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Abstract

We show that if certain arithmetic conditions hold, then the Cayley isomorphism
problem for abelian groups, all of whose Sylow subgroups are elementary abelian or
cyclic, reduces to the Cayley isomorphism problem for its Sylow subgroups. This
yields a large number of results concerning the Cayley isomorphism problem, per-
haps the most interesting of which is the following: if p1, . . . , pr are distinct primes
satisfying certain arithmetic conditions, then two Cayley digraphs of Za1p1×· · ·×Zarpr ,
ai 6 5, are isomorphic if and only if they are isomorphic by a group automorphism
of Za1p1 ×· · ·×Zarpr . That is, that such groups are CI-groups with respect to digraphs.

Mathematics Subject Classifications: 05E18

1 Introduction

The history of the modern Cayley isomorphism problem begins in 1967 when Ádám [1]
conjectured that any two Cayley graphs of the cyclic group Zn of order n are isomorphic if
and only if they are isomorphic by a group automorphism of Zn. While Ádám’s conjecture
was quickly shown to be false [19], the conjecture nonetheless generated much interest in
the following obvious generalization: Are two Cayley graphs of a group G isomorphic
if and only if they are isomorphic by a group automorphism of G? If so, we say that
G is a CI-group with respect to graphs. This problem naturally generalizes to any
class of combinatorial objects (see [33] for several equivalent formulations of the precise
definition of a combinatorial object), and in fact was considered much earlier for designs
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[2, 27]. Our question is then: For a group G is it true that any two Cayley objects of G
in some class K of combinatorial objects are isomorphic if and only if they are isomorphic
by a group automorphism of G? If the answer to this question is yes, we say that G
is a CI-group with respect to K. If G is a CI-group with respect to every class
of combinatorial objects, we say that G is a CI-group. In 1987, Pálfy [34] proved the
following remarkable result:

Theorem 1. A group G of order n is a CI-group if and only if gcd(n, ϕ(n)) = 1 or n = 4,
where ϕ is Euler’s phi function.

Definition 2. Given a group G and g ∈ G, define gL : G 7→ G by gL(h) = gh, and
GL = {gL : g ∈ G}. Then GL

∼= G is a group, the left regular representation of G. A
Cayley object of G is a combinatorial object X with GL 6 Aut(X), the automorphism
group of X.

We remark that a classical result of Sabidussi [35] gives that the definition of a Cayley
object above is consistent with the usual definition of a Cayley digraph when the object
is a digraph.

An essential tool in proving Pálfy’s Theorem is the following result of Babai, which
characterizes the CI-property:

Lemma 3. For a group G and a class K of combinatorial objects the following are equiv-
alent:

1. G is a CI-group with respect to K,

2. whenever X is a Cayley object of G in K and δ ∈ Sym(G) such that δ−1GLδ 6
Aut(X), then GL and δ−1GLδ are conjugate in Aut(X).

Babai’s Lemma has been generalized to give a similar characterization of the solution
to the isomorphism problem for Cayley objects X of G in classes K when G is not a
CI-group with respect to K (see [33, Lemma 1.1], [8, Lemma 13], and [13, Lemma 20]).
All such results basically reduce to determining the conjugacy classes of GL in Aut(X). In
fact, in the positive direction, Pálfy showed that if gcd(n, ϕ(n)) = 1, then there is always
one conjugacy class of (Zn)L in 〈(Zn)L, δ

−1(Zn)Lδ〉 (we remark that every group of order
n is cyclic if and only if gcd(n, ϕ(n)) = 1 [36, Theorem 9.2.7]). To place the work in this
paper in its proper context, it will be useful to discuss the structure of Pálfy’s proof in
more detail, and to do this, we will need the following additional definition:

Definition 4. Let G be a transitive group acting on Ω. Let Y be the set of all complete
block systems of G. Define a partial order on Y by B � C if and only if every block of
C is a union of blocks of B. Let n = Πr

i=1p
ai
i be the prime factorization of n and define

Ω : N 7→ N by Ω(n) = Σr
i=1ai. Let m = Ω(n). A transitive group G of degree n is m-step

imprimitive if there exists a sequence of complete block systems B0 ≺ B1 ≺ · · · ≺ Bm.
A complete block system B will be said to be normal if B is formed by the orbits of
a normal subgroup. We will say that G is normally m-step imprimitive if each Bi,
0 6 i 6 m, is formed by the orbits of a normal subgroup of G.
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Note that B0 consists of singletons, while Bm = {Ω}. Also, B1 consists of blocks of
prime size, and in general, Bi consists of blocks of size a product of i (not necessarily
distinct) primes, and of course each block of Bi is a union of blocks of Bi−1.

The proof of the positive direction of Theorem 1 is broken into two parts which use very
different techniques. In the first part, Pálfy essentially shows that if δ ∈ Sym(n), then
there exists γ ∈ 〈(Zn)L, δ

−1(Zn)Lδ〉 such that 〈(Zn)L, γ
−1δ−1GLδγ〉 is normally m-step

imprimitive. This is shown using the fact that all doubly-transitive groups are known
[3, Theorem 5.3], a consequence of the Classification of the Finite Simple Groups. He
then shows that if 〈(Zn)L, δ

−1(Zn)Lδ〉 is normally m-step imprimitive, then there exists
γ ∈ 〈(Zn)L, δ

−1(Zn)Lδ〉 such that γ−1δ−1(Zn)Lδγ = (Zn)L. The techniques for showing
this do not depend upon the Classification of the Finite Simple Groups, and in fact one
can simply use the Sylow Theorems to show this [11].

Muzychuk [33, Theorem 1.9] showed that Pálfy’s Theorem could be generalized to
cyclic groups Zn, for more values of n. More specifically, let k = p1 · · · pr be such that
gcd(k, ϕ(k)) = 1, and n = pa11 · · · parr . Muzychuk showed that the Cayley isomorphism
problem for cyclic groups Zn can be reduced to the Cayley isomorphism problem of the
Sylow subgroups of Zn. The general structure of his proof is the same as that of Pálfy’s
proof. He showed that after an appropriate conjugation, 〈(Zn)L, δ

−1(Zn)Lδ〉 is normally
m-step imprimitive using the Classification of the Finite Simple Groups [33, Theorem
4.9] (with no restrictions on n), and then used very different “Sylow type” arguments
to show that after an additional conjugation, the group 〈(Zn)L, δ

−1(Zn)Lδ〉 has very nice
properties (these properties are equivalent to being nilpotent), which are then used to
deduce his main result.

In 2003, the author [8] showed that the second part of each of the above proofs could be
generalized to show that if G is an abelian group of order n (n again satisfies the conditions
given in the previous paragraph) and 〈GL, δ

−1GLδ〉 is normally m-step imprimitive, then
there exists γ ∈ 〈GL, δ

−1GLδ〉 such that 〈GL, γ
−1δ−1GLδγ〉 is nilpotent, in which case the

Cayley isomorphism problem for G reduces to the Cayley isomorphism problem for the
Sylow subgroups of G. It turns out that the “first part” of the above proofs does not
generalize to arbitrary abelian groups of order n. The author and Spiga [16, Theorem
2.1] give examples of abelian groups of certain orders n and δ ∈ Sym(n) such that there is
no γ ∈ 〈GL, δ

−1GLδ〉 such that 〈GL, γ
−1δ−1GLδγ〉 is normally m-step imprimitive (this is

not explicitly stated in [16, Theorem 2.1], but is established in the proof of that result).
Recently, the author [13] extended the results in [8] to nilpotent groups, as well as to a
larger class of abelian groups.

In this paper, we will show in Section 4 that for k = p1 · · · pr, n = pa11 · · · parr , whenever
G is an abelian group of order n with Sylow pi-subgroup Pi that is elementary abelian
or cyclic and the only prime divisor of |Aut(Pi)| that divides n is pi, then whenever
δ ∈ Sym(G) then there exists γ ∈ 〈GL, δ

−1GLδ〉 such that 〈GL, γ
−1δ−1GLδγ〉 is nilpotent,

and consequently, normally m-step imprimitive (Theorem 22). Consequences of this result
are considered in Section 5, where in particular we show for such G that the Cayley
isomorphism problem for G reduces to the Cayley isomorphism problem for Pi, and in
the case of color digraphs, we show that if Pi is elementary abelian and 1 6 ai 6 5, then
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G is a CI-group with respect to color digraphs (Corollary 39). Finally, additional open
problems are discussed in Section 6.

