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Abstract

For locally finite infinite graphs the notion of Hamilton cycles can be extended to
Hamilton circles, homeomorphic images of S1 in the Freudenthal compactification.
In this paper we prove a sufficient condition for the existence of Hamilton circles in
locally finite Cayley graphs.

Mathematics Subject Classifications: 05C25, 05C45, 05C63, 20E06, 20F05,
37F20

1 Introduction

In 1969, Lovász, see [1], conjectured that every finite connected vertex-transitive graph
contains a Hamilton cycle except five known counterexamples. As the Lovász conjecture
is still open, one might instead try to solve the, possibly easier, Lovász conjecture for finite
Cayley graphs which states: Every finite Cayley graph with at least three vertices contains
a Hamilton cycle. Doing so enables the use of group theoretic tools. Moreover one can
ask for what generating sets a particular group contains a Hamilton cycle. There are a
vast number of papers regarding the study of Hamilton cycles in finite Cayley graphs, see
[8, 9, 16, 24, 25], for a survey of the field see [23].

In this paper we focus on Hamilton cycles in infinite Cayley graphs. As cycles are
always finite, we need a generalization of Hamilton cycles for infinite graphs. We follow
the topological approach of [4, 5, 7], which extends Hamilton cycles in a sensible way by
using the circles in the Freudenthal compactification |Γ| of a Γ graph as infinite cycles.
There are already results on Hamilton circles in general infinite locally finite graphs, see
[11, 13, 14, 15].

It is worth remarking that the weaker version of the Lovasz’s conjecture does not hold
true for infinite groups. For example it is straight forward to check that the Cayley graph
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of any free group with the standard generating set does not contain Hamilton circles, as
they are trees.

It is a known fact that every locally finite graph needs to be 1-tough to contain a
Hamilton circle, see [11]. Thus a way to obtain infinitely many Cayley graphs with no
Hamilton circle is to amalgamate more than k groups over a subgroup of order k. In
2009, Georgakopoulos [11] asked if avoiding this might be enough to force the existence
of Hamilton circles in locally finite graphs and proposed the following problem:

Problem 1. [11, Problem 2] Let Γ be a connected Cayley graph of a finitely generated
group. Then Γ has a Hamilton circle unless there is a k ∈ N such that the Cayley graph
of Γ is the amalgamated product of more than k groups over a subgroup of order k.

In Section 4.1 we provide a counterexample to this statement.
For a one-ended graph Γ it suffices to find a spanning two-way infinite path, a double

ray, to find a Hamilton circle of |Γ|. In 1959 Nash-Williams [19] showed that any Cayley
graph of any infinite finitely generated abelian group admits a spanning double ray. In
the case of one-ended graphs, such a double ray is a Hamilton circle in our sense. So
Nash-Williams [19] shows that every Cayley graph of an abelian group has a Hamilton
circle. We extend this result by showing that any Cayley graph of any finitely generated
abelian group, besides Z generated by {±1}, contains a Hamilton circle in Section 3.1.
We extend this result also to an even larger class of infinite groups. We will show that
the Cayley graph of the free product with amalgamation over the subgroup of index two
of a Dedekind group and an arbitrary group possesses a Hamilton circle.

2 Preliminaries

For the notations and the terminologies of group theory and topology and graph theory,
see [21], [18] and [4], respectively.
In the following we will recall the most important definitions and notations for the readers
convenience.

2.1 Topology

In 1931, Freudenthal [10] defined the concept of topological ends for topological spaces
and topological groups for the first time. Let X be a locally compact Hausdorff space. In
order to define ends of the topological space X, we look at infinite sequence U1 ⊇ U2 ⊇ · · ·
of non-empty connected open subsets of X such that the boundary of each Ui is compact
and

⋂
Ui = ∅. He called two sequences U1 ⊇ U2 ⊇ · · · and V1 ⊇ V2 ⊇ · · · to be equivalent

if for every i ∈ N, there are j, k ∈ N in such a way that Ui ⊇ Vj and Vi ⊇ Uk. The
equivalence classes1 of those sequences are topological ends of X and the set of all ends
of X is denoted by Ω(X). The Freudenthal compactification of the space X is defined as
topology generated by the following open sets:

{O ∪ {[Ui] ∈ Ω(X) | Ui ⊆ O} | O is an open set in X}
1We denote the equivalence class of Ui by [Ui].
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We denote the Freudenthal compactification of the topological space X by |X|.
In 1964 Halin [12] introduced the vertex ends of infinite graphs. A ray is a one-way infinite
path in a graph. It’s subrays are it’s tails. He defined two rays R1 and R2 of a given
graph Γ are equivalent if for every finite set of vertices S of Γ there is a component of Γ\S
which contains both a tail of R1 and of R2. The classes of the equivalent rays is called
vertex ends and just for abbreviation we say end. Diestel and Kühn [7] have investigated
the connection between vertex ends by Halin and topological ends by Freudenthal. They
have shown that if we consider a locally finite graph Γ as 1-complex with the corresponding
topology, then topological ends and vertex ends coincide.

