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Abstract

One of the most intriguing problems in q-analogs of designs and codes is the
existence question of an infinite family of q-analog of Steiner systems (spreads not
included) in general, and the existence question for the q-analog of the Fano plane
in particular.

We exhibit a completely new method to attack this problem. In the process
we define a new family of designs whose existence is implied by the existence of
q-Steiner systems, but could exist even if the related q-Steiner systems do not exist.

The method is based on a possible system obtained by puncturing all the sub-
spaces of the q-Steiner system several times. We define the punctured system as a
new type of design and enumerate the number of subspaces of various types that it
might have. It will be evident that its existence does not imply the existence of the
related q-Steiner system. On the other hand, this type of design demonstrates how
close can we get to the related q-Steiner system.

Necessary conditions for the existence of such designs are presented. These nec-
essary conditions will be also necessary conditions for the existence of the related
q-Steiner system. Trivial and nontrivial direct constructions and a nontrivial recur-
sive construction for such designs are given. Some of the designs have a symmetric
structure, which is uniform in the dimensions of the existing subspaces in the sys-
tem. Most constructions are based on this uniform structure of the design or its
punctured designs.

Mathematics Subject Classifications: 94B25, 05B40, 51E10

1 Introduction

Let Fq be the finite field with q elements and let Fn
q be the set of all vectors of length n

over Fq. Fn
q is a vector space with dimension n over Fq. For a given integer k, 0 6 k 6 n,
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let Gq(n, k) denote the set of all k-dimensional subspaces (k-subspaces in short) of Fn
q .

Gq(n, k) is often referred to as a Grassmannian. It is well known that

|Gq(n, k)| =
[
n

k

]
q

def
=

(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)

where
[
n
k

]
q

is the q-binomial coefficient (known also as the Gaussian coefficient [33, pp.

325-332]).
A Grassmannian code (known better as a constant dimension code) C is a subset of

Gq(n, k). In recent years there has been an increasing interest in Grassmannian codes
as a result of their application to error-correction in random network coding which was
demonstrated in the seminal work by Koetter and Kschischang [26]. This work has mo-
tivated lot of research on coding for Grassmannian codes (see for example [19, 20] and
references therein). But the interest in these codes has been also before this application,
since Grassmannian codes are the q-analogs of the well studied constant weight codes [6].
The Grassmann scheme is the q-analog of the Johnson scheme, where q-analogs replace
concepts of subsets by concepts of subspaces when problems on sets are transferred to
problems on subspaces over the finite field Fq. For example, the size of a set is replaced
by the dimension of a subspace, the binomial coefficients are replaced by the Gaussian
coefficients, etc. One example of such q-analog problem in coding theory is the nonexis-
tence of nontrivial perfect codes in the Grassmann scheme which was proved in [9, 27].
This problem is the q-analog for the nonexistence problem of perfect codes in the Johnson
scheme, which is a well-known open problem [11, 13, 17]. Also, the q-analogs of other
various combinatorial objects are well known [33, pp. 325-332]. The work of Koetter and
Kschischang [26] has motivated also increasing interest and lot of research work on these
related q-analog of designs (see for example [4, 15, 21] and references therein). The most
intriguing question is the existence of q-analogs for Steiner systems which is the topic of
the research in this paper.

A Steiner system S(t, k, n) is a set S of k-subsets (called blocks) from an n-set N
such that each t-subset of N is contained in exactly one block of S. Steiner systems were
subject to an extensive research in combinatorial designs [10]. A Steiner system is also
equivalent to an optimal constant weight code in the Hamming scheme. It is well-known

that if a Steiner system S(t, k, n) exists, then for all 0 6 i 6 t− 1,
(n−i
t−i)

(k−i
t−i)

must be integers.

It was proved only recently that these necessary conditions for the existence of a Steiner
system S(t, k, n) are also sufficient for each t and k such that 0 < t < k, except for a finite
number of values of n [22, 23].

