A Note on the Expected Length of the Longest Common Subsequences of two i.i.d. Random Permutations

Christian Houdré* Chen Xu

School of Mathematics Georgia Institute of Technology Atlanta, Georgia, U.S.A.

{houdre, cxu60}@gatech.edu

Submitted: Apr 17, 2017; Accepted: May 22, 2018; Published: Jun 22, 2018 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We address a question and a conjecture on the expected length of the longest common subsequences of two i.i.d. random permutations of $[n] := \{1, 2, ..., n\}$. The question is resolved by showing that the minimal expectation is not attained in the uniform case. The conjecture asserts that \sqrt{n} is a lower bound on this expectation, but we only obtain $\sqrt[3]{n}$ for it.

Mathematics Subject Classifications: 05A05, 60C05

1 Introduction

The length of the longest increasing subsequences (LISs) of a uniform random permutation $\sigma \in \mathcal{S}_n$ (where \mathcal{S}_n is the symmetric group) is well studied and we refer to the monograph [5] for precise results and a comprehensive bibliography on this subject. Recently, [3] showed that for two independent random permutations σ_1 , $\sigma_2 \in \mathcal{S}_n$, and as long as σ_1 is uniformly distributed and regardless of the distribution of σ_2 , the length of the longest common subsequences (LCSs) of the two permutations is identical in law to the length of the LISs of σ_1 , i.e. $LCS(\sigma_1, \sigma_2) =^{\mathcal{L}} LIS(\sigma_1)$. This equality ensures, in particular, that when σ_1 and σ_2 are uniformly distributed, $\mathbb{E}LCS(\sigma_1, \sigma_2)$ is upper bounded by $2\sqrt{n}$, for any n, (see [4]) and asymptotically of order $2\sqrt{n}$ ([5]). It is then rather natural to study the behavior of $LCS(\sigma_1, \sigma_2)$, when σ_1 and σ_2 are i.i.d. but not necessarily uniform. In this respect, Bukh and Zhou raised, in [2], two issues which can be rephrased as follows:

^{*}Research supported in part by the grants # 246283 and # 524678 from the Simons Foundation.

Conjecture/Question 1. Let P be an arbitrary probability distribution on S_n . Let σ_1 and σ_2 be two i.i.d. permutations sampled from P. Then $\mathbb{E}_P[LCS(\sigma_1, \sigma_2)] \geqslant \sqrt{n}$. It might even be true that the uniform distribution U on S_n gives a minimizer.

Below we prove the suboptimality of the uniform distribution by explicitly building a distribution having a smaller expectation. In the next section, before presenting and proving our main result, we give a few definitions and formalize this minimizing problem as a quadratic programming one. Section 3 further explore some properties of the spectrum of the coefficient matrix of our quadratic program. In the concluding section, a quick cubic root lower bound is given along with a few pointers for future research.

2 Main Results

We begin with a few notations. Throughout, σ and π are, respectively, used for random and deterministic permutations. By convention, $[n] := \{1, 2, 3, ..., n\}$ and so $\{\pi_i\}_{i \in [n!]} = \mathcal{S}_n$ is a particular ordered enumeration of \mathcal{S}_n . (Some other orderings of \mathcal{S}_n will be given when necessary.) Next, a random permutation σ is said to be sampled from $P = (p_i)_{i \in [n!]}$, if $\mathbb{P}_P(\sigma = \pi_i) = p_i$. The uniform distribution is therefore $U = (1/n!)_{i \in [n!]}$ and, for simplification, it is denoted by E/n!, where $E = (1)_{i \in [n!]}$ is the n-tuple only made up of ones. When needed, a superscript will indicate the degree of the symmetric group we are studying, e.g., $\sigma^{(n)}$ and $P^{(n)}$ are respectively a random permutation and distribution from \mathcal{S}_n .

