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Abstract

As projections of links, 4-regular plane graphs are important in combinatorial
knot theory. The flow polynomial of 4-regular plane graphs has a close relation with
the two-variable Kauffman polynomial of links. F. Jaeger in 1991 provided even sub-
graph expansions for the flow polynomial of cubic plane graphs. Starting from and
based on Jaeger’s work, by introducing splitting systems of even subgraphs, we ex-
tend Jaeger’s results from cubic plane graphs to plane graphs with maximum degree
at most 4 including 4-regular plane graphs as special cases. Several consequences
are derived and further work is discussed.

Mathematics Subject Classifications: 05C31, 57M27

1 Introduction

Graphs in this paper may have loops and multiple edges. They may also have free
loops, i.e. isolated edges which are not incident with any vertex. Let G = (V, E) be
a graph and v = |V|. We denote by V;(G) the set of vertices of G of degree i, and

*Corresponding author.
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let v; = |V;(G)]. Two graphs will be said to be (topologically) equivalent if they are
homeomorphic, that is if there exists a third graph which can be obtained from both by
sequences of edge subdivisions.

Choose an arbitrary but fixed orientation of GG. Let I' be an additive Abelian group
of order A. A mapping f : E — I is called a I'—flow if, for each vertex v € V| the total
flow out of v is equal to the total flow into v. A I'-flow f is called nowhere-zero if, for each
e € E, f(e) # 0. It is not difficult to see that the number of nowhere-zero I'—flows does
not depend on the chosen orientation of GG, or the structure of I'; but only on the order of
[. For any positive integer A, let F/(G, \) denote the number of nowhere-zero I'—flows of
GG, where ) is the order of I'. As we shall see in the following contraction-deletion formula,
F(G, \) is always a polynomial in A, and is called the flow polynomial of G.

Let e € E. We denote by G/e and G — e the graphs obtained from G by contracting
(that is, deleting e and identifying its two end vertices) and deleting the edge e, respec-
tively. The flow polynomial F(G,\) of a graph G can be evaluated by the following
contraction-deletion formula [13, 2].

(1) If G is an empty graph (that is, E = ), then

F(G, ) = 1. (1)

(2) If G is not empty and e € E, then

(i) when e is a loop,
F(G,A) = (A—1)F(G — e, \), 2)

(i) otherwise,
F(G,A) = F(GJe,\) — F(G — e, \). (3)

In particular, if G has a cut edge (i.e. a bridge), then F'(G,\) = 0. In addition, the flow
polynomial is invariant under equivalence of graphs. Hence, it suffices for us to consider
graphs with minimum degree at least 3. In the subsequent figures, we usually do not draw
vertices of degree 2. For more properties of the flow polynomial, we refer the reader to
[12].

Cubic plane graphs have been studied extensively in graph theory. In [7] Jaeger
gave two expansions of the flow polynomial F(G,\) of a cubic plane graph G. The
first expansion was in terms of oriented even subgraphs of G, and the second one was
an unoriented version of the first. 4-regular plane graphs, as projections of links, are
important in combinatorial knot theory. The flow polynomial of 4-regular plane graphs
have a close (although not direct) relation with link polynomials and the details will be
given in Section 2. Starting from and inspired by Jaeger’s work, by introducing splitting
systems of even subgraphs and extending the rotation polynomials, in this paper we
extend Jaeger’s two expansions from cubic plane graphs to plane graphs with maximum
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degree at most 4 including 4-regular plane graphs. Several consequences are derived and
further work is discussed.

The paper is organized as follows. In Section 3 we give the definitions of even subgraphs
with splitting systems and extended rotational polynomial of plane graphs with maximum
degree at most 4 in terms of oriented even subgraphs (under a given splitting system), and
show that extended rotational polynomial is independent of splitting systems. In Section
4 we obtain an oriented even subgraph expansion based on the relationship between flow
polynomial and extended rotational polynomial. In Section 5 we obtain the unoriented
even subgraph expansion for the flow polynomial by grouping together the contributions
of all orientations for each even subgraph. In Section 6, we consider the case of 4-regular
plane graphs and several consequences are derived. In the final section further work is
discussed.

2 Relation with Kauffman and Vogel’s polynomial

The three variable bracket polynomial [G] = [G](A, B, a) for 4-regular plane graphs G
can be defined via the following graphical calculus [9, 3.

Graphical calculus for the bracket polynomial

(1) [O] =1, where () is a free loop.

(2) [GUQO)] = p|G], where G is the disjoint union of an unoriented 4-regular plane
graph G and O, and p = &9~ 4 1.

A-B
(3) Let

Aa~! - B

0= Tip WD)
B2a — A2q-!

1= o p 4B

¢ = B3a — A3a™!