An additional comment is in order. Our main motivation in considering the Cayley
isomorphism problem in general is to investigate the Cayley isomorphism problem for
Cayley digraphs. This is what has guided our restricting Sylow p-subgroups to be either
elementary abelian or cyclic, as the Cayley isomorphism problem for digraphs has been
has been studied for these groups (many of the corresponding results are mentioned in
Section 5), while for other abelian p-groups the isomorphism problem has been solved
only for the group Zp × Zp2 [6].

Definition 5. Let G be a transitive group acting on Ω and B a complete block system
of G. By fixG(B) we mean the subgroup of G which fixes each block of B set-wise. That
is, fixG(B) = {g ∈ G : g(B) = B for all B ∈ B}. We denote by StabG(x) the stabilizer
of x ∈ Ω, and for B ∈ B, StabG(B) is the set-wise stabilizer of the block B. That is,
StabG(x) = {g ∈ G : g(x) = x} and StabG(B) = {g ∈ G : g(B) = B}. Finally, for g ∈ G
we denote by g/B permutation of B induced by g, and G/B = {g/B : g ∈ G}.

The following result of C. H. Li [28, Theorem 1.1] will be crucial.

Theorem 6. Let X be a primitive permutation group of degree n. Then X contains an
abelian regular subgroup A if and only if either

1. X 6 AGL(d, p), where p is prime, d > 1, and n = pd, or

2. X = (T̃1 × · · · × T̃`).O.Q, A = A1 × · · · × A`, and n = m`, where ` > 1, each
Ai 6 T̃i with |Ai| = m, T̃1 ∼= . . . T̃`, O 6 Out(T̃1)× · · · ×Out(T̃`), Q is a transitive
permutation group of degree `, and one of the following holds:

(a) (T̃i, Ai) = (PSL(2, 11),Z11), (M11,Z11), (M12,Z2
2 × Z3), (M23,Z23);

(b) T̃i = PGL(d, q), and Ai = Z(qd−1)/(q−1) is a Singer subgroup;

(c) T̃i = PΓL(2, 8) and Z9 = Ai 66 PSL(2, 8);

(d) T̃i = Sym(m) or Alt(m), and Ai is abelian of order m.

Ultimately, we will show by induction on m = Ω(n) that, under certain arithmetic con-
ditions, if G 6 Sym(n) is transitive, abelian and has Sylow subgroups elementary abelian
or cyclic, then for δ ∈ Sym(n) there exists γ ∈ 〈G, δ−1Gδ〉 such that 〈G, γ−1δ−1Gδγ〉 is
m-step imprimitive. We first show in Section 2 that there exists γ ∈ 〈G, δ−1Gδ〉 such
that 〈G, γ−1δ−1Gδγ〉 is imprimitive. Now, if 〈G, δ−1Gδ〉 is imprimitive with C a complete
block system of 〈G, δ−1Gδ〉 with no nontrivial block system B ≺ C, then either C consists
of blocks of prime size, in which case we are finished using the induction hypothesis, or
the blocks of C are of composite size and Stab〈G,δ−1Gδ〉(B)|B is primitive in its action on
B ∈ B by [4, Exercise 1.5.10]. We next show that we need only consider when the blocks
of C are of prime power size. We then analyze the various cases for Stab〈G,δ−1Gδ〉(B)|B
given by Theorem 6 in Section 3.
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Finally, one of our intentions in this paper is begin to determine when the isomorphism
problem for a direct product Πr

i=1Gi of groups reduces to the isomorphism problem for the
Gi, 1 6 i 6 r (as opposed to specifically studying abelian groups whose Sylow subgroups
are elementary abelian or cyclic). Induction seems to be the best way to attack this
problem, but there is an inherent difficulty. Namely, if B is a complete block system of
〈G, δ−1Gδ〉 where G is a transitive abelian group and δ ∈ SG, it need not be the case that
G/B ∼= δ−1Gδ/B or fixG(B) ∼= fixδ−1Gδ(B). But of course G/B, δ−1Gδ/B, fixG(B), and
fixδ−1Gδ(B) are all abelian groups. So if possible we will use G1 and G2 instead of G and
δ−1Gδ, and only assume that G1 and G2 are abelian and not assume that G1

∼= G2. In
fact, we will often only need that fixG1(B) ∼= fixG2(B), and then certain properties of the
quotient.

Throughout this paper, all groups are finite. For group theoretic terms not defined in
this paper, see [4].

2 We may assume 〈G1, G2〉 is imprimitive with blocks of prime-
power order

We shall have need of the following elementary result whose straightforward proof is left
to the reader.

Lemma 7. Let G1, G2 6 Sym(n) be transitive such that both G1 and G2 admit B as a
complete block system. Then 〈G1, G2〉 admits B as a complete block system.

The following result is proven in more generality than is needed here.

Lemma 8. Let n = kpa, where p is an odd prime, and pa > 5. Let G1, G2 6 Sym(n)
be transitive such that 〈G1, G2〉 admits a complete block system C of n/pa blocks of size
pa such that Alt(pa) 6 Stab〈G1,G2〉(C)|C and fixGi

(C) is abelian and semiregular while
fixGi

(C)|C is transitive for every C ∈ C and i = 1, 2. Then there exists γ ∈ 〈G1, G2〉 such
that 〈G1, γ

−1G2γ〉 admits a complete block system B with n/p blocks of size p.

Proof. If a = 1, the result is trivial, so we assume that a > 2. As pa > 5, Alt(pa) is
simple. As fix〈G1,G2〉(C)|C / Stab〈G1,G2〉(C)|C for every C ∈ C, we have that Alt(pa) 6
fix〈G1,G2〉(C)|C for every C ∈ C. Let Ji 6 fixGi

(C) be of order p, i = 1, 2, and C0 ∈ C. As
Alt(pa) 6 fix〈G1,G2〉(C)|C0 , fix〈G1,G2〉(C)|C0 is at least (pa − 2)-transitive. Choose pa−1 − 1
orbits Oi1, . . . ,Oipa−1−1 of order p of Ji|C0 , i = 1, 2. Then there exists γ0 ∈ fix〈G1,G2〉(C)
such that γ−10 (O2

j ) = O1
j , 1 6 j 6 pa−1 − 1. We conclude that the p elements of C0 not

in any O2
i are mapped by γ−10 to the p elements of C0 not in any O1

i as p > 2. Hence the
orbits of J1|C0 and γ−10 J2γ0|C0 are identical. Notice also that if the action of fix〈G1,G2〉(C)
on C0 is equivalent to the action of fix〈G1,G2〉(C) on C ∈ C, then we also have that the
orbits of J1|C and γ−10 J2γ0|C are identical.

Define an equivalence relation ≡0 on C by C ≡0 C
′ if and only the action of fix〈G1,G2〉(C)

on C is equivalent to the action of fix〈G1,G2〉(C) on C ′. As Alt(pa) has only one represen-
tation as pa 6= 6 [3, Theorem 5.3], and two transitive actions of a group are equivalent if
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and only if the stabilizer of a point in one action is the same as the stabilizer of a point in
the other [4, Lemma 1.6B], if C 6≡0 C

′, then the action of fix〈G1,G2〉(C)|C∪C′ on C ′ cannot
be a faithful action. Thus if C 6≡0 C

′, then there exists α ∈ 〈G1, G2〉 such that α|C = 1
but α|C′ 6= 1.

Let E0 be the equivalence class of ≡0 that contains C0. Then the orbits of J1|C and
γ−10 J2γ0|C are identical for C ∈ E0. Let L1 = {α ∈ fix〈G1,G2〉(C) : α|∪E0 = 1}. Then
L1 / fix〈G1,G2〉(C) and L1|C / fix〈G1,G2〉(C)|C for every C ∈ C. If C1 ∈ C, C1 6≡0 C0, and
ω ∈ fix〈G1,G2〉(C) such that ω|C0 = 1 but ω|C1 6= 1 (note that as C1 6≡0 C0, such an ω
exists), then for every C ∈ E0, we have that ω|C = 1 as well. Then L1 6= 1. We conclude
that Alt(pa) 6 L1|C1 for every C1 6≡0 C0 as Alt(pa) is simple. Also observe that as pa is
odd, J1|C1 and γ−10 J2γ0|C1 6 L1|C1 for every C1 6≡0 C0. By arguments analogous to those
above, there exists γ1 ∈ L1 such that the orbits of J1|C and γ−11 γ−10 J2γ0γ1|C are identical
for every C ≡0 C1. Furthermore, as L1|C = 1 for every C ≡0 C0, we have that the orbits
J1|C and γ−11 γ−10 J2γ0γ1|C are identical for every C ∈ E0 ∪ {C1}. As before, if the action
of L1 on C1 is equivalent to the action of L1 on C, then we also have that the orbits
of J1|C and γ−11 γ−10 J2γ0γ1|C are identical. Continuing inductively, we find γ ∈ 〈G1, G2〉
such that the orbits of J1 and γ−1J2γ are identical. Then G1 admits a complete block
system B formed by the orbits of J1/G1 and γ−1G2γ admits B as a complete block system
formed by the orbits of γ−1J2γ / γ

−1G2γ, and so by Lemma 7, 〈G1, γ
−1G2γ〉 admits B as

a complete block system of n/p blocks of size p.