Let us now formalize the expectation as a quadratic form:

$$\mathbb{E}_{P}[LCS(\sigma_{1}, \sigma_{2})] = \sum_{i,j \in [n!]} p_{i}LCS(\pi_{i}, \pi_{j})p_{j}$$

$$= \sum_{i,j \in [n!]} p_{i}\ell_{ij}p_{j} = P^{T}L^{(n)}P,$$
(1)

where $\ell_{ij} := LCS(\pi_i, \pi_j)$ and $L^{(n)} := \{\ell_{ij}\}_{(i,j)\in[n!]\times[n!]}$. It is clear that $\ell_{ij} = \ell_{ji}$ and that $\ell_{ii} = n$. A quick analysis of the cases n = 2 or 3 shows that both $L^{(2)}$ and $L^{(3)}$ are positive semi-definite. However, this property does not hold further:

Lemma 2. For $n \ge 4$, the smallest eigenvalue $\lambda_1^{(n)}$ of $L^{(n)}$ is negative.

Proof. Linear algebra gives $\lambda_1^{(2)} = 1$ and $\lambda_1^{(3)} = 0$. So to prove the result, it suffices to show that $\lambda_1^{(k+1)} < \lambda_1^{(k)}$, $k \ge 1$ and this is done by induction. The base case is true, since $\lambda_1^{(2)} = 1 > 0 = \lambda_1^{(3)}$. To reveal the connection between $L^{(k+1)}$ and $L^{(k)}$, the enumeration of \mathcal{S}_{k+1} is iteratively built on that of \mathcal{S}_k by inserting the new element (k+1) into the permutations from \mathcal{S}_k in the following way: the enumeration of the (k+1)! permutations is split into (k+1) trunks of equal size k!. In the *ith* trunk, the new element (k+1) is inserted behind the (k+1-i)th digit in the permutation from \mathcal{S}_k . (For example, if \mathcal{S}_2 is enumerated as $\{[12], [21]\}$, then the enumeration of the first trunk in \mathcal{S}_3 is $\{[123], [213]\}$, the second is $\{[132], [231]\}$ and the third is $\{[312], [321]\}$. Then the overall enumeration for \mathcal{S}_3 is $\{[123], [213], [132], [231], [312], [321]\}$.)

Via this enumeration, the principal minor of size $k! \times k!$ is row and column indexed by the enumeration of the permutations $\{\pi_i^{(k)}\}_{i\in[k!]}$ from \mathcal{S}_k with (k+1) as the last digit, i.e., $\{[\pi_i^{(k)}(k+1)]\}_{i\in[k!]}\subseteq\mathcal{S}_{k+1}$. Then the (i,j) entry of the submatrix is

$$LCS([\pi_i(k+1)], [\pi_j(k+1)]) = LCS(\pi_i, \pi_j) + 1,$$

since the last digit (k+1) adds an extra element into the longest common subsequences. Hence, the $k! \times k!$ principal minor of $L^{(k+1)}$ is $L^{(k)} + E^{(k)}(E^{(k)})^T$, where $E^{(k)}$ is the vector of $\mathbb{R}^{k!}$ only made up of ones. Moreover, notice that the sum of the π_i -indexed row of $L^{(k)}$ is

$$\sum_{j \in [k!]} LCS(\pi_i, \pi_j) = \sum_{j \in [k!]} LCS(id, \pi_i^{-1} \pi_j)$$
$$= \sum_{j \in [k!]} LIS(\pi_i^{-1} \pi_j),$$

since simultaneously relabeling π_i and π_j does not change the length of the LCSs and also since a particular relabeling to make π_i to be the identity permutation, which is equivalent to left composition by π_i^{-1} , is applied here. Further, any LCS of the identity permutation and of $\pi_i^{-1}\pi_j$ is a LIS of $\pi_i^{-1}\pi_j$ and vice versa. So the row sum is equal to

$$\sum_{j \in [k!]} LIS(\pi_i^{-1} \pi_j) = \sum_{\pi \in \mathcal{S}_k} LIS(\pi),$$

since left composition by π_i^{-1} is a bijection from \mathcal{S}_k to \mathcal{S}_k . This indicates that all the row sums of $L^{(k)}$ are equal. Hence, $E^{(k)}$ is actually a right eigenvector of $L^{(k)}$ and is associated with the row sum $\sum_{\pi \in \mathcal{S}_k} LIS(\pi) > 0$ as its eigenvalue, which is distinct from the smallest eigenvalue $\lambda_1^{(k)} \leq 0$.

