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Abstract

We address a question and a conjecture on the expected length of the longest
common subsequences of two i.i.d. random permutations of [n] := {1, 2, ..., n}. The
question is resolved by showing that the minimal expectation is not attained in the
uniform case. The conjecture asserts that

√
n is a lower bound on this expectation,

but we only obtain 3
√
n for it.

Mathematics Subject Classifications: 05A05, 60C05

1 Introduction

The length of the longest increasing subsequences (LISs) of a uniform random permutation
σ ∈ Sn (where Sn is the symmetric group) is well studied and we refer to the monograph
[5] for precise results and a comprehensive bibliography on this subject. Recently, [3]
showed that for two independent random permutations σ1, σ2 ∈ Sn, and as long as σ1 is
uniformly distributed and regardless of the distribution of σ2, the length of the longest
common subsequences (LCSs) of the two permutations is identical in law to the length of
the LISs of σ1, i.e. LCS(σ1, σ2) =L LIS(σ1). This equality ensures, in particular, that
when σ1 and σ2 are uniformly distributed, ELCS(σ1, σ2) is upper bounded by 2

√
n, for

any n, (see [4]) and asymptotically of order 2
√
n ([5]). It is then rather natural to study

the behavior of LCS(σ1, σ2), when σ1 and σ2 are i.i.d. but not necessarily uniform. In
this respect, Bukh and Zhou raised, in [2], two issues which can be rephrased as follows:
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Conjecture/Question 1. Let P be an arbitrary probability distribution on Sn. Let σ1
and σ2 be two i.i.d. permutations sampled from P . Then EP [LCS(σ1, σ2)] >

√
n. It

might even be true that the uniform distribution U on Sn gives a minimizer.

Below we prove the suboptimality of the uniform distribution by explicitly building
a distribution having a smaller expectation. In the next section, before presenting and
proving our main result, we give a few definitions and formalize this minimizing problem as
a quadratic programming one. Section 3 further explore some properties of the spectrum
of the coefficient matrix of our quadratic program. In the concluding section, a quick
cubic root lower bound is given along with a few pointers for future research.

2 Main Results

We begin with a few notations. Throughout, σ and π are, respectively, used for random
and deterministic permutations. By convention, [n] := {1, 2, 3, ..., n} and so {πi}i∈[n!] = Sn
is a particular ordered enumeration of Sn. (Some other orderings of Sn will be given when
necessary.) Next, a random permutation σ is said to be sampled from P = (pi)i∈[n!],
if PP (σ = πi) = pi. The uniform distribution is therefore U = (1/n!)i∈[n!] and, for
simplification, it is denoted by E/n!, where E = (1)i∈[n!] is the n-tuple only made up of
ones. When needed, a superscript will indicate the degree of the symmetric group we are
studying, e.g., σ(n) and P (n) are respectively a random permutation and distribution from
Sn.

Let us now formalize the expectation as a quadratic form:

EP [LCS(σ1, σ2)] =
∑
i,j∈[n!]

piLCS(πi, πj)pj

=
∑
i,j∈[n!]

pi`ijpj = P TL(n)P, (1)

where `ij := LCS(πi, πj) and L(n) := {`ij}(i,j)∈[n!]×[n!]. It is clear that `ij = `ji and that
`ii = n. A quick analysis of the cases n = 2 or 3 shows that both L(2) and L(3) are positive
semi-definite. However, this property does not hold further:

Lemma 2. For n > 4, the smallest eigenvalue λ
(n)
1 of L(n) is negative.