B A-B

Then identities as shown in Figure 1 hold.

The graphical calculus of the bracket polynomial is a kind of recursive definitions
entirely in the category of 4-regular plane graphs appearing in combinatorial knot theory.
The following theorem uncovers its relation with the flow polynomial of 4-regular plane
graphs.

Theorem 1. Let G be a 4-reqular plane graph. Let \ = —A — A= +2. Then

GI(A, AL —A2) = ﬁp(a, A). ()

THE ELECTRONIC JOURNAL OF COMBINATORICS 25(2) (2018), #P2.7 3



L
Q - e X
A - 0 -¢ =] -[R)

van{ | ) D[ PRHA-DRHAC)

Figure 1: Recursive relations for the bracket polynomial.
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Proof. It suffices to check that % satisfies all equations of the graphical calculus
of the bracket polynomial. Eqs. (2) and (3), the property that the flow polynomial is
invariant under edge subdivisions, and F(G; U G, ) = F(G1,\)F(Ga, A) if G1 and G
are disjoint or have only one common vertex, will be used. This is routine work and we
leave the details to the reader. 0

In addition, Carpentier [3] proved the following.

Theorem 2 ([3]). Let G be a 4-reqular plane graph. Then
[G](A7 A_lu A) = Qk(c)_l(_A - A_I)V(G)' (5)

Definition 3 ([9]). A graph diagram is a planar representation of a graph embedded in
three dimensional Fuclidean space and it is analogous to the link diagram of a link, i.e.
disjoint cycles in three dimensional Euclidean space. Let G be a graph diagram of a 4-
regular rigid vertex embedded graph. Let P be the set of 4-regular plane graphs obtained
from G by applying to each crossing one of the three types of replacements as shown in
Figure 2. Then the Kauffman and Vogel’s polynomial is defined as follows.

A

PR 2
7N
A-smoothing B-smoothing

Figure 2: Three types of replacements of an unoriented crossing.
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(G]= ) APB[P|(A B,a), (6)

pPeP

where i(P) and j(P) are the numbers of crossings of G of A-smoothings and B-smoothings
used to form P, respectively.

In the case that G has no vertices (i.e. it is a link diagram) [G] reduces to the
“Dubrovnik” version of the two-variable Kauffman polynomial of links [8].

3 Even subgraphs with splitting systems and the extended ro-
tational polynomial

We shall always assume that G = (V, F) is a plane graph with 3 < d(v) < 4 for each
v € V unless otherwise specified in the subsequent sections.

3.1 Even subgraphs with splitting systems

Let C' € E. We shall call C' an even subgraph of G if every vertex of the spanning
subgraph (V,C') has even degree. The set of even subgraphs of G will be denoted by
% (G). For convenience, we shall usually identify C' with the induced subgraph G|[C].

An even subgraph C' is said to be trivial if C = 0, i.e. (V,C) consists of v isolated
vertices. A non-trivial even subgraph C of G without vertices of degree 4 is a disjoint
union of cycles. For a non-trivial even subgraph C' with vertices of degree 4 and for each
v € V4(C), there are two ways to split its incident four half-edges into two pairs (with
planarity kept) as shown in Figure 3.

Figure 3: Two ways of splitting a 4-degree vertex into two vertices of degree 2: {{h1,ha}, {hs, hs}} and
{{h17 h4}v {h27 h3}}

If we assign a splitting s(v) from its two ways of splitting for each vertex v € V,(C),
that is, placing a pair of opposite angles near v € V,(C) as drawn in Figure 3, then we
obtain a splitting system of C'. We denote by C?® the even subgraph C' with a splitting
system s(C) = {s(v) : v € V4(C)}. There will be 2"4(©) different splitting systems for an
even subgraph C'. We shall take the convention that s(C) = ) in the case of v4(C) = 0.
We shall denote by S(G) = {s(C) : C € €(G)} a splitting system of G, where s(C) is
one of the splitting systems of C'.

THE ELECTRONIC JOURNAL OF COMBINATORICS 25(2) (2018), #P2.7 5



We denote by ¢(C*) the number of cycles of C' after decomposing C' based on the
splitting system s = s(C). If v4(C) = 0 then ¢(C?) is exactly the number of cycles of
C. In particular, ¢(f?) = 0. We can give each cycle a clockwise or an anticlockwise
orientation. Thus for each even subgraph C' € € (G) with a given splitting s = s(C') we
obtain 2°(¢*) oriented even subgraphs. In particular, the trivial even subgraph produces
only one trivial oriented even subgraph. We shall denote by 0% (G, C*) the set of oriented
even subgraphs of G based on C°.

Given a C' € ¥(G), in the following figures, we shall always use dotted lines to represent
edges of G not in C' and ordinary lines to represent edges in C. In the case of oriented
even subgraphs, arrows are used to indicate orientations.