Corollary 9. Let G1, G2 6 Sym(n) be transitive abelian groups, with n odd and com-
posite. If 〈G1, G2〉 is primitive, then there exists δ ∈ 〈G1, G2〉 such that 〈G1, δ

−1G2δ〉 is
imprimitive.

Proof. Assume 〈G1, G2〉 is primitive. If Theorem 6 (1), (2a) with (T̃i, Gi) 6= (M12,Z2
2×Z3)

or (2c) occurs, then n is a power of some prime p, and both G1 and G2 are p-groups. Then
there exists δ ∈ 〈G1, G2〉 such that 〈G1, δ

−1G2δ〉 is a p-group. As a p-group contains a
nontrivial center, 〈G1, δ

−1G2δ〉 contains a normal subgroup of order p, and so has blocks
of size p. If Theorem 6 (2) holds and ` > 2, then G1, G2 6 T̃1 × T̃2 × · · · × T̃L, which
is imprimitive. Thus 〈G1, G2〉 is imprimitive. Hence ` = 1. If Theorem 6 (2b) holds,
then both G1 and G2 are cyclic, and the result follows by [32, Theorem 4.9]. Note that
Theorem 6 (2a) with (T̃i, Gi) = (M12,Z2

2 × Z3) cannot hold as n is odd and composite.
Finally, if Theorem 6 (2d) holds, then the result follows by Lemma 8 with C as in Lemma
8 the trivial complete block system consisting of one block of size n.

Lemma 10. Let n be a positive integer such that if k is a proper divisor of n and H1, H2 6
Sym(k) are transitive abelian groups, then there exists δ ∈ 〈H1, H2〉 such that 〈H1, δ

−1H2δ〉
is nilpotent. Let G1, G2 6 Sym(n) be transitive abelian groups. If 〈G1, G2〉 is imprimitive,
then there exists a prime divisor p|n and δ ∈ 〈G1, G2〉 such that 〈G1, δ

−1G2δ〉 admits a
complete block system B of n/pa blocks of size pa, a > 1.

Proof. Let C be a nontrivial complete block system of 〈G1, G2〉 such that there exists no
nontrivial block system D with D ≺ C. As both G1/C and G2/C are transitive abelian
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groups, and a transitive abelian group is regular, fixGi
(C) 6= 1, i = 1, 2 and acts transitively

on C ∈ C.
Let C0 ∈ C. By hypothesis there exists δ0 ∈ 〈fixG1(C), fixG2(C)〉 such that the group

〈fixG1(C), δ−10 fixG2(C)δ0〉|C0 is nilpotent. Note that fixδ−1
0 G2δ0

(C) = δ−10 fixG2(C)δ0. Simi-

larly, if C1 ∈ C such that C1 6= C0, then there exists δ1 ∈ 〈fixG1(C), δ−10 fixG2(C)δ0〉 such
that 〈fixG1(C), δ−11 δ−10 fixG2(C)δ0δ1〉|C1 is nilpotent. Further, as 〈fixG1(C), δ−10 fixG2(C)δ0〉|C0

is nilpotent and δ1 ∈ 〈fixG1(C), δ−10 fixG2(C)δ0〉, we have 〈fixG1(C), δ−11 δ−10 fixG2(C)δ0δ1〉|C0

is nilpotent. Continuing this procedure inductively, we find δ = δ0δ1 · · · δ`−1 such that
〈fixG1(C), δ−1fixG2(C)δ〉|C is nilpotent for every C ∈ C, where ` = n/|C|, C ∈ C. We thus
may assume without loss of generality that 〈fixG1(C), fixG2(C)〉|C is nilpotent for every
C ∈ C. This then implies that 〈fixG1(C), fixG2(C)〉 6 ΠC∈C〈fixG1(C), fixG2(C)〉|C is nilpo-
tent as a direct product of nilpotent groups is nilpotent and a subgroup of a nilpotent
group is nilpotent.

Let p| |C|, be prime, pa be the largest power of p that divides |C|, C ∈ C, and Pi a
Sylow p-subgroup of fixGi

(C), i = 1, 2. Clearly after an appropriate conjugation of G2,
if necessary, we may assume that Pi 6 P , i = 1, 2, where P is a Sylow p-subgroup of
〈fixG1(C), fixG2(C)〉 that contains P1. Then Pi, i = 1, 2, as well as P have orbits of size pa

by [8, Lemma 10] applied to 〈fixG1(C), fixG2(C)〉|C for every C ∈ C. Hence the orbits of
P1, P2, are the same because P1, P2 6 P . Then the orbits of Pi form a complete block
system B of n/pa blocks of size pa of Gi as Pi / Gi. Then B is a complete block system of
〈G1, G2〉 by Lemma 7.

3 The possibilities for Stab〈G1,G2〉(C)|C
In this section, we will consider the various possibilities for Stab〈G1,G2〉(C) in its action
on C ∈ C. We begin with Ti = Alt(pa) and ` > 2, with ` = 1 in fact considered in
the previous section. The results for the case where Ti = Alt(pa) will not require any
arithmetic conditions on n. In the proofs (but not the statements) of results in this
section, we let G = 〈G1, G2〉.

3.1 Ti = Alt(pa)

We will ultimately reduce this case to the case where Stab〈G1,G2〉(C)|C 6 AGL(a, p). We
begin with a preliminary result.

Lemma 11. Let p be an odd prime. Then any two regular elementary abelian subgroups
of Sym(pa) are conjugate in Alt(pa), a > 1, and any two regular elementary abelian
subgroups of Sym(pa) contained in a Sylow p-subgroup P of Sym(pa) are conjugate in P .

Proof. First observe that if H1, H2 6 Sym(pa) are p-groups and p is odd, then 〈H1, H2〉 6
Alt(pa). Furthermore, there exists δ ∈ Alt(pa) such that 〈H1, δ

−1H2δ〉 is contained in a
Sylow p-subgroup P of Alt(pa) (which, as p is odd, is also a Sylow p-subgroup of Sym(pa)).
We thus now need only show that any two regular elementary abelian subgroups of P are
conjugate in P .
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We proceed by induction on a. If a = 1, then the result is trivial as a Sylow p-subgroup
of Sym(p) has order p. Assume that the result is true for all a − 1 > 1, and let P be a
Sylow p-subgroup of Sym(pa). Then P = Zp o (Zp o (· · · o Zp)) (a times), which we view as
acting canonically on Zap. For 1 6 i 6 a, define τi : Zap → Zap by

τi(x1, . . . , xi−1, xi, xi+1, . . . , xa) = (x1, . . . , xi−1, xi + 1, xi+1, . . . , xa).

Clearly then 〈τi : 1 6 i 6 a〉 is a regular elementary abelian subgroup of P . Let R be any
other regular elementary abelian subgroup of P . Note that P admits a complete block
system B consisting of p blocks of size pa−1 formed by the orbits of 1 o (Zp o (· · · oZp)) (a−1
times), and that a Sylow p-subgroup of fixP (B)|B is permutation isomorphic to a Sylow p-
subgroup of Sym(pa−1) for every B ∈ B. As P/B ∼= Zp, we have that fixR(B) is semiregular
of order pa−1. Without loss of generality, we assume that 〈τi : 2 6 i 6 a〉 6 fixP (B). Let
Bi = {(i, x2, . . . , xa) : xj ∈ Zp, 2 6 j 6 a} so that B = {Bi : i ∈ Zp}. By the induction
hypothesis and the fact that fixP (B) = 1 o (Zp o (· · · o Zp)) (a − 1 times), for each i ∈ Zp
there exists γi ∈ fixP (B) such that if j 6= i, then γi|Bj

= 1 and γ−1i fixR(B)|Bi
γi = 〈τj : 2 6

j 6 a〉|Bi
. Letting γ = Πi∈Zpγi, we have that γ−1fixR(B)γ|B = 〈τj : 2 6 j 6 a〉|B for every

B ∈ B.
Let τ ′1 ∈ γ−1Rγ such that τ ′1/B = τ1/B. As P/B = 〈τi : i ∈ Zp〉/B, we have that

