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Abstract

We provide a classification of the homogeneous 3-dimensional permutation struc-
tures, i.e. homogeneous structures in a language of 3 linear orders, partially answering
a 2002 question of Cameron. We also arrive at a natural description of all known ho-
mogeneous finite-dimensional permutation structures by modifying the language used
in the construction from [Samuel Braunfeld, Electronic Journal of Combinatorics,
2016], completing the catalog begun there.

Mathematics Subject Classifications: 03C13, 03C50

1 Introduction

In [3], Cameron classified the homogeneous permutations, which he identified with homoge-
neous structures consisting of two linear orders. He then posed the problem of classifying
the homogeneous structures consisting of n linear orders for any n [3, §6], which we call
n-dimensional permutation structures. The first step toward such a classification is to
produce a catalog of examples occurring “in nature”, undertaken in [1], which introduced
a construction for producing many new imprimitive examples. However, the construction
did not quite capture all examples that were known at the time (see Examples 1,2 in §2
below).

While working in [2] on the structural Ramsey property for the structures from [1],
it became apparent that rather than working with linear orders, the proper language
decomposes linear orders that are E-convex, i.e. such that E-classes are convex with
respect to the order, for some ∅-definable equivalence relation E into an order within
E-classes and an order on the quotient; we call these pieces of orders subquotient orders.

Definition 1. Let X be a structure, and E 6 F equivalence relations on X. A subquotient-
order from E to F is a partial order on X/E in which two E-classes are comparable iff
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they lie in the same F -class (note, this pulls back to a partial order on X). Thus, this
partial order provides a linear order of C/E for each C ∈ X/F . We call E the bottom
relation and F the top relation of the subquotient-order.

When the construction from [1] is carried out with subquotient orders rather than linear
orders, it produces all known examples of homogeneous finite-dimensional permutation
structures. The following question asks whether the list produced by this modified
construction is complete, using terminology introduced in [2] and reviewed in §2.

Question 2. Is every homogeneous finite-dimensional permutation structure with lattice
of ∅-definable equivalence relations isomorphic to Λ interdefinable with the Fräıssé limit of
some well-equipped lift of the class of all finite Λ-ultrametric spaces, for some distributive
lattice Λ?

The following classification in the primitive case was conjectured in [1]. We show in
Proposition 19 that this would follow from a positive answer to the above question.

Conjecture 3 (Primitivity Conjecture, [1]). Every primitive homogeneous finite dimen-
sional permutation structure can be constructed by the following procedure.

1. Identify certain orders, up to reversal.

2. Take the Fräıssé limit of the resulting amalgamation class, getting a fully generic
structure, possibly in a simpler language.

For example, the primitive permutations in Cameron’s classification are obtained by
identifying the two orders to get (Q, <,<), identifying the second order as the reversal of
the first to get (Q, <,>), or making no identifications to get the Fräıssé limit of all finite
permutations.

We next extract a consequence of the Primitivity Conjecture. Lemma 21 proves this
subconjecture for k = 3, and it seems it should be tractable for several further small values
of k via the methods used there.

Conjecture 4. Let Γ be a homogeneous k-dimensional permutation structure realizing
all 3-types. Then Γ is fully generic.

The main result of the present paper is the following classification of the homogeneous
3-dimensional permutation structures, which gives a positive answer to Question 2 in this
case.

Definition 5. Given structures Γ1,Γ2, the composition of Γ1 with Γ2, denoted Γ1[Γ2], is
the structure obtained by expanding Γ1 with an equivalence relation E, and replacing the
points of Γ1 by E-classes that are copies of Γ2.

Theorem 6 (The Catalog). Let (Γ, <1, <2, <3) be a homogeneous 3-dimensional permuta-

tion structure. We use Γ
(g)
i to denote the generic i-dimensional permutation structure; in

particular Γ
(g)
0 is a set equipped only with equality. Then Γ is quantifier-free interdefinable

with one of the following 16 structures.
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1. Γ has no non-trivial ∅-definable congruence

(a) Γ is primitive: Γ = Γ
(g)
1 ,Γ

(g)
2 , or Γ

(g)
3 .

(b) Γ is imprimitive: Γ is the expansion by a generic linear order of Γ
(g)
1 [Γ

(g)
j ], for

j ∈ { 0, 1 }.

2. Γ has a non-trivial ∅-definable congruence

(a) Γ is a repeated composition of primitive structures: For any multisubset I ⊂
{ 1, 2 } such that |I| > 1 and

∑
i∈I 2i 6 8, Γ is the composition in any order of

Γ
(g)
i for i ∈ I.

(b) Γ is a composition of primitive and imprimitive structures: Let Γ∗ denote the

structure from (1b) with j = 0. Then Γ = Γ∗[Γ
(g)
1 ] or Γ

(g)
1 [Γ∗].

The classification proceeds in two stages. First, we confirm the Primitivity Conjecture
for 3 orders using explicit amalgamation arguments. Then for the imprimitive case, we
pick a minimal non-trivial equivalence relation E. The Primitivity Conjecture makes it
fairly clear what happens on E-classes, and some analysis of the type structure between
E-classes eventually allows us to carry out an inductive classification.

Corollary 7. Every homogeneous 3-dimensional permutation structure is interdefinable
with the Fräıssé limit of some well-equipped lift of the class of all finite Λ-ultrametric
spaces, for some distributive lattice Λ.

Despite the fact that assuming a positive answer to Question 2 gives a simple de-
scription of all finite-dimensional permutation structures, it is difficult to determine the
corresponding catalog for a fixed number of linear orders. This is because it is not known
what lattices of ∅-definable equivalence relations can be realized with a given number of
orders (this problem is discussed, and an upper bound provided, in [1, §3.4]), nor is it true
that one needs at most n orders to represent a structure with at most 2n 2-types.

Question 8. Given a lattice Λ, what is the minimal n such that Λ is isomorphic to the
lattice of ∅-definable equivalence relations of some homogeneous n-dimensional permutation
structure?

Given a homogeneous finite-dimensional permutation structure Γ presented in a lan-
guage of equivalence relations and subquotient orders, what is the minimal n such that Γ
is quantifier-free interdefinable with an n-dimensional permutation structure?

Thus, Corollary 7 is not proven by first producing a conjectural classification and then
confirming it. Rather, it is proven by observing that all the structures appearing in the
classification may be presented appropriately.

Finally, although we have a positive answer to Question 2 in the case of 3 orders, a
plausible exceptional imprimitive structure arises in the analysis (see Lemma 48) that
is ultimately shown not to exist. However, the proof of non-existence makes use of the
limited type structure with 3 orders, and it seems possible similar structures will appear
in the richer languages afforded by more orders.

the electronic journal of combinatorics 25(2) (2018), #P2.52 3



2 Λ-Ultrametric Spaces and Subquotient Orders

This section is not strictly needed for the classification of the 3-dimensional case, but does
provide context by giving the necessary background for Question 2. Because we hewed
to the language of linear orders, we were unable to provide a satisfactory catalog in [1]
of homogeneous finite-dimensional permutation structures, since some known examples
were not produced by the construction. After modifying the construction to work with
subquotient orders, we show such examples, for which we can now give a straightforward
description. The notion of a well-equipped lift, which ensures that we may translate from
the language of subquotient orders to linear orders, is then introduced, thus defining all
the terms in Question 2, which in turn provides a conclusion to our catalog. Finally, we
show that Question 2 subsumes the Primitivity Conjecture from [1].

Definition 9. Let Λ be a complete lattice. A Λ-ultrametric space is a metric space where
the metric takes values in Λ and the triangle inequality involves join rather than addition,
i.e. d(x, z) 6 d(x, y) ∨ d(y, z).

The following theorem shows that Λ-ultrametric spaces are equivalent to structures
equipped with a lattice of equivalence relations isomorphic to Λ, or to substructures of
such structures. While the lattice of equivalence relations may collapse when passing to a
substructure, such as a single point, Λ-ultrametric spaces have the benefit of keeping Λ
fixed under substructures.

Theorem 10 ([1]). For a given finite lattice Λ, there is an isomorphism between the
category of Λ-ultrametric spaces and the category of structures consisting of a set equipped
with a family of equivalence relations, closed under taking intersections in the lattice of all
equivalence relations on the set, and labeled by the elements of Λ in such a way that the
map from Λ to the lattice of equivalence relations is meet-preserving. Furthermore, the
functors of this isomorphism preserve homogeneity.