Cameron [7, 8] and Delsarte [12] have extended the notions of block design and Steiner
systems to vector spaces. A q-Steiner system Sq(t, k, n) is a set S of k-subspaces of Fn

q

(called blocks) such that each t-subspace of Fn
q is contained in exactly one block of S.

A q-Steiner system Sq(t, k, n) is an optimal constant dimension code [20, 21]. Similarly,
to Steiner systems, simple necessary divisibility conditions for the existence of a given
q-Steiner system were developed [30, 31].
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Theorem 1. If a q-Steiner system Sq(t, k, n) exists, then for each i, 1 6 i 6 t − 1, a
q-Steiner system Sq(t− i, k − i, n− i) exists.

Corollary 2. If a q-Steiner system Sq(t, k, n) exists, then for all 0 6 i 6 t− 1,[
n−i
t−i

]
q[

k−i
t−i

]
q

must be integers.

While a lot of information is known about the existence of Steiner systems [10, 22, 23],
our knowledge about the existence of q-Steiner systems is quite limited. Until recently, the
only known q-Steiner systems Sq(t, k, n) were either trivial or for t = 1, where such systems
exist if and only if k divides n. These systems are known as spreads in finite geometries
and they will be used in Section 5. Thomas [32] showed that certain kind of q-Steiner
systems S2(2, 3, 7) cannot exist. Metsch [29] conjectured that nontrivial q-Steiner systems
with t > 2 do not exist. The concept of q-Steiner systems appeared also in connection
of diameter perfect codes in the Grassmann scheme. It was proved in [1] that the only
diameter perfect codes in the Grassmann scheme are the q-Steiner systems. Recently,
the first q-Steiner system Sq(t, k, n) with t > 2 was found. This is a q-Steiner system
S2(2, 3, 13) which have a large automorphism group [4]. Using q-analog of derived and
residual designs it was proved that sometimes the necessary conditions for the existence of
a q-Steiner system Sq(t, k, n) are not sufficient [24]. The first set of parameters (t, k, and
n) for which the existence question of q-Steiner systems is not settled is the parameters for
the q-analog of the Fano plane, i.e. the q-Steiner systems Sq(2, 3, 7), which will be called
also in this paper the q-Fano plane. There was a lot of effort to find whether the q-Fano
plane, especially for q = 2, exists or does not exist, e.g. [5, 21, 32] All these attempts
didn’t provide any answer for the existence question. It was proved recently in [5] that if
such system exists for q = 2, then its automorphism group has a small order.

In this paper we present a completely new approach to examine the existence of q-
Steiner systems. This approach is based on the structure obtained by puncturing some
coordinates from all the subspaces of the possible q-Steiner system. This is equivalent to
say that the projection of the other coordinates is considered for all the subspaces of the
system. This idea was suggested first in [14] and this paper completes and proves all the
ideas mentioned in [14]. The sizes of punctured subspaces and the numbers involved are
sometimes the same as those in [25], where intersection numbers of combinatorial designs
were considered. But, the objects considered in these two papers are different and the
results are different. We consider (and define) this structure, obtained by puncturing all
the subspaces of the system, as a new type of design, which exists if the related q-Steiner
system exists, but could exist even if the related q-Steiner system does not exist. If this
design does not exist, then the related q-Steiner system does not exist. To highlight our
main contributions in this paper are:

1. A definition of a new method to examine the existence of a q-Steiner system.
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2. A definition for a new type of designs which are close to q-Steiner systems and
their construction might be a first step to find the related q-Steiner system. Some
constructions for these designs are given.

3. A method which hopefully will improve our understanding of the structure of the
q-Fano plane for q > 2, and maybe will help to find such a structure or to prove
its nonexistence. Indeed, the method in this paper led to a breakthrough, in this
area, presented in [16], i.e. a construction for a punctured q-Fano plane (or so called
residual q-Fano plane) for all prime powers q > 2.