τ ′1(x1, . . . , xa) = (x1 + 1, σ̄x1(x2, . . . , xa)), where σ̄x1 ∈ Sym(pa−1). As τ−11 τ ′1 ∈ fixP (B), we
have that each σ̄x1 is in a Sylow p-subgroup of Sym(pa−1). Furthermore, as |τ ′1| = p, we
have that Πx1∈Zpσ̄x1 = 1. As fixP (B) = 1 o (Zp o (Zp o · · · o Zp)) (a− 1 times), we have that
σx1 ∈ P for every x1 ∈ Zp where σx1|Bx1

= σ̄x1 and σx1|B = 1 if B 6= Bx1 . Let σ : Zap → Zap
by σ(x1, x2, . . . , xa) = (x1,Π

p−1
j=x1

σ̄−1j (x2, . . . , xa)). As each σx1 ∈ P , for x1 ∈ Zp we have
that σ ∈ P . Then

σ−1τ ′1σ(x1, x2, . . . , xa) = σ−1τ ′1(x1,Π
p−1
j=x1

σ̄−1j (x2, . . . , xa))

= σ−1(x1 + 1,Πp−1
j=x1+1σ̄

−1
j (x2, . . . , xa)))

= (x1 + 1, x2, . . . , xa),

so that σ−1τ ′1σ = τ1. Observe that γ−1fixR(B)γ = fixγ−1Rγ(B) and as fixγ−1Rγ(B)|B 6 〈τj :
2 6 j 6 a〉|B for every B ∈ B and fixγ−1Rγ(B) is invariant under conjugation by τ ′1, we
have that each σ̄xi normalizes (Za−1p )L. Whence fixσ−1γ−1Rγσ(B)|B 6 〈τj : 2 6 j 6 a〉|B for
every B ∈ B. As every element of fixσ−1γ−1Rγσ(B) commutes with τ1 (as τ1 ∈ σ−1γ−1Rγσ)
and every element of fixσ−1γ−1Rγσ(B) commutes with every element of 〈τj : 2 6 j 6 a〉
(as fixσ−1γ−1Rγσ(B)|B 6 〈τj : 2 6 j 6 a〉|B for every B ∈ B), we have that fixσ−1γ−1Rγσ(B)
centralizes 〈τj : 1 6 j 6 a〉. As a transitive abelian group is self-centralizing [4, Theorem
4.2A (v)], we conclude that σ−1γ−1Rγσ = 〈τj : 1 6 j 6 a〉. The result then follows by
induction.

We remark that it is not the case that the second half of the previous lemma holds for
every regular abelian p-group. See [15, Example 6.4].

Definition 12. Let G be a group and H 6 G. We define the normal closure of H in
G, denoted HG, by HG = 〈g−1hg : h ∈ H, g ∈ G〉. Clearly HG / G.
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Lemma 13. Let p be an odd prime, and G1, G2 6 Sym(n) such that G = 〈G1, G2〉 admits
a complete block system C of n/pa blocks of size pa, and both fixG1(C)|C and fixG2(C)|C are
regular and elementary abelian for every C ∈ C. Further, assume that soc(StabG(C))|C =
Alt(m)`. Then there exists γ ∈ fixG(C) such that Stab〈G1,γ−1G2γ〉(C)|C 6 AGL(a, p) for
every C ∈ C.

Proof. If Alt(m) is not simple, then StabG(C)|C 6 AGL(`, 3) and the result follows. Let
Hi = fixGi

(C), i = 1, 2, and K = 〈H1, H2〉G. Then K / 〈G1, G2〉, so K / fixG(C), and
K / StabG(C) for every C ∈ C. As StabG(C)|C is primitive for some C ∈ C, StabG(C)|C
is primitive for every C ∈ C. As a normal subgroup of a primitive group is transitive [41,
Theorem 8.8], we have that K|C is transitive for every C ∈ C. It is then easy to see that
Alt(m)` 6 K|C for some ` and every C ∈ C as Alt(m) is simple. As Hi|C , i = 1, 2, are
transitive abelian subgroups (acting on C), we have by Theorem 6 that Hi|C 6 Sym(m)`

for every C ∈ C and i = 1, 2. As p is odd, if H 6 K|C and is regular and elementary
abelian, then H 6 Alt(m)`. In particular, K|C 6 Alt(m)` for every C ∈ C so that
K|C = Alt(m)` for every C ∈ C. Then K|C admits ` complete block systems BC,i formed
by the orbits of one of the ` copies of Alt(m), 1 6 i 6 `, each consisting of blocks of size
m = pa/`.

For C ∈ C and 1 6 i 6 `, let πC,i : K → Alt(m) be the projection map from K to
the ith copy of Alt(m) in C. Let γ ∈ K such that fix〈H1,γ−1H2γ〉|C (BC,i) = fixH1|C (BC,i) for
the maximum number of choices of C and i. Suppose that C ∈ C and 1 6 i 6 ` is such
that fix〈H1,γ−1H2γ〉|C (BC,i) 6= fixH1|C (BC,i). Then there exists L 6 K such that L = Alt(m)
and πC,i(L) = Alt(m). Let 1 6 i′ 6 ` and C ′ ∈ C such that πC′,i′(L) = Alt(m). As
L is simple, L acts faithfully on both C and C ′. By Lemma 11 there exists ω ∈ L
such that πC,i(〈H1, ω

−1γ−1H2γω〉) = πC,i(H1). As Alt(m) has a unique representation [3,
Table] as m 6= 6, we have that πC′,i′(ω

−1γ−1H2γω) = πC′,i′(H1). Finally, if 1 6 i′′ 6 `
and C ′′ ∈ C such that πC′′,i′′(L) = 1, then πC′′,i′′(ω) = 1, and so πC′′,i′′(ω

−1γ−1H2γω) =
πC′′,i′′(γ

−1H2γ). But this contradicts our choice of γ, and hence πC,i(γ
−1H2γ) = πC,i(H1)

for every C ∈ C and 1 6 i 6 `.
As πC,i(γ

−1H2γ) = πC,i(H1) for every C ∈ C and 1 6 i 6 `, it follows that γ−1H2γ|C =
H1|C for every C ∈ C. Now, let g ∈ G. Then g normalizes 〈H1|C : C ∈ C〉. Similarly, if g′ ∈
γ−1H2γ, then g′ also normalizes 〈H1|C : C ∈ C〉 so that 〈G1, γ

−1G2γ〉 6 NSym(n)(〈H1|C :
C ∈ C〉). As H1|C ∼= Zap for every C ∈ C, we have that Stab〈G1,γ−1G2γ(C)|C 6 AGL(a, p)
for every C ∈ C as required.

3.2 A Common Hypothesis

We now consider when Ti 6= Alt(pa). All of the results in the rest of this section share
some common hypothesis, which we will call Hypothesis 1.

Hypothesis 1. Let n = pa11 . . . parr be the prime power factorization of n. Let G1, G2 be
transitive groups of order n such that G = 〈G1, G2〉 satisfies the following conditions:

1. G admits a complete block system C of n/par blocks of size par , a > 1, and StabG(C)|C
is primitive, C ∈ C. Additionally, fixGi

(C) is a pr-group transitive on each C ∈ C,
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2. no prime divisor of |NSym(par )(P1)| other than pr divides n, where P1 is a Sylow
pr-subgroup of fixG1(C) (we denote the Sylow pr-subgroup of fixG2(C) by P2),

3. Let π = {pi : 1 6 i 6 r− 1}. Then Gi = Hi ×Πi, where Hi is a π-subgroup and Πi

is a pr-subgroup, i = 1, 2.

3.3 Stab〈G1,G2〉(C)|C 6 AGL(a, p)

We prove the results needed to deal with the case where Stab〈G1,G2〉(C)|C 6 AGL(a, p).

Lemma 14. In addition to Hypothesis 1, assume that

1. StabG(C)|C normalizes P1|C, for C ∈ C, and

2. G/C = H × P where H is a solvable π-subgroup, and P is the unique Sylow pr-
subgroup of G/C.

Then there exists γ ∈ G such that 〈G1, γ
−1G2γ〉 = H̄ × Π̄, where Π̄ is a pr-subgroup and

H̄ = 〈H1, H2〉.