Although we do not prove this theorem here, we will define the functors giving this
isomorphism. Given a system of equivalence relations as specified above, we obtain the
corresponding Λ-ultrametric space by taking the same universe and defining d(x, y) =∧
{λ ∈ Λ | xEλy }. In the reverse direction, given a Λ-ultrametric space, we obtain the

corresponding structure of equivalence relations by taking the same universe and defining
Eλ = { (x, y) | d(x, y) 6 λ }.

Since the lattices we are considering will always be finite, they will have a top and
bottom element, denoted 1 and 0, respectively. Thus, d(x, y) = 0 iff x = y.

For every finite distributive lattice Λ, a construction was given in [1] producing a
countable homogeneous finite-dimensional permutation structure Γ, such that the lattice
of ∅-definable equivalence relations in Γ is isomorphic to Λ. The structure Γ is naturally
presented as a Λ-ultrametric space, equipped with multiple orders. When Λ is distributive,
the class of all finite Λ-ultrametric spaces is an amalgamation class. The structure Γ is
constructed by taking the generic Λ-ultrametric space, and adding linear orders that are
generic, except that they are required to be convex with respect to a prescribed set of

the electronic journal of combinatorics 25(2) (2018), #P2.52 4



equivalence relations corresponding to a chain of meet-irreducibles in Λ; enough such linear
orders have to be added so that every meet-irreducible is convex with respect to at least
one order, and there are further complications if 0 (equality) is meet-reducible.

Working at the level of subquotient orders requires a straightforward revision of the
proof of amalgamation in [1, Lemma 3.7]. The proof is actually simplified by the language
change, eliminating a special case the construction required when 0 is meet-reducible. This
yields the following theorem.

Theorem 11. Let Λ be a finite distributive lattice, and Γ the generic Λ-ultrametric space.
For each meet-irreducible E ∈ Λ, fix a function fE : {F ∈ Λ | E < F } → N. Then there
is a homogeneous expansion of Γ, which is generic in a natural sense, adding, for each
meet-irreducible E ∈ Λ and F > E, fE(F ) subquotient orders from E to F .

To be more precise, the following holds. Let A∗ be the class of finite structures
(A, d, {<Ei,j }

ni

j=1) satisfying the following conditions.

• (A, d) is a Λ-ultrametric space.

• <Ei,j is a subquotient order with bottom relation Ei, for some meet-irreducible Ei ∈ Λ,
and top relation Fi,j ∈ Λ.

Then A∗ is an amalgamation class, and its Fräıssé limit is the desired expansion if {Ei }
and {Fi,j } are chosen to match fE from above.

Proof. See Appendix A.

We now define two useful constructions with subquotient orders, and then give two
examples of homogeneous finite-dimensional permutation structures not produced by
the construction of [1], but which can be produced once linear orders are replaced by
subquotient orders.

Definition 12. If x is an E-class, and F an equivalence relation above E, then x/F will
represent the F -class containing x.

Definition 13. Let <E,F be a subquotient order with bottom relation E and top relation
F , and let <F,G be a subquotient order with bottom relation F and top relation G. Then
the composition of <F,G with <E,F , denoted <F,G [<E,F ], is the subquotient order with
bottom relation E and top relation G given by x <F,G [<E,F ] y iff either of the following
holds.

1. x and y are in the same F -class, and x <E,F y

2. x and y are in distinct F -classes, and x/F <F,G y/F .

Definition 14. Let <E,F be a subquotient order with bottom relation E and top relation
F , and let G be an equivalence relation lying between E and F . Then the restriction of
<E,F to G, denoted <E,F �G, is the subquotient order with bottom relation E and top
relation G given by x <E,F �G y iff x and y are in the same G-class and x <E,F y.
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Example 15. Let A be the amalgamation class consisting of all finite structures in the
language {E,<1, <2 }, where E is an equivalence relation, <1 is a linear order, and <2 is
an E-convex linear order that agrees with <1 on E-classes.

Let A′ be the class of all finite structures in the language {E ′, <′1, <′2 }, where E ′ is an
equivalence relation, <′1 is a subquotient order from = to 1, and <′2 a subquotient order
from E ′ to 1. This is also an amalgamation class, and its Fräıssé limit Γ′ is interdefinable
with the Fräıssé limit Γ of A.

To define Γ from Γ′, let <1 = <′1, and let <2 = <′2 [<′1�E]. To define Γ′ from Γ, let
<′1 = <1, and let x <′2 y iff ¬xEy and x <2 y.

We note that in Theorem 6, this is the structure in (1b) with j = 0.

Example 16. For a more complex example of the use of subquotient orders, consider
the full product Q2. This is a homogeneous structure with universe Q2 in the language
{E1, E2, <1, <2 }, where E1 and E2 are the relations defined by agreement in the first and
second coordinates, respectively, <1 is a generic subquotient order from E1 to 1, and <2

is a generic subquotient order from E2 to 1.
Since E1 ∧ E2 = 0, we see that <1 defines a linear ordering on each E2-class, and

<2 defines a linear ordering on each E1-class. Thus, the composition (abusing notation
slightly) <1 [<2] defines an E1-convex linear order, and <2 [<1] defines an E2-convex linear
order.

As this structure requires four linear orders, it does not appear in our catalog.

It is not clear how either of these examples can be produced by a generic construction
using linear orders. Neither can be obtained by the construction from [1]. There the
only constraints we put on the linear orders were convexity conditions, which involves
forbidding substructures of order 3. However, in Example 1, we must forbid a substructure
of order 2 to force <1 and <2 to agree between E-related points. In Example 2, we must
forbid the following substructure of order 4 (as well as another symmetric substructure):

1. x1E1x2, y1E1y2, ¬x1E1y1

2. x1E2y1, x2E2y2, ¬x1E2x2

3. x1 <1 x2, y2 <1 y1

Definition 17. Let Λ be a finite distributive lattice, and let L be a language consisting of
relations for the distances in Λ and finitely many subquotient orders, labeled with their top
and bottom relations. We say that the language L is Λ-well-equipped if E ∈ Λ appears as
the bottom relation of some subquotient order in L with distinct bottom and top relations
iff E is meet-irreducible, for every E ∈ Λ.

If AΛ is the class of all finite Λ-ultrametric spaces, and L a Λ-well-equipped language,
we will call ~AΛ a well-equipped lift of AΛ if it consists of all finite Λ-ultrametric spaces
equipped with subquotient orders from L.

Proposition 18 ([2], Proposition 3.12). Let Λ be a finite distributive lattice, AΛ be the

class of all finite Λ-ultrametric spaces, and ~AΛ a well-equipped lift of AΛ, with Fräıssé
limit ~Γ. Then the relations of ~Γ are interdefinable with a set of linear orders.
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We close this section by showing the Primitivity Conjecture follows from a positive
answer to Question 2.

Proposition 19. Let Γ be the generic n-dimensional permutation structure, in the language
{<1, . . . , <n }, and let < be a definable linear order on Γ. Then there is an i ∈ [n] such
that < = <i or < = <opp

i .

Proof. Note that < must be a union of 2-types ∪qi, and for each 2-type, exactly one of it
and its opposite must be appear as some qi. We may assume q0 = {x <1 y, . . . , x <n y }.
If the conclusion is false, then for each i ∈ [n], there must be a type pi = qj for some j,
such that pi ` y <i x.

Now consider the partial structure on {x1, . . . , xn+1 } given by setting pi(xi, xi+1) for
each i ∈ [n]. For each i ∈ [n], looking at <i gives a directed acyclic graph, whose transitive
closure is a partial order in which x1 and xn are <i-incomparable. This can then be
completed to a linear order in which xn <i x1.

Each <i is a linear order in the resulting structure, which is thus a substructure of Γ.
However, we have x1 < · · · < xn but xn < x1. Thus < is not transitive on this structure,
and so does not define a linear order on Γ.

3 The Primitive Case

In this section, we classify the primitive homogeneous 3-dimensional permutation structures,
obtaining the following.

Theorem 20. The primitive homogeneous 3-dimensional permutation structures are as
predicted by the Primitivity Conjecture.

The main lemmas needed for the proof are below.

Lemma 21. Suppose (Γ;<1, <2, <3) is homogeneous and contains all 3-types. Then Γ is
generic.

Lemma 22. Let Γ be a primitive homogeneous 3-dimensional permutation structure. Then
all 3-types involving realized 2-types are realized.

Proposition 23 ([1], Proposition 5.1). Let K be an amalgamation class of n-dimensional
permutation structures. If all 3-types involving realized 2-types are realized, then the
forbidden 2-types specify that certain orders agree up to reversal.

