V (Ωk). If i ∈ {1, . . . , l}, then
in order for its in- and outdegree to match, j must also be from among the vertices in the
set {1, . . . , l}. In order for the neighbours of i and j to have the correct in- and outdegrees,
both i and j must have the same number of neighbours from the set {l+ 1, . . . , 2l}. This
can happen only if i = j. The argument when i ∈ {l + 1, . . . , 2l} is similar. Thus, when
k is even, the automorphism group of Ωk is trivial.

Proposition 20. For all k > 3, the circular tournament Ωk contains an induced subgraph
isomorphic to Ωk−1. In particular, when k = 2l + 1, we can delete any vertex to obtain
a copy of Ω2l. When k = 2l, we can delete either vertex l or l + 1 from Ω2l in order to
obtain a copy of Ω2l−1.

Proof. Let k = 2l + 1, and let Y denote the subgraph of Ω2l+1 in which the vertex 2l + 1
is deleted. Define a bijection g : V (Ω2l)→ V (Y ) by g(i) = i for 1 6 i 6 2l. By definition
of Ω2l, we have ij ∈ E(Ω2l) whenever either i < j and j = i+ t for some t ∈ {1, . . . , l−1},
or i > j and j + 2l = i + t for some t ∈ {1, . . . , l − 1}, and for all j = i + l such that
i ∈ {1, . . . , l}. By definition of Ω2l+1, we have ij ∈ E(Ω2l+1) whenever either i < j and
j = i + t for some t ∈ {1, . . . , l}, or i > j and j + 2l + 1 = i + t for some t ∈ {1, . . . , l}.
Thus, whenever ij ∈ E(Ω2l), it follows that g(i)g(j) = ij ∈ E(Y ). Therefore, g is a
vertex-injective homomorphism of Ω2l to Y . Since Ω2l is a tournament, it follows that g
is an isomorphism.

By Proposition 19, Ω2l+1 is vertex-transitive. Therefore, we can delete any vertex of
Ω2l+1 in order to obtain a copy of Ω2l.

Now, let k = 2l and let X denote Ωk with the vertex l deleted. We claim that
Ωk−1 ∼= X. Define a bijection f : V (Ωk−1) → V (X) by f(i) = i for 1 6 i 6 l − 1 and
f(i) = i+ 1 for l 6 i 6 k − 1. Suppose ij ∈ E(Ω2l−1). Consider the following cases:

1. If 1 6 i < j 6 l − 1, then f(i)f(j) = ij. By definition of Ω2l−1, we must have
j = i+ t for some t ∈ {1, . . . , l−2}. Thus, j = i+ t for some t < l, and by definition
of Ω2l, we have f(i)f(j) ∈ E(X).

2. If 1 6 i 6 l − 1 and l 6 j 6 2l − 1, then f(i)f(j) = i(j + 1). By definition of
Ω2l−1, we must have j = i + t for some t ∈ {1, . . . , l − 1}. Thus, t < l and so
f(i)f(j) ∈ E(X).

3. If l 6 i < j 6 2l− 1, then f(i)f(j) = (i+ 1)(j+ 1). By definition of Ω2l−1, we must
have j = i+ t for some t ∈ {1, . . . , l− 1}. Thus, j + 1 = i+ 1 + t for some t < l and
so f(i)f(j) ∈ E(X).
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4. If l 6 i 6 2l− 1 and 1 6 j 6 l− 1, then f(i)f(j) = (i+ 1)j. By definition of Ω2l−1,
we must have j + 2l− 1 = i+ t for some t ∈ {1, . . . , l− 1}. Thus, j + 2l = i+ 1 + t
and so, by definition of Ω2l, we have f(i)f(j) ∈ E(X).

Since the above cases cover all arcs of the tournament Ω2l−1, it follows that f is an
isomorphism. Similarly, we can show that Ω2l−1 is isomorphic to the subgraph of Ω2l in
which the vertex l − 1 is deleted.

Next, we give a recursive construction for covering arrays with alphabet graph T2 in
which we make use of a supergraph of the circular tournament, which we denote Ω+

k ,
defined for even values of k as follows. Let k be even. The vertex set of Ω+

k is V (Ω+
k ) = [k]

and ij ∈ E(Ωk) if and only if j = i + t for some t such that 1 6 t 6 k/2 (addition is
done modulo k). The difference between Ωk and Ω+

k is that Ω+
k has a pair of oppositely

oriented arcs joining the vertices i, j ∈ [k] with |j − i| = k/2. In particular, Ω+
k is not a

tournament, but does contain subgraphs isomorphic to Ωm, for all m 6 k. Consequently,
we have CAN(2,Ωm, T2) 6 CAN(2,Ω+

k , T2) for all circular tournaments Ωm with m 6 k.