Proof. Let |NSym(par )(P1)| = pvr · c, where gcd(pr, c) = 1. As StabG(C)|C 6 NSym(par )(P1)
by the Embedding Theorem [30, Theorem 1.2.6] we have G 6 (G/C) o NSym(par )(P1). We
conclude that |G| divides |G/C|·|NSym(par )(P1)|n/p

a
r . As |G/C| = |H|·pdr for some d > 0, and

no prime divisor of n other than pr divides |NSym(par )(P1)|, we have that H is a π-subgroup
of G. As P / G/C, G admits a (possibly trivial) complete block system B′ consisting of
n/parr blocks of size par−ar . Hence G admits a complete block system B of n/parr blocks of
size parr and C � B. Then G/B = H is a π-group, and fixG(B) is a normal π′-subgroup of
G. By the Schur-Zassenhaus Theorem [22, Theorem 6.2.1], G possesses an Sπ-subgroup
K, which is a complement to fixG(B), and any two Sπ-subgroups of G are conjugate in G
as G/B = H is solvable.

Let Ki be Sπ-subgroups of G that contain Hi, i = 1, 2. Then there exists γ1 ∈ G such
that γ−11 K2γ1 = K1. We may thus assume without loss of generality that K1 = K2 and
H1, H2 are contained in the same Sπ-subgroup K of G. Assume G acts in the natural
fashion on Zn/parr × Zparr . Then h1 ∈ H1 can be written as h1(i, j) = (σ(i), ωi(j)) and
h2 ∈ H2 can be written as h2(i, j) = (ι(i), ξi(j)), where σ, ι ∈ Sym(n/parr ) and each
ωi, ξi ∈ Sym(parr ). As Hi commutes with Πi, we see that each ωi centralizes Π1 and each
ξi centralizes Π2. We now assume that h1, h2 are chosen so that for some b ∈ Zn/parr
we have that h2h1(b, j) = (b, ξσ(b)ωi(j)). As h2h1 ∈ K, we have that pr does not divide
|ξσ(b)ωb|.

As G/C = H×P , every element of G/C of order relatively prime to pr commutes with
every element of G/C of order a power of pr. Let Q be the transitive permutation group
obtained by the action of P on the blocks of C whose union is the block B ∈ B where
B = {(b, x) : x ∈ P}, and ξσ(b)ωb be the permutation obtained by the action of ξσ(b)ωb
on the blocks of C whose union is B. Then ξσ(b)ωb commutes with every element of Q so

that 〈ξσ(b)ωb, Q〉 admits a complete block system formed by the orbits of 〈ξσ(b)ωb〉. As the
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degree of Q is a power of pr, we conclude that ξσ(b)ωb fixes each block of C contained in
B set-wise. That is, h2h1 ∈ StabG(C ′) for some C ′ ∈ C.

As P1|C / StabG(C)|C , there exists a P̂1|C′ permutation isomorphic to P1|C such that
P̂1|C′ / StabG(C ′)|C′ . As |NSym(par )(P1)| divides pvr · c, |NSym(par )(P̂ |C′)| divides pvr · c. As
gcd(p1 · · · pr−1, c) = 1, we must have that |ξσ(b)ωb| = 1. As ωb centralizes Π1, we see
that ξσ(b) centralizes Π1. As b was arbitrary, we see that ξi centralizes Π1 for every
i ∈ Zn/parr . This implies that H2 centralizes Π1, and similarly, H1 centralizes Π2. Hence
H̄ = 〈H1, H2〉 centralizes Π̄ = 〈Π1,Π2〉. As 〈H1, H2〉 is a π-group, 〈Π1,Π2〉 is a pr-group
and G = 〈H1, H2,Π1,Π2〉, we see that G = 〈H1, H2〉 × 〈Π1,Π2〉.

Lemma 15. In addition to Hypothesis 1, assume that

1. G/C is nilpotent,

2. for some C ∈ C, P1|C is a Sylow pr-subgroup of (〈P1, P2〉G)|C. In addition, fixG1(C)|C
is isomorphic to fixG2(C)|C for every C ∈ C.

Then there exists δ ∈ G such that 〈G1, δ
−1G2δ〉 is nilpotent.

Proof. As P1|C is a Sylow pr-subgroup of (〈P1, P2〉G)|C for some C ∈ C, P1|C is a Sylow
pr-subgroup of (〈P1, P2〉G)|C for every C ∈ C. Let P̂i be a Sylow pr-subgroup of 〈P1, P2〉G
that contains Pi. By a Sylow Theorem, we may assume without loss of generality that
P̂1 = P̂2. Then P̂1 6 〈P1|C : C ∈ C〉. As fixG1(C)|C is isomorphic to fixG2(C)|C for every
C ∈ C, fixG2(C)|C = fixG1(C)|C for every C ∈ C. As every element of G1 normalizes P1,
every element of G1 normalizes 〈P1|C : C ∈ C〉. Similarly, every element of G2 normalizes
P2 6 〈P1|C : C ∈ C〉, so that every element of G2 normalizes 〈P1|C : C ∈ C〉. We conclude
that both G1 and G2 normalize 〈P1|C : C ∈ C〉. Then P1|C / StabG(C)|C , and the result
follows by Lemma 14.

3.4 The case where T̃i 6= Alt(pa)

We will need the following result [10, Lemma 3.3].

Lemma 16. Let PGL(d, q) 6 X 6 PΓL(d, q) be primitive of degree n = (qd − 1)/(q − 1)
and contain a regular cyclic subgroup, where q is a prime-power and d > 2. If n = pk for
some odd prime p and (d, q) 6= (2, 8), then a Sylow p-subgroup of X is regular and cyclic.

Definition 17. A group is homocyclic if it is the direct product of isomorphic cyclic
groups.

In the following result, we will use the terminology of Theorem 6.

Theorem 18. In addition to Hypothesis 1, set m = Ω(n), and assume that the following
conditions hold:

1. pi does not divide pj − 1 for any distinct primes pi, pj|n,
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2. for any δ ∈ Sym(n) and nontrivial complete block system D of 〈G1, δ
−1G2δ〉, there

exists ω ∈ 〈G1, δ
−1G2δ〉/D such that 〈G1, ω

−1δ−1G2δω〉/D is nilpotent,

3. fixG1(C) and fixG2(C) are semiregular and elementary abelian or cyclic, and

4. setting X = StabG(C)|C if ` > 2 then T̃i 6= Alt(z), Sym(z), or PΓL(2, 8) for some z
(here we are using the notation of Theorem 6).

Then there exists γ ∈ G such that 〈G2, γ
−1G2γ〉 is nilpotent.

Proof. By (2) we may, after an appropriate conjugation of G2, assume that G/C is nilpo-
tent. As X is primitive and contains a regular abelian subgroup, by Theorem 6 we have
that one of the following is true:

1. X 6 AGL(a, p), or

2. X = (T̃1 × · · · × T̃`).O.Q, Pi = A1 × · · · × A`, and pa = z`, where ` > 1, each
Aj 6 T̃j with |Aj| = z, T̃1 ∼= . . . T̃`, O 6 Out(T̃1)× · · · × Out(T̃`), Q is a transitive
permutation group of degree `, and one of the following holds:

(a) T̃j = PGL(d, q), and Pi = Z(qd−1)/(q−1) is a Singer subgroup;

(b) T̃j = PΓL(2, 8) and Z9 = Pi 66 PSL(2, 8);

(c) T̃j = Sym(z) or Alt(z), and Pi is abelian of order z.

If X 6 AGL(a, p), then X normalizes Zap and the result follows by Lemma 15.

If T̃i = PGL(d, q), and Ai = Z(qd−1)/(q−1) is a Singer subgroup then by Lemma 16, a

Sylow p-subgroup of T̃1 × · · · × T̃` is regular and homocyclic. Then Pi|C , i = 1, 2, are
regular homocyclic subgroups and 〈P1, P2〉G 6 T̃1 × · · · × T̃`. Hence P1|C is a Sylow p-
subgroup of (〈P1, P2〉〈G1,G2〉)|C for every C ∈ C. By Lemma 15, there exists γ1 ∈ 〈G1, G2〉
such that 〈G1, γ

−1
1 G2γ1〉 is nilpotent, and the result follows.