Proof of Theorem 20. By Lemma 22 all 3-types involving realized 2-types are realized.
Thus, if no 2-types are forbidden, all 3-types are realized, and so by Lemma 21, the
resulting structure is generic. If some 2-types are forbidden, then by Proposition 23, some
orders agree up to reversal. Thus the resulting structure is quantifier-free interdefinable
with a primitive homogeneous 2-dimensional permutation structure. By the classification
in [3], these satisfy the Primitivity Conjecture.
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The amalgamation diagram appearing in the following definition is the key to the proof
of Proposition 23, and will be used elsewhere in this section.

Definition 24. Give 2-types p, q, r, the (p, q, r)-majority diagram is the following amal-

gamation diagram, where x1
q→ x3 holds (and follows from x1

q→ x2
q→ x3), but is not

drawn.

x1•

a1�
p
-

p
-

•x2

q
? r

- �a2

q

-

•
x3

q
?

r

-

q -

Figure 1

Remark 25. We offer some guidance on interpreting the above amalgamation diagram.
Solid points lie in the base, while circled points lie outside the base; those on the left are
in the first factor, while those on the right are in the second. Labeled arrows indicate
2-types. The diagram is completed by determining tp(a1, a2).

The following was proven in [1, Proposition 5.1].

Lemma 26. There is a unique solution to the (p, q, r)-majority diagram, given by a1 <i a2

iff <i is true in the majority of p, q, and r.

3.1 Reduction to 3-types

The following lemma strengthens an argument appearing in the proof of [3, Theorem 1].

Lemma 27. Let Γ be a homogeneous k-dimensional permutation structure that contains
all configurations on n− 1 points, where n satisfies

n!

(n− `)!
> 2`k for ` = bn/2c

Then Γ is generic.
More precisely, any configuration on N > n points is contained in the unique amalgam

of (N − 1)-point configurations.

Proof. Let A be a structure on N points. Let a pairing be an `-set of unordered pairs of
points from A, with each point appearing in at most one pair. A pairing is separated if,
for every i 6 k, there is a pair { ai, a′i } such that ai and a′i are not <i-adjacent; otherwise
the pairing is unseparated.
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Claim. There is at least one separated pairing on A.

Proof of Claim. The number of pairings is given by
(
n
2`

)(
2`

21,22,...,2`

)
/`! = n!

2``!(n−2`)!
. We will

now show the number of unseparated pairings is at most k
(
n−`
`

)
. First suppose k = 1. If

N is even, there is only 1 unseparated pairing. If N is odd, the pairing is determined after
choosing any one of the odd-indexed points to not appear, so there are dn/2e. In both
cases, there are

(
n−`
`

)
. For larger k, note that an unseparated pairing must be unseparated

with respect to at least one order, so there are at most k
(
n−`
`

)
. By inequality in the

hypothesis, we are done. ♦

Let P be a separated pairing. By extending A by a single point, we may, in every
order, make one pair non-adjacent. Thus, after extending A by at most `− 1 points, an
extension we will denote by A∗, we may assume that every pair in P is non-adjacent in
every order.

Let (a1, a
′
1) be a pair from P , and let F1 = A∗\{ a1 }, F ′1 = A∗\{ a′1 }, and B1 =

A∗\{ a1, a
′
1 }. By assumption, for every i 6 k, there is a point bi ∈ B1 that is <i-between

a1 and a′1. Thus A∗ is the unique amalgam of F1 and F ′1 over B.
We may recursively continue this process on each factor until we have gone through all

the pairs in P . At the end, each factor will look like a copy of A∗ with ` points removed,
and so have size N − 1.

Lemma 21. Suppose (Γ;<1, <2, <3) is homogeneous and contains all 3-types. Then Γ is
generic.

Proof. By Lemma 27, if Γ contains all 4-point configurations, it is generic.
Let A = ({ a, b, c, d } ;<1, <2, <3) be a substructure of Γ. There are three possible

pairings: P1 = { { a, b } , { c, d } } , P2 = { { a, c } , { b, d } } , P3 = { { a, d } , { b, c } }. Each
order can be unseparated in at most one pairing, so if all the pairings are unseparated,
each must be so with respect to a different order. By possibly relabeling the points, we
may assume that a <1 b <1 c <1 d, and by relabeling orders we may assume that Pi is
unseparated with respect to <i.

Thus, we have that a, c and b, d must be <2-adjacent, and a, d and b, c must be
<3-adjacent.

We may extend A by a single point, e, that lies between a and b with respect to <1, lies
between a and c with respect to <2, and lies between b and c with respect to <3, and label
the resulting structure A∗. Then, viewing B = { e, c, d } as the base of an amalgamation
digram with F = B ∪ { a } the first factor and F ′ = B ∪ { b } the second, we have that A∗

is the unique amalgam.
We now show that F and F ′ have separable pairings, and so are contained in the

unique amalgam of certain 3-types. For F , P = { { a, c } , { e, d } } is separated, since e
and d are never <2-adjacent and only <3-adjacent if b and d were <3-adjacent, in which
case a and c not <3-adjacent. For F ′, P ′ = { { b, c } , { e, d } } is separated, since e and d
are never <3-adjacent and only <2-adjacent if a and d were <2-adjacent, in which case b
and c are not <2-adjacent.
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3.2 Notation

There are 8 2-types, which we may associate with the vertices of the unit cube {±1 }3

based on whether <i holds in the 2-type. The unit cube is bipartite, with one part
consisting of the following four types at Hamming distance 2, while the other part consists
of their opposites.

0 :
123← 1 :

23→ 2 :
13→ 3 :

12→

We now introduce notation for 3 families of 3-types that will recur in our analysis.
From left to right, the 3-types below will be denoted p⇒q, p⇐q, and C3(p, q, r).

•
q

- • •
q

- • •
q

- •

•
p

-
�

p

•�
pp -

•�
r

�

p

Figure 2

3.3 Amalgamation Lemmas

In the following lemmas, (p, q, r, s) is taken to be some permutation of the types (0, 1, 2, 3).

Lemma 28. Suppose p⇒q is forbidden. Then one of each of the following combinations
of types is forbidden.

(A) (p⇒r and C3(p, r, s)) or (r⇐q and C3(p, q, r))

(B) p⇐q or q⇐p

Proof. For (A), we amalgamate one 3-type from each pair over an edge of type r. In the
below diagrams, we assume p⇒r is realized; the arguments assuming C3(p, r, s) is realized
are similar.

We wish to argue that the only way to complete both diagrams is to take tp(x, y) = p.
This is clear for the right diagram, by transitivity. For the left diagram, note that since p
and r are at Hamming distance 2, p and ropp agree on exactly 2 orders, as do p and qopp.
Thus, by transitivity, tp(x, y) must agree with p in all 3 orders.

For (B), we use the (popp, q, p)-majority diagram (see Figure 3.1), and then take Lemma
30 into account.

Lemma 29. Suppose p⇒q, C3(p, q, r), and C3(p, q, s) are forbidden. If p and q are realized,
then q⇐p is realized.
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• •

x�

p
-

�y

�
r

x�

p
-

�y

p

-

•

r

6

�
qp -

•

r

6

�
qp -

Figure 3

x� �y

•
q

-

p -

Figure 4

Proof. We try to complete the following amalgamation diagram.
By assumption tp(x, y) 6= p, ropp, sopp. The remaining types, except q, are ruled out by

transitivity.

Lemma 30. Suppose p⇒q is forbidden. If p and q are realized, then q⇒p is realized.

Proof. We try to complete the amalgamation diagram in Figure 5.

x� �y

•�
qp -

Figure 5

By assumption tp(x, y) 6= p. The remaining types, except qopp, are ruled out by
transitivity.

3.4 Case Division

The proof of Lemma 22 proceeds by consideration of several cases. However, the following
lemma provides a uniform point of departure.

Lemma 31. If Γ is primitive and omits a 3-type then without loss of generality it omits
the 3-type of type (0⇒ 1) while realizing the 2-types 0, 1.
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Proof. We may assume that at least 3 of the 2-types 0, 1, 2, 3, say 0, 1, 2 after relabeling,
are realized, since otherwise we reduce to the case of fewer linear orders.

If any 3-type p⇒ q or p⇐ q is forbidden while p and q are realized, then by reversing
the orders and changing the language we may assume that 0⇒ 1 is forbidden. So assume
this is not the case.