For a graph Γ we denote the Freudenthal compactification of Γ by |Γ|. A homeomor-
phic image of [0, 1] in the topological space |Γ| is called arc. A Hamilton arc in |Γ| is an
arc including all vertices of Γ. So a Hamilton arc in a graph always contains all ends of
the graph. By a Hamilton circle in |Γ|, we mean a homeomorphic image of the unit circle
in |Γ| containing all vertices of Γ. A Hamilton arc whose image in a graph is a double
ray is a Hamilton double ray. It is worth mentioning that an uncountable graph cannot
contain a Hamilton circle. To illustrate, let C be a Hamilton circle of graph Γ. Since C is
homeomorphic to S1, we can assign to every edge of C a rational number. Thus we can
conclude that V (C) is countable and so Γ is countable. Hence in this paper, we assume
that all groups are countable. In addition we will only consider groups with locally finite
Cayley graphs in this paper so we assume that all generating sets S will be finite.

2.2 Graphs

Throughout this paper Γ will be reserved for graphs. In addition to the notation of paths
and cycles as sequences of vertices such that there are edges between successive vertices
we use the notation of [16, 23] for constructing Hamilton paths and Hamilton cycles and
circles which uses edges rather than vertices. For that let g and si, i ∈ Z, be elements of
some group. In this notation g[s1]

k denotes the concatenation of k copies of s1 from the
right starting from g which translates to the path g, (gs1), . . . , (gs

k
1) in the usual notation.

Analogously [s1]
kg denotes the concatenation of k copies of s1 starting again from g from

the left. In addition g[s1, s2, . . .] translates to be the ray g, (gs1), (gs1s2), . . . and

[. . . , s−2, s−1]g[s1, s2, . . .]

translates to be the double ray

. . . , (gs−2s−1), (gs−1), g, (gs), (gs1s2), . . .

When discussing rays we extend the notation of g[s1, . . . , sn]k to k being countably infinite
and write g[s1, . . . , s2]

N and the analogue for double rays. Sometimes we will use this
notation also for cycles. Stating that g[c1, . . . , ck] is a cycle means that g[c1, . . . , ck−1] is a
path and that the edge ck joins the vertices gc1 · · · ck−1 and g.

For a graph Γ let the induced subgraph on the vertex set X be called Γ[X].
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2.3 Groups

Throughout this paper G will be reserved for groups. For a group G with respect to gen-
erating set S, i.e. G = 〈S〉, we denote the Cayley graph of G with respect to S by Γ(G,S)
unless explicitly stated otherwise. The Cayley graph associated with (G,S) is a graph
having one vertex associated with each element of G and edges (g1, g2) whenever g1g

−1
2

lies in S. For a set T ⊆ G we set T± :=T ∪ T−1. Through out this paper we assume that
all generating sets are symmetric, i.e. whenever s ∈ S then s−1 ∈ S. Thus if we add an
element s to a generating set S, we always also add the inverse of s to S as well.

Suppose that G is an abelian group. A finite set of elements {gi}ni=1 of G is called lin-
early dependent if there exist integers λi for i = 1, . . . , n, not all zero, such that

∑n
i=1 λigi =

0. A system of elements that does not have this property is called linearly independent. It
is an easy observation that a set containing elements of finite order is linearly dependent.
The rank of an abelian group is the size of a maximal independent set. This is exactly
the rank the torsion free part, i.e if G = Zn ⊕G0 where G0 is the torsion part of G, then
rank of G is n.

Let G1 and G2 be two groups with subgroups H1 and H2 respectively such that there
is an isomorphism φ : H1 → H2. The free product with amalgamation is defined as

G1 ∗H1G2 :=〈S1 ∪ S2 | R1 ∪R2 ∪H1φ
−1(H1)〉.

A way to present elements of a free product with amalgamation is the Britton’s Lemma:

Lemma 1. [2, Theorem 11.3] Let G1 and G2 be two groups with subgroups H1
∼= H2

respectively. Let Ti be a left transversal2 of Hi for i = 1, 2. Any element x ∈ G1 ∗HG2 can
be uniquely written in the form x = x0x1 · · ·xn with the following:

(i) x0 ∈ H1.

(ii) xj ∈ T1 \ {1} or xi ∈ T2 \ {1} for j > 1 and the consecutive terms xj and xj+1 lie
in distinct transversals.

Let G = 〈S | R〉 be a group with subgroups H1 and H2 in such a way that there is
an isomorphism φ : H1 → H2. We now insert a new symbol t not in G and we define the
HNN-extension of G∗H1 as follows:

G∗H1 :=〈S, t | R ∪ t−1H1tφ(H1)
−1〉.