If T̃i = Alt(z), Sym(z), or PΓL(2, 8), then by hypothesis we must have ` = 1. If T̃i =
Alt(z) or Sym(z), then by Lemma 8, there exists γ1 ∈ 〈G1, G2〉 such that 〈G1, γ

−1
1 G2γ1〉

admits a complete block system B of n/p blocks of size p. After a suitable conjugation, we
may assume that 〈G1, γ

−1
1 G2γ1〉/B is nilpotent, in which case 〈G1, γ

−1
1 G2γ1〉 is normally

m-step imprimitive [8, Lemma 9], and the result follows by [8, Theorem 12].
If T̃1 = PΓL(2, 8), then pa = 9 and a Sylow p-subgroup of T̃1 has order 27. Also, a

Sylow 3-subgroup of fixG1(C) is cyclic of order 9, say fixG1(C) = 〈ρ〉. As PΓL(2, 8) contains
a regular cyclic subgroup of order 9, we have by [17, Theorem 9] and [17, Lemma 9], that
a Sylow 3-subgroup of PΓL(2, 8) is the same as a Sylow 3-subgroup P̂ of {x→ ax+b : a ∈
Z∗9, b ∈ Z9}. It is not difficult to see that the center Z(P̂ ) of P̂ is {x→ x + 3b : b ∈ Z3}.
We may assume, after an appropriate conjugation, that a Sylow 3-subgroup of fixG2(C) is
contained in the same Sylow 3-subgroup P of fixG(C) as fixG1(C). As a transitive abelian
group is self-centralizing [4, Theorem 4.2A (v)], we must have that Z(P |C) 6 〈ρ〉|C for
every C ∈ C, and as Z(P̂ ) = {x → x + 3b : b ∈ Z3} we have that Z(P |C) = 〈ρ3〉|C for
every C ∈ C. Also, as fixG2(C)|C is a regular cyclic subgroup for every C ∈ C, we must
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also have that 〈ρ3〉|C 6 fixG2(C)|C for every C ∈ C. We conclude that every element of
both G1 and G2 normalizes 〈ρ3|C : C ∈ C〉, and so M = G ∩ 〈ρp|C : C ∈ C〉 / G. Then G
admits a complete block system with blocks of size 3, and the result follows by arguments
above.

4 The main tool

In this section, we prove the main tool that will be used to prove our main results. We
begin with some preliminary results.

Lemma 19. Let p be a prime, a > 1, and π the set of distinct primes dividing p(p− 1).
If P 6 Sym(pa) is a transitive p-group that contains a regular cyclic subgroup R, then
NSym(pa)(P ) is a π-group.

Proof. As R is cyclic, by [41, Exercise 1.6.5], R admits unique complete block systems
B0, . . . ,Ba consisting of pa−i blocks of size pi, 0 6 i 6 a. As R 6 P , P also admits
B0, . . . ,Ba as complete block systems as P is a-step imprimitive [8, Lemma 9]. Clearly
then P only admits B0, . . . ,Ba as complete block systems. Let g ∈ NSym(pa)(P ). Then
g−1fixP (Bi)g / P and has orbits of size pi, 0 6 i 6 a. We conclude by the uniqueness of
complete block systems of P that the orbits of g−1fixP (Bi)g are the same as the orbits of
fixP (Bi), and then by order arguments that g−1fixP (Bi)g = fixP (Bi) for 0 6 i 6 a. Hence
NSym(pa)(P ) admits each Bi, 0 6 i 6 a, as a complete block system, and so is normally
a-step imprimitive.

We now show that NSym(pa)(P ) is a π-group by induction on a. If a = 1, then P ∼= Zp,
NSym(p)(P ) = AGL(1, p) is or order p(p − 1), and so is a π-group. We now assume that
NSym(pa−1)(P ) is a π-group for all P satisfying the hypothesis with a − 1 > 1, and let
P 6 Sym(pa) satisfy the hypothesis. Then NSym(pa)(P ) admits B1 as a complete block
system consisting of pa−1 blocks of size p, and NSym(pa)(P )/B1 is (a − 1)-step imprimi-
tive as NSym(pa)(P ) is a-step imprimitive. By the induction hypothesis, NSym(pa)(P )/B1
is a π-group. Furthermore, fixNSym(pa)(P )(B1)|B normalizes a regular cyclic subgroup of
degree p for every B ∈ B1, so that fixNSym(pa)(P )(B1)|B is a π-group, B ∈ B1. Hence
fixNSym(pa)(P )(B1) is a π-group. As |NSym(pa)(P )| = |NSym(pa)(P )/B1| · |fixNSym(pa)(P )(B1)|,
we have that NSym(pa)(P ) is a π-group, and the result follows by induction.

Definition 20. For a prime p, and r > 1, let f(pr) = Πr
i=1(p

i − 1).

Lemma 21. Let P be a transitive p-subgroup of Sym(pa) for some prime p and a > 1
that contains a regular elementary abelian or regular cyclic subgroup R. Let π be the set
of all primes dividing NSym(pa)(P ) and π1 be the set of all primes dividing Aut(R). Then
π ⊆ π1.

Proof. If R is elementary abelian, then |Aut(R)| = Πa−1
i=0 (pa − pi) = pt · f(pa) for some

t > 1. The result then follows by [36, 7.3.11]. If R is cyclic, then the result follows by
Lemma 19.
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Theorem 22. Let n be odd with prime-power decomposition n = pa11 · · · parr , and G be a
transitive abelian group of order n such that every Sylow pi-subgroup Pi of G is elementary
abelian or cyclic. If no prime divisor of |Aut(Pi)| other than pi divides n for every 1 6
i 6 r, then whenever δ ∈ Sym(n) there exists γ ∈ 〈G, δ−1Gδ〉 such that 〈G, γ−1δ−1Gδγ〉
is nilpotent. Consequently, 〈G, γ−1δ−1Gδγ〉 is normally m-step imprimitive.

Proof. The second statement follows from the first and [9, Lemma 9], so it suffices to show
the first statement. First, if r = 1 then by a Sylow Theorem there exists γ ∈ 〈G, δ−1Gδ〉
such that 〈G, γ−1δ−1Gδγ〉 is a p1-group, and so nilpotent. We thus assume that r > 2.
We now proceed by induction on m = Ω(n). If m = 1, then the result follows by the
immediately preceding argument, so we assume the result holds for all n with 1 6 Ω(n) 6
m−1. Let n be such that Ω(n) = m, G 6 Sym(n) satisfy the hypothesis, and δ ∈ Sym(n).
By Corollary 9, we may assume without loss of generality that 〈G, δ−1Gδ〉 is imprimitive,
and by Lemma 10, that 〈G, δ−1Gδ〉 admits a complete block system B consisting of n/pa

blocks of size pa, for some prime p|n and a > 1.
Choose B in such a way that a is as small as possible. By [4, Exercise 1.5.10] H =

Stab〈G,δ−1Gδ〉(B)|B is primitive, for B ∈ B. Note that pi − 1 divides |Aut(Pi)| for every
1 6 i 6 r as Pi is abelian and hence a direct product of cyclic groups. By the induction
hypothesis, there exists γ1 ∈ 〈G, δ−1Gδ〉 such that 〈G, γ−11 δ−1Gδγ1〉/B is nilpotent. We
thus assume that 〈G, δ−1Gδ〉/B is nilpotent.

If a = 1, then 〈G, δ−1Gδ〉 is m-step imprimitive as 〈G, δ−1Gδ〉/B is (m − 1)-step
imprimitive [8, Lemma 9]. The result then follows by [8, Theorem 12]. If a > 2, then
as H contains a regular abelian subgroup A and is primitive, by Theorem 6 one of the
following is true:

1. H 6 AGL(a, p), or

2. H = (T̃1 × · · · × T̃`).O.Q, A = A1 × · · · × A`, and pa = z`, where ` > 1, each
Ai 6 T̃i with |Ai| = z, T̃1 ∼= · · · ∼= T̃`, O 6 Out(T̃1)×· · ·×Out(T̃`), Q is a transitive
permutation group of degree `, and one of the following holds:

(a) T̃i = PGL(d, q), and Ai = Z(qd−1)/(q−1) is a Singer subgroup;

(b) T̃i = PΓL(2, 8) and Z9 = Ai 66 PSL(2, 8);

(c) T̃i = Sym(z) or Alt(z), and Ai is abelian of order z.

Suppose that if ` > 2 then T̃i 6= Sym(z), Alt(z), or PΓL(2, 8). Let P be a Sylow
p-subgroup of H. By [36, 3.2.3], NSym(pa)(P )/ZSym(pa)(P ) is isomorphic to a subgroup
of Aut(P ). By [4, Theorem 4.2A (i)], ZSym(pa)(P ) is semiregular and consequently a p-
group. Thus |NSym(pa)(P )| divides pc · |Aut(P )| for some c > 0. By Lemma 21, any prime
divisor of |NSym(pa)(H)| divides |Aut(R)|, where R = StabG(B)|B. Then |Aut(R)| divides
|Aut(Pj)| for some 1 6 j 6 r, and so no prime divisor of |Aut(P )| other than p divides
n. The result then follows by Theorem 18.