Proposition 21. Let k be even. Then CAN(2,Ω+
2k, T2) 6 CAN(2,Ω+

k , T2) + 1.

Proof. Let n = CAN(2,Ω+
k , T2). For 1 6 j 6 k, let Cj denote the jth column of a

CA(n; 2,Ω+
k , T2). Take two copies of this array and interleave their columns as shown in

Figure 5. Add a row of alternating zeros and ones. Let us call the array we obtain A.

A
C1 C1 C2 C2 · · · Ck Ck

0 1 0 1 · · · 0 1

Figure 5: Recursive construction for a graph-dependent covering array on Ω+
2k and T2.

For each j ∈ [2k], the jth column of A corresponds to Cdj/2e (the dj/2eth column of
the CA(n; 2,Ω+

k , T2)). Let i and j be the indices of two distinct columns of A such that
j = i + t (mod 2k) for some t such that 1 6 t 6 k. We must show that some row of A
has a zero in the ith column and a one in the jth column; if there exists such a row, then
for short, we say that A covers {(i, 0), (j, 1)}.

Suppose j > i. Then 1 6 j − i 6 k. In this case, we consider all possibilities
for the parity of i and j. If i and j have the same parity, then 1 6 dj/2e − di/2e =
j/2 − i/2 6 k/2; in these cases, the ith column of A (Cdi/2e) and the jth column of A
(Cdj/2e) cover {(i, 0), (j, 1)} since the CA(n; 2,Ω+

k , T2) must cover {(di/2e, 0), (dj/2e, 1)}.
If i and j have opposite parity, then 1 6 j− i 6 k− 1, since k is even. It now follows that
0 6 dj/2e− di/2e 6 j/2 + 1/2− i/2 6 k/2. If dj/2e− di/2e = 0, then i and j correspond
to the same column Cj/2; in this case, j = i+1 and the extra row of alternating zeros and
ones covers {(i, 0), (j, 1)}. Otherwise, 1 6 dj/2e−di/2e 6 j/2 + 1/2− i/2 6 k/2; in these
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cases, the ith column of A (Cdi/2e) and the jth column of A (Cdj/2e) cover {(i, 0), (j, 1)}
since the CA(n; 2,Ω+

k , T2) must cover {(di/2e, 0), (dj/2e, 1)}.
Now, suppose j < i. Then 1 6 2k+ j− i 6 k, and the case-analysis is similar to show

that the array A covers each required interaction of the form {(i, 0), (j, 1)}.
Thus, the array A is a CA(n+ 1; 2,Ω+

2k, T2), and it follows that

CAN(2,Ω+
2k, T2) 6 CAN(2,Ω+

k , T2) + 1.

In the following theorem, we use Proposition 21 to give tight bounds on the binary
covering array number for circular tournaments.

Theorem 22. For all k > 2,

dlog2 ke 6 CAN(2,Ωk, T2) 6 CAN(2,Ω+
2dlog ke , T2) 6 dlog2 ke+ 1.

Proof. It is easy to see that CAN(2,Ω+
2 , T2) = 2 since E(Ω+

2 ) = {(0, 1), (1, 0)} and these
two arcs cannot be covered in one row whereas two rows suffice. Now, by applying
Proposition 21 iteratively, for all L > 0, we have

CAN(2,Ω+
2L+1 , T2) 6 CAN(2,Ω+

2L
, T2) + 1

6 CAN(2,Ω+
2 , T2) + L

= 2 + L. (3)

Let k 6 2L+1. Then CAN(2,Ωk, T2) 6 CAN(2,Ω+
2L+1 , T2) since Ωk ⊆ Ω2L+1 ⊂ Ω+

2L+1 .
Using this fact, the bound given in (3), and the lower bound of Theorem 12, for all k such
that 2L < k 6 2L+1, we have

dlog2 ke 6 CAN(2,Ωk, T2) 6 CAN(2,Ω+
2L+1 , T2) 6 L+ 2 = dlog2 ke+ 1.