Throughout this paper we assume that any generating set S = {s1, . . . , sn} is mini-
mal in the following sense: Each si ∈ S cannot be generated by S \ {si}, i.e. we have
that si /∈ 〈sj〉j∈{1,...,n}\{i}. We may do so because say S ′ ⊆ S is a minimal generating
set of G. If we can find a Hamilton circle C in Γ(G,S ′), then this circle C will still be
a Hamilton circle in Γ(G,S). For this it is important to note that the number of ends

2A transversal is a system of representatives of left cosets of Hi in Gi and we always assume that 1
belongs to it.
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of G and thus of Γ(G,S ′) does not change with changing the generating set to S by [17,
Theorem 11.23], as long as S is finite, which will always be true in this paper.

We now cite a structure theorem for finitely generated groups with two ends.

Theorem 2. [20, Theorem 5.12] Let G be a finitely generated group. Then the following
statements are equivalent.

(i) The number of ends of G is 2.

(ii) G has an infinite cyclic subgroup of finite index.

(iii) G = A ∗CB and C is finite and [A : C] = [B : C] = 2 or G = C ∗C with C is finite.

Throughout this paper we use Theorem 2 to characterize the structure of two ended
groups, see Section 3 for more details. It is still important to pay close attention to the
generating sets for those groups though, as the following example shows. Take two copies
of Z2, with generating sets {a} and {b}, respectively. Now consider the free product of
them. It is obvious that this Cayley graph with generating set {a, b} does not contain a
Hamilton circle. Again consider Z2 ∗ Z2 with generating set {a, ab} which is isomorphic
to D∞ = 〈x, y | x2 = (xy)2 = 1〉. It is easy to see that the Cayley graph of D∞ with this
generating set contains a Hamilton circle.

Figure 1: The Cayley graph of Z2 ∗ Z2 with the generating set {a, b}

Figure 2: The Cayley graph of Z2 ∗ Z2 with the generating set {a, ab}

3 Hamilton circles

In this section we prove sufficient conditions for the existence of Hamilton circles in Cayley
graphs. In Section 3.1 we take a look at abelian groups. Section 3.2 contains basic lemmas
and structure theorems used to prove our main results which we prove in the Section 3.3.

3.1 Abelian Groups

In the following we will examine abelian groups as a simple starting point for studying
Hamilton circles in infinite Cayley graphs. Our main goal in this section is to extend
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a well-known theorem of Nash-Williams from one-ended abelian groups to two ended
abelian groups by a simple combinatorial argument. First, we cite a known result for
finite abelian groups.

Lemma 3. [22, Corollary 3.2] Let G be a finite abelian group with at least three elements.
Then any Cayley graph of G has a Hamilton cycle.

Next we state the theorem of Nash-Williams.

Theorem 4. [19, Theorem 1] Let G be a finitely generated abelian group.

(i) If G has exactly one end, then any Cayley graph of G has a Hamilton circle.

(ii) If G has exactly two ends, then any Cayley graph of G has a spanning double ray.

It is obvious that the maximal class of groups to extend Theorem 4 to cannot con-
tain Γ(Z, {±1}), as this it cannot contain a Hamilton circle. In Theorem 5 we prove that
this is the only exception.

Theorem 5. Let G = 〈S〉 be an infinite finitely generated abelian group. Then Γ(G,S)
has a Hamilton circle unless G = Z and S = {±1}.

Proof. Let G = 〈S〉 be an infinite finitely generated abelian group. By the fundamental
theorem of finitely generated abelian groups [21, 5.4.2], one can see that G ∼= Zn ⊕ G0

where G0 is the torsion part of G and n ∈ N. It follows from [20, lemma 5.6] that the
number of ends of Zn and G are equal. We know that the number of ends of Zn is one
if n > 2 and two if n = 1. By Theorem 4 we are done if n > 2. So we can assume that G
has exactly two ends.

Since Γ(Z, {±1}) is not allowed, we may assume that S contains at least two elements.
Let Sinf ⊆ S be the set of generators of infinite order of G. Note that Sinf 6= ∅ as
G is infinite and abelian. There is an s ∈ Sinf such that 〈s〉 6= G. Otherwise the only
generator of infinite order already generates G, which implies that G ∼= Z. This yields
that S \ Sinf = ∅, which contradicts our starting assumption. Let us say S = {s1, . . . s`}
with s = s1. In the following we define a sequence of double rays. We start with the
double ray R1 = [s−11 ]N1[s1]

N.
Now inductively assume that we have defined elements s1, . . . , si in S such that

〈s1, . . . , si〉 6= G and the double ray Ri spanning 〈s1, . . . , si〉. Now we choose si+1 ∈
S \ 〈s1, . . . , si〉. If 〈s1, . . . , si+1〉 6= G, then we define Ri+1 as in the previous step.
More precisely assume that Ri = [. . . , y−2, y−1]1[y1, y2, . . .]. Let j ∈ N be minimal such
that sj+1

i+1 ∈ 〈s1, . . . , si〉. We now define the double ray

Ri+1 = · · · [s−1i+1]
j[y−2][si+1]

j[y−1]1[si+1]
j[y1][s

−1
i+1]

j[y2] · · · .