If T̃i = Alt(z) or Sym(z) and ` > 2, then a regular abelian subgroup of H cannot
be cyclic, and so by hypothesis is elementary abelian. By Lemma 13 there exists γ2 ∈
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fix〈G,δ−1Gδ〉(B) such that Stab〈G,γ−1
2 δ−1Gδγ2〉(B)|B 6 AGL(a, p) for every B ∈ B, and this

case reduces to one considered above. Finally, if T̃i = PΓL(2, 8) and ` > 2, then a regular
abelian subgroup of H cannot be cyclic or elementary abelian, a contradiction.

5 The Main Results

We begin with the basic definitions and results concerning Cayley objects and the Cayley
isomorphism problem, some of which we have seen before.

Definition 23. We define a Cayley object of G to be a combinatorial object X such
that GL 6 Aut(X), where Aut(X) is the automorphism group of X. If X is a Cayley
object of G in some class K of combinatorial objects with the property that whenever
Y is another Cayley object of G in K, then X and Y are isomorphic if and only if they
are isomorphic by a group automorphism of G, then we say that X is a CI-object of
G in K. If every Cayley object of G in K is a CI-object of G in K, then we say that
G is a CI-group with respect to K. If G is a CI-group with respect to every class of
combinatorial objects, then G is a CI-group.

We will also have need of the notion of solving sets.

Definition 24. Let G be a finite group. We say that S ⊆ Sym(G) is a solving set for
a Cayley object X in a class of Cayley objects K if for every Cayley object X ′ ∈ K
such that X ∼= X ′, there exists s ∈ S such that s(X) = X ′. We say that S ⊆ Sym(G)
is a solving set for a class K of Cayley objects of G if whenever X,X ′ ∈ K are
Cayley objects of G and X ∼= X ′, then s(X) = X ′ for some s ∈ S. Finally, a set S is
a solving set for G if whenever X,X ′ are isomorphic Cayley objects in any class K of
combinatorial objects, then s(X) = X ′ for some s ∈ S.

Note that X is a CI-object of G if and only if Aut(G) is a solving set for X. The
following characterization of a solving set for an abelian group is [8, Lemma 15] and
generalizes [33, Lemma 1.1].

Lemma 25. Let G be a finite abelian group, and S ⊆ Sym(G) a set of permutations.
Then the following conditions are equivalent:

1. S is a solving set for a Cayley object X in a class K of Cayley objects of G,

2. whenever δ ∈ Sym(G) such that δ−1GLδ 6 Aut(X), there exists s ∈ S and v ∈
Aut(X) such that v−1δ−1gLδv = s−1gLs for every g ∈ G.

The following result [8, Theorems 16] will be needed to apply our main result. We
remark that in [8] this result is stated for an arbitrary Cayley object X in an arbitrary
class of combinatorial objects).
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Theorem 26. Let k be a positive integer with gcd(k, ϕ(k)) = 1 and k = p1p2 · · · pr be the
prime-power decomposition of k. Let n = pa11 p

a2
2 · · · parr , where ai > 1 is a positive integer.

Let G = Πr
i=1Pi be an abelian group where Pi is a Sylow pi-subgroup of G, and let S(i)

be a solving set for Pi. If, whenever δ ∈ Sym(G) there exists ω ∈ 〈GL, δ
−1GLδ〉 such that

〈GL, ω
−1δ−1GLδω〉 is normally m-step imprimitive, then a solving set for G is contained

in Πr
i=1S(i).

Let k and n be as above and Pi a Sylow pi-subgroup of G. Suppose that for 1 6 i 6 r,
no prime divisor of n other than pi divides |Aut(Pi)|. As G is abelian, Pi is abelian, and
pi − 1 divides |Aut(Pi)| as pi − 1 divides |H| for every cyclic group of order pai , a > 1.
Thus in this case gcd(k, ϕ(k)) = 1. Combining Theorem 26 with Theorem 22, we have
the following result.

Corollary 27. Let n = pa11 p
a2
2 · · · parr be the prime-power decomposition of n. Let G be an

abelian group of order n such that every Sylow pi-subgroup Pi of G is elementary abelian
or cyclic. Let S(i) be the solving set for Pi. If no prime divisor of n other than pi divides
|Aut(Pi)|, then a solving set for G is Πr

i=1S(i).

As solving sets are known for Z2
p [17, Corollary 2] and Zp2 [24] or [17, Corollary 1], and

as all groups of order p2 are elementary abelian or cyclic, we have the following result.

Corollary 28. Let n = pa11 p
a2
2 · · · parr be the prime-power decomposition of n and n be

cube-free. Let G be an abelian group of order n with Sylow pi-subgroup Pi, 1 6 i 6 r. If
no prime divisor of n other than pi divides |Aut(Pi)|, then a solving set for G is known.

Definition 29. Let n = pa11 p
a2
2 · · · parr be the prime-power decomposition of n. Define

g : Z+ → Z+ by g(n) = Πr
i=1f(paii ) (recall that f was defined in Definition 20).

Let G be an abelian group of order n = pa11 · · · parr such that every Sylow pi-subgroup Pi
of G is elementary abelian or cyclic. As |Aut(Zpa)| = pa− pa−1 and Aut(Zap) = AGL(a, p)

so that |Aut(Zap)| = Πa−1
i=0 (pa − pi), if gcd(n, g(n)) = 1, then no prime divisor of n other

than pi divides |Aut(Pi)|. Hence we have the following results.

Corollary 30. Let n be a positive integer such that gcd(n, g(n)) = 1, and G an abelian
group of order n such that every Sylow pi-subgroup Pi of G is elementary abelian or cyclic.
Let S(i) be the solving set for Pi. Then a solving set for G is Πr

i=1S(i).

Corollary 31. Let n be a cube-free positive integer such that gcd(n, g(n)) = 1, and G be
an abelian group of order n. Then a solving set for G is known.

It may be interesting to observe that if gcd(n, ϕ(n)) = 1, then every group of order
n is cyclic, while if gcd(n, g(n)) = 1 then every group of order n is nilpotent, and if in
addition to gcd(n, g(n)) = 1 n is also cube-free, then every group of order n is abelian
[36, Theorem 9.2.7].

While the previous results definitely give the flavor of the consequences of the work
in this paper, from a strictly computational point of view they can be quite inefficient.
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A solving set for Pi will contain the solving sets of every Cayley combinatorial object in
any class K of combinatorial objects, and so in practice can be too large to be useful for
efficient isomorphism testing. In practice, for a Cayley object X of G of prime-power
order pa a solving set for X is determined by the Sylow p-subgroup P of Aut(X) that
contains GL (see also [17, Lemma 15]).

Lemma 32. Let X be a Cayley object of the abelian p-group G and P a Sylow p-subgroup
of Aut(X) that contains GL. Then there exists a Cayley object W in some class of
combinatorial objects such that Aut(W ) = P and any solving set for W is a solving set
for X.

Proof. By [40, Theorem 5.12], there exists a Cayley object W of G such that Aut(W ) = P .
Let Y be a Cayley object of G in the same class of combinatorial objects as X and δ ∈
Sym(G) such that δ(X) = Y . Then δ−1GLδ 6 Aut(X). Hence there exists v ∈ Aut(X)
such that v−1δ−1GLδv 6 P , so we assume without loss of generality that δ−1GLδ 6 P .
As δ−1GLδ 6 Aut(W ), δ(W ) is a Cayley combinatorial object of G isomorphic to W . Let
S be a solving set for W . By Lemma 25, there exists s ∈ S and v ∈ Aut(W ) such that
v−1δ−1gLδv = s−1gLs for every g ∈ G. As Aut(W ) = P 6 Aut(X), v ∈ Aut(X) and
v−1δ−1gLδv = s−1gLs for every g ∈ G. Thus S is a solving set for X by Lemma 25.

Applying [8, Theorem 16], Theorem 22, and Lemma 32, we have the following result.

Corollary 33. Let n = pa11 p
a2
2 · · · parr be the prime-power decomposition of n. Let G be an

abelian group of order n such that every Sylow pi-subgroup Pi of G is elementary abelian
or cyclic, and X a Cayley object of G. If no prime divisor of n other than pi divides
|Aut(Pi)|, then there exists Cayley objects Xi of Pi such that if S(i) is a solving set for
Xi, then a solving set for X is Πr

i=1S(i).

Many of our main results hold for so-called `-closed groups, introduced by Wielandt
[40].