3.2 The extended rotational polynomial

In [7], Jaeger introduced a rotational polynomial R(G,x) for a cubic plane graph G.
We extend R(G,z) of a cubic plane graph G to r(G, S;z), where S = S(G) = {s(C) :
C € €(G)} is a splitting system of a plane graph G with 3 < d(v) < 4 for each v € V,
and call it the extended rotational polynomial.

Let C" € 0¢(G,C?). The rotation number of C" is defined to be the sum of signs of
the cycles of C" after applying the splitting s(C') to C' and a cycle of C” has sign +1 if
it is oriented counterclockwise and sign —1 otherwise. In particular, r(C") = 0 if C' = 0.
To define the weight < C” > of C’, we first define the weight < v|C’ > for each v € V
which are given in Figures 4 and 5, respectively. Note that it belongs to the ring Z[z*!]
of Laurent polynomials in the variable z and is determined by the local behavior of C" at
v. Then < C' >=1T] o, <v|C" >

-1
X=X X _x—l

Figure 4: The weight < v|C’ > of a vertex v of degree 3.

Now we are in a position to define the extended rotational polynomial which is depen-
dent on a fixed splitting system S of G.
Definition 4.
r(G Sy =) Y <> (7)
Ce%(G) c'eoe(a,c5)

In the case that G is a cubic plane graph, there is only one unique splitting system of
G and r(G, S; x) reduces to R(G, x). In the following, we shall prove that r(G, S; z) is in
fact independent of the choice of the splitting system S.
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Figure 5: The weight < v|C’ > of a vertex v of degree 4 (the orientation of the second diagram is

irrelevant).

Theorem 5. For any two splitting systems S(G) = {s(C) : C € €(G)} and T(G) =
{t(C): C e €(G)} of G, we have r(G, S;z) = r(G, T; ).

Proof. We shall prove, for each C' € €(G),
Yoo <> = Y <> (8)

C'c o€ (G,C3) cl'eo€(G,Ct)

It suffices to show that Eq. (8) holds when s(C') and #(C) are only distinct at a single
vertex u € V4(C). Note that |¢(C*®) — ¢(C")| = 1, without loss of generality, we assume
that ¢(C*®) — ¢(C") = 1, which means that there are two (resp. one) cycles containing u
in C* (resp. C") after splitting based on s (resp. t). There are two different cases for
s(C): non-nested as shown in Figure 6 (1) and nested as shown in Figure 6 (6). The
corresponding two cases of ¢(C') are shown in Figures. 6 (1’) and (6’), respectively. Let
C' € 0F¢(G,C?). Let C7 and Cy be two cycles of C' (after splitting) containing u. If the
two cycles are oriented as shown in Figure 6 (4),(5),(9) and (10), then < u|C" >= 0 and
such C"’s have no contributions to 3¢ g (q.0sy) < €' > 2% We denote by 06™*(G, C*)
the set of oriented even subgraph C”’s such that < u|C” ># 0. Then there is a one-to-
one correspondence between oriented even subgraphs of 0% (G,C®) and oriented even
subgraphs of 0¢ (G, C"). Let C' € 0¢™(G, C?) correspond to C” € 0% (G, C?) such that
orientations of C” are the same to C” as shown in Figure 6 (i) and (i'), i = 2,3,7,8. Let C,
be the cycle of C” containing u. Now we only need to prove that < ¢’ > 22"(¢) =< C" >
22" for each C" € 0€*(G,C*). Note that for each v # u, we have < v|C’" >=< v|C” >
and cycles not containing u contribute the same value to z2"(¢) and z2"(¢"). Hence, it
suffices to prove that < u|C” > g2(s9n(C1)+sgn(C2)) — < 4|C" > p2s9m(Cu),
Case 1. Non-nested case as in Figure 6 (i), i = 2, 3.

If the two cycles Cy and Cy are both oriented clockwise as in Figure 6 (2), then C,, is
oriented clockwise as in Figure 6 (2'). We have

< U|OI > x2(sgn(01)+sgn(02)) — (1'2 + 1).%,74 — .1'72 + 1,747
<u|C" > ¥ ) = (72 D)z P =g 247
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3) (4) (5)

1) s(C) 2)

% u u

R((®) (29 (39
(6) s(C) 10)
(6" 1(C) (7 (8

Figure 6: Tlustrations of the Proof of Theorem 5.

If the two cycles Cy and Cy are both oriented counterclockwise as Figure 6 (3), then C,
is oriented counterclockwise as Figure 6 (3'). We have

< U|C/ > x2(sgn(01)+sgn(02)) — (I‘_2 + 1)1,4 _ 132 + ZL’4,
< ulC" > g% = (27 4 1)2? = 2 4 2.

