A Note on the Expected Length of the Longest Common Subsequences of two i.i.d. Random Permutations

Christian Houdré* Chen Xu
School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia, U.S.A.
\{houdre, cxu60\}@gatech.edu

Submitted: Apr 17, 2017; Accepted: May 22, 2018; Published: Jun 22, 2018 (c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We address a question and a conjecture on the expected length of the longest common subsequences of two i.i.d. random permutations of $[n]:=\{1,2, \ldots, n\}$. The question is resolved by showing that the minimal expectation is not attained in the uniform case. The conjecture asserts that \sqrt{n} is a lower bound on this expectation, but we only obtain $\sqrt[3]{n}$ for it.

Mathematics Subject Classifications: 05A05, 60C05

1 Introduction

The length of the longest increasing subsequences (LISs) of a uniform random permutation $\sigma \in \mathcal{S}_{n}$ (where \mathcal{S}_{n} is the symmetric group) is well studied and we refer to the monograph [5] for precise results and a comprehensive bibliography on this subject. Recently, [3] showed that for two independent random permutations $\sigma_{1}, \sigma_{2} \in \mathcal{S}_{n}$, and as long as σ_{1} is uniformly distributed and regardless of the distribution of σ_{2}, the length of the longest common subsequences (LCSs) of the two permutations is identical in law to the length of the LISs of σ_{1}, i.e. $\operatorname{LCS}\left(\sigma_{1}, \sigma_{2}\right)={ }^{\mathcal{L}} \operatorname{LIS}\left(\sigma_{1}\right)$. This equality ensures, in particular, that when σ_{1} and σ_{2} are uniformly distributed, $\mathbb{E} L C S\left(\sigma_{1}, \sigma_{2}\right)$ is upper bounded by $2 \sqrt{n}$, for any n, (see [4]) and asymptotically of order $2 \sqrt{n}([5])$. It is then rather natural to study the behavior of $\operatorname{LCS}\left(\sigma_{1}, \sigma_{2}\right)$, when σ_{1} and σ_{2} are i.i.d. but not necessarily uniform. In this respect, Bukh and Zhou raised, in [2], two issues which can be rephrased as follows:

[^0]Conjecture/Question 1. Let P be an arbitrary probability distribution on \mathcal{S}_{n}. Let σ_{1} and σ_{2} be two i.i.d. permutations sampled from P. Then $\mathbb{E}_{P}\left[\operatorname{LCS}\left(\sigma_{1}, \sigma_{2}\right)\right] \geqslant \sqrt{n}$. It might even be true that the uniform distribution U on \mathcal{S}_{n} gives a minimizer.

Below we prove the suboptimality of the uniform distribution by explicitly building a distribution having a smaller expectation. In the next section, before presenting and proving our main result, we give a few definitions and formalize this minimizing problem as a quadratic programming one. Section 3 further explore some properties of the spectrum of the coefficient matrix of our quadratic program. In the concluding section, a quick cubic root lower bound is given along with a few pointers for future research.

2 Main Results

We begin with a few notations. Throughout, σ and π are, respectively, used for random and deterministic permutations. By convention, $[n]:=\{1,2,3, \ldots, n\}$ and so $\left\{\pi_{i}\right\}_{i \in[n!]}=\mathcal{S}_{n}$ is a particular ordered enumeration of \mathcal{S}_{n}. (Some other orderings of \mathcal{S}_{n} will be given when necessary.) Next, a random permutation σ is said to be sampled from $P=\left(p_{i}\right)_{i \in[n!]}$, if $\mathbb{P}_{P}\left(\sigma=\pi_{i}\right)=p_{i}$. The uniform distribution is therefore $U=(1 / n!)_{i \in[n!]}$ and, for simplification, it is denoted by E / n !, where $E=(1)_{i \in[n!]}$ is the n-tuple only made up of ones. When needed, a superscript will indicate the degree of the symmetric group we are studying, e.g., $\sigma^{(n)}$ and $P^{(n)}$ are respectively a random permutation and distribution from \mathcal{S}_{n}.