Definition 34. Let Ω be a set. An `-ary relational structure on Ω is an ordered pair
(Ω, U), where U ⊆ Ω` = Π`

i=1Ω. A group G 6 Sym(Ω) is called `-closed if G is the
intersection of the automorphism groups of some set of `-ary relational structures. The
`-closure of G, denoted G(`), is the intersection of all `-closed subgroups of Sym(Ω) that
contain G.

The following result is [8, Theorem 20], and is the analogue of Theorem 26 for `-ary
relational structures (again in [8], this result is stated for an arbitrary `-ary relational
structure X).

Theorem 35. Let k be a positive integer with gcd(k, ϕ(k)) = 1 and k = p1p2 · · · pr be the
prime-power decomposition of k. Let n = pa11 p

a2
2 · · · parr , where ai > 1 is a positive integer.

Let G = Πr
i=1Pi be an abelian group where Pi is a Sylow pi-subgroup of G, and S`(i) be a

solving set for Pi in the class K of `-ary relational structures. If, whenever δ ∈ Sym(G)
such that δ−1GLδ 6 Aut(X) there exists ω ∈ Aut(X) such that 〈GL, ω

−1δ−1GLδω〉 is
normally m-step imprimitive, then a solving set for G in K is Πr

i=1S`(i).
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Combining this result with Theorem 22 we have:

Corollary 36. Let n = pa11 p
a2
2 · · · parr be the prime-power decomposition of n. Let G be

an abelian group of order n such that every Sylow pi-subgroup Pi is elementary abelian or
cyclic. Let S`(i) be a solving set for Pi in the class of `-ary relational structures. If no
prime divisor of n other than pi divides |Aut(Pi)|, then a solving set for G is Πr

i=1S`(i).

As solving sets for `-ary relational structures of Z2
p and Zp2 are known if p 6 ` [12],

we have the following result.

Corollary 37. Let n be a cube-free positive integer such that gcd(n, g(n)) = 1, and G
be an abelian group of order n. Then a solving set for G in the class of `-ary relational
structures, ` 6 p, is known.

For binary relational structures (or, if you prefer, Cayley color digraphs), solving sets
for Zpk , k > 1 are known [25], while it is known that Zkp, 1 6 k 6 5 is a CI-group with
respect to Cayley color digraphs (k = 1 [39], k = 2 [21], k = 3 [5] or [42], k = 4 [23] or
[31], k = 5 [20] and if p = 3 [38]).

Corollary 38. Let n = pa11 p
a2
2 · · · parr be the prime-power decomposition of n. Let G be

an abelian group of order n such that every Sylow pi-subgroup Pi is elementary abelian
or cyclic. Furthermore, assume that if Pi is elementary abelian then ai 6 5. If no prime
divisor of n other than pi divides |Aut(Pi)|, then a solving set for G in the class of Cayley
color digraphs is known.

Corollary 39. Let n be an integer such that gcd(n, g(n)) = 1, and G an abelian group
of order n such that every Sylow pi-subgroup Pi is elementary abelian of rank at most 5.
Then G is a CI-group with respect to Cayley color digraphs.

A very special case of the preceding corollary is [7, Theorem 16], while it was shown
that Zq ×Z2

p [26] and Zq ×Z3
p [37] with q > p3 are CI-groups with respect to digraphs for

any distinct primes p and q.
We finish with an application to the isomorphism problem for codes. The reader

interested in the isomorphism problem for codes is referred to [14] for terminology and
notation. The following result is [14, Theorem 2.1].

Theorem 40. Let G be an abelian group of order n such that whenever δ ∈ SG there
exists γ ∈ 〈GL, δ

−1GLδ〉 such that 〈GL, γ
−1δ−1GLδγ〉 is normally m-step imprimitive. Let

q be a prime-power such that gcd(n, q − 1) = 1, and C be a Ĝ-invariant code over Fq.
Then every permutation solving set for C is also monomial solving set for C.

Combining the previous result with Theorem 22, we have the following result.

Theorem 41. Let n be odd with prime-power decomposition n = pa11 · · · parr , and G be a
transitive abelian group of order n such that every Sylow pi-subgroup Pi of G is elementary
abelian or cyclic. Let q be a prime-power such that gcd(n, q − 1) = 1, and C be a Ĝ-
invariant code over Fq. If no prime divisor of |Aut(Pi)| other than pi divides n for every
1 6 i 6 r, then every permutation solving set for C is also monomial solving set for C.
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6 Problems

The isomorphism problem for Cayley digraphs of abelian group seems to be quite difficult
in general. There are now at least three obstacles to a group being CI with respect to
digraphs that will depend at least to some extent on the structure of the full automorphism
group of the digraph. The first is that there may not be an appropriate conjugate such
that 〈GL, δ

−1Gδ〉 is normally m-step imprimitive [16]. Second, isomorphic regular abelian
subgroups of a p-subgroup P of the symmetric group need not be conjugate in P . The
third is that in general the direct product of two CI-groups of relatively prime order need
not be a CI-group by Theorem 1. All of these obstacles can occur in the automorphism
group of a ternary relational structure ([16] in the first instance, and [9] for the latter two).
It thus seems wise to begin to break these large difficult problems into more manageable
pieces. For example, the following problem seems natural in this context:

Problem 42. Let ` > 1. Which finite groups G have the property that whenever δ ∈
Sym(G), there exists γ ∈ 〈GL, δ

−1GLδ〉(`) such that 〈GL, γ
−1δ−1GLδγ〉 is (normally) m-

step imprimitive?

For the previous problem, particular attention should be paid to the groups G which
may be CI-groups with respect to digraphs (see [29, Theorem 1.2]) or graphs (see [18,
Corollary 21]), and most especially, to groups which may be CI-groups with respect to
ternary relational structures (see [16, Theorem 4.2]). Abelian groups also seem worthy of
consideration. Of course, p-groups and cyclic groups have the above property, as well as
groups given in Theorem 22. Also observe that for any group G, G(1) = G, so a special
case of the previous problem is to find all groups G such that whenever δ ∈ Sym(G) there
exists γ ∈ 〈GL, δ

−1GLδ〉 such that 〈GL, γ
−1δ−1GLδγ〉 is (normally) m-step imprimitive.

The problem corresponding to the second obstacle given above is simply to solve the
isomorphism problem for abelian p-groups, so we make no more mention of this well-known
problem.

Finally, for the third obstacle given above, the following conjecture has been made:

Conjecture 43. Let G and H be CI-groups with respect to digraphs of relatively prime
order. Then G×H is a CI-group with respect to digraphs.

Virtually no progress has been made on this general conjecture, other than showing
specific groups are CI-groups with respect to digraphs. We propose a much simpler
problem (which still seems quite difficult, and would also be happy for partial solutions
for particular G):

Problem 44. Let G be a cube-free abelian group. Assume that whenever δ ∈ Sym(G)
such that 〈GL, δ

−1GLδ〉 is normally m-step imprimitive. Does the isomorphism problem
for Cayley digraphs of G reduce to the Cayley isomorphism problem for digraphs of its
Sylow subgroups?

Finally, we believe that a much more general result than the positive part of Pálfy’s
Theorem is true.
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Conjecture 45. Let G and H be groups such that

gcd(|Aut(G) ·G|, |H|) = 1 = gcd(|Aut(H) ·H|, |G|).

Then the Cayley isomorphism problem for G × H reduces to the Cayley isomorphism
problem for G and H.

Note that if m and n are positive integers such that gcd(m,ϕ(m)) = 1, gcd(n, ϕ(n)) =
1 and gcd(ϕ(n) · n,m) = 1 = gcd(ϕ(m) ·m,n), then gcd(mn,ϕ(mn)) = 1, and so Pálfy’s
Theorem implies the conjecture is true for cyclic groups of order m and n respectively.

Let k = p1 · · · pr be such that gcd(k, ϕ(k)) = 1, and m = pa11 · · · parr , ` = q1 · · · qs
and gcd(`, ϕ(`)) = 1 and n = qa11 · · · qass , where the pi’s are distinct primes and the
qj’s are distinct primes. If in addition, gcd(ϕ(n) · n,m) = 1 = gcd(ϕ(m) · m,n), then
p1, . . . , pr, q1, . . . , qs are distinct primes, and if a = p1 · · · prq1 · · · qs, then gcd(a, ϕ(a)) = 1.
Thus the conjecture holds for cyclic groups of order m and n by Muzychuk’s result [33,
Theorem 1.9]. More generally, combining [13, Corollary 4.4] and [33, Theorem 4.9], the
conjecture is true for all cyclic groups satisfying the hypothesis (this also follows from the
results in this paper). Of course, the results in this paper verify the result for abelian
groups G and H such that every Sylow subgroup is either elementary abelian or cyclic.
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