Case 2. Nested case as in Figure 6 (i), i =7, 8.

If the inner cycle C} is oriented clockwise and the outer cycle Cy is oriented coun-
terclockwise as Figure 6 (7), then C, is oriented counterclockwise as Figure 6 (7). We
have

< U|Cl > mQ(sgn(Cl)-‘rSgn(Cg)) _ ($2 + 1)%0 _ 1'2 + 1’
<ulC" > ) = (372 4 1)a? = 2 + 1.

If the inner cycle C] is oriented counterclockwise and the outer cycle Cy is oriented
clockwise as Figure 6 (8), then C, is oriented clockwise as Figure 6 (8'). We have

< U|C, > xZ(sgn(C1)+sgn(C2)) — ([E_2 + 1)1,0 _ 13_2 + 1’
<ulC” > g = (2 D2 =272+ 1.

This completes the proof of Theorem 5. 0J
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4 Oriented even subgraph expansion

A degree-4 vertex-splitting of G is a way of splitting each vertex v; € V4(G) into two
new vertices of degree 2 in one of the two ways given in Figure 3. In this section, let
u be a fixed degree-4 vertex-splitting of G. Let H = H" be the plane graph obtained
from G by splitting each v; € V4(G) into two vertices v;,, v;, in the way given by u and
adding a new edge e; between v;, and v;, for all i =1,2,--- 14 as shown in Figure 7. For
any integer ¢ with 0 < ¢ < 2" — 1, there is a unique expression ¢ = 2;4:1 2071z, where
xz; = 0,1 for each j. Let H; (¢ =0,1,---,2" — 1) be the plane graph obtained from H*
by deleting all edges e; with ; = 0. Then Hy=H —e;--- —e¢,, and Hou_1 = H.

G

Figure 7: Splitting a vertex v; to two vertices v;, and v;,of degree 3 by adding an edge e;.

Lemma 6. Let H; be the plane graph described above for i =0,1,2,--- ,2"* — 1. Then

2¥4—1

F(G,\) =) F(H;\).

1=0

Proof. Note that G = H/e;/---/e,,. By using the contraction-deletion formula (3)
repeatedly, we obtain

F(G,\)=F(H/ey---[ey,—1,\) + F(H/ey - [ey,—1 — €y, A)
=[F(H/e1-/ey—2,\)+ F(H/ey - Jey,—a — €y,—1, \)] +
[F(H/el : "/61/4*2 - ewu)‘) + F(H/€1 : "/61/472 — €1 — eu4a)‘)]

- F(H;, \). O

i=0
Theorem 7 ([7]). For every cubic plane graph G,
R(G,z) = F(G, (z +27')%). (9)

Remark 8. If G is homeomorphic to a cubic plane graph, but contains vertices of degree
2, then Theorem 7 will still be valid under the assumption that < v|C’ >= 1 for each
vertex v € V5(G). See Figure 8.
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1 1

Figure 8: The weight < v|C" > of a vertex v of degree 2 (the orientation of the second diagram is

irrelevant).

o

Figure 9: The local correspondence between C' and Bavs 1.

For any C' € €(G), let C* denote the graph obtained from C' by splitting each vertex
v € V4(C) in the way given by w. This will induce uniformly a splitting system for
each C' € €(G). Thus u actually gives a splitting system of GG, denoted by U. Let
C'e 06 (G, C").

We first define the even subgraph Bagvs 1, corresponding to C', of Hov ¢ in a natu-
ral way depending on u as shown in Figure 9. Note that cycles of C" are one-to-one
correspondent to cycles of Byvy_1. Then let B; = Bovs_1 N E(H;), corresponding to C,
fori =0,1,---,2" — 2. But B; of H; may not be even, we shall call such a fake even
subgraph of H;. For C’, B! is similarly defined by inheriting orientations of C” (orienta-
tions of e;’s are irrelevant). Then cycles of C” will correspond to (fake) cycles of B]. We
define r(B}) = r(C"). Conversely, for any even subgraph C! € 0% (H;,C;), there exists
one unique C' € 0¢(G,C") such that B, = C}. In fact C' can be obtained from C; by
contracting all edges e; € C]. We take the 4-regular plane graph shown in Figure 10 as
an example to illustrate the above correspondences. See Figure 11.
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Vs

Figure 10: A 4-regular plane graph G with a degree-4 vertex-splitting u and one of its oriented even
subgraphs C’ with only one cycle.

/ & / H, / H,
H, H; H H,
Hs """" Hg """"" Hm ...... H‘ o
H, Hy H, H,

12

Figure 11: H; (red lines, dashed or ordinary) correspond to vertices of G, and B, (ordinary lines)
correspond to C’ for i = 0,1,...,15. Note that only B{; and B/ are real cycles.
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Theorem 9. For any splitting system S(G) of G, r(G, S;z) = F(G, (z + z71)?).