If 〈s1, . . . , si+1〉 = G, then we define the following two disjoint double rays: Suppose that j
is the smallest natural number such that sj+1

` ∈ 〈s1, . . . , si〉. Now, put

P1 = · · · [s−1i+1]
j−1[y−2][si+1]

j−1[y−1]1[si+1]
j−1[y1][s

−1
i+1]

j−1[y2] · · ·
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and
P2 = [. . . , y−2, y−1]s

j
i+1[y1, y2, . . .].

It is not hard to see that P1 ∪ P2 is a Hamilton circle of Γ(G,S).

Remark 6. One can prove Theorem 4 by same the arguments used in the above proof of
Theorem 5.

3.2 Structure Tools

In this section we assemble all the most basic tools to prove our main results. The most
important tools are Lemma 8 and Lemma 9. In both Lemmas we prove that a given
graph Γ contains a Hamilton circle if Γ admits a partition of its vertex set fulfilling the
following nice properties. All partition classes are finite and of the same size. And each
partition class contain some special cycle and between two consecutive partition classes
there are edges in Γ connecting those cycles in a useful way, see Lemma 8 and 9 for details.

But first we cite the work of Diestel in the following lemma as a tool to finding
Hamilton circles in two-ended graphs.

Lemma 7. [5, Theorem 2.5] Let Γ = (V,E) be a two-ended graph. And let R1 and R2 be
two doubles rays such that the following holds:

(i) R1 ∩R2 = ∅

(ii) V = R1 ∪R2

(iii) For each ω ∈ Ω(Γ) both Ri have a tail that belongs to ω.

Then R1 tR2 is a Hamilton circle of Γ.

Lemma 8. Let Γ be a graph that admits a partition of its vertex set into finite sets Xi, i ∈
Z, fulfilling the following conditions:

(i) Γ[Xi] contains a Hamilton cycle Ci or Γ[Xi] is isomorphic to K2.

(ii) For each i ∈ Z there is a perfect matching between Xi and Xi+1.

(iii) There is a k ∈ N such that for all i, j ∈ Z with |i− j| > k there is no edge in Γ
between Xi and Xj.

Then Γ has a Hamilton circle.

Proof. By (i) we know that each Xi is connected and so we conclude from the structure
given by (ii) and (iii) that Γ has exactly two ends. In addition note that |Xi| = |Xj| for
all i, j ∈ Z. First we assume that Γ[Xi] is just a K2. It follows directly that Γ is spanned
by the double ladder, which is well-known to contain a Hamilton circle. As this double
ladder shares its ends with Γ, this Hamilton circle is also a Hamilton circle of Γ.
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Now we assume that |Xi| > 3. Fix an orientation of each Ci. The goal is to find two
disjoint spanning doubles rays in Γ. We first define two disjoint rays belonging to same
end, say for all the Xi with i > 1. Pick two vertices u1 and w1 in X1. For R1 we start
with u1 and move along C1 in the fixed orientation of C1 till the next vertex on C1 would
be w1. Then, instead of moving along C1, we move to X2 by the given matching edge.
We take this to be a the initial part of R1. We do the analogue for R2 by starting with w1

and moving also along C1 in the fixed orientation till the next vertex would be u1, then
move to X2. We repeat the process of starting with in two vertices ui and wi contained in
some Xi, where ui is the first vertex of R1 on Xi and wi the analogue for R2. We follow
along the fixed orientation on Ci till the next vertex would be ui or wi, respectively. Then
we move to Xi+1 by the giving matching edges. One can easily see that each vertex of Xi

for i > 1 is contained exactly either in R1 or R2. By moving from u1 and w1 to X0 by
the matching edges and then using the same process but moving from Xi to Xi−1 extents
the rays R1 and R2 into two double rays. Obviously those double rays are spanning and
disjoint. As Γ has exactly two ends it remains to show that R1 and R2 have a tail in
each end, see Lemma 7. By (iii) there is a k such that there is no edge between any Xi

and Xj with |i − j| > k. The union
⋃`+k

i=` Xi, ` ∈ Z, separates Γ into two components
such that Ri has a tail in each component, which is sufficient.

Next we prove a slightly different version of Lemma 8. In this version we split each Xi

into an “upper” and “lower” part, X+
i and X−i , and assume that we only find a perfect

matching between upper and lower parts of adjacent partition classes, see Lemma 9 for
details.