The rest of this paper is organized as follows. In Section 2, the definition of punctured
q-Steiner systems and other related definitions, are presented. We prove some properties
of punctured systems, define the new type of design, and examine some of its properties.
An inverse operation for puncturing and related operations are also presented and the
number of subspaces which are generated by the inverse operation are computed. In
Section 3, a system of equations, which form the necessary conditions for the existence
of the related punctured q-Steiner system, is presented. These systems of equations are
obtained by precise enumeration of covering t-subspaces by k-subspaces in the the q-
Steiner system as reflected by the punctured system. In Section 4, a sequence of examples
for punctured q-Steiner systems Sq(k − 1, k, n), i.e. a sequence of examples for the new
defined design, is presented. In Section 5, a recursive construction for punctured q-Steiner
systems Sq(2, 3, n) is presented. One of the important ingredients, for this construction,
is a large set of spreads. Conclusions are given in Section 6.

2 Punctured q-Steiner Systems

Given an n×m matrix A, the punctured matrix A′ is an n×(m−1) matrix obtained from A
by deleting one of the columns from A. Codes and punctured codes in the Hamming space
are well established in coding theory [28, pp. 27-32]. A q-analog of punctured codes for
subspace codes (codes whose codewords are subspaces such as the Grassmannian codes),
was defined in [18], but this is not the puncturing considered in this paper.

A subspace X ∈ Gq(n, k), i.e. a k-subspace of Fn
q , consists of qk vectors of length n with

elements taken from Fq. The punctured subspace X ′ by the ith coordinate is defined as
the subspace obtained from X by deleting coordinate i in all the vectors of X. The result
of this puncturing is a new subspace of Fn−1

q . If X does not contain the unity vector with
an one in the ith coordinate, ei, then X ′ is a subspace in Gq(n− 1, k). If X contains the
unity vector with a one in the ith coordinate, then X ′ is a subspace in Gq(n− 1, k − 1).
Assume that we are given a set S of subspaces from Gq(n, k). The punctured set S′ is
defined as S′ = {X ′ : X ∈ S}, where all subspaces are punctured in the same coordinate,
and it can contain subspaces only from Gq(n− 1, k) or from Gq(n− 1, k − 1). The set S′
is regarded as multi-set and hence |S′| = |S| (since two distinct k-subspaces of Fn

q can be
punctured into the same k-subspaces of Fn−1

q ). When the punctured coordinate is not
mentioned it will be assumed that the last coordinate was punctured. A subspace can
be punctured several times. A k-subspace X, of Fn

q , is punctured p times (p-punctured)
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to a p-punctured subspace Y of Fn−p
q . The subspace Y can be an s-subspace for any s

such that max{0, k − p} 6 s 6 min{k, n− p}. Similarly we define a p-punctured set. We
summarize this brief introduction on punctured subspaces with the main observation.

Lemma 3. A k-subspace of Fn
q , k > 0, is punctured either into a k-subspace or into a

(k − 1)-subspace of Fn−1
q . A k-subspace of Fn

q is p-punctured into an s-subspace such that
max{0, k − p} 6 s 6 min{k, n− p}.

If S is a q-Steiner system Sq(t, k, n), we would like to know if the p-punctured system S′
has some interesting properties, i.e. S′ has some uniqueness properties related to the
punctured k-subspaces and the punctured (contained) t-subspaces. The motivation is to
define a new set of designs which must exist if the related q-Steiner systems Sq(t, k, n)
exist. But, these new designs can exist even if the related q-Steiner systems do not exist.
If the nonexistence of such designs can be proved, then the related q-Steiner systems won’t
exist too. On the other hand, the existence of such a design might lead to a construction
for the related q-Steiner system.

For puncturing there is an inverse operation called extension. A related operation for
our discussion, which is completely of a different nature from extension, is the expansion.
These two operations are defined next.

A t-subspace X of Fm
q is extended to a t′-subspace Y of Fm′

q , where t′ > t, m′ > m,
and m′−m > t′− t, if X is the subspace obtained from Y by puncturing Y m′−m times.
Note, that the extension of a subspace is not always unique, as we will prove in the sequel
(see lemma 4), but there is always a unique outcome for puncturing. In other words, a p-
punctured t-subspace X of Fm

q can be obtained from a few different t′-subspaces of Fm+p
q .

