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Abstract

A binary (cyclic) Gray code is a (cyclic) ordering of all binary strings of the same
length such that any two consecutive strings differ in a single bit. This corresponds
to a Hamiltonian path (cycle) in the hypercube. Fink showed that every perfect
matching in the n-dimensional hypercube Qn can be extended to a Hamiltonian
cycle, confirming a conjecture of Kreweras. In this paper, we study the “path
version” of this problem. Namely, we characterize when a perfect matching in Qn

extends to a Hamiltonian path between two prescribed vertices of opposite parity.
Furthermore, we characterize when a perfect matching in Qn with two faulty vertices
extends to a Hamiltonian cycle. In both cases we show that for all dimensions n > 5
the only forbidden configurations are so-called half-layers, which are certain natural
obstacles. These results thus extend Kreweras’ conjecture with an additional edge,
or with two faulty vertices. The proof for the case n = 5 is computer-assisted.

Mathematics Subject Classifications: 05C38, 05C45, 05A15

1 Introduction

A binary (cyclic) n-bit Gray code is a (cyclic) ordering of all 2n binary strings of length n
such that any two consecutive strings differ in a single bit. Alternatively, it can be viewed

∗The corresponding author.
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as a Hamiltonian path (cycle) in the n-dimensional hypercube Qn. It is named after
Frank Gray who in 1953 patented a scheme based on this code to convert analog signals
to digital [10] but its description can be traced back much earlier in history [11, 12].

Gray codes turned out to be useful and flexible at the same time [6]. Applications
have been found in such diverse areas as data compression, graphics and image processing,
information retrieval, signal encoding or processor allocation in hypercubic networks [17].
Gray codes satisfying certain additional properties have been subject of extensive research
with recent breakthroughs, e.g. confirmation of the Middle Levels Conjecture [14].

Ruskey and Savage [16] asked if any matching in a hypercube Qn can be extended to
a Hamiltonian cycle. This question is still open in general, although for small dimensions
(n 6 5) [20], for small matchings (bounded by a O(n2) function) [3, 7, 19], or for an
extension into 2-factors [9, 18] it has been answered positively. Another special case
when the matching is perfect was independently conjectured by Kreweras [13]. This has
been affirmatively answered by Fink [8] who proved a strengthened version of Kreweras’
conjecture for the complete graph K(Qn) on the vertices of the hypercube Qn.

Theorem 1 (Fink [8]). Let P be a perfect matching of K(Qn). There exists a perfect
matching R of Qn such that P ∪R induces a Hamiltonian cycle of K(Qn).

In this paper, we study the “path version” of this problem. Namely, in the following
theorem we characterize when there is a Hamiltonian path in the hypercube Qn between
two given vertices x, y of opposite parity containing a given perfect matching. This can be
also viewed as an extension of Kreweras’ conjecture with one additional edge xy. Similarly
as Fink employed a strengthened version in Theorem 1 for the graph K(Qn), we need a
strengthened version for the complete bipartite graph B(Qn) on the vertices of Qn (with
the same bipartition).

Theorem 2. Let P be a perfect matching of B(Qn), n > 5, and let x, y be vertices of
opposite parity with xy 6∈ P . There exists a matching R ⊆ E(Qn) such that P ∪R forms
a Hamiltonian xy-path of B(Qn) if and only if (P ∪ xPyP ) \ {xxP , yyP} does not contain
a half-layer, where xP and yP are the vertices such that xxP , yyP ∈ P .

A half-layer in Qn is a set of edges with the same direction and the same parity, see
the definitions below. Our result shows that these easy to recognize configurations are
the only obstacles. For convenience in the induction proof we actually prove the following
equivalent and shorter form of Theorem 2.

Theorem 3. Let x, y be vertices of opposite parity in Qn, n > 5, and let P be a perfect
matching of B(Qn − {x, y}). There exists a matching R ⊆ E(Qn) such that P ∪R forms
a Hamiltonian cycle of B(Qn − {x, y}) if and only if P does not contain a half-layer.

To see that Theorem 3 implies Theorem 2, assume that P is a perfect matching
of B(Qn), n > 5, and x, y are vertices of opposite parity with xy 6∈ P . Let P ′ =
(P ∪ xPyP ) \ {xxP , yyP} where xP and yP are the vertices such that xxP , yyP ∈ P .
Observe that for any matching R ⊆ E(Qn) the set of edges P∪R forms a Hamiltonian path
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between x and y in B(Qn) if and only if P ′ ∪R is a Hamiltonian cycle of B(Qn−{x, y}).
By Theorem 3 there exists such matching R if and only if P ′ does not contain a half-layer.

On the other hand, to see that Theorem 2 implies Theorem 3, assume that x, y are
vertices of opposite parity in Qn, n > 5, and P is a perfect matching of B(Qn − {x, y}).
Choose any edge xPyP ∈ P and let P ′ = (P \ {xPyP}) ∪ {xxP , yyP} assuming that
xP and yP have opposite parity to x and y, respectively. Observe that for any matching
R ⊆ E(Qn) the set of edges P ∪R forms a Hamiltonian cycle of B(Qn−{x, y}) if and only
if P ′ ∪ R is a Hamiltonian xy-path of B(Qn). By Theorem 2 there exists such matching
R if and only if P does not contain a half-layer.