Let us now formalize the expectation as a quadratic form:

$$
\begin{align*}
\mathbb{E}_{P}\left[L C S\left(\sigma_{1}, \sigma_{2}\right)\right] & =\sum_{i, j \in[n!]} p_{i} L C S\left(\pi_{i}, \pi_{j}\right) p_{j} \\
& =\sum_{i, j \in[n!]} p_{i} \ell_{i j} p_{j}=P^{T} L^{(n)} P \tag{1}
\end{align*}
$$

where $\ell_{i j}:=\operatorname{LCS}\left(\pi_{i}, \pi_{j}\right)$ and $L^{(n)}:=\left\{\ell_{i j}\right\}_{(i, j) \in[n!] \times[n!]}$. It is clear that $\ell_{i j}=\ell_{j i}$ and that $\ell_{i i}=n$. A quick analysis of the cases $n=2$ or 3 shows that both $L^{(2)}$ and $L^{(3)}$ are positive semi-definite. However, this property does not hold further:
Lemma 2. For $n \geqslant 4$, the smallest eigenvalue $\lambda_{1}^{(n)}$ of $L^{(n)}$ is negative.
Proof. Linear algebra gives $\lambda_{1}^{(2)}=1$ and $\lambda_{1}^{(3)}=0$. So to prove the result, it suffices to show that $\lambda_{1}^{(k+1)}<\lambda_{1}^{(k)}, k \geqslant 1$ and this is done by induction. The base case is true, since $\lambda_{1}^{(2)}=1>0=\lambda_{1}^{(3)}$. To reveal the connection between $L^{(k+1)}$ and $L^{(k)}$, the enumeration of \mathcal{S}_{k+1} is iteratively built on that of \mathcal{S}_{k} by inserting the new element $(k+1)$ into the permutations from \mathcal{S}_{k} in the following way: the enumeration of the $(k+1)$! permutations is split into $(k+1)$ trunks of equal size k !. In the i th trunk, the new element $(k+1)$ is inserted behind the $(k+1-i)$ th digit in the permutation from \mathcal{S}_{k}. (For example, if \mathcal{S}_{2} is enumerated as $\{[12],[21]\}$, then the enumeration of the first trunk in \mathcal{S}_{3} is $\{[123],[213]\}$, the second is $\{[132],[231]\}$ and the third is $\{[312],[321]\}$. Then the overall enumeration for \mathcal{S}_{3} is $\{[123]$, [213], [132], [231], [312], [321]\}.)

Via this enumeration, the principal minor of size $k!\times k!$ is row and column indexed by the enumeration of the permutations $\left\{\pi_{i}^{(k)}\right\}_{i \in[k!]}$ from \mathcal{S}_{k} with $(k+1)$ as the last digit, i.e., $\left\{\left[\pi_{i}^{(k)}(k+1)\right]\right\}_{i \in[k!]} \subseteq \mathcal{S}_{k+1}$. Then the (i, j) entry of the submatrix is

$$
\operatorname{LCS}\left(\left[\pi_{i}(k+1)\right],\left[\pi_{j}(k+1)\right]\right)=\operatorname{LCS}\left(\pi_{i}, \pi_{j}\right)+1
$$

since the last digit $(k+1)$ adds an extra element into the longest common subsequences. Hence, the $k!\times k$! principal minor of $L^{(k+1)}$ is $L^{(k)}+E^{(k)}\left(E^{(k)}\right)^{T}$, where $E^{(k)}$ is the vector of $\mathbb{R}^{k!}$ only made up of ones. Moreover, notice that the sum of the π_{i}-indexed row of $L^{(k)}$ is

$$
\begin{aligned}
\sum_{j \in[k!]} L C S\left(\pi_{i}, \pi_{j}\right) & =\sum_{j \in[k!]} L C S\left(i d, \pi_{i}^{-1} \pi_{j}\right) \\
& =\sum_{j \in[k!]} L I S\left(\pi_{i}^{-1} \pi_{j}\right)
\end{aligned}
$$