The new columns are added as the last columns of extended subspace. But, similarly to
puncturing, they can added theoretically between any set of columns. To make the paper
consistent, we will make the extensions only to the end of the columns of the related
subspaces, unless otherwise is specifically stated.

To prove our claims we will need some general way to represent subspaces, in such a
way that the representation of the punctured subspace X ′ will be derived directly from
the representation of the subspace X. For this purpose two different representations will
be used for a k-subspace X of Fm

q . The first representation is by an (qk − 1)×m matrix
which contains the qk−1 nonzero vectors of X. Each nonzero vector of X is a row in this
matrix. The second representation is by a k × m matrix which is the generator matrix
for X in reduced row echelon form. A k× n matrix with rank k is in reduced row echelon
form if the following conditions are satisfied.

• The leading coefficient of a row is always to the right of the leading coefficient of
the previous row.

• All leading coefficients are ones.

• Every leading coefficient is the only nonzero entry in its column.

The next definition of virtual subspace is essential in understanding our exposition.
An r-subspace Y of Fm

q is called a virtual k-subspace of Fm
q , r 6 k, if Y was punctured
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from a k-subspace X of Fn
q , n > m and it is represented by a (qk − 1)×m matrix which

represents the actual outcome when Y was punctured. In other words the representation
of Y is obtained by the deleting the last n − m columns from the (qk − 1) × n matrix
which represents X. It is important to understand that Y has exactly one representation
as a virtual k-subspace, no matter from which subspace it was punctured. Using this
representation, Y has

[
k
t

]
q
t-subspaces for each 0 6 t 6 k, some of them are identical and

some of them are virtual (see Example 7). This will be used later in our enumerations.
Note, that with the virtual k-subspace of the punctured subspace, it is easier to see how
the t-subspaces were punctured. This is easily seen in Example 7. Finally, note that a
k-subspace of Fm

q is always also a virtual k-subspace of Fm
q , where both have the same

matrix representation.
An r-subspace X of Fm

q is expanded to a (virtual) k-subspace Y of Fm
q , r 6 k, if X

can be obtained by puncturing a k-subspace Z, and Y is the representation of X by a
(qk − 1) × m matrix after the puncturing. The virtual k-subspace Y is also called the
k-expansion of X.

Lemma 4 (from a t-subspace to a t-subspace, extension of one column). If X
is a t-subspace of Fm

q , then it can be extended in exactly qt distinct ways to a t-subspaces
of Fm+1

q .

Proof. Any one of the qt distinct linear combinations of the columns of X can be appended
as the new (m+1)th column and each such linear combination, appended as the (m+1)th
column, yields a different t-subspace of Fm+1

q .

Example 5. Let X be the following 2-subspace of F4
2 represented by the 3× 4 matrix,

X =
0100
0010
0110

,

It can be extended in exactly 4 distinct ways to 2-subspaces of F5
2, represented by the

3× 5 matrices,
01000
00100
01100

,
01001
00100
01101

,
01000
00101
01101

,
01001
00101
01100

.

Lemma 6 (from t-subspace to (t + 1)-subspace, extension of one column). If
X is a t-subspace of Fm

q , then it can be extended in exactly one way to a (t+ 1)-subspace
of Fm+1

q .

Proof. Any extension which increase the dimension by one is equivalent to first adding a
column of zeroes to the existing t-subspace X to form the t-subspace X̂ of Fm+1

q . Then

the only extension to a (t+ 1)-subspace is
〈
X̂, em+1

〉
, where 〈Z〉 denotes the linear span

of Z.
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Example 7. Let X be the following 2-subspace of F4
2 represented by the 3× 4 matrix,

X =
0100
0010
0110

,

and let

Y =
01000
00100
01100

,

be one of its extensions to a 2-subspace of F5
2 represented by the 3× 5 matrix. X can be

extended in a unique way to a 3-subspace of F5
2, and Y has a unique representation as a

virtual 3-subspace (up to permutations of rows). They are represented by the two 7 × 5
matrices, respectively,

01000
00100
01100
01001
00101
01101
00001

,

01000
00100
01100
01000
00100
01100
00000

.