On the other hand, since $L^{(k)}$ is symmetric, the eigenvectors $R_1^{(k)}$ and $E^{(k)}$ associated with the eigenvalues $\lambda_1^{(k)}$ and $\sum_{\pi \in \mathcal{S}_k} LIS(\pi)$ are orthogonal, i.e.,

$$(E^{(k)})^T R_1^{(k)} = 0. (2)$$

Without loss of generality, let $R_1^{(k)}$ be a unit vector, then from (2),

$$\lambda_1^{(k)} = (R_1^{(k)})^T L^{(k)}(R_1^{(k)})$$

$$= (R_1^{(k)})^T (L^{(k)} + E^{(k)}(E^{(k)})^T) R_1^{(k)}.$$
(3)

As $L^{(k)} + E^{(k)}(E^{(k)})^T$ is the $k! \times k!$ principal minor of $L^{(k+1)}$, (3) becomes

$$\begin{bmatrix} R_1^{(k)} \\ 0 \end{bmatrix}^T L^{(k+1)} \begin{bmatrix} R_1^{(k)} \\ 0 \end{bmatrix} \geqslant \min_{R^T E = 0, ||R|| = 1} R^T L^{(k+1)} R = \lambda_1^{(k+1)}, \tag{4}$$

where $R_1^{(k)}$ is properly extended to $\begin{bmatrix} R_1^{(k)} \\ 0 \end{bmatrix} \in \mathbb{R}^{(k+1)!}$ and where the above inequality holds true since $\begin{bmatrix} R_1^{(k)} \\ 0 \end{bmatrix}^T E^{(k+1)} = (R_1^{(k)})^T E^{(k)} = 0$ and $\begin{bmatrix} R_1^{(k)} \\ 0 \end{bmatrix} = \begin{bmatrix} R_1^{(k)} \\ 0 \end{bmatrix} = 1$, where $\|\cdot\|$ denotes the corresponding Euclidean norm. Moreover, equality in (4) holds if and only if $\begin{bmatrix} R_1^{(k)} \\ 0 \end{bmatrix}$ is a eigenvector of $L^{(k+1)}$ associated with $\lambda_1^{(k+1)}$. We show next, by contradiction, that this cannot be the case. Indeed, assume that

$$L^{(k+1)} \begin{bmatrix} R_1^{(k)} \\ 0 \end{bmatrix} = \lambda_1^{(k+1)} \begin{bmatrix} R_1^{(k)} \\ 0 \end{bmatrix}. \tag{5}$$

Now, consider the $k! \times k!$ submatrix at the bottom-left corner of $L^{(k+1)}$, which is row-indexed by $\{[(k+1)\pi_i]\}_{i\in[k!]}$ and column-indexed by $\{[\pi_i(k+1)]\}_{i\in[k!]}$. Notice that the (i,j)-entry of this submatrix is

$$LCS([(k+1)\pi_i], [\pi_j(k+1)]) = LCS(\pi_i, \pi_j),$$

since (k+1) can be in some LCS only if the length of this LCS is 1. So this submatrix is in fact equal to $L^{(k)}$. Further, the vector consisting of the bottom k! elements on the left-hand-side of (5) is $L^{(k)}R_1^{(k)} = \lambda_1^{(k)}R_1^{(k)}$, which is a non-zero vector. However, on the right-hand-side, the corresponding bottom k! elements of the vector $\begin{bmatrix} R_1^{(k)} \\ 0 \end{bmatrix}$ form the zero vector. This leads to a contradiction. So,

$$\lambda_1^{(2)} = 1 > 0 = \lambda_1^{(3)} > \lambda_1^{(4)} > \lambda_1^{(5)} \dots$$

The above result on the smallest negative eigenvalue, and its associated eigenvector, will help build a distribution on S_n , for which the LCSs have a smaller expectation than for the uniform one.

Theorem 3. Let σ_1 and σ_2 be two i.i.d. random permutations sampled from a distribution P on the symmetric group S_n . Then, for $n \leq 3$, the uniform distribution U minimizes $\mathbb{E}_p[LCS(\sigma_1, \sigma_2)]$, while, for $n \geq 4$, U is sub-optimal.