Proof. Linear algebra gives λ
(2)
1 = 1 and λ

(3)
1 = 0. So to prove the result, it suffices to

show that λ
(k+1)
1 < λ

(k)
1 , k > 1 and this is done by induction. The base case is true, since

λ
(2)
1 = 1 > 0 = λ

(3)
1 . To reveal the connection between L(k+1) and L(k), the enumeration

of Sk+1 is iteratively built on that of Sk by inserting the new element (k + 1) into the
permutations from Sk in the following way: the enumeration of the (k+ 1)! permutations
is split into (k + 1) trunks of equal size k!. In the ith trunk, the new element (k + 1) is
inserted behind the (k+ 1− i)th digit in the permutation from Sk. (For example, if S2 is
enumerated as {[12], [21]}, then the enumeration of the first trunk in S3 is {[123], [213]},
the second is {[132], [231]} and the third is {[312], [321]}. Then the overall enumeration
for S3 is {[123], [213], [132], [231], [312], [321]}.)
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Via this enumeration, the principal minor of size k! × k! is row and column indexed
by the enumeration of the permutations {π(k)

i }i∈[k!] from Sk with (k+ 1) as the last digit,

i.e., {[π(k)
i (k + 1)]}i∈[k!] ⊆ Sk+1. Then the (i, j) entry of the submatrix is

LCS([πi(k + 1)], [πj(k + 1)]) = LCS(πi, πj) + 1,

since the last digit (k + 1) adds an extra element into the longest common subsequences.
Hence, the k!× k! principal minor of L(k+1) is L(k) +E(k)(E(k))T , where E(k) is the vector
of Rk! only made up of ones. Moreover, notice that the sum of the πi-indexed row of L(k)

is ∑
j∈[k!]

LCS(πi, πj) =
∑
j∈[k!]

LCS(id, π−1i πj)

=
∑
j∈[k!]

LIS(π−1i πj),

since simultaneously relabeling πi and πj does not change the length of the LCSs and
also since a particular relabeling to make πi to be the identity permutation, which is
equivalent to left composition by π−1i , is applied here. Further, any LCS of the identity
permutation and of π−1i πj is a LIS of π−1i πj and vice versa. So the row sum is equal to∑

j∈[k!]

LIS(π−1i πj) =
∑
π∈Sk

LIS(π),

since left composition by π−1i is a bijection from Sk to Sk. This indicates that all the row
sums of L(k) are equal. Hence, E(k) is actually a right eigenvector of L(k) and is associated
with the row sum

∑
π∈Sk LIS(π) > 0 as its eigenvalue, which is distinct from the smallest

eigenvalue λ
(k)
1 6 0.

On the other hand, since L(k) is symmetric, the eigenvectors R
(k)
1 and E(k) associated

with the eigenvalues λ
(k)
1 and

∑
π∈Sk LIS(π) are orthogonal, i.e.,

(E(k))TR
(k)
1 = 0. (2)

Without loss of generality, let R
(k)
1 be a unit vector, then from (2),

λ
(k)
1 = (R

(k)
1 )TL(k)(R

(k)
1 )

= (R
(k)
1 )T (L(k) + E(k)(E(k))T )R

(k)
1 . (3)

As L(k) + E(k)(E(k))T is the k!× k! principal minor of L(k+1), (3) becomes[
R

(k)
1

0

]T
L(k+1)

[
R

(k)
1

0

]
> min

RTE=0,||R||=1
RTL(k+1)R = λ

(k+1)
1 , (4)
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where R
(k)
1 is properly extended to

[
R

(k)
1

0

]
∈ R(k+1)! and where the above inequality holds

true since

[
R

(k)
1

0

]T
E(k+1) = (R

(k)
1 )TE(k) = 0 and

∥∥∥∥[ R(k)
1

0

]∥∥∥∥ =
∥∥∥R(k)

1

∥∥∥ = 1, where ‖·‖

denotes the corresponding Euclidean norm. Moreover, equality in (4) holds if and only if[
R

(k)
1

0

]
is a eigenvector of L(k+1) associated with λ

(k+1)
1 . We show next, by contradiction,

that this cannot be the case. Indeed, assume that

L(k+1)

[
R

(k)
1

0

]
= λ

(k+1)
1

[
R

(k)
1

0

]
. (5)

Now, consider the k! × k! submatrix at the bottom-left corner of L(k+1), which is row-
indexed by {[(k + 1)πi]}i∈[k!] and column-indexed by {[πi(k + 1)]}i∈[k!]. Notice that the
(i, j)-entry of this submatrix is

LCS([(k + 1)πi], [πj(k + 1)]) = LCS(πi, πj),

since (k + 1) can be in some LCS only if the length of this LCS is 1. So this submatrix
is in fact equal to L(k). Further, the vector consisting of the bottom k! elements on the
left-hand-side of (5) is L(k)R

(k)
1 = λ

(k)
1 R

(k)
1 , which is a non-zero vector. However, on the

right-hand-side, the corresponding bottom k! elements of the vector

[
R

(k)
1

0

]
form the

zero vector. This leads to a contradiction. So,

λ
(2)
1 = 1 > 0 = λ

(3)
1 > λ

(4)
1 > λ

(5)
1 . . .