Lemma 9. Let Γ be a graph that admits a partition of its vertex set into finite sets Xi, i ∈
Z with |Xi| > 4 fulfilling the following conditions:

(i) Xi = X+
i ∪X−i , such that X+

i ∩X−i = ∅ and |X+
i | = |X−i |

(ii) Γ[Xi] contains an Hamilton cycle Ci which is alternating between X−i and X+
i .3

(iii) For each i ∈ Z there is a perfect matching between X+
i and X−i+1.

(iv) There is a k ∈ N such that for all i, j ∈ Z with |i− j| > k there is no edge in Γ
between Xi and Xj.

Then Γ has a Hamilton circle.

The proof of Lemma 9 is very closely related to the proof of Lemma 8. We still give
the complete proof for completeness.

Proof. By (ii) we know that each Xi is connected and so we conclude from the structure
given by (iii) and (iv) that Γ has exactly two ends. In addition note that |Xi| = |Xj| for
all i, j ∈ Z.

3Exactly every other element of Ci is contained in X−
i .
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Fix an orientation of each Ci. The goal is to find two disjoint double rays whose union
is spanning in Γ. We first define two disjoint rays belonging to the same end, say for all
the Xi with i > 0. Pick two vertices u1 and w1 in X−1 . For R1 we start with u1 and move
along C1 in the fixed orientation of C1 till the next vertex on C1 would be w1, then instead
of moving along C1 we move to X−2 by the given matching edges. Note that as w1 is in X−1
and because each Ci is alternating between X−i and X+

i this is possible. We take this to
be a the initial part of R1. We do the analog for R2 by starting with w1 and moving also
along C1 in the fixed orientation till the next vertex would be u1, then move to X−2 . We
repeat the process of starting with some Xi in two vertices ui and wi, where ui is the first
vertex of R1 on Xi and wi the analog for R2. We follow along the fixed orientation on Ci

till the next vertex would be ui or wi, respectively. Then we move to Xi+1 by the giving
matching edges. One can easily see that each vertex of Xi for i > 1 is contained exactly
either in R1 or R2. By moving from u1 and w1 to X+

0 by the matching edges and then
using the same process but moving from X−i to X+

i−1 extends the rays R1 and R2 into two
double rays. Obviously those double rays are spanning and disjoint. As Γ has exactly
two ends it remains to show that R1 and R2 have a tail in each end, see Lemma 7. By
(iv) there is a k such that there is no edge between any Xi and Xj with |i − j| > k the

union
⋃`+k

i=l Xi, l ∈ Z separates a Γ into two components such that Ri has a tail in each
component, which is sufficient.

Remark 10. It is easy to see that one can find a Hamilton double ray instead of a Hamilton
circle in Lemma 8 and Lemma 9. Instead of starting with two vertices and following in
the given orientation to define the two double rays, one just starts in a single vertex and
follows the same orientation.

The following lemma is one of our main tools in proving the existence of Hamilton
circles in Cayley graphs. It is important to note that the restriction, that S ∩H = ∅,
which looks very harsh at first glance, will not be as restrictive in the later parts of this
paper. In most cases we can turn the case S ∩H 6= ∅ into the case S ∩H = ∅ by taking
an appropriate quotient.

Lemma 11. Let G = 〈S〉 and G̃ = 〈S̃〉 be finite groups with non-trivial subgroups H ∼= H̃
of indices two such that S ∩ H = ∅ and such that Γ(G,S) contains a Hamilton cycle.
Then the following statements are true.

(i) Γ(G ∗HG̃, S ∪ S̃) has a Hamilton circle.

(ii) Γ(G ∗HG̃, S ∪ S̃) has a Hamilton double ray.

To prove Lemma 11 we start by finding some general structure given by our assump-
tions. This structure will make it possible to use Lemma 9 and Remark 10 to prove the
statements (i) and (ii).

Proof. First we define Γ := Γ(G ∗HG̃, S ∪ S̃). Let s ∈ S \H and let s̃ be in S̃ \ H̃. By
our assumptions Γ(G,S) contains a Hamilton cycle, say C0 = 1[c1, . . . , ck]. It follows
from S ∩H = ∅ that C0 is alternating between H and the right coset Hs. For each i ∈ Z
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we now define the graph Γi := Γ[(ss̃)iG]. If i is a positive number, then one can see
that H(ss̃)i ∪ H(ss̃)is is equal to (ss̃)iH ∪ (ss̃)iHs, as H is a normal subgroup of G.
So H(ss̃)i ∪ H(ss̃)is = (ss̃)iG if i is positive. Now suppose that i is negative. We note
that Hs = Hs−1 and also Hs̃ = Hs̃−1. Analogously we are able to show that

Hs̃(ss̃)−i−1 ∪H(ss̃)−i

=Hs̃(s̃−1s−1)i+1 ∪H(s̃−1s−1)i

=(ss̃)iHs ∪ (ss̃)iH

=(ss̃)iG

Now let us define the cycle Ci := (ss̃)i[c1, . . . , ck] which means the translation of C0

into Γi. Since C0 is a Hamilton cycle in Γ[G], we are able to conclude that the cycle Ci is
a Hamilton cycle of the graph Γi

In the following we give some easy observations on the structure of the Ci’s. First
note that Ci ∩ Cj = ∅ for i 6= j and also that the union of all Ci’s contains all the vertices
of Γ. In addition note that each Ci is alternating between two copies of H as C0 was
alternating between cosets of Γ0. Finally note that by the structure of Γ there is no edge
between any Γi and Γj with |i− j| > 2 in Γ.