Proof. As we have seen in (1),

$$\mathbb{E}_{P}[LCS(\sigma_{1}, \sigma_{2})] = P^{T}LP$$

$$= (P - U)^{T}L(P - U) + 2P^{T}LU - U^{T}LU$$

$$= (P - U)^{T}L(P - U) + 2U^{T}LU - U^{T}LU$$

$$= (P - U)^{T}L(P - U) + U^{T}LU, \tag{6}$$

where $P^TLU = U^TLU$, since U is an eigenvector of L and $P^TU = 1$.

When n = 2, 3, $L^{(n)}$ is positive semi-definite and therefore $(P - U)^T L(P - U) \ge 0$. So, $P^T L P \ge U^T L U$. However, when $n \ge 4$, by Lemma 2, the smallest eigenvalue $\lambda_1^{(n)}$ is strictly negative and the associated eigenvector $R_1^{(n)}$ is such that $U^T R_1^{(n)} = 0 = E^T R_1^{(n)}$. Hence, there exists a positive constant c such that $cR_1^{(n)} \succeq -1/n!$, where \succeq stands for componentwise inequality. Let P_0 be such that $P_0 - U = cR_1^{(n)}$, then it is immediate that

$$E^T P_0 = E^T (U + cR_1^{(n)}) = 1 + 0 = 1,$$

and that

$$P_0 = U + cR_1^{(n)} \succeq 0.$$

Therefore, P_0 is a well-defined distribution on S_n . On the other hand, by (6), the expectation under P_0 is such that

$$\mathbb{E}_{P_0}[LCS(\sigma_1, \sigma_2)] = (P_0 - U)^T L(P_0 - U) + U^T L U$$

$$= c^2 (R_1^{(n)})^T L(R_1^{(n)}) + U^T L U$$

$$= c^2 \lambda_1^{(n)} + U^T L U$$

$$< U^T L U. \tag{7}$$

However, the right-hand side of (7) is nothing but the expectation under the uniform distribution, namely, $\mathbb{E}_{U}[LCS(\sigma_{1}, \sigma_{2})]$.

The existence of negative eigenvalues contributes to the above construction and to the corresponding counterexample. So, as a next step, properties of this smallest negative eigenvalue and of the spectrum of the coefficient matrix $L^{(n)}$ are explored.

3 Further Properties of $L^{(n)}$

As we have seen, the vector $E^{(n)}$ which is made up of only ones is an eigenvector associated with the eigenvalue $\sum_{\pi \in S_n} LIS(\pi)$. It is not hard to show that this eigenvalue is, in fact, the spectral radius of $L^{(n)}$.

Proposition 4. $\sum_{\pi \in S_k} LIS(\pi)$ is the spectral radius of $L^{(n)}$.

Proof. Without loss of generality, let (λ, R) be a pair of eigenvalue and corresponding eigenvector of $L^{(n)}$ such that $\max_{i \in [n!]} |r_i| = 1$, where $R = (r_1, ..., r_{n!})^T$, and let i_0 be the index such that $|r_{i_0}| = 1$. Let us focus now on the i_0th element of λR . Then, since $L^{(n)}R = \lambda R$,

$$\begin{aligned} |\lambda| &= |\lambda r_{i_0}| \\ &= \left| \sum_{j \in [n!]} LCS(\pi_{i_0}, \pi_j) r_j \right| \\ &\leqslant \sum_{j \in [n!]} LCS(\pi_{i_0}, \pi_j) \end{aligned}$$

$$= \sum_{j \in [n!]} LIS(\pi_{i_0}^{-1}\pi_j)$$
$$= \sum_{\pi \in S_n} LIS(\pi),$$

with equality if and only if all the r_j 's have the same sign and have absolute value equal to 1.