The above result on the smallest negative eigenvalue, and its associated eigenvector,
will help build a distribution on Sn, for which the LCSs have a smaller expectation than
for the uniform one.

Theorem 3. Let σ1 and σ2 be two i.i.d. random permutations sampled from a distribution
P on the symmetric group Sn. Then, for n 6 3, the uniform distribution U minimizes
Ep[LCS(σ1, σ2)], while, for n > 4, U is sub-optimal.

Proof. As we have seen in (1),

EP [LCS(σ1, σ2)] = P TLP

= (P − U)TL(P − U) + 2P TLU − UTLU

= (P − U)TL(P − U) + 2UTLU − UTLU

= (P − U)TL(P − U) + UTLU, (6)

where P TLU = UTLU , since U is an eigenvector of L and P TU = 1.
When n = 2, 3, L(n) is positive semi-definite and therefore (P − U)TL(P − U) > 0.

So, P TLP > UTLU .
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However, when n > 4, by Lemma 2, the smallest eigenvalue λ
(n)
1 is strictly negative

and the associated eigenvector R
(n)
1 is such that UTR

(n)
1 = 0 = ETR

(n)
1 . Hence, there

exists a positive constant c such that cR
(n)
1 � −1/n!, where � stands for componentwise

inequality. Let P0 be such that P0 − U = cR
(n)
1 , then it is immediate that

ETP0 = ET (U + cR
(n)
1 ) = 1 + 0 = 1,

and that
P0 = U + cR

(n)
1 � 0.

Therefore, P0 is a well-defined distribution on Sn. On the other hand, by (6), the expec-
tation under P0 is such that

EP0 [LCS(σ1, σ2)] = (P0 − U)TL(P0 − U) + UTLU

= c2(R
(n)
1 )TL(R

(n)
1 ) + UTLU

= c2λ
(n)
1 + UTLU

< UTLU. (7)

However, the right-hand side of (7) is nothing but the expectation under the uniform
distribution, namely, EU [LCS(σ1, σ2)].

The existence of negative eigenvalues contributes to the above construction and to the
corresponding counterexample. So, as a next step, properties of this smallest negative
eigenvalue and of the spectrum of the coefficient matrix L(n) are explored.

3 Further Properties of L(n)

As we have seen, the vector E(n) which is made up of only ones is an eigenvector associated
with the eigenvalue

∑
π∈Sn

LIS(π). It is not hard to show that this eigenvalue is, in fact,

the spectral radius of L(n).

Proposition 4.
∑

π∈Sk
LIS(π) is the spectral radius of L(n).

Proof. Without loss of generality, let (λ,R) be a pair of eigenvalue and corresponding
eigenvector of L(n) such that maxi∈[n!] |ri| = 1, where R = (r1, ..., rn!)

T , and let i0 be the
index such that |ri0| = 1. Let us focus now on the i0th element of λR. Then, since
L(n)R = λR,

|λ| = |λri0|

=

∣∣∣∣∣∣
∑
j∈[n!]

LCS(πi0 , πj)rj

∣∣∣∣∣∣
6

∑
j∈[n!]

LCS(πi0 , πj)
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=
∑
j∈[n!]

LIS(π−1i0 πj)

=
∑
π∈Sn

LIS(π),

with equality if and only if all the rj’s have the same sign and have absolute value equal
to 1.

This gives a trivial bound on the smallest negative value λ
(n)
1 : namely,

λ
(n)
1 > −

∑
π∈Sn

LIS(π).