since simultaneously relabeling π_{i} and π_{j} does not change the length of the LCSs and also since a particular relabeling to make π_{i} to be the identity permutation, which is equivalent to left composition by π_{i}^{-1}, is applied here. Further, any $L C S$ of the identity permutation and of $\pi_{i}^{-1} \pi_{j}$ is a $L I S$ of $\pi_{i}^{-1} \pi_{j}$ and vice versa. So the row sum is equal to

$$
\sum_{j \in[k!]} \operatorname{LIS}\left(\pi_{i}^{-1} \pi_{j}\right)=\sum_{\pi \in \mathcal{S}_{k}} \operatorname{LIS}(\pi),
$$

since left composition by π_{i}^{-1} is a bijection from \mathcal{S}_{k} to \mathcal{S}_{k}. This indicates that all the row sums of $L^{(k)}$ are equal. Hence, $E^{(k)}$ is actually a right eigenvector of $L^{(k)}$ and is associated with the row sum $\sum_{\pi \in \mathcal{S}_{k}} L I S(\pi)>0$ as its eigenvalue, which is distinct from the smallest eigenvalue $\lambda_{1}^{(k)} \leqslant 0$.

On the other hand, since $L^{(k)}$ is symmetric, the eigenvectors $R_{1}^{(k)}$ and $E^{(k)}$ associated with the eigenvalues $\lambda_{1}^{(k)}$ and $\sum_{\pi \in \mathcal{S}_{k}} L I S(\pi)$ are orthogonal, i.e.,

$$
\begin{equation*}
\left(E^{(k)}\right)^{T} R_{1}^{(k)}=0 \tag{2}
\end{equation*}
$$

Without loss of generality, let $R_{1}^{(k)}$ be a unit vector, then from (2),

$$
\begin{align*}
\lambda_{1}^{(k)} & =\left(R_{1}^{(k)}\right)^{T} L^{(k)}\left(R_{1}^{(k)}\right) \\
& =\left(R_{1}^{(k)}\right)^{T}\left(L^{(k)}+E^{(k)}\left(E^{(k)}\right)^{T}\right) R_{1}^{(k)} \tag{3}
\end{align*}
$$

As $L^{(k)}+E^{(k)}\left(E^{(k)}\right)^{T}$ is the $k!\times k!$ principal minor of $L^{(k+1)}$, (3) becomes

$$
\left[\begin{array}{c}
R_{1}^{(k)} \tag{4}\\
0
\end{array}\right]^{T} L^{(k+1)}\left[\begin{array}{c}
R_{1}^{(k)} \\
0
\end{array}\right] \geqslant \min _{R^{T} E=0,\|R\|=1} R^{T} L^{(k+1)} R=\lambda_{1}^{(k+1)}
$$

where $R_{1}^{(k)}$ is properly extended to $\left[\begin{array}{c}R_{1}^{(k)} \\ 0\end{array}\right] \in \mathbb{R}^{(k+1)!}$ and where the above inequality holds true since $\left[\begin{array}{c}R_{1}^{(k)} \\ 0\end{array}\right]^{T} E^{(k+1)}=\left(R_{1}^{(k)}\right)^{T} E^{(k)}=0$ and $\left\|\left[\begin{array}{c}R_{1}^{(k)} \\ 0\end{array}\right]\right\|=\left\|R_{1}^{(k)}\right\|=1$, where $\|\cdot\|$ denotes the corresponding Euclidean norm. Moreover, equality in (4) holds if and only if $\left[\begin{array}{c}R_{1}^{(k)} \\ 0\end{array}\right]$ is a eigenvector of $L^{(k+1)}$ associated with $\lambda_{1}^{(k+1)}$. We show next, by contradiction, that this cannot be the case. Indeed, assume that

$$
L^{(k+1)}\left[\begin{array}{c}
R_{1}^{(k)} \tag{5}\\
0
\end{array}\right]=\lambda_{1}^{(k+1)}\left[\begin{array}{c}
R_{1}^{(k)} \\
0
\end{array}\right]
$$