By the above paragraphs, we may construct the standard (0, 1, 2)-majority diagram,
which shows 3 is realized as well. Up to a change of language, the forbidden 3-type
must be of the form C3(0, 1, 2). But this is a substructure of the unique solution to the
(1opp, 0opp, 2opp)-majority diagram.

Remark 32. Although we may assume the 2-types 1 is realized, we may not want to,
since it breaks the symmetry between 1, 2, and 3. Thus, this will not be assumed unless
otherwise noted.

We now divide into cases the ways Lemma 22 might fail.

Case 1: All 3-types of type 0⇒p (p = 1, 2, 3) are forbidden, and 0 is realized.

Case 2: For a given pair of 2-types p, q at Hamming distance 2, at most 2 3-types
of type p⇒q are forbidden, and 0, 1 are realized.

Case 2.1: There exist p, q, r at Hamming distance 2 such that p⇒q and p⇒r
are forbidden.

Case 2.2: For any p, q, r at Hamming distance 2, at most one of p⇒q and
p⇒r is forbidden.

We also wish to divide Case 1 into subcases, so assume 0⇒p is forbidden, for p = 1, 2, 3.
Consider the directed graph with vertex set { 1, 2, 3 }, and an edge (p, q) when the type
C3(0, p, q) is forbidden.

By Lemma 28, for any arrangement (p, q, r) of the vertices, either (p, q) or (q, r) is an
edge. Thus, D contains a symmetric edge p↔ q, which we may assume is 1↔ 2, and D
has at least 4 edges. We now subdivide Case 1 as follows.

Case 1.1: D has 6 edges.

Case 1.2: D has 5 edges.

Case 1.3: D has 4 edges.

3.5 Proof of Lemma 22

The proof proceeds by starting with the assumptions of one of the subcases and then
repeatedly applying the amaglamation lemmas 28, 29, and 30 until reaching a contradiction.
This contradiction could either be that a structure is both forbidden and realized, or could
be a violation of the primitivity constraint by the appearance of a definable equivalence
relation.

More explicitly, the 2-types p1, . . . , pk generate a definable equivalence relation if every
3-type on points x, y, z satisfying the following is forbidden.
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1. tp(x, y), tp(y, z) ∈ { p1, . . . , pk }

2. tp(x, z) 6∈ { p1, . . . , pk }

The proofs are presented in tables. In each line, some 3-type is shown to be realized or
forbidden. The reason is given; if the reason is one of the amalgamation lemmas then the
assignment of (p, q, r, s) is given; finally the previous lines used are given. When one of
the amalgamation lemmas is used with opposite types, so for example p⇐q is assumed
forbidden rather than p⇒q, an “R” (for “reversed”) is appended to the name of the lemma.

In the tables, we assume all 2-types are realized; after every table is a remark noting
the alterations required if some 2-type is forbidden.

Table 1: Case 1.1

Line Realized Forbidden Reason (p,q,r,s) Used
1. 0⇒p Case 1
2. C3(0, p, q) Case 1.1
3. p⇐0 29 1,2
4. 0⇐p 28B 1,3

Now the 2-type 0 generates an equivalence relation, contradicting primitivity.

Remark 33. This proof works with some 2-type forbidden. If 1, 2, or 3 is forbidden, then
the corresponding case of line 4 follows without needing line 3.

The treatment of the remaining cases follows the same scheme at somewhat greater
length, and shows that the amalgamation lemmas given previously suffice to complete the
analysis. Other methods will be required in §4.

Table 2: Case 1.2

Line Realized Forbidden Reason (p,q,r,s) Used
1. 0⇒p Case 1
2. C3(0, p, q) Case 1.2

except C3(0, 3, 2)
3. C3(0, 3, 2) Case 1.2
4. 1⇐0 29 (0,1,2,3) 1,2
5. 2⇐0 29 (0,2,1,3) 1,2
6. 0⇐1 28B (0,1,2,3) 1,4
7. 0⇐2 28B (0,2,1,3) 1,5
8. 0⇐3 Primitivity 1,6,7
9. 3⇐0 28B (0,3,1,2) 1,8
10. 3⇐2 28AR (3,0,2,1) 5,9
11. 3⇒2 or 2⇒3 28BR (3,2,0,1) 10
12. 2⇒0 30 (0,2,1,3) 1
13. 3⇒0 30 (0,3,1,2) 1
14. 3⇒0 or 2⇒0 28A (3,2,0,1) 3,8,11
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or (2,3,0,1)
Now line 14 contradicts lines 12 and 13.

Remark 34. This proof works with some 2-types forbidden. By assumption, the types
2 and 3 are realized. The assumption that the type 1 is realized only appears in line 4,
which becomes unnecessary if 1 is forbidden since line 4 is only used for line 6.

Case 1.3 requires further subdivision according to our assumptions on the directed
graph D. We draw the D corresponding to each of the further subcases.

1• �
1.3.1

- •2 1• �
1.3.2

- •2 1• �
1.3.3

- •2

•
3

�

-

•
3

�
-

•
3

-
�

Figure 6

Table 3: Case 1.3.1

Line Realized Forbidden Reason (p,q,r,s) Used
1. 0⇒p Case 1
2. C3(0, 1, p), Case 1.3.1

C3(0, p, 1)
3. C3(0, 3, 2), Case 1.3.1

C3(0, 2, 3)
4. 1⇐0 29 (0,1,2,3) 1,2
5. 0⇐1 28B (0,1,2,3) 1,4
6. 0⇐2 or 0⇐3 Primitivity 1,5
7. 0⇐3 W.l.o.g 6
8. 3⇐0 28B (0,3,1,2) 1,8
9. 3⇐2 28AR (3,0,2,1) 3,8
10. 3⇒2 or 2⇒3 28BR (3,2,0,1) 9
11. 2⇒0 30 (0,2,1,3) 1
12. 3⇒0 30 (0,3,1,2) 1
13. 3⇒0 or 2⇒0 28A (3,2,0,1) 3,10

or (2,3,0,1)
Now line 13 contradicts lines 11 and 12.

Remark 35. This proof works with some 2-types are forbidden. By assumption, the types
2 and 3 are realized. The assumption that the type 1 is realized only appears in line 4,
which becomes unnecessary if 1 is forbidden since line 4 is only used for line 5.
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Table 4: Case 1.3.2

Line Realized Forbidden Reason (p,q,r,s) Used
1. 0⇒p Case 1
2. C3(0, 1, p), C3(0, 2, p) Case 1.3.2
3. C3(0, 3, p) Case 1.3.2
4. 1⇐0 29 (0,1,2,3) 1,2
5. 2⇐0 29 (0,2,1,3) 1,2
6. 0⇐1 28B (0,1,2,3) 1,4
7. 0⇐2 28B (0,2,1,3) 1,5
8. 0⇐3 28AR (0,1,3,2) 3,6

Now 0 generates an equivalence relation.

Remark 36. By assumption, all 2-types are realized.

Table 5: Case 1.3.3

Line Realized Forbidden Reason (p,q,r,s) Used
1. 0⇒p Case 1
2. C3(0, p, 3) Case 1.3.3
3. 2⇐1 28A (0,1,2,3) 1,2
4. 1⇐2 28A (0,2,1,3) 1,2
5. 1⇐2 30R (2,1,0,3) 3

However, line 5 contradicts line 4.

Remark 37. By assumption, all 2-types are realized.

For Case 2.1, we may assume that 0⇒1 and 0⇒2 are forbidden, and thus 0⇒3 is
realized.

Table 6: Case 2.1

Line Realized Forbidden Reason (p,q,r,s) Used
1. 0⇒1, 0⇒2 Case 2.1
2. 0⇒3 Case 2
3. 1⇒0 30 (0,1,2,3) 1
4. 2⇒0 30 (0,2,1,3) 1
5. 3⇐1, C3(0, 1, 3) 28A (0,1,3,2) 1,2
6. 3⇐2, C3(0, 2, 3) 28A (0,2,3,1) 1,2
7. 3⇐0 Case 2 5,6
8. 1⇐3 30R (3,1,0,2) 5
9. 2⇐3 30R (3,2,0,1) 6
10. 1⇐0 or 0⇐1 28B (0,1,2,3) 1

We now split into cases based on line 10.
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Case 2.1.1: 1⇐0 is forbidden.

Case 2.1.2: 0⇐1 is forbidden.