Theorem 3 can be also viewed as another extension of Kreweras’ conjecture for hy-
percubes with two faulty vertices x, y of opposite parity. In [1] the authors showed that
Kreweras’ conjecture also holds for sparse spanning regular subgraphs of hypercubes. As
for other related results, in a more general setting when the prescribed edges can be inci-
dent (i.e. not necessarily a matching) it is known [4, 5] that any 2n−3 (resp. 2n−4) edges
satisfying certain necessary conditions can be prescribed for a Hamiltonian cycle (resp.
for a path between given vertices), and these bounds are tight. In a sense complementary
results characterize when there is a Hamiltonian cycle (resp. path) in Qn that avoids a
given matching [2]. In particular, a Hamiltonian cycle exists in Qn −M for n > 4 if and
only if the forbidden matching M does not contain a half-layer [2]. Thus half-layers are
the only obstacles in the complementary problem as well.

It should be noted that our proof is computer-assisted; the case n = 5, which serves
us as a base of induction, was verified on computer by an exhaustive checking of all
non-isomorphic configurations.

The paper is organized as follows. In Section 2 we introduce definitions and notation.
In Section 3 we study half-layers and quad-layers that play a key role as obstacles in our
results. In Section 4 we prove the induction step of Theorem 3. In Section 5 we conclude
with discussion of a possible generalizations. In Appendix we describe our algorithm that
verifies the base of induction for n = 5. The source code of the verifying algorithm in
C++ is available on [15].

2 Preliminaries

For a positive integer n we denote by [n] the set {1, 2, . . . , n}. As usual, the vertex and the
edge sets of a graph G are denoted by V (G) and E(G), respectively. For sets of so-called
faulty elements V ⊆ V (G) and E ⊆ E(G), let G− V denote the subgraph of G induced
by V (G)\V , and let G−E denote the graph with vertices V (G) and edges E(G)\E. For
a graph G we denote by K(G) the complete graph on vertices V (G), and if G is bipartite
with a unique bipartition, we denote by B(G) the complete bipartite graph on vertices
V (G) with the same bipartition. Note that E(G) ⊆ E(B(G)) ⊆ E(K(G)).

The n-dimensional hypercube Qn is a (bipartite) graph with all binary vectors of length
n as vertices and with edges joining every two vertices that differ in exactly one coordinate,
i.e.

V (Qn) = {0, 1}n and E(Qn) = {uv | |∆(u, v)| = 1},
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where ∆(u, v) = {i ∈ [n] | ui 6= vi}. Thus the distance of vertices u and v is d(u, v) =
|∆(u, v)|. The distance of two edges uv and xy is the minimal distance between a vertex
of uv and a vertex of xy.

The weight w(v) of a vertex v is the number of 1’s in v, i.e. w(v) = d(v,0) where
0 = (0 · · · 0). Furthermore, for an edge uv we define its weight w(uv) = min{w(u), w(v)},
i.e. it is the weight of its vertex closer to 0. The parity of a vertex or an edge is the parity
of its weight. Note that vertices of each parity form bipartite sets of Qn. We denote
(on illustrations) the set of even (odd) vertices by W (resp. B). Consequently, any two
vertices u and v have the same parity if and only if d(u, v) is even.

For any i ∈ [n], let Qi
L and Qi

R be the (n− 1)-dimensional subcubes that are induced
by all vertices with fixed 0 and 1 (respectively) in the i-th coordinate. Clearly, each
(n− 1)-dimensional subcube is Qi

L or Qi
R for a unique i. The set of all edges between Qi

L

and Qi
R is called a layer (of direction i). Thus, E(Qn) can be partitioned into n layers,

one layer for each i ∈ [n]. For a vertex x of Qn and i ∈ [n] let xi denote the neighbor of
x in direction i.

3 Half-layers and quad-layers

In this section we study half-layers and quad-layers which are natural obstacles that need
to be avoided in our inductive construction.

Notice that an edge xy of direction i ∈ [n] in Qn such that x ∈ V (Qi
L) and y ∈ V (Qi

R)
is even (resp. odd) if the vertex x is even (resp. odd). The set of all edges between Qi

L

and Qi
R of the same parity is called a half-layer of Qn. A half-layer is odd (resp. even)

if its edges are odd (resp. even). Every layer comprises two disjoint half-layers, one odd
and one even. See Figure 1 for an illustration. Clearly, any two edges in a half-layer have
distance at least 2. Furthermore, observe that a half-layer of Qn does not belong to any
(n− 1)-dimensional subcube if n > 3.

0

1 1 1

0 0
i i

(a) (b) (c)

ei ei

Figure 1: A lattice representation of the hypercube: (a) even (green) and odd (red) edges,
(b) a layer in the direction i, (c) even (green) and odd (red) half-layers in the direction i.
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The following lemma shows that two half-layers of different directions are incident in
a strong sense.

Lemma 4. Let Hi and Hj be half-layers of Qn of different directions i and j, respectively.
Then, every edge of Hi is incident with some edge of Hj.

B

j

W

W

B

B

W

W

B

i

Figure 2: An illustration for Lemma 1: every edge of the green half-layer is incident with
some edge of the red half-layer.