Now, consider the $k!\times k!$ submatrix at the bottom-left corner of $L^{(k+1)}$, which is rowindexed by $\left\{\left[(k+1) \pi_{i}\right]\right\}_{i \in[k!]}$ and column-indexed by $\left\{\left[\pi_{i}(k+1)\right]\right\}_{i \in[k!]}$. Notice that the (i, j)-entry of this submatrix is

$$
\operatorname{LCS}\left(\left[(k+1) \pi_{i}\right],\left[\pi_{j}(k+1)\right]\right)=\operatorname{LCS}\left(\pi_{i}, \pi_{j}\right)
$$

since $(k+1)$ can be in some $L C S$ only if the length of this $L C S$ is 1 . So this submatrix is in fact equal to $L^{(k)}$. Further, the vector consisting of the bottom k ! elements on the left-hand-side of (5) is $L^{(k)} R_{1}^{(k)}=\lambda_{1}^{(k)} R_{1}^{(k)}$, which is a non-zero vector. However, on the right-hand-side, the corresponding bottom k ! elements of the vector $\left[\begin{array}{c}R_{1}^{(k)} \\ 0\end{array}\right]$ form the zero vector. This leads to a contradiction. So,

$$
\lambda_{1}^{(2)}=1>0=\lambda_{1}^{(3)}>\lambda_{1}^{(4)}>\lambda_{1}^{(5)} \ldots
$$

The above result on the smallest negative eigenvalue, and its associated eigenvector, will help build a distribution on \mathcal{S}_{n}, for which the LCSs have a smaller expectation than for the uniform one.

Theorem 3. Let σ_{1} and σ_{2} be two i.i.d. random permutations sampled from a distribution P on the symmetric group \mathcal{S}_{n}. Then, for $n \leqslant 3$, the uniform distribution U minimizes $\mathbb{E}_{p}\left[L C S\left(\sigma_{1}, \sigma_{2}\right)\right]$, while, for $n \geqslant 4, U$ is sub-optimal.

Proof. As we have seen in (1),

$$
\begin{align*}
\mathbb{E}_{P}\left[L C S\left(\sigma_{1}, \sigma_{2}\right)\right] & =P^{T} L P \\
& =(P-U)^{T} L(P-U)+2 P^{T} L U-U^{T} L U \\
& =(P-U)^{T} L(P-U)+2 U^{T} L U-U^{T} L U \\
& =(P-U)^{T} L(P-U)+U^{T} L U, \tag{6}
\end{align*}
$$

where $P^{T} L U=U^{T} L U$, since U is an eigenvector of L and $P^{T} U=1$.
When $n=2,3, L^{(n)}$ is positive semi-definite and therefore $(P-U)^{T} L(P-U) \geqslant 0$. So, $P^{T} L P \geqslant U^{T} L U$.

However, when $n \geqslant 4$, by Lemma 2 , the smallest eigenvalue $\lambda_{1}^{(n)}$ is strictly negative and the associated eigenvector $R_{1}^{(n)}$ is such that $U^{T} R_{1}^{(n)}=0=E^{T} R_{1}^{(n)}$. Hence, there exists a positive constant c such that $c R_{1}^{(n)} \succeq-1 / n$!, where \succeq stands for componentwise inequality. Let P_{0} be such that $P_{0}-U=c R_{1}^{(n)}$, then it is immediate that

$$
E^{T} P_{0}=E^{T}\left(U+c R_{1}^{(n)}\right)=1+0=1,
$$

and that

$$
P_{0}=U+c R_{1}^{(n)} \succeq 0 .
$$

Therefore, P_{0} is a well-defined distribution on \mathcal{S}_{n}. On the other hand, by (6), the expectation under P_{0} is such that

$$
\begin{align*}
\mathbb{E}_{P_{0}}\left[L C S\left(\sigma_{1}, \sigma_{2}\right)\right] & =\left(P_{0}-U\right)^{T} L\left(P_{0}-U\right)+U^{T} L U \\
& =c^{2}\left(R_{1}^{(n)}\right)^{T} L\left(R_{1}^{(n)}\right)+U^{T} L U \\
& =c^{2} \lambda_{1}^{(n)}+U^{T} L U \\
& <U^{T} L U . \tag{7}
\end{align*}
$$

However, the right-hand side of (7) is nothing but the expectation under the uniform distribution, namely, $\mathbb{E}_{U}\left[L C S\left(\sigma_{1}, \sigma_{2}\right)\right]$.