Table 7: Case 2.1.1

Line Realized Forbidden Reason (p,q,r,s) Used
11. 1⇐0 Case 2.1.1 10
12. 1⇐2, C3(1, 3, 2) 28AR (1,0,2,3) 4,11
13. 1⇒3 29R (3,1,0,2) 5,12
14. 3⇒1 28BR (3,1,0,2) 5,13
15. 3⇒0 28AR (1,0,3,2) 8,11
16. 3⇒2 Case 2 14,15
17. 1⇐3 or 3⇒2 28AR (1,2,3,0) 12

However, line 17 contradicts line 8 and line 16.

Table 8: Case 2.1.2

Line Realized Forbidden Reason (p,q,r,s) Used
11. 0⇐1 Case 2.1.2 10
12. 0⇐2 or 2⇒1, C3(0, 2, 1) 28AR (0,1,2,3) 11

We now split into cases based on line 12.

Case 2.1.2.1: 0⇐2 is forbidden.

Case 2.1.2.2: 2⇒1, C3(0, 2, 1) is forbidden.

Table 9: Case 2.1.2.1

Line Realized Forbidden Reason (p,q,r,s) Used
13. 0⇐2 Case 2.1.2.1 12
14. 0⇐3 Case 2 11,13
15. 3⇒1, C3(0, 3, 1) 28AR (0,1,3,2) 11,14
16. 3⇒2, C3(0, 3, 2) 28AR (0,2,3,1) 13,14

Now, 0 ∪ 3 generates an equivalence relation.

Table 10: Case 2.1.2.2

Line Realized Forbidden Reason (p,q,r,s) Used
13. 2⇒1, C3(0, 2, 1) Case 2.1.2.2 12
14. 2⇐0 29 (0,2,1,3) 1,6,13
15. 0⇐2 28B (0,2,1,3) 1,14
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Now 0⇐2 is forbidden, and we may finish as in Case 2.1.2.1.

Remark 38. This proof works with some 2-types forbidden. By assumption, 1 and 3 are
realized. Assume 2 is forbidden. Case 2.1.1 ends at line 15 with a contradiction of the
Case 2 assumption, since 3⇒1, 3⇒0, and 3⇒2 will all be forbidden. Only lines 4 and 9
depend on 2 being realized, and those are only used in line 12, which would hold anyway
if 2 were forbidden. Case 2.1.2.1 works as before, since lines 4 and 9 aren’t used anywhere.
Also, there is no need for Case 2.1.2.2, since we know 2⇐0 is forbidden.

For Case 2.2, we may assume 0⇒1 is forbidden, and thus 0⇒2 and 0⇒3 are realized.

Table 11: Case 2.2

Line Realized Forbidden Reason (p,q,r,s) Used
1. 0⇒1 Case 2.2
2. 0⇒2, 0⇒3 Case 2.2
3. 2⇐1, C3(0, 1, 2) 28A (0,1,2,3) 1,2
4. 3⇐1, C3(0, 1, 3) 28A (0,1,3,2) 1,2
5. 2⇐0, 2⇐3 Case 2.2 3
6. 3⇐0, 3⇐2 Case 2.2 4
7. 3⇒1, C3(2, 3, 1) 28AR (2,1,3,0) 3,5
8. 2⇒1, C3(3, 2, 1) 28AR (3,1,2,0) 4,6
9. 3⇒0, 3⇒2 Case 2.2 7
10. 2⇒0, 2⇒3 Case 2.2 8
11. 0⇐1, C3(3, 1, 0) 28A (3,1,0,2) 7,9
12. C3(2, 1, 0) 28A (2,1,0,3) 8,10

Now 0 ∪ 2 ∪ 3 generates an equivalence relation.

Remark 39. By assumption, all 2-types are realized.

4 The Imprimitive Case

We make an initial case division of the imprimitive case for Γ an imprimitive homogeneous 3-
dimensional permutation structure. Let E be a minimal non-trivial ∅-definable equivalence
relation.

Case 1: E is convex with respect to <1, <2, <3, and thus is a congruence.

Case 2: E is not convex with respect to at least one of <1, <2, <3. Without loss of
generality, we assume E is not <1-convex.

In Case 1, we may inductively proceed by factoring out E, noting that the result-
ing structure now omits a 2-type, and so Γ will be a composition of a homogeneous
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3-dimensional permutation structure with one fewer 2-type available and a primitive
homogeneous 3-dimensional permutation structure.

Our goal for Case 2 will be to show that Γ is still determined by its restriction to
E-classes and by the E-quotient of the reduct of Γ forgetting all orders for which E is
non-convex.

The following statement, which is immediate from Theorem 20, will be important for
both cases.

Lemma 40. Let E be a minimal non-trivial ∅-definable equivalence relation in a homo-
geneous 3-dimensional permutation structure, and C be an E-class. Then the induced
structure on C is generic, modulo the agreement of certain orders up to reversal.

We will frequently use the following characterization of genericity.

Proposition 41. Let Γ be a homogeneous n-dimensional permutation structure. Then Γ
is generic iff for any non-empty open intervals Ii in each order, <i, ∩ni=1Ii 6= ∅.

Proof. Genericity of Γ is equivalent to the following one-point extension property: given a
type p over a finite set A not realized in A, p is realized iff its restriction to each individual
order is realized by an element not in A. The restriction of p to an order <i specifies a
<i-interval with endpoints in A ∪ {±∞}, which is open since p is not realized in A. This
interval is non-empty exactly when the restriction has a realization not in A.

4.1 Convex Closure

In this section, we show E-classes are <1-dense in their <1-convex closures, and the
<1-convex closure of E is an equivalence relation. The arguments we present depend
heavily on the type structure in the case k = 3, although in a few cases a step where our
argument depends on k = 3 could have been carried out in greater generality.

Lemma 42. Let E be a minimal non-trivial ∅-definable equivalence relation in a homoge-
neous finite-dimensional permutation structure, and C,C ′ be distinct E-classes. Then no
2-type p is realized in both C × C ′ and C ′ × C.

Proof. Let a, b ∈ C, a′, b′ ∈ C ′, such that a
p→ b′ and a′

p→ b. Let b
q→ b′, and note that

p 6= q, since otherwise transitivity would force a′
p→ b′ and so p ⊂ E. By homogeneity,

there is an automorphism sending (a, b′) to (a′, b). Thus there must be some c ∈ C such

that b′
q→ c. But then by transitivity b

q→ c, which is a contradiction.

Definition 43. Let Ẽ be the <1-convex closure of E, that is aẼb if there exists a c such
that aEc and b is <1-between a and c. Given an E-class C, C̃ is the <1-convex closure of
C.

Notation. For the rest of §4, we fix notation, by reversing and switching orders as needed,

so that the 2-type
123→ is contained in E, and if E contains another 2-type besides

123→ and

its opposite then it contains
23→.
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Lemma 44. Let E be a minimal non-trivial ∅-definable equivalence relation in a homoge-
neous 3-dimensional permutation structure, and C be an E-class. Let a1, a2 ∈ C, b 6∈ C,

and a1 <1 b <1 a2. Then tp(a1, b) =
12→, tp(b, a2) =

13→, or tp(a1, b) =
13→, tp(b, a2) =

12→.

Proof. If E contains
123→ and

23→, the conclusion follows by Lemma 42 and the fact that
only 4 2-types remain.

Otherwise, we have that a1
123→ a2. Since we cannot have a1

123→ b, there is some i such

that b <i a1 <i a2, and so b
1i→ a2. Thus, there is a unique j such that a2 <j b, so a1 <j b.

Thus a1
1j→ b and b

1i→ a2.

Corollary 45. Let E be a minimal non-trivial ∅-definable equivalence relation in a
homogeneous 3-dimensional permutation structure, and C be an E-class. Suppose b ∈ C̃\C.

Then b/E ⊂ C̃.

Proof. Take a1, a2 ∈ C such that a1 <1 b <1 a2. By Lemma 44, we may suppose without

loss of generality that tp(a1, b) =
12→, tp(b, a2) =

13→.

Take b′ ∈ b/E. If b′ >1 a2, then b <1 a2 <1 b
′ and tp(b, a2) =

13→, so by Lemma 44,

tp(a2, b
′) =

12→. By homogeneity, there is an automorphism φ sending (a1, b) to (a2, b
′), so

b′ is <1-between a2 and φ(a2). The case where b′ <1 a1 is nearly identical.

Corollary 46. Let E be a minimal non-trivial ∅-definable equivalence relation in a
homogeneous 3-dimensional permutation structure, and C be an E-class. Let a, a′ ∈ C,

with a′
123→ a. For any b 6∈ C, if b <1 a

′ or a <1 b, then tp(a, b) = tp(a′, b)

Proof. We only treat the case a <1 b, since the other case is similar.