By the structure of Γ for i > 0 we get a perfect matching between Ci ∩ H(ss̃)is
and Ci+1 ∩H(ss̃)i+1 by s̃.

By a similar argument one can show that for i < 0 we get a similar structure and the
desired perfect matchings.

The statement (i) now follows by Lemma 9. Analog statement (ii) follows by Re-
mark 10.

We now recall two known statements about Hamilton cycles on finite groups, which
we then will first combine and finally generalize to infinite groups. For that let us first
recall some definitions. A group G is called Dedekind, if every subgroup of G is normal
in G. If a Dedekind groups G is also non-abelian, it is called a Hamilton group.

Lemma 12. [3] Any Cayley graph of a Hamilton group G has a Hamilton cycle.

In addition we know that all finite abelian groups also contain Hamilton cycles by
Lemma 3. In the following remark we combine these two facts.

Remark 13. Any Cayley graph of a finite Dedekind group of order at least three contains
a Hamilton cycle.

3.3 Main Results

In this section we prove our main results. For that let us recall that by Theorem 2 we
know that there every two ended group either a free product with amalgamation over a
finite subgroup of index two or an HNN-extension over a finite subgroup. Now we prove
our first main result, Thereom 14, which deals with the first type of groups. To be more
precise we use Remark 13 to prove that there is a Hamilton circle in the free product
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with amalgamation over the subgroup of index two of a Dedekind group and an arbitrary
group.

Theorem 14. Let G = 〈S〉 and G̃ = 〈S̃〉 be two finite groups with non-trivial sub-

groups H ∼= H̃ of indices two and such that G is a Dedekind group. Then Γ(G ∗HG̃, S∪ S̃)
has a Hamilton circle.

Proof. For easier reading let us define Γ := Γ(G ∗HG̃, S∪ S̃). First, it follows from Remark
13 that Γ(G,S) has a Hamilton cycle. If all generators of S = {s1, . . . , sn} lie outside H,

then Lemma 11 completes the proof. So let sn ∈ S \H and let s̃ ∈ S̃ \ H̃. Suppose
that S ′ := {s1, . . . , si} is a maximal set of generators of S contained in H and set L := 〈S ′〉.
First note that L is a normal subgroup of G as G is a Dedekind group. We now have
two cases, either H = L or L 6= H. We first assume that H = L. If |H| = 2 we are done
by Lemma 8 so we assume that |H| > 3. Thus we can apply Remark 13 to H and find a

Hamilton cycle of Γ(H,S ′). We conclude that Γ(G ∗HG̃, S∪ S̃) contains a Hamilton circle
by Lemma 8 which finishes this case.

In the following we now only need to consider the case that H 6= L. Since G is a
Dedekind group, the quotient group G/L is a Dedekind group as well. It follows from
Remark 12 that G/L has a Hamilton cycle C := L[x1, . . . , xt]. For now we only consider
the case that |L| > 3. The case |L| = 2 is an easier version of the proof below.4 Since L is
a Dedekind group, we assume that L has a Hamilton cycle C1 by Remark 13. We select
two vertices in L, say v1 and v2 and we fix an orientation of C1. We start at v1 and follow
the orientation of C1 until we reach the last vertex before v2, say v′1. Starting at v2 we
also follow C1 until we reach the last vertex before v1, say v′2. Then we move to the next
coset along C. More precisely, we use x1 to move to Lx1. We again fix an orientation of
the Hamilton cycle of Lx1 and start in the vertices v′1x1 and v′2x2 and collect all vertices
of Lx1. We iterate this process until we reach Lx1 · · ·xt. Suppose that the last vertices
of the disjoint paths in the last step are u1 and u2. We notice that we cover all vertices
of G ∗H G̃ belonging to G.

We now use s̃ to go the next layer. Note that H is normal in both the groups G
and G̃ and so Hss̃ = ss̃H and Hss̃s = ss̃sH. On the other hand G = ∪tj=0Lx0 · · ·xj,
where x0 = 1. Thus we deduce that

Hss̃ ∪Hss̃s = (∪i∈Iss̃Lx′i)
⋃

(∪j∈Jss̃sLx′j),

where x′i and x′j are some product of the x1, . . . xt. Note that the above equation gives us
a partition of Hss̃ ∪Hss̃s. Now we have two cases: either u1s̃ and u2s̃ lies in the same
set ss̃Lx′i or they belong to different sets ss̃Lx′i and ss̃Lx′j. If they belong to the same
set, then we repeat the process we used above for the cosets of L in G.