Proof. By Theorem 5, we can take S to be the splitting system U of G given by the
degree-4 vertex-splitting u. By Lemma 6, F(G, (z + 2~ )%) = 00" F(H;, (z + 27 1)?).
By Theorem 7 and Remark 8, R(H;,x) = F(H;, (x +x~?). Thus F(G, (z + z71)?) =
S 2 R(H;,x). Tt remains to prove that (G, U;z) = .oy ' R(H;,x). For each v €
Va(H;), take < v| B >= 0 if exactly one of two edges incident with v is contained in B
and < v|B] >= 1 otherwise. Then

R(Hjz) = > S <>

Ci€%(H,) Cle 06 (H;,C;)

= > > <Bj>a"

Ce%(G) C'e0%(G,C)

According to Definition 4, r(G,U;x) = ZCG%(G) > < C" > z¥(©) Recalling

C'e € (G,C%)

that r(C") = r(B}), it will thus be enough to show that, for every oriented even subgraph
C'e 0¢(G,C"),
2va—1
<(C'>=> <B>
i=0
First, if v € V3(G), then < v|C" >=< v|B} >. It suffices to show that

2¥4—1

H <v|C' >= Z H <v|B! >

veV4(G) =0 veV(H;)\Vs(G)

Note that
ova 1

Z H <w|Bj >
i=0 veV(H;)\V3(G)
ova—1

= Z H < Uj1|Bz{ >< szle{ >

=0 v;€Vy (G)

— H (< vj,| By >< vj,|By > 4+ < v, | By >< 0jy| Bl >] .
vj€V4(G)

Now we only need to show that < v;|C" >=< v, |Bj >< v;,|B) > 4+ < vj,|Bhi_; ><
Vj,| By > for each v; € V4(G). All cases are checked in Figures. 12 and 13. This
completes the proof of Theorem 9. O

5 Unoriented even subgraph expansion
In [7], Jaeger expressed R(G,r) as a polynomial in the variable A\ = (z + z7')%

Motivated by Jaeger’s work we shall express (G, S;x) as a polynomial in the variable
A= (x+a 12
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Figure 12: The case do(v) = 0,2:< v, | By >< vj,| Bl >, < vj, |Bhvy_1 >< vj,|Bhus_1 > and < v;|C" >.

Let . (G)° be the set of splitting systems S(G) of G such that ¢(C?) is exactly the

number of connected components of C' for each C' € €(G).

We consider a fixed such

splitting system S(G) € .(G)°. Note that for such a splitting system the zero weight in
Figure 5 will never happen.

Let C € %(G).

splitting) is a single cycle.

We first suppose that C' is connected and in this case C* (after

(i) Let v € Vo(C) N V5(G). We call v an inlet vertex (resp. outlet vertex) if the edge

THE ELECTRONIC JOURNAL OF COMBINATORICS 25(2) (2018), #P2.7

incident to v of G which does not belong to C' lies inside (resp. outside) C* (after
splitting). We denote by i(C') (resp. o(C')) the number of inlet vertices (resp. outlet
vertices) of C'.

Let v € Vo(C) N Vy(G). We call v an inlet half vertez (resp. outlet half vertex) if
the two edges incident to v which do not belong to C' lie inside (resp. outside) C*.
We denote by ih(C) (resp. oh(C)) the number of inlet half vertices (resp. outlet
half vertices) of C. We call v a straight vertez if one of the two edges incident to v
which does not belong to C' lies inside C* and the other outside C'*. We denote by
sv(C') the number of straight vertices of C.

13
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Figure 13: The case dc(v) = 4:< vj,| By >< vj,| By >, < vj, |Bhvs_y >< vj,|Bbvs_; > and < v;|C" >

(iii) Let v € V4(C). We call v an inlet total vertex (resp. outlet total vertex) if both
the two angles near v under S(G) lie inside (resp. outside) C*. We denote by it(C)
(resp. ot(C')) the number of inlet total vertices (resp. outlet total vertices) of C.

See Figure 14 for an example. If C' is not connected, each of the above parameters of C'
is defined to be the sum of the corresponding parameters of each component of C'.

We denote by p3(C) (resp. ps(C')) the number vertices of G of degree 3 (resp. 4) which
do not belong to V(C). We call a component of (V,C) an odd component if it has odd

number of vertices of G of degree 3. We denote by ¢(C') the number of odd components
of the graph (V,C).

Lemma 10. (1) v3(G) =i(C) + o(C) + p3(C).
(2) v4(G) =it(C) + ot(C) +ih(C) 4+ oh(C) + sv(C) + pa(C).
(3) q(C) is even.