Suppose tp(a, b) =
1x→. By transitivity, a′ <1 b, a′ <x b. Since we cannot have

tp(a′, b) =
123→, we are done.

Now suppose tp(b, a) =
23→. By transitivity, a′ <1 b. However, we cannot have

tp(a′, b) =
12→ or

13→, since by Lemma 44 there would be some a′′ ∈ C such that a′′ >1 b, and

then applying Lemma 44 again, we would have that tp(a, b) would also be
12→ or

13→.

Corollary 47. Let E be a minimal non-trivial ∅-definable equivalence relation in a
homogeneous 3-dimensional permutation structure. Then any non-trivial ∅-definable
equivalence relation contains E.

Proof. Consider the equivalence relation generated by a 2-type p, and without loss of

generality assume <1 holds in p. Given a, b such that a
p→ b, find b′ such that b

123→ b′. By

Corollary 46, a
p→ b′, so p generates

123→.

If
23→⊂ E, so p =

1x→, then run the above argument with b
23→ b′. By transitivity, a <x b

′,

so a
1x→ b′, and

23→ is generated by p as well.

We note that much of the proof of the following lemma is concerned with ruling out a
plausible configuration in which given E-classes C,C1 such that C1 ⊂ C̃, then C1 defines
a non-trivial <1-Dedekind cut in C. Although the type structure is too constrained to
allow this with 3 orders, it seems possible that it may occur with more orders.
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Lemma 48. Let E be a minimal non-trivial ∅-definable equivalence relation in a homoge-
neous 3-dimensional permutation structure, and C be an E-class. Then C is <1-dense in
C̃.

Proof. Given an E-class C and an element a, we use â(C) to denote the <1-Dedekind cut
defined by a in C.

Let a, b ∈ C̃, with a <1 b, and suppose â(C) = b̂(C). We first show we may suppose

that a/E = b/E and a
123→ b.

Trivially, we cannot have a, b ∈ C. Now assume only one of a, b ∈ C, say a. Then a
is a maximal element of the cut b̂(C). But given any d ∈ C̃\C, d̂(C) has no maximal or
minimal elements; otherwise, the elements of C would realize at least 3 types over d, but
there are only 2 realized types by Lemma 44. Thus a, b ∈ C̃\C.

Now suppose a/E = b/E, but a
23← b. By the genericity of C, there is a b′ in the

<1-interval (a, b)<1 such that a
123→ b′, so we may replace b by b′.

Claim 49. Suppose C1 = a/E 6= b/E = C2. Then there exists a′ ∈ C1 such that a′
123→ a

and â(C) = â′(C).

Proof of Claim. Let a′
123→ a. Since a <1 b, by Corollary 46 tp(a, b) = tp(a′, b). Since

by Lemma 45, a/E ∈ C̃, there is a c ∈ C such that c <1 a′, so by Corollary 46
tp(a, c) = tp(a′, c). Thus (a, b, c) ∼= (a′, b, c), so by homogeneity there is an automorphism

fixing c and taking (a, b) to (a′, b). Thus â′(C) = b̂(C) = â(C). ♦

In this case, we may then replace a, b by a′, a.

Thus, we may now suppose that a/E = C1 = b/E and a
123→ b.

Claim 50. ĉ(C) is independent of the choice of c ∈ C1.

Proof of Claim. Consider x, y ∈ C1, and, using the genericity of C1, find c1, c2 ∈ C1 such

that c1 <1 x, y <1 c2 and c1
123→ c2.

Take z ∈ C, with z <1 a, c1. By Corollary 46, (z, a, b) ∼= (z, c1, c2). Thus, since

â(C) = b̂(C), we have ĉ1(C) = ĉ2(C), so x̂(C) = ŷ(C). ♦

Without loss of generality, we now assume C <2 C1, so by Lemma 44, the types realized

in C × C1 are
12→ and

13←. Thus by homogeneity, given any E-classes C,C ′, if
12→ or

13← is
realized in C ×C ′, then C ′ defines a <1-Dedekind cut in C; if neither these types nor their

opposites are realized, then the only remaining types are
23→ and

23←, and by Lemma 42
exactly one of them is realized, so neither class is in the <1-convex closure of the other. In
particular, E-classes are <2, <3-convex.

Note that if every E-class C ′ ⊂ C̃ such that C <2 C
′ defined the same <1-Dedekind

cut in C, then C would have an ∅-definable partition, contradicting the minimality of E.

Claim 51. Both factors of the (12, 23, 13)-majority diagram, displayed below (with the

edge x
23→ z not drawn), are realized in Γ.
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Proof of Claim. We only prove the first factor is realized, since the argument for the second
is nearly identical. First, as shown in Figure 8, the first factor is the unique amalgam of
the following 3-types, so it suffices to show these are realized.

x
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12
-
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•y

23
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z

23
?
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Figure 8

For the 3-type (a, x, y) from the diagram, let a/E = C. Take distinct E-classes

C ′, C ′′ ⊂ C̃ such that C <2 C
′ <2 C

′′ and C ′ and C ′′ define distinct <1-cuts in C. Then
there are x ∈ C ′, y ∈ C ′′ realizing the triangle (a, x, y).

For the 3-type (a, y, z), we claim it is the unique amalgam of the diagram in Figure 9.

y� �z

•a
23

-
�

12

Figure 9

By transitivity, y <3 z and z <1 y, so the possible completions are y
23→ z and z

12→ y.
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However, if z
12→ y, then y/E defines a <1-Dedekind cut in both a/E and z/E, but

z/E <1 a/E, which is a contradiction. Thus the only allowed completion is y
23→ z. ♦

We are forced to complete the (12, 23, 13)-majority diagram by a
123→ b, so that aEb.

However, a
12→ x

23→ b violates the requirement that E-classes are <2-convex. Thus Γ is not
homogeneous.

Proposition 52. Let E be a minimal non-trivial ∅-definable equivalence relation in a
homogeneous 3-dimensional permutation structure, and C be an E-class. Then Ẽ is an
equivalence relation.

Proof. Let C be an E-class. By Corollary 45, C̃ is a union of E-classes. Now suppose
C ′ ⊂ C̃ is an E-class. By Lemma 48 there are c1, c2 ∈ C ′ such that ĉ1(C) 6= ĉ2(C), and

applying Corollary 45 again we see C ⊂ C̃ ′. Thus Ẽ defines a partition.

Corollary 53. Ẽ is a congruence, E-classes are (<2, <3)-convex, <2 = <3 on E-classes,

and <2 = <opp
3 between E-classes in the same Ẽ-class.

4.2 Reduction via Quotients

Since Ẽ is a congruence by Corollary 53, it suffices to consider the case Ẽ = 1, since we may
otherwise consider the restriction Γ � Ẽ. For this subsection, we work with k-dimensional
permutation structures.

We now aim for the following lemmas. The first implies that Γ is determined by its
restriction to E-classes and the reduct of Γ/E forgetting all orders that are not E-convex.
The second allows us to carry out our induction by showing that the above reduct of Γ/E
must be homogeneous.

The following lemma is more naturally stated in the language of subquotient orders,
but as it is the concluding step in the classification of certain permutation structures, we
give it in a form appropriate for its intended application.

Lemma 54. Let (Γ∗, <∗1, . . . , <
∗
`) be homogeneous.Let k > `, and partition [k] as ∪i6mIi,

such that each Ii contains at most one j > `+1. Then there exists a homogeneous structure
(Γ, E,<1, . . . , <k), unique up to isomorphism, with the following properties.

1. E-classes are <1, . . . , <`-convex and <`+1, . . . , <k-dense.

2. (Γ/E,<1, . . . , <`) ∼= (Γ∗, <∗1, . . . , <
∗
`)

3. <j�E = <j′�E for j, j′ in a given Ii, and the induced structure on any E-class C is
fully generic, modulo the identification of orders in the same Ii.

Lemma 55. Let Γ be a homogeneous k-dimensional permutation structure. Let E be
a minimal non-trivial ∅-definable equivalence relation in Γ, and suppose E-classes are
<i-convex for 1 6 i 6 ` and <i-dense for ` + 1 6 i 6 k. Suppose each E-class is
generic, modulo the agreement of certain orders up to reversal. Then (Γ/E,<1, . . . , <`) is
homogeneous.
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The following lemma is not necessary for the case k = 3, since E is only dense with
respect to one order.