This gives a trivial bound on the smallest negative value $\lambda_1^{(n)}$: namely,

$$\lambda_1^{(n)} \geqslant -\sum_{\pi \in S_n} LIS(\pi).$$

Moreover, since the expectation of the longest increasing subsequence of a uniform random permutation is asymptotically $2\sqrt{n}$, this gives an asymptotic order of $-2n!\sqrt{n}$ for the lower bound. On the other hand, we are interested in an upper bound for $\lambda_1^{(n)}$. The next result shows that $\lambda_1^{(n)}$ decreases at least exponentially fast, in n.

Proposition 5.
$$\lambda_1^{(n)} \leqslant 2^{n-4} \lambda_1^{(4)} = -2^{n-3} < 0.$$

Proof. This is proved by showing that $\lambda_1^{(n+1)} \leq 2\lambda_1^{(n)}$. As well known,

$$\lambda_1^{(n+1)} = \min_{E^T R = 0} \frac{R^T L^{(n+1)} R}{R^T R}.$$
 (8)

Let $\lambda_1^{(n)}$ be the smallest eigenvalues of $L^{(n)}$ and let $R^{(n)}$ be the corresponding eigenvector. Then, in generating $L^{(n+1)}$ from $L^{(n)}$ as done in the proof of Lemma 2, the $n! \times n!$ principal minor of $L^{(n+1)}$ is $L^{(n)} + EE^T$, while its bottom-left $n! \times n!$ submatrix is $L^{(n)}$. Symmetrically, it can be proved that the top-right $n! \times n!$ submatrix is also $L^{(n)}$, while the bottom-right $n! \times n!$ submatrix is $L^{(n)} + EE^T$, i.e., $L^{(n+1)}$ is

$$\begin{bmatrix} L^{(n)} + EE^T & \cdots & L^{(n)} \\ \vdots & \ddots & \vdots \\ L^{(n)} & \cdots & L^{(n)} + EE^T \end{bmatrix}.$$

Further, let

$$R = \begin{bmatrix} R_1^{(n)} \\ 0 \\ \vdots \\ 0 \\ R_1^{(n)} \end{bmatrix}.$$

Then $E^T R = E^T R_1^{(n)} + E^T R_1^{(n)} = 0$, where, by an abuse of notation, E denotes the vector only made up of ones and of the appropriate dimension. Also,

$$||R||^2 = R^T R = 2 ||R_1^{(n)}||^2 = 2.$$

In (8), the corresponding numerator $R^T L^{(n+1)} R$ is

$$\begin{bmatrix} R_{1}^{(n)} \\ 0 \\ \vdots \\ 0 \\ R_{1}^{(n)} \end{bmatrix}^{T} \begin{bmatrix} L^{(n)} + EE^{T} & \cdots & L^{(n)} \\ \vdots & \ddots & \vdots \\ L^{(n)} & \cdots & L^{(n)} + EE^{T} \end{bmatrix} \begin{bmatrix} R_{1}^{(n)} \\ 0 \\ \vdots \\ 0 \\ R_{1}^{(n)} \end{bmatrix}$$

$$= 2 \left(R_{1}^{(n)} \right)^{T} \left(L^{(n)} + EE^{T} \right) \left(R_{1}^{(n)} \right) + 2 \left(R_{1}^{(n)} \right)^{T} L^{(n)} \left(R_{1}^{(n)} \right)$$

$$= 4 \left(R_{1}^{(n)} \right)^{T} L^{(n)} \left(R_{1}^{(n)} \right) = 4\lambda_{1}^{(n)}.$$

Thus,

$$\lambda_1^{(n+1)} \leqslant 2\lambda_1^{(n)}.$$

By a very similar method, it can also be proved, as shown next, that the second largest eigenvalue $\lambda_{n!-1}^{(n)}$, which is positive, grows at least exponentially fast.

Proposition 6.
$$\lambda_{n!-1}^{(n)} \geqslant 2^{n-2}\lambda_1^{(2)} = 2^{n-2} > 0.$$

Proof. Using the identity

$$\lambda_{(n+1)!-1}^{(n+1)} = \max_{E^T R = 0} \frac{R^T L^{(n+1)} R}{R^T R},$$

with a particular choice of

$$R = \begin{bmatrix} R_{n!-1}^{(n)} \\ 0 \\ \vdots \\ 0 \\ R_{n!-1}^{(n)} \end{bmatrix},$$

where $R_{n!-1}^{(n)}$ is the eigenvector associated with the second largest eigenvalue $\lambda_{n!-1}^{(n)}$ of $L^{(n)}$, leads to $\lambda_{(n+1)!-1}^{(n+1)} \geqslant 2\lambda_{n!-1}^{(n)}$ and thus proves the result.