The extended 3-subspace contains the following seven 2-subspaces

01000
00100
01100

,
01000
00101
01101

,
00100
01001
01101

,
01100
01001
00101

,
01000
01001
00001

,
00100
00101
00001

,
01100
01101
00001

,

while the virtual 3-subspace contains the following related seven 2-subspaces, from which
three are virtual (note that the distinction between the two sets of seven subspaces is the
last column),

01000
00100
01100

,
01000
00100
01100

,
00100
01000
01100

,
01100
01000
00100

,
01000
01000
00000

,
00100
00100
00000

,
01100
01100
00000

.

Finally, in this section we consider the outcome of puncturing a q-Steiner systems and
some properties of the related puncturing. For this purpose we need to use the following
well-known equation [28, p. 444].

Lemma 8. If 1 6 k 6 n− 1, then
[
n
k

]
q

= qk
[
n−1
k

]
q

+
[
n−1
k−1

]
q
, where

[
n
0

]
q

=
[
n
n

]
q

= 1.

Theorem 9. If S is a q-Steiner system Sq(t, k, n), then the punctured system S′ contain

exactly
[n−1
t−1]q

[k−1
t−1]q

distinct (k−1)-subspaces which form a q-Steiner system Sq(t−1, k−1, n−1),

denoted by S̃. Each t-subspace of Fn−1
q which is contained in a (k−1)-subspace of S̃ is not

contained in any of the k-subspaces of S′. Each t-subspace of Fn−1
q which is not contained

in a (k − 1)-subspace of S̃, appears exactly qt times in the k-subspaces of S′.
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Proof. By Lemma 3, S′ can contain only (k−1)-subspaces and k-subspaces. A k-subspace
which contains the unity vector with a one in the last coordinate is punctured into a
(k − 1)-subspace, while other k-subspaces are punctured into k-subspaces.

Let X be a (t− 1)-subspace of Fn−1
q . By Lemma 6, there is a unique way to extend it

to a t-subspace Y of Fn
q . Therefore, since S is a q-Steiner system Sq(t, k, n), it follows that

Y is contained in exactly one k-subspace Z of S. Clearly, Z is a k-subspace in Fn
q which

contains the unity vector with a one in the last coordinate. Hence, Z is punctured into a
(k − 1)-subspace Z ′ which is the only (k − 1)-subspace of S′ containing X. Therefore, all
the k-subspaces of S which contain the unity vector with a one in the last coordinate are
punctured into a q-Steiner system Sq(t− 1, k − 1, n− 1).

Let Z be a k-subspace of Fn
q which contains 〈en〉. The virtual k-subspace, obtained

from the punctured (k − 1)-subspace Z ′, contains
[
k
t

]
q
t-subspaces, some of them are

identical and some of them are virtual t-subspaces (see Example 7). Since 〈en〉 ⊂ Z
it follows that Z has

[
k−1
t−1

]
q
t-subspaces which contains 〈en〉 and hence

[
k
t

]
q
−
[
k−1
t−1

]
q
t-

subspaces which do not contain 〈en〉. These are the only t-subspaces contained in Z.
Since 〈en〉 ⊂ Z it follows that Z ′ is a (k − 1)-subspace and hence it has

[
k−1
t

]
q

distinct

t-subspaces. The
[
k
t

]
q
−
[
k−1
t−1

]
t-subspaces of Z which do not contain 〈en〉 are punctured,

and each (t − 1)-subspace obtained in this way is obtained the same amount of times in
the set of punctured (t− 1)-subspaces. Therefore, each such (t− 1)-subspace is contained
[kt]q−[k−1

t−1]q
[k−1

t ]
q

times in the punctured t-subspaces of Fn−1
q obtained from S. By Lemma 8 we

have
[kt]q−[k−1

t−1]q
[k−1

t ]
q

= qt (by Lemma 4 these are exactly all their appearances and hence no

one could have appeared more times).
By Lemma 4, each t-subspace of Fn−1

q can be extended in qt distinct ways to a t-

subspace of Fn
q . This implies, that each t-subspace which is not contained in S̃, appears

exactly qt times in the other k-subspaces of S′. Simple counting shows that we have
covered all the subspaces of the punctured system, which completes the proof of the
theorem.