The existence of negative eigenvalues contributes to the above construction and to the corresponding counterexample. So, as a next step, properties of this smallest negative eigenvalue and of the spectrum of the coefficient matrix $L^{(n)}$ are explored.

3 Further Properties of $L^{(n)}$

As we have seen, the vector $E^{(n)}$ which is made up of only ones is an eigenvector associated with the eigenvalue $\sum_{\pi \in S_{n}} \operatorname{LIS}(\pi)$. It is not hard to show that this eigenvalue is, in fact, the spectral radius of $L^{(n)}$.

Proposition 4. $\sum_{\pi \in S_{k}} \operatorname{LIS}(\pi)$ is the spectral radius of $L^{(n)}$.
Proof. Without loss of generality, let (λ, R) be a pair of eigenvalue and corresponding eigenvector of $L^{(n)}$ such that $\max _{i \in[n!]}\left|r_{i}\right|=1$, where $R=\left(r_{1}, \ldots, r_{n!}\right)^{T}$, and let i_{0} be the index such that $\left|r_{i_{0}}\right|=1$. Let us focus now on the $i_{0} t h$ element of λR. Then, since $L^{(n)} R=\lambda R$,

$$
\begin{aligned}
|\lambda| & =\left|\lambda r_{i_{0}}\right| \\
& =\left|\sum_{j \in[n!]} \operatorname{LCS}\left(\pi_{i_{0}}, \pi_{j}\right) r_{j}\right| \\
& \leqslant \sum_{j \in[n!]} L C S\left(\pi_{i_{0}}, \pi_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j \in[n!]} \operatorname{LI} S\left(\pi_{i_{0}}^{-1} \pi_{j}\right) \\
& =\sum_{\pi \in S_{n}} \operatorname{LIS}(\pi),
\end{aligned}
$$

with equality if and only if all the r_{j} 's have the same sign and have absolute value equal to 1 .

This gives a trivial bound on the smallest negative value $\lambda_{1}^{(n)}$: namely,

$$
\lambda_{1}^{(n)} \geqslant-\sum_{\pi \in S_{n}} \operatorname{LIS}(\pi) .
$$

Moreover, since the expectation of the longest increasing subsequence of a uniform random permutation is asymptotically $2 \sqrt{n}$, this gives an asymptotic order of $-2 n!\sqrt{n}$ for the lower bound. On the other hand, we are interested in an upper bound for $\lambda_{1}^{(n)}$. The next result shows that $\lambda_{1}^{(n)}$ decreases at least exponentially fast, in n.

Proposition 5. $\lambda_{1}^{(n)} \leqslant 2^{n-4} \lambda_{1}^{(4)}=-2^{n-3}<0$.
Proof. This is proved by showing that $\lambda_{1}^{(n+1)} \leqslant 2 \lambda_{1}^{(n)}$. As well known,

$$
\begin{equation*}
\lambda_{1}^{(n+1)}=\min _{E^{T} R=0} \frac{R^{T} L^{(n+1)} R}{R^{T} R} . \tag{8}
\end{equation*}
$$

Let $\lambda_{1}^{(n)}$ be the smallest eigenvalues of $L^{(n)}$ and let $R^{(n)}$ be the corresponding eigenvector. Then, in generating $L^{(n+1)}$ from $L^{(n)}$ as done in the proof of Lemma 2, the $n!\times n!$ principal minor of $L^{(n+1)}$ is $L^{(n)}+E E^{T}$, while its bottom-left $n!\times n!$ submatrix is $L^{(n)}$. Symmetrically, it can be proved that the top-right $n!\times n!$ submatrix is also $L^{(n)}$, while the bottom-right $n!\times n!$ submatrix is $L^{(n)}+E E^{T}$, i.e., $L^{(n+1)}$ is

$$
\left[\begin{array}{ccc}
L^{(n)}+E E^{T} & \cdots & L^{(n)} \\
\vdots & \ddots & \vdots \\
L^{(n)} & \cdots & L^{(n)}+E E^{T}
\end{array}\right]
$$