Proof. Let xxi be an edge from Hi. Notice that the edges xxj and xi(xi)j are both of
direction j and both are incident with the edge xxi. Moreover, they are of different parity,
so precisely one of them is in Hj. See Figure 2 for an illustration.

B

i

W

W

B

(a)

B

i

W

W

B

(b)

x x

Figure 3: A schematic representation of half-layers (the blue line represents the bipar-
tition): (a) even (green) and odd (red) half-layers of direction i, the red half-layer is
x-dangerous, but the green is not; (b) the red almost half-layer is x-dangerous, but the
green is not.

Since we proceed in the proof of Theorem 3 inductively by splitting Qn into two
(n − 1)-dimensional subcubes, we need to consider so-called quad-layers. A quad-layer
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(of direction i) is a half-layer (of direction i) in some (n− 1)-dimensional subcube. If j is
the fixed direction of this (n− 1)-dimensional subcube (i.e. it is one of Qj

L and Qj
R), then

it is called a j-separate quad-layer (of direction i). Note that such j is unique for every
quad-layer if n > 4. (For n = 3 a quad-layer of direction i contains a single edge and is
j-separate for both j ∈ [n] \ {i}.) Observe that every half-layer can be partitioned into
two quad-layers in n− 1 ways. See Figures 3(a) and 4(a) for an illustration.

B

j

W

W

B

(a)

B

W

W

B

(b)

x

B

W

W

B

B

W

W

B
x

i

j

i

Figure 4: A schematic representation of quad-layers: (a) red, green, blue, and black are
j-separate quad-layers of direction i, only the red quad-layer is x-dangerous; (b) red,
green, blue, and black are (j-separate) almost quad-layers, only the red almost quad-layer
is x-dangerous.

The following lemma shows that half-layers and quad-layers may occur in a matching
of K(Qn) (and thus also of B(Qn)) only in a limited number of directions. It is used only
in the proof of Lemma 7.

Lemma 5. Let P be a matching of K(Qn). Then,

(i) P contains half-layers in at most one direction;

(ii) if n > 4, then P contains quad-layers in at most two directions.

Proof. The first claim follows immediately by Lemma 4. For the second claim, suppose
that we have three quad-layers L1, L2, L3 in P of distinct directions d1, d2, d3, respectively.
Let Li be an si-separate quad-layer for i = 1, 2, 3.

If s1 = s2 = s3, then at least two of the quad-layers belong to the same (n − 1)-
dimensional subcube Qs1

L or Qs1
R , say L1 and L2 belong to Qs1

L . But then L1 and L2 are
half-layers of Qs1

L , and we obtain a contradiction by Lemma 4. So at least one of s1, s2,
s3 is distinct from the other two. By renumbering the quad-layers we may assume in the
sequel that it is s1, so s1 6= s2 and s1 6= s3.

As s1 6= s2, we argue in the following way. Without loss of generality, we may assume
that L1 is in Qs1

L and L2 is in Qs2
L . Now we claim that the (n− 2)-cube Qs1

L ∩Q
s2
L does not

contain any edge of L1 ∪ L2. Otherwise, suppose that the edge xy ∈ L1 is contained in
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Qs1
L ∩Qs2

L . As d1 6= d2, the direction of xy is distinct from d2. So, it follows that either x
or y is incident with an edge of L2. This is a contradiction that establishes our claim. As
n > 4, it follows that the (n− 2)-cube Qs2

L − V (Qs1
L ) = Qs1

R ∩Qs2
L is too small to contain

all edges of L2. So we conclude that the edges of L2 have one vertex in Qs1
L ∩Q

s2
L and the

other in Qs1
R ∩Qs2

L . This implies that d2 = s1. Similarly d1 = s2.
In an analogous way, from s1 6= s3 we can conclude that d1 = s3 and d3 = s1.

However, now we obtain that d2 = s1 = d3, which is a contradiction with the assumption
that directions d1, d2, d3 are distinct.

Notice that a quad-layer in Q3 consists of a single edge and Q3 contains a matching
consisting of three edges of distinct directions, thus the bound n > 4 in the second claim
of the above lemma cannot be decreased.

In the proof of Theorem 3, namely in Case 2(b)(i), we need to add a single given
edge to the prescribed matching in one subcube without introducing a half-layer in the
matching. This motivates the following definitions.

Let L be a layer and uv be an edge of L. We say that L \ {uv} is an almost layer.
Similarly, we define an almost half-layer and an almost quad-layer. So, an almost layer, an
almost half-layer, and an almost quad-layer miss one edge to become a layer, a half-layer,
and a quad-layer, respectively. Observe that any almost half-layer of Qn does not belong
to any (n−1)-dimensional subcube if n > 4. See Figures 3(b) and 4(b) for an illustration.

For almost half and quad-layers we have the following lemma, analogous to Lemma 5.
It is also used only in the proof of Lemma 7.

Lemma 6. Let P be a matching of K(Qn) with n > 4. Then,

(i) P contains almost half-layers in at most one direction;

(ii) if n > 6, then P contains almost quad-layers in at most two directions.