Thus we assume u1s̃ and u2s̃ belong to ss̃Lx′i and ss̃Lx′j, where i 6= j. Since G/L has

a Hamilton cycle C, there is a Hamilton cycle of (Hss̃ ∪Hss̃s)/L in Γ. We denote this

4The main difference is, that one can omit the Hamilton cycle of |L|. Instead one can, dependent on
the part of the proof, either directly leave each copy of L if we entered with two disjoint paths or collect
both vertices of L by moving along the one edge in L.
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cycle by C2 := ss̃L[x1, . . . , xt]. Fix an orientation of C2. We start at u1s̃ and use the cycle
in L and cover all vertices in ss̃Lx′i. We move along the orientation of C2 and enter to
the next partition class of the above mentioned partition. Again since L has a Hamilton
cycle we can cover all vertices of this class. Continue this process until the next partition
class is ss̃Lx′j. We do the same starting at u2s̃ stopping before the partition class ss̃Lx′i.
So far we have covered all vertices in G ∪Hss̃ ∪Hss̃s. Iterate this construction to cover
all vertices of Γ and we end up with two disjoint double rays, as desired.

The following Theorem 16 proves that the second type of two ended groups also
contains a Hamilton circle, given some conditions.

Remark 15. Let us have a closer look at an HNN-extension of a finite group C. For
that let C = 〈S | R〉 be a finite group. It is important to notice that every automor-
phism φ : C → C gives us an HNN-extension G = C ∗C . In particular every such HNN-
extension comes from an automorphism φ : C → C. Therefore C is a normal subgroup
of G with the quotient Z, as the presentation of HNN-extension G = C ∗C is

〈S, t | R, t−1ct = φ(c)∀c ∈ C〉.

Hence G can be expressed by a semidirect product C o Z which is induced by φ. To
summarize; every two ended group with a structure of HNN-extension is a semidirect
product of a finite group with the infinite cyclic group.

Theorem 16. Let G = (H o F,X ∪ Y ) with F = Z = 〈Y 〉 and H = 〈X〉 and such that
non-trivial group H is finite and H contains a Hamilton cycle. Then G has a Hamilton
circle.

Proof. Let C = [c1, . . . , ct] be a Hamilton cycle in Γ(H,X). First we notice that H is a
normal subgroup of G and moreover G/H ∼= Y . Let π : G → Y be a such isomorphism.
It follows from Part (ii) Theorem 4 that Y has a spanning double ray. We denote this
spanning double ray [. . . , y−2, y−1]1[y1, y2, . . .]. On the other hand, the generators yi for i ∈
Z gives a perfect matching between each consecutive cosets of H in G. More precisely
π−1(yi) for i ∈ Z is a perfect matching between Hx and Hxπ−1(yi). In addition the
translation C by g is a cycle in gH. Thus we are ready to invoke Theorem 8 nd it finishes
the proof.

4 Multiended groups

In this section we give a few insights into the problem of finding Hamilton circles in groups
with more than two ends, as well as showing a counter example for Problem 1. We call
a group to be a multiended group if is has more than two ends. In 1993 Diestel, Jung
and Möller [6] proved that any transitive graph with more than two ends has infinitely
many ends5 and as all Cayley graphs are transitive it follows that the number of ends of
any group is either zero, one, two or infinite. This yields completely new challenges for

5In this case the number of ends is uncountably infinite.
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Figure 3: Hamilton circle in the Wild Circle.

finding a Hamilton circle in groups with more than two ends. In the following we provide
the reader with an example to illustrate the problems of finding a Hamilton circles in an
infinite graph with unaccountably many ends. In Figure 3 we illustrate the graph which
is known as the Wild Circle, for more details see [4, Figure 8.5.1]. The thick edges of this
locally finite connected graph form a Hamilton circle which uses only countably many
edges and vertices while visiting all unaccountably many ends. Thus studying graph with
more than two ends to find Hamilton circles is more complicated than just restricting
one-self to two-ended groups.

4.1 A counterexample of Problem 1

We now give a counterexample to Problem 1. Define

G1 :=G2 :=Z3 × Z2.

Let Γ := Γ(G1 ∗Z2G2). Let G1 = 〈a, b〉 and G2 = 〈a, c〉 where the order of a is two and the
orders of b and c, respectively, are three. In the following we show that the assertion of
Problem 1 holds for Γ and we show that |Γ| does not contain a Hamilton circle.

For that we use the following well-known lemma and theorem.

Lemma 17. [4, Lemma 8.5.5] If Γ is a locally finite connected graph, then a standard
subspace 6 of |Γ| is topologically connected (equivalently: arc-connected) if and only if it
contains an edge from every finite cut of Γ of which it meets both sides.