Similarly, we use Proposition 21 to show that there are infinitely many values of k for
which CAN(2,Ωk, T2) = dlog2 ke.

Theorem 23. Let m be an even integer. If there exists a CA(dlog2me; 2,Ω+
m, T2), then,

for all L > 0 and for all k such that 2L+dlog2me−1 < k 6 m · 2L, we have

CAN(2,Ωk, T2) = dlog2 ke.

Proof. Suppose a CA(dlog2me; 2,Ω+
m, T2) exists for some even integer m. By applying

Proposition 21 iteratively, for all L > 0, we have

CAN(2,Ω+
m·2L , T2) 6 CAN(2,Ω+

m·2L−1 , T2) + 1

6 CAN(2,Ω+
m, T2) + L

6 dlog2me+ L (4)

Now, fix L > 0 and let k be an integer such that 2L+dlog2me−1 < k 6 m · 2L. Then
dlog2 ke = dlog2me+L. Since we have the inclusions Ωk ⊆ Ωm·2L ⊂ Ω+

m·2L , it follows from
Proposition 5 that CAN(2,Ωk, T2) 6 CAN(2,Ω+

m·2L , T2). Now, by Theorem 12 and (4),

for all k such that 2L+dlog2me−1 < k 6 m · 2L, we have

dlog2 ke 6 CAN(2,Ωk, T2) 6 CAN(2,Ω+
m·2L , T2) 6 dlog2me+ L = dlog2 ke.
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Corollary 24. For all integers L > 0 and for any integer k such that 2L+4 < k 6 20 · 2L,
the covering array number for covering arrays on circular k-tournament column graphs
and the alphabet graph T2 is given by

CAN(2,Ωk, T2) = dlog2 ke.

Proof. For m = 20, we have dlog2me = 5. The following is a CA(dlog2 20e; 2,Ω+
20, T2):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0
1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1
0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1

By applying Theorem 23 with m = 20, it follows that for all L > 0, for all k such that
2L+dlog2 20e−1 < k 6 20 · 2L, we have CAN(2,Ωk, T2) = dlog2 ke.

Remark 25. For any even m such that a CA(dlog2me; 2,Ω+
m, T2) exists, we can apply

Theorem 23 to obtain a result like Corollary 24. For each L > 0, the value of m that
maximizes the range 2L+dlog2me−1 < k 6 m · 2L corresponds to an even value of m for
which m/2dlog2me−1 is as close to 2 as possible.

By computer search, we determined CAN(2,Ωk, T2) for all k 6 37. We also deter-
mined CAN(2,Ω+

k , T2) for all even values of k 6 36. The only values of k 6 37 for which
CAN(2,Ωk, T2) = dlog2 ke are k ∈ {2, 9, 17, 18, 19, 20, 33, 34, 35, 36, 37}. The only even
values of k 6 36 for which CAN(2,Ω+

k , T2) = dlog2 ke are k ∈ {18, 20, 34, 36}. Among
these values, m = 20 was our best candidate for obtaining the strongest version of Corol-
lary 24 with respect to Remark 25.

For k = 2 and k = 9, examples of the CA(dlog2e; 2,Ωk, T2) obtained from our computer
search are given here:

CA(1; 2,Ω2, T2)
1 2

0 1
CA(4; 2,Ω9, T2)

1 2 3 4 5 6 7 8 9

1 1 1 0 1 0 0 0 0
0 1 0 0 0 0 1 1 1
0 0 1 0 0 1 0 0 1
0 0 0 1 1 1 0 1 0

One example of a CA(5; 2,Ω+
20, T2) obtained in our search is given in Corollary 24. From

this array, we obtain a CA(6; 2,Ω+
40, T2) using Proposition 21. By removing appropriate

columns from the CA(5; 2,Ω+
40, T2) which correspond to the way in which Ωk−1 ⊂ Ωk, we

obtain optimal CA(dlog2 ke,Ωk, T2) for k = 38, 39. Hence, the next value of k for which
the covering array number is unknown is 41.