Proof. Let L1, L2 be two almost half-layers of Qn in different directions. Since n > 4, the
set L1 contains at least 3 edges. By Lemma 4, at most one of them is not incident with
L2. Thus L1, L2 cannot be both in the matching P , which proves the first claim. For the
second claim, we proceed similarly as in the proof of Lemma 5. Suppose that we have
three almost quad-layers L1, L2, L3 in P of distinct directions d1, d2, d3, respectively. Let
Li be an si-separate almost quad-layer for i = 1, 2, 3.

If s1 = s2 = s3, then at least two of the almost quad-layers belong to the same (n−1)-
dimensional subcube Qs1

L or Qs1
R , say L1 and L2 belong to Qs1

L . But then L1 and L2 are
almost half-layers of Qs1

L , and we obtain a contradiction with the claim (i) for P ∩ Qs1
L .

So at least one of s1, s2, s3 is distinct from the other two. By renumbering the almost
quad-layers we may assume in the sequel that it is s1, so s1 6= s2 and s1 6= s3.

As s1 6= s2, we argue in the following way. Without loss of generality, we may assume
that L1 is in Qs1

L and L2 is in Qs2
L . Now we claim that the (n− 2)-cube Qs1

L ∩Q
s2
L contains

at most one edge of L1 and at most one edge of L2. Otherwise, suppose that two edges
x1y1, x2y2 ∈ L1 are contained in Qs1

L ∩Q
s2
L . As L2 is an almost half-layer in Qs2

L of direction

the electronic journal of combinatorics 25(2) (2018), #P2.56 7



d2 6= d1, at least one of the vertices x1, x2, y1, y2 is incident with L2. This is a contradiction
that establishes our claim.

As n > 6, it follows that the (n − 2)-cube Qs2
L − V (Qs1

L ) = Qs1
R ∩ Qs2

L is too small to
contain all the edges of L2 that are not in Qs1

L ∩ Qs2
L . Indeed, L2 has 2n−3 − 1 edges, at

most one of them is in Qs1
L ∩ Qs2

L , and Qs1
R ∩ Qs2

L can contain at most 2n−4 edges with
mutual distance at least 2, but 2n−3 − 2 > 2n−4 for n > 6. So we conclude that the edges
of L2 have one vertex in Qs1

L ∩Q
s2
L and the other in Qs1

R ∩Q
s2
L . This implies that d2 = s1.

Similarly d1 = s2.
In an analogous way, from s1 6= s3 we can conclude that d1 = s3 and d3 = s1.

However, now we obtain that d2 = s1 = d3, which is a contradiction with the assumption
that directions d1, d2, d3 are distinct.

In the proof of Theorem 3, quad-layers may lead to obstacles only if they are in the
(n− 1)-dimensional subcube containing one of the removed vertices. This motivates the
following additional definitions.

Let x be a vertex of Qn. If x is not incident with any edge of a half-layer L of Qn, then
we say that L is x-dangerous. A quad-layer L is x-dangerous, if it is an x-dangerous half-
layer in some (n − 1)-dimensional subcube which contains x. Furthermore, we define an
x-dangerous almost half-layer as an x-dangerous half-layer without one edge. Similarly,
an x-dangerous almost quad-layer is an x-dangerous quad-layer without one edge. See
Figures 3 and 4 for an illustration. The following statements are simple observations:

(o1) Every x-dangerous half-layer covers n− 1 neighbors of x. Namely, if the half-layer
is of direction i, then the only uncovered neighbor of x is xi.

(o2) Every x-dangerous quad-layer covers n−2 neighbors of x. Namely, if the quad-layer
is j-separated and of direction i, then the only uncovered neighbors of x are xi and
xj.

(o3) Every x-dangerous almost quad-layer covers at least n− 3 neighbors of x.

In the following lemma we restate the above two lemmas for hypercubes with two
faulty vertices of opposite parity. Additionally, we include similar statements also for
x-dangerous half and quad-layers. This lemma is used in the proof of Theorem 3.

Lemma 7. Let P be a matching of K(Qn − {x, y}), where x, y are vertices of opposite
parity. Then,

(i) P contains half-layers in at most one direction;

(ii) P contains quad-layers in at most two directions for n > 4;

(iii) P contains x-dangerous quad-layers in at most one direction for n > 4;

(iv) P contains almost half-layers in at most one direction for n > 4;

(v) P contains almost quad-layers in at most two directions for n > 6;
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(vi) P contains x-dangerous almost quad-layers in at most one direction for n > 6.

Proof. The claims (i), (ii) and (iv), (v) follow directly from Lemmas 5 and 6, respectively.
Now we consider the claim (iii). By (ii), x-dangerous quad-layers could be in at most two
directions, say i and j. Suppose that Li and Lj are x-dangerous quad-layers of directions
i and j, respectively. Since x is not covered by Li ∪ Lj and (xi)j is not covered by both
Li, Lj, it follows that at least one of xi, xj is not covered by Li ∪Lj. Since each of Li, Lj

covers n− 2 neighbors of x by (o2) and n > 4, some neighbor must be covered by both,
a contradiction.

The claim (vi) is proven in the same way as the claim (iii). The only difference is in
counting. Each of x-dangerous almost quad-layers Li, Lj covers at least n− 3 neighbors
of x by (o3) and n > 6, which again leads to a contradiction.