Proof. (1) is trivial. (2) follows from the fact that there are no vertices of degree 4 in C'
with one angle inside a cycle of C* and the other outside the same cycle of C*. (3) follows
from the fact that v5(G) is even. O

Lemma 11. All parameters i(C), o(C), it(C), ot(C), ih(C), oh(C), and sv(C) do not
depend on the splitting system S(G) € #(G)°.
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Outlet vertex

Outlet half vertex

Outlet total vertex

Inlet total vertex Inlet vertex

y Inlet half vertex
Straight vertex

Outlet total vertex

Figure 14: Tllustration of vertex types: the interior of C** is shaded.

Proof. Without loss of generality, we assume that C'is connected. Shade C'in a checker-
board fashion such that the unbounded face is unshaded. Then for any S(G) € .(G)°,
the interior of C* (after splitting) consists exactly of shaded faces of C. In fact, the uni-
cycle splitting s corresponds to exactly one spanning tree of the shaded face graph of C,
where the spanning tree connects all shaded faces of C' together to form the interior of
C*®. A simple example is given in Figure 15. Hence i(C), o(C), ih(C), oh(C), and sv(C)
do not depend on S(G). In other words, i(C) is the number of vertices of degree 3 of
G with an incident dashed edge inside the shaded face of C, and so on. Let b(C') and
w(C) be the numbers of shaded and unshaded faces (including the unbounded face) of C,
respectively. Then it is not difficult to see that it(C) = w(C) — 1 and ot(C) = b(C) — 1.
Thus it(C') and ot(C') do not depend on S(G) either. O

Figure 15: A connected even subgraph C' and its shaded face graph (bold and dotted lines).
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Let C' be an even subgraph. We define the sign of C' as follows:
O'(C) _ (_1)sv(C)+o(C)‘ (10)

In particular, o(()) = 1. To define the surrounding polynomial S(C,\) of C, we shall need
the sequence of polynomials A,, in Z[u] (n > 0), which are defined by A, (u) = 27T,,(u/2),
where T, is the Chebyshev polynomial of the first kind. In addition, A,, can be recursively
defined as follows:

Apio(u) = udpii(u) — Ay(u) (n>=0), (11)
Ap(u) =2,A:(u) =u (12)

For all n > 0, we have
At +t7 1) ="+t (13)

By Eq. (13), we can get A,,(2) = 2 for any n > 0 and Ao, (—2) = 2, Agg1(—2) = —2 for
any k > 0.
We first define the surrounding polynomial of a connected C'. Let

m(i,j) =i(C) —o(C) + 2(1 4 ih(C) — oh(C) — i + j),

where 0 <7 < it(C),0 < j < ot(C).
(i) If i(C) + o(C) is even, then

s =3 (“@) (Ot(c))An(i,j)(A —9), (14)

Y]
where n(i, j) = [m(i, j)|/2.
(ii) If i(C) + o(C) is odd, then

n(i,j)

s =3 (“@) (Ot@)sgn(m(z', M+ an-2)], (15)

7
ij J h=1

where sgn(z) is the sign function of the real number = defined by sgn(z) =1 if x > 0,
sgn(0) = 0 and sgn(z) = —1 if z < 0, and n(s, j) = (|m(3,j)| — 1)/2.

If C' is not connected with k(C') connected components Cy, Cs, - - -, Cy(c), we define its
surrounding polynomial as the product of the surrounding polynomials of its connected
components, i.e.

k(C)
S, =[] s . (16)

=1

We take the convention that S(, \) = 1.
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Theorem 12.

F(GA) = ) (A- 1) T (= 3O (C)S(C, ). (17)

Ce?(G)

Proof. Recall that we write A = (z + 2~ ')%. Tt follows from Theorem 9 that

= > Yoo <>,

Ce?(G) C'e0¢(G,C3)

Consider a fixed splitting system S(G) € .(G)°. Let Cy,Cs,...,Ck be components of
C. Recall that C7 will become a single cycle after splitting for [ = 1,2,--- k. If C is
oriented counterclockwise in C’, then:

(i) each inlet vertex (resp. outlet vertex) of Cj contributes a term z' (resp. —z~!) to
<C'>

(ii) each inlet total vertex (resp. outlet total vertex) of C; contributes a term z=2 + 1
(resp. 22+ 1) to < C' >

2

(iii) each inlet half vertex (resp. outlet half vertex) of C; contributes a term z* (resp.

r7%) to < C'" > and
(iv) each straight vertex of C; contributes a term —1 to < C" >

Moreover, C; contributes a term z2 to the rotation factor z2"(¢). Thus if C} is oriented
counterclockwise, its contribution to < €’ > z2"(¢) equals