The above bounds for $\lambda_1^{(n)}$ and $\lambda_{n!-1}^{(n)}$ are far from tight even as far as their asymptotic orders are concerned. Numerical evidence is collected in the following table:

n	$\lambda_1^{(n)}$	$\lambda_1^{(n+1)}/\lambda_1^{(n)}$	$\lambda_{n!-1}^{(n)}$	$\lambda_{(n+1)!-1}^{(n+1)}/\lambda_{n!-1}^{(n)}$
4	-2	1	6.6055	1
5	-5.0835	2.5417	30.0293	4.5460
6	-20.2413	3.9817	166.1372	5.5324
7	-102.9541	5.0860	1083.7641	6.5233

A reasonable conjecture will be that both the smallest and the second largest eigenvalues grow at a factorial-like speed. More precisely, we believe that

$$\lim_{n \to +\infty} \frac{\lambda_1^{(n+1)}}{\lambda_1^{(n)}(n-1)} = c_1 \geqslant 1,$$

and that

$$\lim_{n \to +\infty} \frac{\lambda_{(n+1)!-1}^{(n+1)}}{\lambda_{n!-1}^{(n)}(n+1/2)} = c_2 \geqslant 1.$$

4 Concluding Remarks

The \sqrt{n} lower-bound conjecture of Bukh and Zhou is still open and seems quite reasonable in view of the fact that $\mathbb{E}LCS(\sigma_1, \sigma_2) \sim 2\sqrt{n}$, in case σ_1 is uniform and σ_2 arbitrary (again, see [3]). We do not have a proof of this conjecture, but let us nevertheless present, next, a quick $\sqrt[3]{n}$ lower bound result.

We start with a lemma describing a balanced property among the lengths of the LCSs of pairs of any three arbitrary deterministic permutations. This result is essentially due to Beame and Huynh-Ngoc ([1]).

Lemma 7. For any $\pi_i \in \mathcal{S}_n$ (i = 1, 2, 3),

$$LCS(\pi_1, \pi_2)LCS(\pi_2, \pi_3)LCS(\pi_3, \pi_1) \geqslant n.$$

Proof. The proof of Lemma 5.9 in [1] applies here with slight modification. We further note that this inequality is tight, since letting $\pi_1 = \pi_2 = id$ and $\pi_3 = rev(id)$, which is the reversal of the identity permutation gives, $LCS(\pi_1, \pi_2)LCS(\pi_2, \pi_3)LCS(\pi_3, \pi_1) = n$.

In Lemma 7, taking $(\pi_1, \pi_2) = (id, rev(id))$ gives, for any third permutation π_3 , $LCS(id, \pi_3)LCS(rev(id), \pi_3) \ge n/LCS(id, rev(id)) = n$. But, since $LCS(id, \pi_3)$ and $LCS(rev(id), \pi_3)$ are respectively the lengths of the longest increasing/decreasing subsequences of π_3 , this lemma can be considered to be a generalization of a well-known classical result of Erdös and Szekeres (see [5]).

We are now ready for the cubic root lower bound.

Proposition 8. Let P be an arbitrary probability distribution on S_n and let σ_1 and σ_2 be two i.i.d. random permutations sampled from P. Then, for any $n \ge 1$, $\mathbb{E}_P[LCS(\sigma_1, \sigma_2)] \ge \sqrt[3]{n}$.