4 Proof of Theorem 3

Proof. First we prove the necessity. Assume that P contains a half-layer L of direction i.
We may assume that x ∈ V (Qi

L) and that the half-layer L is even, i.e. it covers the set A
of even vertices in Qi

L and x is odd. Let B denote the set of odd vertices in Qi
L distinct

from x. Assume by way of contradiction that there is a matching R ⊆ E(Qn − {x, y})
such that P ∪R forms a Hamiltonian cycle of B(Qn−{x, y}). However, this is impossible,
as R must match each element of A to a distinct element of B and |A| > |B|.

For the other direction (sufficiency) assume that P does not contain a half-layer. We
proceed by induction on n. For n = 5 we verified the sufficiency part of Theorem 2 by
computer, see the Appendix for a description of the verifying algorithm. This implies
that also the sufficiency part of Theorem 3 holds for n = 5.

Now we assume that the statement holds for n − 1 and we prove it for n > 6. The
main idea is to cut the cube into two subcubes QL := Qd

L and QR := Qd
R through a

carefully selected direction d in order to apply induction. In the case when both x, y
belong to the same subcube, say QL, we first apply induction in QL and use Theorem 1
in QR and finally combine both matchings in order to obtain the required matching R.
In the case when x and y are in different parts, say x in QL and y in QR, we choose some
y′ ∈ V (QL) and x′ ∈ V (QR) in order to apply induction in both parts, and afterwards we
again combine the obtained matchings.

Now we specify how to determine d. If P contains an x-dangerous or y-dangerous
(almost) quad-layer, then we use the direction of such (almost) quad-layer for d. Note
that by Lemma 7(vi) we may have two choices for d, one for an x-dangerous (almost)
quad-layer and one for an y-dangerous (almost) quad-layer. If P does not contain an
x-dangerous or y-dangerous (almost) quad-layer, we choose for d a direction with the
maximal number of edges of P between Qd

L and Qd
R. As n > 6, an almost quad-layer has

at least 7 edges. A direction with the maximal number of edges of P between the subcubes
contains at least (2n−1 − 1)/n > 6 edges. Thus, there are at least 6 edges of P between
Qd

L and Qd
R. Let PL and PR denote the set of edges of P in QL and QR, respectively, and

let A denote the set of edges of P between the subcubes; thus, P = PL ∪ PR ∪ A and
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dQL QR

x y

APL PR

ML

AL AR

QL QR

x y

QL QR

x y

APL PR

MR

RL APL PR RL RR

AL AR AL AR

d d

(a) (b) (c)

P2

P1

P3

HL HR

Figure 5: Three steps in Case 1: (a) extending PL by a matching ML on vertices of AL;
(b) applying induction in B(QL − {x, y}) and the matching MR obtained on vertices of
AR; (c) applying Theorem 1 in QR.

|A| > 6. Let AL and AR denote the set of vertices from QL and QR, respectively, incident
with the edges of A.

By Lemma 7(vi) and the choice of d, we obtain that x or y has no (almost) half-layer
from P inside its subcube. So, without loss of generality, we can assume that x has this
property; otherwise we swap x and y. Moreover, we can assume that x is in QL; otherwise
we swap QL and QR. Thus PL does not contain an (almost) half-layer of QL. Now, we
distinguish two cases regarding whether y belongs to QL or QR.

Case 1: y is in QL. See Figure 5 for an illustration. Since PL contains no (almost)
half-layer of QL and |AL| > 6, we can easily extend PL on the vertices of AL by some new
edges ML of B(QL−{x, y}) to a perfect matching P ∗L = PL∪ML of B(QL−{x, y}) so that
P ∗L contains no half-layer. Indeed, take an arbitrary matching ML of B(QL − {x, y}) on
AL and if PL∪ML contains a half-layer B, choose an edge uBuW ∈ML∩B and any other
edge vBvW ∈ML and swap their endvertices; that is, take ML := (ML \{uBuW , vBvW})∪
{uBvW , vBvW}. Then the modified ML with PL contains no half-layer by Lemma 4. By
applying induction in QL for P ∗L we obtain a set of edges RL ⊆ E(QL) such that P ∗L ∪RL

forms a Hamiltonian cycle HL of B(QL − {x, y}).
Notice that HL−ML is a union of some vertex-disjoint paths P1, P2, . . . , Pk, each with

endvertices of opposite parity. Let us denote the endvertices of Pj by uj, vj ∈ AL, and
furthermore let us denote by uA

j , v
A
j ∈ AR their neighbors through the edges of A, i.e.

uju
A
j , vjv

A
j ∈ A. Then MR = {uA

j v
A
j | j = 1, . . . , k} is a matching in B(QR) that extends

the matching PR on the vertices of AR to a perfect matching P ∗R = PR ∪MR of B(QR).
Now, by applying Theorem 1 in QR for P ∗R we obtain a set of edges RR ⊆ E(QR)

such that P ∗R ∪ RR forms a Hamiltonian cycle HR of B(QR). It remains to observe that
(HL \ML) ∪ (HR \MR) ∪A forms a Hamiltonian cycle of B(Qn − {x, y}). Therefore the
required matching is R = RL ∪RR.
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Figure 6: Three steps in Case 2(a): (a) extending P ′L by a matching ML on vertices of
A′L; (b) applying induction in B(QL−{x, y′}) and the matching MR obtained on vertices
of A′R; (c) applying induction in B(QR − {x′, y}).