(_1)sv(Cl)xi(Cl)(_x—l)o(cl)(x—2 + 1)it(Cl)(x2 + 1)Ot(C'z)IQ(ih(Cz)—Oh(Cz))xQ

= (—1)erelen 3 (it(iCz)) (ot(@)) )

.3 J

where my(i, j) = i(C;) — o(C}) + 2(1 + th(C}) — oh(C}) — i + 7). Similarly, if C; is oriented
clockwise in ", its contribution to < C’ > 2*"(¢") equals

(_1)51;(6’1)1,0(01)(_xfl)i(cl)<x72 + 1)Ot(cl)<$2 + 1)z‘t(Cl)x2(oh(Cl)fih(Cl))$72

= (—ppee) 3 (it(icl)> (Ot(cl)>x—ml(i,j)'

irj J
The even subgraph C' has 2* orientations, thus its contribution equals
Yoo <> = (z— a3 AT H (O,
C'e0%(G,C*) -1

where H(C)) = o(() Zi,j (it(Cl)) (ot(Cz)) [xmz(z',j) + (_1)i(Cl)*o(Cl):Efmz(i,j)}'

? J
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Case 1. If i(C}) + o(C)) is even, writing |my(i,j)| = 2ny(i, j), we obtain

H(C)) = o(C) EJ: (“g@) (Ot(jcl)) (2209 4 = 2misd))
= o(C) ; (it(f’ﬂ) (Ot(fl)>z4m(”)(x2 +172)
o () rsr -

= O'(CDS(C[,)\)
Case 2. If i(C)) + o(C)) is odd, writing |my (i, 7)| = 2n(i, j) + 1, we have

() =@ X (") (" Y santm s g [t < gt

]

_ mé (Z'“fl)) (Oﬂfl))sgn(ml(i,j))x
(@ — 271 2

he{—m(i,5),...,n(i,5)}
=o(C)(z —z7") ZZ <it(l.0l)> (Ot(jcl)> sgn(m(i, j)) X

ny (7'1.7)

(1+ An(A—2))

=0(C)(z —27H)S(Cy, N).
Note that i(C;) + o(C}) is odd <= C; is an odd component of C. In addition, isolated
vertices of (V, (') are also odd components of C. It follows that

k
Z <(C" > IQT(CI) = (SL’ — xil)q(C)O\ — 3)p4(C) H O'(CZ)S<CI, )\)
C'e6€(G,C%) =1
(c)

= A=4)"7 (A=3)O(C)S(C, ).
This completes the proof. 0

Example 13. To illustrate Theorem 12, let us compute the flow polynomial of the graph
K obtained from K, by adding a single parallel edge. It has 16 even subgraphs and each
of their corresponding contributions are listed in Figure 16. Thus,

F(KF, M) =X —7A% + 1907 — 23\ + 10.
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Even subgraphs

Contributions

A-4)(A-3)°

(A-3)(2-2)

(*-3)(2-2)

(A-4)(A-1)

(A-4)(X-2)

Even subgraphs Contributions
2
A
A (A-4)(-1)
AAH4A+2)
/A
A2
A4A+2

A (A-4)(3-50>+6A-1)

Figure 16: An example: summands of the flow polynomial of K .
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6 Consequences

It is well known that F'(G,1) = 0 and F(G,2) = 1 for an Eulerian graph G. Now we
consider expressions of F(G,4) and F(G,0) for 4-regular plane graph G.

Theorem 14. Let G be a 4-regqular plane graph G. Then

F(GA) = Y (A=3m5(C\). (18)
Ce? (@)

Proof. For every 4-regular plane graph G and for any even subgraph C € € (G), it is
clear that ¢(C') = 0 and i(C) + o(C') = 0. Now we prove that sv(C) is even. Without loss
of generality we assume that C' is connected. By contracting C'* and its interior to a new
vertex, we obtain a graph in which the degree of the new vertex is sv(C) and the degree
of all other vertices is 4. This implies that sv(C') is even. Hence, o(C) = 1. O

Corollary 15. Let G be a 4-regular plane graph. Then

(1) F(G,4) = > cee(o) 2vi(CIHk(C) “yphere k(C) is the number of connected components
of C;

(2) F(G,0) = Zam(c):o(—l)e(c)(—3)p4(c)2k(c), where e(C) is the number of even cycles
of C.