Proof. Let π_1 , π_2 and $\pi_3 \in S_n$ and set

$$L(\pi_i) := \sum_{\pi_1 \in \mathcal{S}_n} p(\pi_1) LCS(\pi_1, \pi_i) = \sum_{\pi_1 \in \mathcal{S}_n} LCS(\pi_i, \pi_1) p(\pi_1),$$

for i=2,3. Then,

$$L(\pi_2) + LCS(\pi_2, \pi_3) + L(\pi_3)$$

$$= \sum_{\pi_1 \in S_n} p(\pi_1) (LCS(\pi_1, \pi_2) + LCS(\pi_2, \pi_3) + LCS(\pi_3, \pi_1)) = 3\sqrt[3]{n} \sum_{\pi_1 \in S_n} p(\pi_1) = 3\sqrt[3]{n}, \quad (9)$$

by the arithmetic mean-geometric mean inequality and the previous lemma. Further, summing over $p(\pi_2)$ in (9) gives:

$$\sum_{\pi_2 \in \mathcal{S}_n} p(\pi_2) (L(\pi_2) + LCS(\pi_2, \pi_3) + L(\pi_3))$$

$$= \sum_{\pi_2 \in \mathcal{S}_n} p(\pi_2) L(\pi_2) + L(\pi_3) + L(\pi_3) \geqslant 3\sqrt[3]{n}.$$

Repeating this last procedure but with weights over $p(\pi_3)$ leads to

$$\sum_{\pi_2 \in \mathcal{S}_n} p(\pi_2) L(\pi_2) + 2 \sum_{\pi_3 \in \mathcal{S}_n} p(\pi_3) L(\pi_3) = 3 \sum_{\pi \in S_n} p(\pi) L(\pi) \geqslant 3\sqrt[3]{n}.$$
 (10)

However,

$$\mathbb{E}_{P}[LCS(\sigma_{1}, \sigma_{2})] = \sum_{\pi_{1} \in \mathcal{S}_{n}} \sum_{\pi_{2} \in \mathcal{S}_{n}} p(\pi_{1}) LCS(\pi_{1}, \pi_{2}) p(\pi_{2})$$

$$= \sum_{\pi_{1} \in \mathcal{S}_{n}} p(\pi_{1}) \sum_{\pi_{2} \in \mathcal{S}_{n}} LCS(\pi_{1}, \pi_{2}) p(\pi_{2})$$

$$= \sum_{\pi \in \mathcal{S}_{n}} p(\pi) L(\pi).$$

Combining this last identity with (10) proves the result.

The above proof is simple; it basically averages out each $LCS(\cdot,\cdot)$ as $\sqrt[3]{n}$ on the summation weighted by P. However, in view of the original conjecture, our partial results, as well as those mentioned in the introductory section, the cubic root lower-bound is not tight. Apart from our curiosity concerning this \sqrt{n} conjecture, it would be interesting to know the exact asymptotic order of the smallest eigenvalue $\lambda_1^{(n)}$ of $L^{(n)}$. In contrast, the largest eigenvalue $\lambda_{n!}^{(n)}$ corresponding to the uniform distribution is known to be asymptotically of order $2n!\sqrt{n}$, since it is equal to the length of the LISs of a uniform random permutation of [n] scaled by n!. In this sense, the study of the length of the LCSs between a pair of i.i.d. random permutations having an arbitrary distribution, or equivalently, the study of $L^{(n)}$, can be viewed as an extension of the study of the length of the LISs of a uniform random permutation of [n]. Having a complete knowledge of the distribution of all the eigenvalues of $L^{(n)}$ would be a nice achievement.

References

[1] Paul Beame and Dang-Trinh Huynh-Ngoc. On the value of multiple read/write streams for approximating frequency moments. In *Foundations of Computer Science*, 2008. FOCS'08. IEEE 49th Annual IEEE Symposium on, pages 499–508. IEEE, 2008.

- [2] Boris Bukh and Lidong Zhou. Twins in words and long common subsequences in permutations. *Israel Journal of Mathematics*, 213(1):183–209, 2016.
- [3] Christian Houdré and Ümit Işlak. A central limit theorem for the length of the longest common subsequence in random words. arXiv:1408.1559v4, 2017.
- [4] Shaiy Pilpel. Descending subsequences of random permutations. *Journal of Combinatorial Theory, Series A*, 53(1):96–116, 1990.
- [5] Dan Romik. The surprising mathematics of longest increasing subsequences, volume 4. Cambridge University Press, 2015.