Case 2: y is in QR. We distinguish two subcases:

(a) PR contains a half-layer B of QR. See Figure 6 for an illustration. Notice that B
is y-dangerous. First we choose a vertex x′ in QR of opposite parity to y that is
covered by some edge x′b of B, and we put P ′R = PR \ {x′b}, A′R = AR ∪ {b}. Let
y′ = (x′)d denote the neighbor of x′ in QL, P ′L = PL \ {y′a}, and A′L = AL ∪ {a},
where a ∈ V (QL) such that y′a ∈ PL.

Second, we extend P ′L on A′L by some edges ML to a perfect matching P ∗L of B(QL−
{x, y′}) so that P ∗L contains no half-layer of QL. This can be done since PL does
not contain a half-layer in QL and |AL| > 6, recall the choice of ML in Case 1. By
applying induction in QL for P ∗L we obtain a set of edges RL ⊆ E(QL) such that
P ∗L ∪RL forms a Hamiltonian cycle HL of B(QL − {x, y′}).
Next, we take the matching MR of B(QR − {x′, y}) on vertices of A′R exactly as in
Case 1 but with respect to the set A′ = A ∪ {ab} instead of A. Thus MR extends
the matching P ′R on A′R to a perfect matching P ∗R = P ′R ∪MR of B(QR − {x′, y}).
By Lemma 7(iv), P ∗R does not contain a half-layer of QR since P ′R already contains
an almost half-layer B \ {x′b} and the edge x′b cannot occur in MR (it is not an
edge of B(QR − {x′, y})).
Thus, we may apply induction again in QR for P ∗R to obtain a set of edges RR ⊆
E(QR) such that P ∗R ∪RR forms a Hamiltonian cycle HR of B(QR − {x′, y}). It re-
mains to observe that (HL\ML)∪(HR\MR)∪A∪{ay′, y′x′, x′b} forms a Hamiltonian
cycle of B(Qn − {x, y}). Therefore the required matching is R = RL ∪RR ∪ {x′y′}.

(b) PR contains no half-layer of QR. In this case, to be able to apply induction in QR

for the matching P ∗R we will carefully choose the edges of the matching ML so that it
is guaranteed that P ∗R has no half-layer in QR. First, since P contains no half-layer
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of Qn, there is a vertex x′ in QR of opposite parity to y such that x′y′ 6∈ P where
y′ = (x′)d is the neighbor of x′ in QL. Similarly as in the previous subcase, we define
P ′R = PR \ {x′b}, P ′L = PL \ {y′a}, A′R = AR ∪ {b}, A′L = AL ∪ {a} where a, b are
the vertices such that x′b, y′a ∈ P .

We say that a direction j ∈ [n] \ {d} is dangerous if P ′R can be extended on A′R to
a perfect matching P ∗R of B(QR−{x′, y}) containing a half-layer of QR in direction
j. Clearly, such half-layers are y-dangerous.

(i) At most one direction is dangerous. If no direction is dangerous then we may
proceed exactly as in Subcase (a). Now assume that j is a dangerous direction.
Our aim is to first choose one edge for the matching ML so that it is guaranteed
that later the matching MR does not introduce the half-layer in direction j into
P ∗R = P ′R ∪MR.

Let uAvA be any edge of the y-dangerous half-layer in direction j of QR such
that uA, vA ∈ A′R, and let u, v ∈ A′L be the neighbors of uA, vA through the
edges of A, i.e. uuA, vvA ∈ A. Note that P ′L∪{uv} does not contain a half-layer
since there was no almost half-layer in PL, and recall that |AL| > 6. Thus we
may extend P ′L on A′L by some edges ML including the edge uv to a perfect
matching P ∗L of B(QL − {x, y′}) so that P ∗L contains no half-layer of QL. The
choice of ML can be done as in the previous cases except that the edge uv has
to be kept in ML. The rest is the same as in the subcase (a). Note that the
edge uAvA cannot appear in MR, since ML contains the edge uv and hence
u, v cannot be the endvertices of the same path in HL −ML. Therefore it is
guaranteed that P ∗R = P ′R ∪MR contains no half-layer as required.

(ii) There are k > 2 dangerous directions. We proceed similarly as in Subcase (i).
Our aim is to first choose k edges for the matching ML, one for each dangerous
direction, so that we again “forbid” all possible half-layers later in P ∗R. We
claim that

|P ′L| 6 2n−k−2 − 1. (1)

Notice that |P ′L| = |P ′R|. By Lemma 4, no edge of a y-dangerous half-layer in a
dangerous direction is in P ′R. Furthermore, y-dangerous half-layers of QR in k
dangerous directions cover (together) all but 2n−k−1 vertices of QR as they have
the same parity. Since the matching P ′R can pair only those 2n−k−1 vertices
and x′, y are not paired, we obtain that |P ′R| 6 2n−k−2 − 1. This establishes
the claim (1).

Now we pick the edges to “forbid” dangerous half-layers. Let S be the following
set of n independent edges between all the neighbors of y and distinct vertices
at distance 2 from y:

S = {yi(yi)i+1 mod n | i ∈ [n]}.