Moreover, since the expectation of the longest increasing subsequence of a uniform random
permutation is asymptotically 2

√
n, this gives an asymptotic order of −2n!

√
n for the

lower bound. On the other hand, we are interested in an upper bound for λ
(n)
1 . The next

result shows that λ
(n)
1 decreases at least exponentially fast, in n.

Proposition 5. λ
(n)
1 6 2n−4λ

(4)
1 = −2n−3 < 0.

Proof. This is proved by showing that λ
(n+1)
1 6 2λ

(n)
1 . As well known,

λ
(n+1)
1 = min

ETR=0

RTL(n+1)R

RTR
. (8)

Let λ
(n)
1 be the smallest eigenvalues of L(n) and let R(n) be the corresponding

eigenvector. Then, in generating L(n+1) from L(n) as done in the proof of Lemma 2, the
n!× n! principal minor of L(n+1) is L(n) + EET , while its bottom-left n!× n! submatrix
is L(n). Symmetrically, it can be proved that the top-right n!× n! submatrix is also L(n),
while the bottom-right n!× n! submatrix is L(n) + EET , i.e., L(n+1) is L(n) + EET · · · L(n)

...
. . .

...
L(n) · · · L(n) + EET

 .
Further, let

R =


R

(n)
1

0
...
0

R
(n)
1

 .

Then ETR = ETR
(n)
1 + ETR

(n)
1 = 0, where, by an abuse of notation, E denotes the

vector only made up of ones and of the appropriate dimension. Also,

‖R‖2 = RTR = 2
∥∥∥R(n)

1

∥∥∥2 = 2.
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In (8), the corresponding numerator RTL(n+1)R is
R

(n)
1

0
...
0

R
(n)
1



T  L(n) + EET · · · L(n)

...
. . .

...
L(n) · · · L(n) + EET



R

(n)
1

0
...
0

R
(n)
1


= 2

(
R

(n)
1

)T (
L(n) + EET

) (
R

(n)
1

)
+ 2

(
R

(n)
1

)T
L(n)

(
R

(n)
1

)
= 4

(
R

(n)
1

)T
L(n)

(
R

(n)
1

)
= 4λ

(n)
1 .

Thus,
λ
(n+1)
1 6 2λ

(n)
1 .

By a very similar method, it can also be proved, as shown next, that the second largest
eigenvalue λ

(n)
n!−1, which is positive, grows at least exponentially fast.

Proposition 6. λ
(n)
n!−1 > 2n−2λ

(2)
1 = 2n−2 > 0.

Proof. Using the identity

λ
(n+1)
(n+1)!−1 = max

ETR=0

RTL(n+1)R

RTR
,

with a particular choice of

R =


R

(n)
n!−1
0
...
0

R
(n)
n!−1

 ,

where R
(n)
n!−1 is the eigenvector associated with the second largest eigenvalue λ

(n)
n!−1 of L(n),

leads to λ
(n+1)
(n+1)!−1 > 2λ

(n)
n!−1 and thus proves the result.

The above bounds for λ
(n)
1 and λ

(n)
n!−1 are far from tight even as far as their asymptotic

orders are concerned. Numerical evidence is collected in the following table:

n λ
(n)
1 λ

(n+1)
1 /λ

(n)
1 λ

(n)
n!−1 λ

(n+1)
(n+1)!−1/λ

(n)
n!−1

4 −2 1 6.6055 1
5 −5.0835 2.5417 30.0293 4.5460
6 −20.2413 3.9817 166.1372 5.5324
7 −102.9541 5.0860 1083.7641 6.5233

.
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A reasonable conjecture will be that both the smallest and the second largest eigen-
values grow at a factorial-like speed. More precisely, we believe that

lim
n→+∞

λ
(n+1)
1

λ
(n)
1 (n− 1)

= c1 > 1,

and that

lim
n→+∞

λ
(n+1)
(n+1)!−1

λ
(n)
n!−1(n+ 1/2)

= c2 > 1.