Further, let

$$
R=\left[\begin{array}{c}
R_{1}^{(n)} \\
0 \\
\vdots \\
0 \\
R_{1}^{(n)}
\end{array}\right]
$$

Then $E^{T} R=E^{T} R_{1}^{(n)}+E^{T} R_{1}^{(n)}=0$, where, by an abuse of notation, E denotes the vector only made up of ones and of the appropriate dimension. Also,

$$
\|R\|^{2}=R^{T} R=2\left\|R_{1}^{(n)}\right\|^{2}=2
$$

In (8), the corresponding numerator $R^{T} L^{(n+1)} R$ is

$$
\begin{aligned}
& {\left[\begin{array}{c}
R_{1}^{(n)} \\
0 \\
\vdots \\
0 \\
R_{1}^{(n)}
\end{array}\right]^{T}} \\
& \\
& \quad\left[\begin{array}{ccc}
L^{(n)}+E E^{T} & \cdots & L^{(n)} \\
\vdots & \ddots & \vdots \\
L^{(n)} & \cdots & L^{(n)}+E E^{T}
\end{array}\right]\left[\begin{array}{c}
R_{1}^{(n)} \\
0 \\
\vdots \\
0 \\
R_{1}^{(n)}
\end{array}\right] \\
& \\
& \quad=4\left(R_{1}^{(n)}\right)^{T}\left(L^{(n)}+E E^{T}\right)\left(R_{1}^{(n)}\right)+2\left(R_{1}^{(n)}\right)^{T} L^{(n)}\left(R_{1}^{(n)}\right) \\
&
\end{aligned}
$$

Thus,

$$
\lambda_{1}^{(n+1)} \leqslant 2 \lambda_{1}^{(n)} .
$$

By a very similar method, it can also be proved, as shown next, that the second largest eigenvalue $\lambda_{n!-1}^{(n)}$, which is positive, grows at least exponentially fast.

Proposition 6. $\lambda_{n!-1}^{(n)} \geqslant 2^{n-2} \lambda_{1}^{(2)}=2^{n-2}>0$.
Proof. Using the identity

$$
\lambda_{(n+1)!-1}^{(n+1)}=\max _{E^{T} R=0} \frac{R^{T} L^{(n+1)} R}{R^{T} R},
$$

with a particular choice of

$$
R=\left[\begin{array}{c}
R_{n!-1}^{(n)} \\
0 \\
\vdots \\
0 \\
R_{n!-1}^{(n)}
\end{array}\right],
$$

where $R_{n!-1}^{(n)}$ is the eigenvector associated with the second largest eigenvalue $\lambda_{n!-1}^{(n)}$ of $L^{(n)}$, leads to $\lambda_{(n+1)!-1}^{(n+1)} \geqslant 2 \lambda_{n!-1}^{(n)}$ and thus proves the result.

The above bounds for $\lambda_{1}^{(n)}$ and $\lambda_{n!-1}^{(n)}$ are far from tight even as far as their asymptotic orders are concerned. Numerical evidence is collected in the following table:

n	$\lambda_{1}^{(n)}$	$\lambda_{1}^{(n+1)} / \lambda_{1}^{(n)}$	$\lambda_{n!-1}^{(n)}$	$\lambda_{(n+1)!-1}^{(n+1)} / \lambda_{n!-1}^{(n)}$
4	-2	1	6.6055	1
5	-5.0835	2.5417	30.0293	4.5460
6	-20.2413	3.9817	166.1372	5.5324
7	-102.9541	5.0860	1083.7641	6.5233

A reasonable conjecture will be that both the smallest and the second largest eigenvalues grow at a factorial-like speed. More precisely, we believe that

$$
\lim _{n \rightarrow+\infty} \frac{\lambda_{1}^{(n+1)}}{\lambda_{1}^{(n)}(n-1)}=c_{1} \geqslant 1,
$$

and that

$$
\lim _{n \rightarrow+\infty} \frac{\lambda_{(n+1)!-1}^{(n+1)}}{\lambda_{n!-1}^{(n)}(n+1 / 2)}=c_{2} \geqslant 1 .
$$

4 Concluding Remarks

The \sqrt{n} lower-bound conjecture of Bukh and Zhou is still open and seems quite reasonable in view of the fact that $\mathbb{E} L C S\left(\sigma_{1}, \sigma_{2}\right) \sim 2 \sqrt{n}$, in case σ_{1} is uniform and σ_{2} arbitrary (again, see [3]). We do not have a proof of this conjecture, but let us nevertheless present, next, a quick $\sqrt[3]{n}$ lower bound result.