Lemma 56. Suppose (Γ, <1, . . . , <k) is homogeneous. Let E be a minimal non-trivial
∅-definable equivalence relation in Γ, and C be an E-class. Suppose C is generic, modulo
the agreement of certain orders up to reversal. Further suppose that C is <i-convex for
1 6 i 6 ` and <i-dense for `+ 1 6 i 6 k. Then

1. If C1, C2 are E-classes, then C1 remains homogeneous after naming C2.

2. If i, j > `+ 1, and <i�E = <j�E, then <i = <j.

Proof.
(1) Given a finite A ⊂ C1 and i > ` + 1, let Bi = {x ∈ C2 | A <i x }. Each such Bi is a
<i-terminal segment of C2, so by genericity their intersection is non-empty.

Now, consider A1
∼= A2 finite substructures of C1. Let A = A1 ∪ A2, and choose a b

in the intersection of the corresponding Bi. By homogeneity, there is an automorphism
taking A1b to A2b and fixing b, hence C2.

(2) Suppose this is false, as witnessed by <i, <j . We consider E-classes as ordered sets
with respect to the common restriction of these orders.

Take a, b with a <i b and b <j a, and let C1 = a/E and C2 = b/E. Let

Ia = {x ∈ C2 | a <i x, x <j a } , Ja = {x ∈ C1 | Ia ∩ Ix 6= ∅ }

Note that these are intervals in C2 and C1, respectively.

Claim. Ja = { a }

Proof of Claim. By density and genericity, there are b1, b2 ∈ C2 such that b1 <i,j a <i,j b2,
so Ia ⊂ (b1, b2). Then find a1, a2 ∈ C1 such that a1 <i,j b1, b2 <i,j a2, so Ja ⊂ (a1, a2).

Thus Ja is (a, C2)-definable and <i,j-bounded. By (1), Ja is a-definable in C1 and
<i,j-bounded, so Ja = { a } by genericity of C1. ♦

If there were some b′ ∈ Ia with b′ 6= b, then by density, we could find some a′ ∈ C1

<i-between b and b′, and so would have a′ ∈ Ja. Thus Ia = { b }. But by density there is a
b′ ∈ C2 <i-between a and b, so b′ ∈ Ia, which is a contradiction.

Given (Γ, <1, . . . , <k) homogeneous such that no orders agree up to reversal, with
E-classes <i-convex for 1 6 i 6 ` and <i-dense for `+ 1 6 i 6 k, we will prefer to work in
the quantifier-free interdefinable reduct Γred = (Γ, <′i1 , . . . , <

′
im ,<

′′
1, . . . , <

′′
` ,<`+1, . . . , <k)

obtained as follows.

1. For 1 6 i 6 `, decompose <i into two subquotient orders: <′i from 0 to E and <′′i
from E to 1.

2. For each i > `+ 1, add the restriction <i�E to the language as <′i.
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3. Consider the set of all <′i. Many of these subquotient orders may be equal up to
reversal, so pick one representative from each class and forget the rest. By Lemma
56, each class can contain at most one <′i with i > `+ 1, in which case this is taken
as the representative.

4. Forget the <′i for i > `+ 1.

We now prove a 1-point extension property, which shows that to realize a type p in
an E-class C, it is sufficient that the restriction of the type to each subquotient order is
individually realized.

Lemma 57. Let (Γ, <1, . . . , <k) be homogeneous such that no orders agree up to reversal.
Let E be a minimal non-trivial ∅-definable equivalence relation in Γ, and C be an E-class.
Suppose the induced structure on C is generic, modulo the agreement of certain orders up
to reversal. Suppose that C is <i-convex for 1 6 i 6 ` and <i-dense for ` + 1 6 i 6 k.
We now work in Γred.

Let A ⊂ Γred be finite, and p a 1-type over A not realized in A. Then p is realized in a
given E-class C by a point not in A iff the following hold.

1. p � (<′′1, . . . , <
′′
` ) is realized by C in Γ/E.

2. For each <′i, p �<
′
i is realized in C\A.

3. For j > `+ 1, p �<j is realized by some element not in A.

4. p does not contain the formula “x = a” for any a ∈ A.

Proof. These conditions are clearly necessary. We will prove they suffice. By condition
(1), all of C satisfies p � (<′′1, . . . , <

′′
` ). List all the subquotient orders from 0 to E together

with <i for i > `+ 1 as <∗1, . . . , <
∗
n, and let pi = p �<∗i . It now suffices to show pi contains

a non-empty open <∗i -interval of C, since then by the genericity of C there will be some
point in their intersection, which thus realizes p.

In the case <∗i is a subquotient order from 0 to E, by condition (2) some point in C
realizes pi restricted to parameters outside of C, and so all of C does; again by condition
(2), pi restricted to parameters inside of C then contains an open interval of C. In the
case <∗i = <j for j > `+ 1, condition (3) implies pi contains a non-empty open interval in
Γ; since E-classes are <∗i -dense, this interval meets C in a non-empty open interval.

Proof of Lemma 55. Let Ā ∼= B̄ be finite subsets of (Γ/E,<1, . . . , <`). We lift Ā to
A ⊂ (Γ, <1, . . . , <k), and look for an automorphism moving A to a set covering B.

We proceed by induction on |Ā|, and so consider A = A0 ∪ { a } with ā 6∈ Ā0, B̄ =
Ā0 ∪ {C } for some E-class C 6∈ Ā0.

Let p = tp(a/A0). We will now work in Γred and use Lemma 57 to find a realization of
p in C. Condition (1) is equivalent to Ā ∼= B̄. Since ā 6∈ Ā0, A0 ∩ C = ∅, so (p �<′i) � A
simply says x is not <′i-related to any a ∈ A, which will be true for every x ∈ C. Finally,
since ā 6∈ Ā0, a 6∈ A0, so a witnesses condition (3).
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Proof of Lemma 54. For existence, let Γ be the composition Γ∗[C], where C only carries
the equality relation, and let E be the corresponding equivalence relation. Note that each
<∗i is now a subquotient order from E to 1. For 1 6 i 6 m − (k − `), add a generic
subquotient order <′i from 0 to E. For `+ 1 6 i 6 k, add a generic linear order <i. We
may then define the specified convex orders <i for 1 6 i 6 ` as compositions of the <∗i
with the <′j or the restrictions to E of the <n for `+ 1 6 n 6 k.

For uniqueness, suppose we have a structure (Γ′, <1, . . . , <k) satisfying the conditions.
We will show (Γ′)red has the same finite substructures as the Γred we constructed above; as
they are both homogeneous, they will thus be isomorphic.

As all the subquotient orders added to construct Γred were added generically, every
finite substructure of (Γ′)red is a substructure of Γred. We proceed by induction on the
size of the substructure, so let A ∪ { a } be a finite substructure of Γred, such that A is a
substructure of (Γ′)red. We will use Lemma 57 to show p = tp(a/A) is realized in (Γ′)red.

We may assume a 6∈ A, otherwise we are done, so condition (4) is satisfied. As
(suitable reducts of) Γred/E and (Γ′)red/E both are isomorphic to Γ∗, and as a/E realizes
p � (<′′1, . . . , <

′′
` ) in the former, there is some E-class C realizing it in the latter, so condition

(1) is satisfied. For condition (2), again since the quotient structures are isomorphic, we
may pick C such that for each b ∈ A, C = b/E iff a/E = b/E. Thus, we are only concerned
about (p �<′i) � (A∩C); but as this restricted type doesn’t violate transitivity, it is realized
in C since <′i is dense on C. Finally for condition (3), we again have that p �<j doesn’t
violate transitivity, and so is realized by some element not in A since <j is dense on
(Γ′)red.

Remark 58. Lemma 54 is also true if (3) is relaxed to allow certain restrictions to be the
reversals of others. The only case that isn’t immediate is if we require <i�E= (<j�E)opp

for <i, <j dense. But then <i = <opp
j by Lemma 56.

4.3 The Imprimitive Catalog

We now classify the imprimitive homogeneous structures. Listing all these structures in
the language of linear orders yields a mob of examples, since (pieces of) orders may be
reversed, which orders a given order agrees with may differ for the various pieces of that
order, and orders may be permuted. Thus, we present the structures up to definable
equivalence, and do so in a language of subquotient orders, each of which is generic, and
equivalence relations.

We first classify the imprimitive homogeneous 3-dimensional permutation structures
(Γ, E,<1, <2, <3) in which Ẽ = 1, so Γ has no non-trivial ∅-definable congruence. By
Corollary 53 and Lemmas 55 and 54, Γ is determined by (Γ/E,<2) and (Γ �E, <1, <2),
which are themselves primitive homogeneous. There are thus two possibilities.