Theorem 18. [5, Theorem 2.5] The following statements are equivalent for sets D ⊆
E(Γ):

(i) Every vertex and every end has even degree in D.

(ii) D meets every finite cut in an even number of edges.

6A standard subspace of |Γ| is a subspace of |Γ| that is a closure of a subgraph of Γ.
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Assume for a contradiction that there is a Hamilton circle in Γ and let D be its edge
set. Clearly D contains precisely two edges incident to every vertex. Theorem 18 tells
us that D meets every finite cut in an even number and every vertex twice. Since circles
are connected and arc connected we can, by Lemma 17, conclude that D meets every
finite cut in at least one edge. We will now show that there is no set D ⊆ E with these
properties. For this purpose we study two cases: In each case we will consider a few finite
cuts in Γ that show that such a D cannot exist. Figures 4 and 5 display induced subgraphs
of Γ. The relevant cuts in those figures are the edges that cross the thick lines. The cases
we study are that D contains the dashed edges of the appropriate figure corresponding
to the case, see Figures 4 and 5. For easier reference we call the two larger vertices the
central vertices.

Case 1: We now consider Figure 4, so we assume that the edges from the central
vertices into the ‘upper’ side are one going to the left and the other to the right. First
we note that the cut F ensures that the curvy edge between the central vertices is not
contained in D. Also note that F ensures that the remaining two edges leaving the central
vertices must go to the ‘lower’ side of Figure 4. As the cuts B and C have to meet an
even number of edges of D we may, due to symmetry, assume that the dotted edge is also
contained in D. This yields the contraction that the cut A now cannot meet any edge
of D.

A

B C

F

Figure 4: Case 1

Case 2: This case is very similar to Case 1. Again we may assume that the there
are two edges leaving the central into the ‘upper’ and the ‘lower’ side, each. The cut C
ensures that D must contain both dotted edges. But this again yields the contraction
that A cannot meet any edge in D.

It remains to show that G1∗Z2G2 cannot be obtained as a free product with amalgama-
tion over subgroups of size k of more than k groups. If G1 ∗Z2G2 were fulfilling the premise
of Problem 1 then there would be a finite W ⊂ V (Γ), say |W | = k, such that Γ \W has
more than k components.

We will now use induction on the size of W . For a contraction we assume that such a
set W exists. For that we now introduce some notation to make the following arguments
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A

B C

Figure 5: Case 2

easier. In the following we will consider each group element as its corresponding vertex
in Γ. As Γ is transitive we may assume that 1 is contained in W . Furthermore we
may even assume that no vertex which has a representation starting with c is contained
in W . Let Xi be the set of vertices in Γ that have distance exactly i from {1, a}. We
set Wi :=Xi∩W . For xi ∈ Wi let x−i be its neighbour in Xi−1, note that this is unique. For
a vertex x ∈ Xi let x̄ be the neighbour of x in Xi which is not xa, note this will always be
either xb or xc. For a set Y of vertices of Γ let CY be the number of components of Γ \ Y .

As Γ is obviously 2-connected the induction basis for |W | = 0 or |W | = 1 holds
trivially.

We now assume that |W | = k and that for each W ′ with |W ′| 6 |W | − 1 we know
that CW ′ 6 |W ′|. In our argument we will remove sets of vertices of size ` from W while
decreasing CW by at most `.

Let x ∈ W be a vertex with the maximum distance to {1, a} in Γ. Say x ∈ Xj and
define Wj :=W ∩Xj.

Suppose that xa /∈ W . The set {xb, xb2} intersects at most one component of Γ\W , as
the two vertices are connected by an edge. We can use the same argument for {xc, xc2}.
If xa /∈ W , then it lies in one these components as well. If xb further away from from {1, a},
then it is connected to xb by the path xb, xba = xab, xa, otherwise we can argue analo-
gously with c instead of b. Hence x has neighbor in at most two component of Γ \W , so
removing x reduces CW by at most one.

4.2 Closing Words

We still believe that it should be possible to find a condition on the size of the subgroup H
to amalgamate over relative to the index of H in G1 and G2 such that the free product with
amalgamation of G1 and G2 over H contains a Hamilton circle for the standard generating
set. In addition it might be necessary to require some condition on the group G1/H. We
conjecture the following:

the electronic journal of combinatorics 25(2) (2018), #P2.5 15



Conjecture 1. There exists a function f : N→ N such that if G1 = 〈S1〉 and G2 = 〈S2〉
are finite groups with following properties:

(i) [G1 : H] = k and [G2 : H] = 2.

(ii) |H| > f(k).

(iii) Each subgroup of H is normal in G1 and G2.

(iv) Γ(G1/H, S/H) contains a Hamilton cycle.

Then Γ(G1 ∗HG2, S1 ∪ S2) contains a Hamilton circle.
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