We start with a lemma describing a balanced property among the lengths of the LCSs of pairs of any three arbitrary deterministic permutations. This result is essentially due to Beame and Huynh-Ngoc ([1]).

Lemma 7. For any $\pi_{i} \in \mathcal{S}_{n}(i=1,2,3)$,

$$
\operatorname{LCS}\left(\pi_{1}, \pi_{2}\right) L C S\left(\pi_{2}, \pi_{3}\right) L C S\left(\pi_{3}, \pi_{1}\right) \geqslant n .
$$

Proof. The proof of Lemma 5.9 in [1] applies here with slight modification. We further note that this inequality is tight, since letting $\pi_{1}=\pi_{2}=i d$ and $\pi_{3}=\operatorname{rev}(i d)$, which is the reversal of the identity permutation gives, $\operatorname{LCS}\left(\pi_{1}, \pi_{2}\right) \operatorname{LCS}\left(\pi_{2}, \pi_{3}\right) L C S\left(\pi_{3}, \pi_{1}\right)=n$.

In Lemma 7, taking $\left(\pi_{1}, \pi_{2}\right)=(i d, \operatorname{rev}(i d))$ gives, for any third permutation π_{3}, $\operatorname{LCS}\left(i d, \pi_{3}\right) \operatorname{LCS}\left(\operatorname{rev}(i d), \pi_{3}\right) \geqslant n / \operatorname{LCS}(i d, \operatorname{rev}(i d))=n$. But, since $\operatorname{LCS}\left(i d, \pi_{3}\right)$ and $\operatorname{LCS}\left(\operatorname{rev}(i d), \pi_{3}\right)$ are respectively the lengths of the longest increasing/decreasing subsequences of π_{3}, this lemma can be considered to be a generalization of a well-known classical result of Erdös and Szekeres (see [5]).

We are now ready for the cubic root lower bound.
Proposition 8. Let P be an arbitrary probability distribution on \mathcal{S}_{n} and let σ_{1} and σ_{2} be two i.i.d. random permutations sampled from P. Then, for any $n \geqslant 1, \mathbb{E}_{P}\left[L C S\left(\sigma_{1}, \sigma_{2}\right)\right] \geqslant$ $\sqrt[3]{n}$.

Proof. Let π_{1}, π_{2} and $\pi_{3} \in S_{n}$ and set

$$
L\left(\pi_{i}\right):=\sum_{\pi_{1} \in \mathcal{S}_{n}} p\left(\pi_{1}\right) L C S\left(\pi_{1}, \pi_{i}\right)=\sum_{\pi_{1} \in \mathcal{S}_{n}} L C S\left(\pi_{i}, \pi_{1}\right) p\left(\pi_{1}\right),
$$

for $i=2,3$. Then,

$$
L\left(\pi_{2}\right)+L C S\left(\pi_{2}, \pi_{3}\right)+L\left(\pi_{3}\right)
$$

$$
\begin{equation*}
=\sum_{\pi_{1} \in S_{n}} p\left(\pi_{1}\right)\left(L C S\left(\pi_{1}, \pi_{2}\right)+L C S\left(\pi_{2}, \pi_{3}\right)+L C S\left(\pi_{3}, \pi_{1}\right)\right)=3 \sqrt[3]{n} \sum_{\pi_{1} \in S_{n}} p\left(\pi_{1}\right)=3 \sqrt[3]{n} \tag{9}
\end{equation*}
$$

by the arithmetic mean-geometric mean inequality and the previous lemma. Further, summing over $p\left(\pi_{2}\right)$ in (9) gives:

$$
\begin{aligned}
& \sum_{\pi_{2} \in \mathcal{S}_{n}} p\left(\pi_{2}\right)\left(L\left(\pi_{2}\right)+L C S\left(\pi_{2}, \pi_{3}\right)+L\left(\pi_{3}\right)\right) \\
& \quad=\sum_{\pi_{2} \in \mathcal{S}_{n}} p\left(\pi_{2}\right) L\left(\pi_{2}\right)+L\left(\pi_{3}\right)+L\left(\pi_{3}\right) \geqslant 3 \sqrt[3]{n}
\end{aligned}
$$