Proof. Consider a splitting system S(G) € (G)° and S(G) = {s(C) : C € €(G)}.
Recall that S(0, \) = 1. Let C be a nontrivial even subgraph of G with k(C') components
Cl, Cg, ey Ck(C) Then

k(C)
sc.4) = [[s@n9
=1

= ]i@[) [Z (it(fl)) <Ot(jq))f4m(z’,j)(2)]

=1 @]
k(C)
— H 2it(Cz)+Ot(Cz)+1

=1
o 2V4(C)+k‘(0).
If C is nontrivial then

k(C)
S(C,0) = S(Cy,0)

=1

B ’“ﬁ> [Z (it(fl)) (m(}@)) Anl<i,j>(—2)] _

=1 1,5
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If it(C) > 0 or ot(C) > 0 then S(C,0) = 0. Note that v4(C) = it(C) + ot(C). We only
need to consider the case that v4(C) = 0 and for such a C, we have
k(C)
S(C,0) = H Apryincy)—on(cy) (—2).

=1

Recall that sv(C)) is even. Hence |1 + ih(C)) — oh(C))| is odd if and only if v(C}) =
ih(C)) + oh(C}) + sv(C)) is even. Thus,

F(G,0)= Y (=3P95(C,0)
Ce?(G)
=(=3)"+ ) (=3m9s(C.0)
C':2-regular
= (=3 + Z (—1)e(©) (—3)pa(©)k(C)
C':2-regular
= Z (_1)6(0)(_3)1?4(0)2/6(0). []
C:vy(C)=0

It is immediate from Corollary 15 that F(G,0) (i.e. the constant term of the flow
polynomial) and F'(G,4) are both odd. In fact, Hong [5] proved that a,(G) (the coefficient
of X in the chromatic polynomial of G) is odd if and only if G is connected and bipartite.
By duality we know that the constant term of the flow polynomial of 4-regular plane
graphs is odd. Since F(G,4) = F(G,0) (mod 4), F(G,4) for 4-regular plane graphs is
also odd.

Corollary 16. Let G be a graph diagram of a 4-reqular graph. Let
fa(A) = [G)(A, A1, A7)
be the Kauffman-Vogel polynomial of G with B = A™' and d = —A?. Then fg(1) is odd.

Proof. We first consider the case when G is a 4-regular plane graph. Then, by Theorem
1, we have:

ot
1—-A— A1
Thus f(1) = —F(G,0) and hence fg(1) is odd. Otherwise, let ¢(G) be the number of

crossings of G. By Definition 3, f5(1) is the summation of 3% odd numbers and hence
it is also odd. U

G](A, A!, —A?) = F(G,2—A—A™Y), (19)

7 Concluding remarks

Jaeger’s work cannot be generalized to non-planar cubic graphs since in his expansion
the interior and the exterior of a planar cycle were used. Our generalization depends
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heavily on Jaeger’s work on cubic plane graphs, and hence it is impossible to drop the
‘planar’ condition. In the case of 4-regular plane graphs, it is possible to prove Theorems
9 and 12 independent of Jaeger’s work by using the recursive relations in Figure 1, but still
in the category of plane graphs. How about 4-regular cellularly embedded graphs with
2-face colorings? We note however that their even subgraphs may not be 2-face colorable,
and so Theorem 12 cannot be generalized to 4-regular cellularly embedded graphs with
2-face colorings.

By using two different special splitting systems Theorems 9 and 12 are obtained. Can
our work be generalized to plane graphs with maximum degree greater than 47 For a
vertex of degree greater than 4, there will be many more degree selections and splittings
for even subgraphs than in the case that d(v) = 3 or 4. We think it will be difficult to find
suitable vertex weights to make Theorem 5 hold, i.e. the extended rotational polynomial
is independent of splitting systems.

Let G be a plane graph with d(v) = 3,4 for each v € V(G). Theorem 12 implies that

FG (z+a )= > 11 wi. (), (20)

(V,C):Ce%(G) Hi:components of (V,C)

where wy,(z) is a Laurent polynomial in x, depending on H;, G and their planar em-
bedding. It is very different from transition polynomials defined for abstract 4-regular
graphs or embedded graphs via their medial graphs, where the summation is over 3”
transition systems and where the counting is of the number of edge-disjoint cycles that
the 4-regular graph is decomposed into under the transition system. For details of the
transition polynomial, see [11, 10, 14, 6] and [1, 4].

Let G be a 4-regular plane graph. By Theorem 14, we obtain

F(G,3) = ) 11 [Z (it(?)) (Ot(q)>f4n(i,j)(1)

Spanning even subgraphs C C 1,J J

where the product is over all components C; of C' and n(i, j) = |ih(C}) — oh(C)) +1 —i+
J| (mod 6) and Ag(1) = 2, 4;(1) = 1,A5(1) = =1, A3(1) = =2, A4(1) = =1, A5(1) = 1.
For an Eulerian graph G, it is known that F(G,3) (i.e. |T(0,—2)|) enumerates the
number of Eulerian orientations of G [16]. Eq. (21) may be used to obtain new upper or
lower bounds [15] of the number of Eulerian orientations of 4-regular plane graphs.
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