4.4 Data and questions for binary covering arrays on tournaments

Transitive tournaments and circular tournaments meet the lower bound of Theorem 12
for infinitely many values of k. We are interested in knowing how often the upper bound
of Theorem 12 is met, or whether there is a tighter bound for tournament column graphs.
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Using a computer search and the database of tournaments given in [8], for each k 6 9,
we determined CAN(2, Ok, T2) for every k-tournament Ok (up to isomorphism). Our
findings are summarized in Table 1 and more details are given in Appendix A. In Table 1,
we use L.B. and U.B. to denote the lower and upper bounds of Theorem 12, respectively.
In Table 1, we write CAN to abbreviate the covering array number on a given tournament
column graph with alphabet graph T2.

k L.B. U.B. k-tournaments achieving U.B.

2 1 1 T2 (the unique 2-tournament)
3 2 3 only Ω3

4 2 3 exactly those 4-tournaments that contain Ω3 as a subgraph
5 3 4 only Ω5

6 3 4 Ω6 and 12 others (not all contain Ω5 as a subgraph)
7 3 5 no 7-tournaments achieve U.B.

Ω7 and 380 others with CAN = 4
8 3 5 no 8-tournaments achieve U.B.

Ω8 and 6836 others with CAN = 4
9 4 5 only two 9-tournaments achieve U.B. (neither is isomorphic to Ω9)

Table 1: Summary of analysis for small tournaments.

Our analysis of small tournaments shows that for k ∈ {2, 3, 4, 5, 6, 9}, the upper bound
of Theorem 12 is attained.

Problem 26. Determine whether the upper bound of Theorem 12 is met infinitely often.
If not, determine a tight numerical upper bound on CAN(2, Ok, T2) for any k-tournament
Ok.

Based on our data in Table 1, we ask whether the bounds of Theorem 22 hold for all
k-tournaments.

Problem 27. For any k-tournament Ok, is CAN(2, Ok, T2) ∈ {dlog2 ke, dlog2 ke+ 1}?

For circular tournaments in particular, Theorem 22 determines CAN(2,Ωk, T2) to
within 1 row. The following problem is also of interest.

Problem 28. For each L > 2, for all k in the range 2L−1 < k 6 2L, the covering
array number CAN(2,Ωk, T2) ranges from dlog2 ke to dlog2 ke + 1, non-decreasingly as k
increases. For all L > 2, for each range 2L−1 < k 6 2L, determine the threshold value of
k for which CAN(2,Ωk, T2) = dlog2 ke and CAN(2,Ωk+1, T2) = dlog2 ke+ 1.

Aside from a tight numerical upper bound on CAN(2, Ok, T2), we are interested in
finding an extremal family of k-tournaments. In particular, we wish to have a struc-
tural characterization of some infinite family of k-tournaments, say {Xk}∞k=2, for which
CAN(2, Ok, T2) 6 CAN(2, Xk, T2) for every k-tournament Ok.
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Problem 29. Find and characterize an infinite family {Xk}∞k=2 of k-tournaments for
which CAN(2, Ok, T2) 6 CAN(2, Xk, T2) for every k-tournament Ok.

It was conjectured in [7, Conjecture 4.5.1] that circular tournaments constitute an
extremal family of tournaments as described in Problem 29; however, our data for 9-
tournaments shows that this is not the case. Adjacency matrices and other properties for
the two exceptional 9-tournaments referred to in Table 1 are given in Appendix A.1.
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A Extremal k-tournaments for 2 6 k 6 9

Up to k = 9, we determined CAN(2, Ok, T2) for all pairwise non-isomorphic k-tournaments
Ok by using a computer search and the lists of all k-tournaments given in [8]. For each
k-tournament Ok with k 6 9, we found that CAN(2, Ok, T2) ∈ {dlog2 ke, dlog2 ke+ 1}. In
the following table, for each k such that 2 6 k 6 9, we give the lower and upper bounds
of Theorem 12, denoted L.B. and U.B., respectively. We write CAN to abbreviate the
covering array number for a covering array on a given tournament column graph with
alphabet graph T2. For 2 6 k 6 9, we give the number of k-tournaments with CAN = n
for each possible value of n in the range L.B. 6 n 6 U.B.. For some parameters, the
actual tournaments are given as the upper triangle of the adjacency matrix in row order,
on one line without spaces. We refer to this representation as the adjacency vector. For
example, the 4-tournament represented by the adjacency vector 000111 has the following
adjacency matrix and graph:


0 0 0 0
1 0 1 1
1 0 0 1
1 0 0 0


1 2

34

By permuting the rows and columns of its adjacency matrix, any given tournament
has several distinct adjacency vector representations. In Table 2, each given adjacency
vector is represented exactly as given in the lists in [8], with the exception of the 9-
tournaments; the adjacency vectors of the given 9-tournaments have been reconfigured in
order to emphasize their structure which we discuss in more detail in Appendix A.1.