Clearly, every direction appears exactly once in S. Furthermore, if uv ∈ S has
a dangerous direction, then uv belongs to a y-dangerous half-layer and thus
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u, v ∈ A′R. For each such edge uv we choose the edge uAvA for ML where
uA, vA ∈ A′L such that uuA, vvA ∈ A.

If we add these k edges chosen for ML into P ′L, can P ′L contain a half-layer of
QL? By claim (1), we would have at most 2n−k−2−1+k edges, which is strictly
less than 2n−3 as k > 2, the size of a half-layer in QL, so the answer is negative.
Therefore, P ′L can be extended on A′L by some edges ML including the above
already chosen edges to a perfect matching P ∗L = P ′L ∪ML of B(QL − {x, y′})
so that P ∗L contains no half-layer of QL. Similarly as before, the choice of other
edges of ML can be done arbitrarily and if P ′L ∪ML contains a half-layer, it
can be corrected by switching the endvertices of two suitable edges. The rest
is the same as before.

5 Conclusions

In this section we discuss possible extensions. In both Theorems 2 and 3 we assume that
n > 5. As for smaller dimensions, it is easy to check that they both hold also for n = 3.
However, for n = 4 there are other particular exceptional configurations, see their list for
Theorem 3 on Figures 7 and 8.

x y x y x y

x y x y

Figure 7: All (up to isomorphism) configurations of (thick red) perfect matchings of
B(Q4 − {x, y}) for d(x, y) = 1 that do not contain a half-layer but cannot be extended
by (thin black) edges of Q4 − {x, y} to a Hamiltonian cycle.

It is worth mentioning that our induction step would allow us to prove a stronger
version of Theorems 2 and 3 with the graph B(Qn) resp. B(Qn − {x, y}) being replaced
by K(Qn) resp. K(Qn − {x, y}). Let us state it formally only for Theorem 3.

Conjecture 8. Let x, y be vertices of opposite parity in Qn, n > 5, and let P be a perfect
matching of K(Qn− {x, y}). There exists a matching R ⊆ E(Qn) such that P ∪R forms
a Hamiltonian cycle of K(Qn − {x, y}) if and only if P does not contain a half-layer.
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x
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Figure 8: All (up to isomorphism) configurations of (thick red) perfect matchings of
B(Q4 − {x, y}) for d(x, y) = 3 that do not contain a half-layer but cannot be extended
by (thin black) edges of Q4 − {x, y} to a Hamiltonian cycle.

The proof of the necessity in Conjecture 8 is the same as in our proof. However, for
the sufficiency in Conjecture 8 we were not able to verify the case n = 5 even with the
help of computer (the number of non-isomorphic configurations is unmanageable in this
case.) Our proof in Section 4 thus only provides the following implication.

Theorem 9. If Conjecture 8 holds for n = 5 then it holds for all n > 5.

For the sake of completeness, we also note that for n = 4 there are two additional
exceptional configurations for Conjecture 8, see Figure 9.

x y x y

Figure 9: Two additional (up to isomorphism) configurations of (thick red) perfect match-
ings of K(Q4 − {x, y}) that do not contain a half-layer but cannot be extended by (thin
black) edges of Q4 − {x, y} to a Hamiltonian cycle.
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Appendix A

In this appendix we describe the algorithm that verified the case n = 5 of Theorem 2,
which serves us as the base of induction in our proof. The source code of the algorithm
in C++ is available on [15].

We start with terminology required for the description of the algorithm. We say that
two matchings in B(Qn) are isomorphic if there exists an automorphism of Qn mapping
one to the other. Furthermore, we say that an edge uv ∈ B(Qn) has length l if the
distance of vertices u, v ∈ V (Qn) is equal to l. An edge is short if it lies in Qn (i.e. its
length is 1). Note that in this appendix we represent vertices of Qn by corresponding
integers {0, . . . , 2n − 1} via the standard binary encoding.

The algorithm is composed of two major parts: a generation of the set P of all non-
isomorphic perfect matchings of B(Qn) and a search for Hamiltonian paths between x, y
that extend P with some short edges, for every matching P ∈ P and every two vertices
x, y of opposite parity with xy /∈ P .

A.1 Generation of matchings

The generation is based on backtracking with cutting-off branches with already visited
states or violating the condition on the number of short edges. First, we make follow-
ing observations showing that pruning made in backtracking does not miss any perfect
matching, up to isomorphism:

Observation 10. If a perfect matching P contains at least one edge of length l then there
exist an isomorphic perfect matching with the edge {0, 2l − 1}.

Observation 11. When two perfect matchings differ in numbers of their short edges, they
cannot be isomorphic. Therefore, generating non-isomorphic perfect matchings separately
for all possible numbers (0 to 2n−1) of short edges generates all of them exactly once.

Observation 12. When all possible perfect matchings P ′ obtainable from extending some
non-perfect matching M into perfect were generated, then each perfect matching obtainable
from extending any matching isomorphic to M is also isomorphic to some perfect matching
in P ′.