Repeating this last procedure but with weights over $p\left(\pi_{3}\right)$ leads to

$$
\begin{equation*}
\sum_{\pi_{2} \in \mathcal{S}_{n}} p\left(\pi_{2}\right) L\left(\pi_{2}\right)+2 \sum_{\pi_{3} \in \mathcal{S}_{n}} p\left(\pi_{3}\right) L\left(\pi_{3}\right)=3 \sum_{\pi \in S_{n}} p(\pi) L(\pi) \geqslant 3 \sqrt[3]{n} \tag{10}
\end{equation*}
$$

However,

$$
\begin{aligned}
\mathbb{E}_{P}\left[L C S\left(\sigma_{1}, \sigma_{2}\right)\right] & =\sum_{\pi_{1} \in \mathcal{S}_{n}} \sum_{\pi_{2} \in \mathcal{S}_{n}} p\left(\pi_{1}\right) L C S\left(\pi_{1}, \pi_{2}\right) p\left(\pi_{2}\right) \\
& =\sum_{\pi_{1} \in \mathcal{S}_{n}} p\left(\pi_{1}\right) \sum_{\pi_{2} \in \mathcal{S}_{n}} L C S\left(\pi_{1}, \pi_{2}\right) p\left(\pi_{2}\right) \\
& =\sum_{\pi \in \mathcal{S}_{n}} p(\pi) L(\pi) .
\end{aligned}
$$

Combining this last identity with (10) proves the result.
The above proof is simple; it basically averages out each $\operatorname{LCS}(\cdot, \cdot)$ as $\sqrt[3]{n}$ on the summation weighted by P. However, in view of the original conjecture, our partial results, as well as those mentioned in the introductory section, the cubic root lower-bound is not tight. Apart from our curiosity concerning this \sqrt{n} conjecture, it would be interesting to know the exact asymptotic order of the smallest eigenvalue $\lambda_{1}^{(n)}$ of $L^{(n)}$. In contrast, the largest eigenvalue $\lambda_{n!}^{(n)}$ corresponding to the uniform distribution is known to be asymptotically of order $2 n!\sqrt{n}$, since it is equal to the length of the LISs of a uniform random permutation of $[n]$ scaled by $n!$. In this sense, the study of the length of the LCSs between a pair of i.i.d. random permutations having an arbitrary distribution, or equivalently, the study of $L^{(n)}$, can be viewed as an extension of the study of the length of the LISs of a uniform random permutation of $[n]$. Having a complete knowledge of the distribution of all the eigenvalues of $L^{(n)}$ would be a nice achievement.

References

[1] Paul Beame and Dang-Trinh Huynh-Ngoc. On the value of multiple read/write streams for approximating frequency moments. In Foundations of Computer Science, 2008. FOCS'08. IEEE 49th Annual IEEE Symposium on, pages 499-508. IEEE, 2008.
[2] Boris Bukh and Lidong Zhou. Twins in words and long common subsequences in permutations. Israel Journal of Mathematics, 213(1):183-209, 2016.
[3] Christian Houdré and Ümit Işlak. A central limit theorem for the length of the longest common subsequence in random words. arXiv:1408.1559v4, 2017.
[4] Shaiy Pilpel. Descending subsequences of random permutations. Journal of Combinatorial Theory, Series A, 53(1):96-116, 1990.
[5] Dan Romik. The surprising mathematics of longest increasing subsequences, volume 4. Cambridge University Press, 2015.

[^0]: *Research supported in part by the grants \# 246283 and \# 524678 from the Simons Foundation.