Table 2: Data for small tournaments.

k = 3: number of pairwise non-isomorphic 3-tournaments: 2
number with CAN = L.B. = 2: 1
number with CAN = U.B. = 3: 1

adjacency vectors of 3-tournaments with CAN = 3: 101

k = 4: number of pairwise non-isomorphic 4-tournaments: 4
number with CAN = L.B. = 2: 1
number with CAN = U.B. = 3: 3

adjacency vectors of 4-tournaments with CAN = 3: 000101
100010
100100
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k = 5: number of pairwise non-isomorphic 5-tournaments: 12
number with CAN = L.B. = 3: 11
number with CAN = U.B. = 4: 1

adjacency vectors of 5-tournaments with CAN = 4: 1100101110

k = 6: number of pairwise non-isomorphic 6-tournaments: 56
number with CAN = L.B. = 3: 43
number with CAN = U.B. = 4: 13

adjacency vectors of 6-tournaments with CAN = 4: 000001100101110
000101000010001
010001000101100
010001000110101
010001000111101
100001010010001
100001100101110
100101001001000
101001100010101
101001100100110
110001001011000
110001001110101
110001010110000

k = 7: number of pairwise non-isomorphic 7-tournaments: 456
number with CAN = L.B. = 3: 75

number with CAN = 4: 381
number with CAN = U.B. = 5: 0

(adjacency vectors omitted)

k = 8: number of pairwise non-isomorphic 8-tournaments: 6880
number with CAN = L.B. = 3: 43

number with CAN = 4: 6837
number with CAN = U.B. = 5: 0

(adjacency vectors omitted)

k = 9: number of pairwise non-isomorphic 9-tournaments: 191536
number with CAN = L.B. = 4: 191534
number with CAN = U.B. = 5: 2

adjacency vectors of 9-tournaments with CAN = 5: 101110001000111111000100111101110101
101110001000111111000100111101110010
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A.1 Properties of exceptional 9-tournaments

Since there are only two exceptional 9-tournaments, we give more details about their
properties here in the hope that this information may help to solve Problem 29.

Let X9a and X9b denote the 9-tournaments with the following adjacency vectors and
adjacency matrices, respectively.

a. 101110001000111111000100111101110101 b. 101110001000111111000100111101110010

a. 1 2 3 4 5 6 7 8 9

1 0 1 0 1 1 1 0 0 0
2 0 0 1 0 0 0 1 1 1
3 1 0 0 1 1 1 0 0 0

4 0 1 0 0 1 0 0 1 1
5 0 1 0 0 0 1 1 0 1
6 0 1 0 1 0 0 1 1 0

7 1 0 1 1 0 0 0 1 0
8 1 0 1 0 1 0 0 0 1
9 1 0 1 0 0 1 1 0 0

b. 1 2 3 4 5 6 7 8 9

1 0 1 0 1 1 1 0 0 0
2 0 0 1 0 0 0 1 1 1
3 1 0 0 1 1 1 0 0 0

4 0 1 0 0 1 0 0 1 1
5 0 1 0 0 0 1 1 0 1
6 0 1 0 1 0 0 1 1 0

7 1 0 1 1 0 0 0 0 1
8 1 0 1 0 1 0 1 0 0
9 1 0 1 0 0 1 0 1 0

1 2 3

4

5

6

7

8

9

X9a

1 2 3

4

5

6

7

8

9

X9b

The exceptional 9-tournaments X9a and X9b are both regular with in- and outdegree 4.
Both are isomorphic to their own reversal. Neither is isomorphic to Ω9. Both have exactly
three automorphisms which correspond to the rotations of the directed 3-cycle (4, 5, 6)
(and simultaneous rotations of the directed 3-cycles on vertices 7, 8, 9) while the vertices
1, 2, 3 remain fixed. In X9a and X9b, the directed 3-cycles on vertices 7, 8, 9 are oppositely
oriented. From our computer search, we know that CAN(2, X9a, T2) > 4. On the other
hand, since 9 <

(
5
2

)
, finding a CA(5; 2, X9a, T2) is easy; simply take columns corresponding

to the 2-subsets of {1, . . . , 5} which form an antichain. The same works for X9b.
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