The backtracking is based on adding edges one-by-one into a partial matching to
obtain all possible configurations. More precisely, in each level of recursion we find the
first uncovered vertex, which is then connected to all uncovered vertices in the other
partite sets and for each possibility (if it is not cut) the recursion continues with another
step until all edges are selected. The resultant perfect matching is tested for isomorphism
with previously generated perfect matchings and if it is new, it is added into the set of
generated perfect matchings.

By Observation 10, we can set the first edge to be {0, 1} if at least one of the edges is
required to be short. If not (i.e. the required number of short edges is set to 0), then this
case must be handled separately.
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The diameter of Qn is n, so each edge has length at most n. Therefore, if there exists
an edge of length 3, we may set the first edge to be {0, 7}. For n = 3 and n = 4 there are
no other possibilities. However, for n = 5 it is possible to have all edges of length 5. But
then all edges are uniquely determined, so we may add that perfect matching separately.

Observation 11 allows to divide the program into 2n−1+1 independent cases depending
on the number of short edges so we can run it for all of these cases in parallel.

A.1.1 Pruning non-perspective branches

Let us suppose that we want to add an edge uv into a partial matching. There are two
simple cases when this branch can be skipped:

1. Adding the selected edge into the matching violates the requirement for the number
of short edges.

2. Adding the selected edge creates a partial matching isomorphic to some matching
generated earlier.

The first condition is clear, the second comes from Observation 12. In the program,
the first condition is checked in two cases. If uv ∈ E(Qn), then we increase the number
of used short edges by one. If this number extends the requirement, this edge cannot be
used. Otherwise uv 6∈ E(Qn); then we compare the number of short edges still needed to
be added and the number of available short edges on uncovered vertices. If there are not
enough short edges left, we cannot fulfil the requirement.

The second condition is checked only partially, only when the number of used edges
is not greater than 10. This relaxation must be done because of fast increasing memory
requirements to store all visited states. Moreover, searching for the correct isomorphism
is a relatively expensive operation, thus more frequent filtering can even be slower.

A.1.2 Isomorphism testing

The following characterization of the hypercube automorphisms is a well-known fact.

Observation 13. Every automorphism of hypercube is composed of a unique transposition
(i.e. switching certain coordinates) and a unique permutation of coordinates.

For example, for n = 5 there are exactly 25 · 5! different automorphisms of Qn. There-
fore, searching for an isomorphic matching among all generated matchings by trying all
of the automorphisms would be too slow.

Definition 14. For a matching M , let the signature of M be the 2n-dimensional vector
(a0, a1, . . . , a2n−1), where for every i ∈ {0, 1, . . . , 2n − 1},

ai =

{
the index of the neighbor of i in M if i is covered by M,

2n otherwise.
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Definition 15. For the set I(M) of all matchings isomorphic to M we say that M1

is lexicographically smaller than M2, (where M1,M2 ∈ I(M)) if the signature of M1 is
lexicographically smaller than the signature of M2. Matching M0 isomorphic to M is
lexicographically minimal (denoted by lexmin(M)), if it is lexicographically smaller than
all M ′ ∈ I(M) \ {M0}.

Observation 16. For every two matchings A,B, lexmin(A) and lexmin(B) exist, they
are unique, and lexmin(A) = lexmin(B) if and only if A and B are isomorphic.

We use the Observation 16 to reduce the complexity of search. When we generate a
possibly new matching M , we count lexmin(M) and then we try to find in the list of all so
far generated matchings. If it is already there, we know that some matching isomorphic
to M was generated earlier, otherwise M is new and then we insert lexmin(M) to the list.

We can also use Observation 13 to estimate the total number of non-isomorphic perfect
matchings in B(Qn) for n = 5. There are exactly 16! different perfect matchings in B(Qn)
and for every perfect matching P it holds |I(P )| 6 25 · 5!. Therefore

|{I(P ) : P is a perfect matching of B(Qn)}| > 16!

25 · 5!
= 5, 448, 643, 200.

In fact, there are exactly 5,450,821,743 non-isomorphic perfect matchings, which is rela-
tively larger only by factor 0.0004 compared to the estimate.

A.2 Testing matchings

All generated matchings are tested independently for existence of required paths, thus let
us suppose we are testing a perfect matching P . For every non-connected pair of vertices
of opposite parity, the Hamiltonian path between them that contains P is being searched
using DFS with the most-constrained-first heuristics.

Suppose that we want to find a Hamiltonian path H between vertices x and y. We
know that P ⊂ H. At first, we count for every vertex the directions in which a short edge
may be added to this partial path without creating a loop. Then we select a vertex with
the least possibilities and try adding incident edges one-by-one. After adding an edge, we
update the list of possibilities and repeat the procedure until H is found or a vertex with
no possibilities appears; then we try to use a different one on the previous level.

If we return to the beginning without finding the path, then the path does not exist.
In that case, we need to check that the matching with these endvertices x, y does not
satisfy the necessary condition in Theorem 2. If it is so (all cases for dimensions n = 3
and n = 5), no action has to be done. Otherwise (in the cases for dimension n = 4
corresponding to Figures 7 and 8), the violation is reported.

the electronic journal of combinatorics 25(2) (2018), #P2.56 18


	Introduction
	Preliminaries
	Half-layers and quad-layers
	Proof of Theorem 3
	Conclusions