4 Concluding Remarks

The
√
n lower-bound conjecture of Bukh and Zhou is still open and seems quite reasonable

in view of the fact that ELCS(σ1, σ2) ∼ 2
√
n, in case σ1 is uniform and σ2 arbitrary (again,

see [3]). We do not have a proof of this conjecture, but let us nevertheless present, next,
a quick 3

√
n lower bound result.

We start with a lemma describing a balanced property among the lengths of the LCSs
of pairs of any three arbitrary deterministic permutations. This result is essentially due
to Beame and Huynh-Ngoc ([1]).

Lemma 7. For any πi ∈ Sn (i = 1, 2, 3),

LCS(π1, π2)LCS(π2, π3)LCS(π3, π1) > n.

Proof. The proof of Lemma 5.9 in [1] applies here with slight modification. We further
note that this inequality is tight, since letting π1 = π2 = id and π3 = rev(id), which is the
reversal of the identity permutation gives, LCS(π1, π2)LCS(π2, π3)LCS(π3, π1) = n.

In Lemma 7, taking (π1, π2) = (id, rev(id)) gives, for any third permutation π3,
LCS(id, π3)LCS(rev(id), π3) > n/LCS(id, rev(id)) = n. But, since LCS(id, π3) and
LCS(rev(id), π3) are respectively the lengths of the longest increasing/decreasing sub-
sequences of π3, this lemma can be considered to be a generalization of a well-known
classical result of Erdös and Szekeres (see [5]).

We are now ready for the cubic root lower bound.

Proposition 8. Let P be an arbitrary probability distribution on Sn and let σ1 and σ2 be
two i.i.d. random permutations sampled from P . Then, for any n > 1, EP [LCS(σ1, σ2)] >
3
√
n.

Proof. Let π1, π2 and π3 ∈ Sn and set

L(πi) :=
∑
π1∈Sn

p(π1)LCS(π1, πi) =
∑
π1∈Sn

LCS(πi, π1)p(π1),

for i = 2, 3. Then,

L(π2) + LCS(π2, π3) + L(π3)
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=
∑
π1∈Sn

p(π1)(LCS(π1, π2) + LCS(π2, π3) + LCS(π3, π1)) = 3 3
√
n
∑
π1∈Sn

p(π1) = 3 3
√
n, (9)

by the arithmetic mean-geometric mean inequality and the previous lemma. Further,
summing over p(π2) in (9) gives:∑

π2∈Sn

p(π2)(L(π2) + LCS(π2, π3) + L(π3))

=
∑
π2∈Sn

p(π2)L(π2) + L(π3) + L(π3) > 3 3
√
n.

Repeating this last procedure but with weights over p(π3) leads to∑
π2∈Sn

p(π2)L(π2) + 2
∑
π3∈Sn

p(π3)L(π3) = 3
∑
π∈Sn

p(π)L(π) > 3 3
√
n. (10)

However,

EP [LCS(σ1, σ2)] =
∑
π1∈Sn

∑
π2∈Sn

p(π1)LCS(π1, π2)p(π2)

=
∑
π1∈Sn

p(π1)
∑
π2∈Sn

LCS(π1, π2)p(π2)

=
∑
π∈Sn

p(π)L(π).

Combining this last identity with (10) proves the result.

The above proof is simple; it basically averages out each LCS(·, ·) as 3
√
n on the sum-

mation weighted by P . However, in view of the original conjecture, our partial results,
as well as those mentioned in the introductory section, the cubic root lower-bound is not
tight. Apart from our curiosity concerning this

√
n conjecture, it would be interesting to

know the exact asymptotic order of the smallest eigenvalue λ
(n)
1 of L(n). In contrast, the

largest eigenvalue λ
(n)
n! corresponding to the uniform distribution is known to be asymp-

totically of order 2n!
√
n, since it is equal to the length of the LISs of a uniform random

permutation of [n] scaled by n!. In this sense, the study of the length of the LCSs between
a pair of i.i.d. random permutations having an arbitrary distribution, or equivalently, the
study of L(n), can be viewed as an extension of the study of the length of the LISs of a
uniform random permutation of [n]. Having a complete knowledge of the distribution of
all the eigenvalues of L(n) would be a nice achievement.
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