1. (<1�E 6=<2�E) Γ may be presented as (Γ, E, (<′i)
3
i=1) with <′1 from 0 to 1, <′2 from 0

to E, and <′3 from E to 1.

2. (<1�E = <2�E) Γ may be presented as (Γ, E, (<′i)
2
i=1) with <′1 from 0 to 1 and <′2

from E to 1.
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(1) is just a generic order added to Cameron’s imprimitive homogeneous permutation, i.e.
Q2 with an equivalence relation for agreement in the first coordinate and a lexicographic
order, while (2) is the structure described in Example 15 in Section 2.

Also note that when presented in the language of 3 linear orders, (1) uses all 8 2-types,
while (2) only uses 6 of them. Thus (1) cannot appear as a factor in a composition, while
(2) can.

If Γ has a non-trivial ∅-definable congruence, then it is a composition, whose factors
are either primitive or one of the above structures. Below, let Γ

(g)
i to denote the generic

i-dimensional permutation structure
If all of the factors are primitive, then each factor is interdefinable with Γ

(g)
i for

i ∈ { 1, 2 }. Each such factor contributes 2i 2-types. As there are at most 8 2-types
available, we get at most the following structures.

(3) For any multisubset I ⊂ { 1, 2 } such that |I| > 1 and
∑

i∈I 2i 6 8, Γ is the

composition in any order of Γ
(g)
i for i ∈ I.

Finally, if one of the factors is imprimitive, we noted earlier it must be (2). There are

only 2 2-types remaining, so the other factor must be Γ
(g)
1 .

(4) Let Γ∗ be the structure from (2). Then Γ = Γ∗[Γ
(g)
1 ] or Γ

(g)
1 [Γ∗].

For all of these structures we have only shown that at most 8 2-types are realized, but
it is easy to check that each structure can be presented in a language of 3 linear orders
by taking restrictions and compositions of the subquotient orders, which concludes our
derivation of the catalog.

This last step prompts the following special case of Question 8.

Question 59. Let Γ be a finite-dimensional permutation structure, with a linear lattice
of ∅-definable equivalence relations. If Γ has at most 2k non-trivial 2-types, can Γ be
presented as a k-dimensional permutation structure?

We remark that the linearity hypothesis is necessary, since the full product Q2 (see
Example 16) only has 8 non-trivial 2-types, but requires 4 linear orders.

A Proof of Theorem 11

We first repeat the theorem we wish to prove.

Theorem 11. Let Λ be a finite distributive lattice, and Γ the generic Λ-ultrametric space.
For each meet-irreducible E ∈ Λ, fix a function fE : {F ∈ Λ | E < F } → N. Then there
is a homogeneous expansion of Γ, which is generic in a natural sense, adding, for each
meet-irreducible E ∈ Λ and F > E, fE(F ) subquotient orders from E to F .

To be more precise, the following holds. Let A∗ be the class of finite structures
(A, d, {<Ei,j }

ni

j=1) satisfying the following conditions.
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• (A, d) is a Λ-ultrametric space.

• <Ei,j is a subquotient order with bottom relation Ei, for some meet-irreducible
Ei ∈ Λ, and top relation Fi,j ∈ Λ.

Then A∗ is an amalgamation class, and its Fräıssé limit is the desired expansion if {Ei }
and {Fi,j } are chosen to match fE from above.

Although we could prove this theorem by straightforward modifications of Lemmas 3.7
and 3.8 of [1], we choose to present a different take on the proof here.

Definition 60 ([1], Definition 2.3). Consider an amalgamation diagram of Λ-ultrametric
spaces with base B. Let x and y be extension points in different factors, and for each
bi ∈ B let d(x, bi) = ei and d(y, bi) = e′i. Pre-canonical amalgamation is the amalgamation
strategy assigning d(x, y) =

∧
i(ei ∨ e′i). Canonical amalgamation is the strategy of

pre-canonical amalgamation, followed by identifying x and y if d(x, y) = 0.

Proposition 61 ([1], Proposition 2.4). Let Λ be a distributive lattice, and let K be the class
of all finite Λ-ultrametric spaces. Then K is an amalgamation class, and any amalgamation
diagram can be completed by canonical amalgamation.

Definition 62. Let X be a set equipped with a binary relation R and an equivalence
relation E. We say that E is a R-congruence if E(x, x′) and E(y, y′) implies that R(x, y)
iff R(x′, y′).

Proof of Theorem 11. Like linear orders, subquotient orders may be amalgamated inde-
pendently, so we may assume n = 1, and we will call the only subquotient order <E, and
call its bottom relation E and top relation F .

We first introduce some notation. We define the relations �E and
E→ on A∗-structures

by

1. a �E b⇔ (d(a, b) 6 E) ∨ (a <E b)

2. a
E→ b⇔ ∃x(a �E x �E b) ∧ (d(a, b) 66 E).

We will make use of the following properties of �E on A∗-structures.

1. If a �E b <E c or a <E b �E c, then a <E c.

2. �E is transitive.

3. If a �E b �E c and d(a, c) 6 E, then d(a, b), d(a, c) 6 E.

4. If a �E b �E a, then d(a, b) 6 E.

Property (1) follows from the fact that E is a �E-congruence. Properties (2) and (3)
follow from (1), and (4) is a special case of (3).

It suffices to show that A∗ contains solutions to all two-point amalgamation problems
A∗0 ⊆ A∗1, A

∗
2, A∗i = A∗0 ∪ {ai} for i = 1, 2.
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Let A be the extension of the free amalgam given by determining d(a1, a2) by pre-
canonical amalgamation. Either <E is already a subquotient order with bottom relation
E and top relation F , or we need to extend it to one by determining either a1 <E a2 or
a2 <E a1. We break this into three cases.

Claim 63. Suppose d(a1, a2) 6 E. Then for x ∈ A∗0, we have

a1 <E x⇐⇒ a2 <E x

In particular, <E is a subquotient order on A from E to F .

Proof of Claim. As E is meet-irreducible, if pre-canonical amalgamation gives d(a1, a2) 6
E, then there is a y ∈ A∗0 such that d(a1, y), d(a2, y) 6 E.

By the fact that E is a <E-congruence, we get a1 <E x ⇐⇒ y <E x ⇐⇒ a2 <E x.
This proves the first part of the claim, and the second part follows immediately. ♦

We also note that if d(a1, a2) = 0, then by the above claim A1
∼= A2, so we may

amalgamate by identifying a1 with a2.

Claim 64. Suppose d(a1, a2) 66 F . Then <E is a subquotient order on A from E to F .

Proof of Claim. This is clear, as a1 and a2 lie in distinct F -classes in A. ♦

Claim 65. Suppose d(a1, a2) ∈ (E,F ]. On A, define <∗E = <E ∪
E→. Then

1. a1
E→ a2 and a2

E→ a1 cannot both hold.

2. E is a <∗E-congruence.

Proof of Claim.

(1) Suppose a1
E→ a2

E→ a1. Then there exist x1, x2 such that a1 �E x1 �E a2, and
a2 �E x2 �E a1.

In particular, x1 �E x2 �E x1, so d(x1, x2) 6 E. As d(a1, a2) 66 E, we may suppose
d(a1, x2) 66 E.

But x2 �E a1, so x2 <E a1 �E x1. Thus x2 <E x1, which contradicts x2 �E x1.
(2) We check that E is a <∗E-congruence. Since d(a1, a2) 66 E, it suffices without loss

of generality to consider some x ∈ A∗0 such that d(a1, x) 6 E, d(a2, x) ∈ (E,F ].
In this case, we claim

a1
E→ a2 ⇐⇒ x <E a2 a2

E→ a1 ⇐⇒ a2 <E x

The implications from right to left hold by the definition of
E→.

For the implication from left to right, we consider only the case a1
E→ a2, since the other

is similar. By definition, there exists some y such that a1 �E y �E a2. Then x �E a1 �E y,
so x �E y. Since y �E a2, then x �E a2. Since d(x, a2) 66 E, we have x <E a2. ♦

Claims 63 and 64 dispose of the cases in which d(a1, a2) 6∈ (E,F ]. By Claim 65, if

d(a1, a2) ∈ (E,F ] and a1
E→ a2, we may complete amalgam by determining a1 <E a2, and

vice versa if a2
E→ a1. If d(a1, a2) ∈ (E,F ] and neither a1

E→ a2 nor a2
E→ a1, we may

complete the amalgam by arbitrarily determining either a1 <E a2 or a2 <E a1.
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