Corollary 10. If S is a q-Steiner system Sq(k − 1, k, n), then the punctured system S′

has a set S̃ with
[n−1
k−2]q

[k−1
k−2]q

different (k − 1)-subspaces which form a q-Steiner system Sq(k −

2, k − 1, n− 1). Each other (k − 1)-subspace which is not contained in S̃, appears exactly
qk−1 times in the k-subspaces of S′.

We note, that the q-Steiner system Sq(t − 1, k − 1, n − 1) of Theorem 9 is the same
as the one constructed in [30]. In [30], two subspaces U1 and Un−1 are chosen, where
Ui has dimension i and Un−1 + U1 = Fn

q . If S is a q-Steiner system Sq(t, k, n), then the
subset {X ∩ Un−1 : X ∈ S, U1 ⊂ X} is q-Steiner system Sq(t − 1, k − 1, n − 1). Our
punctured system is obtained when en ∈ U1 and Un−1 is the (n− 1)-subspace of Fn

q which
contains all the vectors whose last coordinate is a zero. The extra factor of Theorem 9 are
the k-subspaces which do not belong to the q-Steiner system. We note that puncturing

the electronic journal of combinatorics 25(2) (2018), #P2.8 8



is equivalent to the projection X → (X + U)/U , where U is a fixed 1-subspace. If H
is a hyperplane in Fn

q and U is a 1-subspace not contained in H, then puncturing of a
subspace X is equivalent to H ∩ 〈X,U〉.

The first goal of this paper is to define a new type of design Sq(t, k, n;m) which contains
the possible subspaces punctured from a q-Steiner system Sq(t, k, n). This is done in the
following definition.

Definition 11. A p-punctured q-Steiner system Sq(t, k, n;m), m = n−p, is a multi-set S
of subspaces of Fm

q , satisfying the following two requirements.

1. The number of subspaces in S is the same as the number of subspaces in a q-Steiner
system Sq(t, k, n).

2. Let S̃ be a system which contains the virtual k-subspaces of the subspaces in S (S
and S̃ have the same size). Let T be the set of all t-subspaces of Fn

q and T′ be the
set of all p-punctured t-subspaces of Fm

q . For each subspace X ∈ T′ let

λ(X) = |{Y : Y ∈ T, X is a p-punctured t-subspace of Y }| .
It is required that for each X ∈ T′, X will be appear λ(X) times as a virtual
t-subspace in the virtual k-subspaces of S̃.

Example 12. Let S be a system which consists of 336 1-subspaces and 45 0-subspaces
of F1

2. There are
[
6
2

]
2

= 651 2-subspaces of F7
2 whose first column is the all-zero column.

Each extension of an 1-subspace of F1
2 will contribute one 2-subspaces of F7

2 whose first
column is all-zero, while each extension of a 0-subspace of F1

2 will contribute seven 2-
subspaces of F7

2 whose first column is all-zero. Hence, the extension produces 336+45·7 =
651 such subspaces as required. The same goes for the other 2-subspaces and hence S is
a 6-punctured q-Steiner system S2(2, 3, 7; 1).

The following lemma can be easily verified..

Lemma 13. If there exists a p-punctured q-Steiner system Sq(t, k, n;m), 1 < m 6 n,
then there exists a (p+ 1)-punctured q-Steiner system Sq(t, k, n;m− 1).

The following theorem is given for a punctured q-Steiner system Sq(t, k, n;n − 1). It
can be generalized to other p-punctured q-Steiner systems, p > 1. For simplicity and since
the case p = 1 is the most informative we prove only this case.

Theorem 14. If S′, a punctured q-Steiner system Sq(t, k, n;n − 1), 1 < t < k < n, was
obtained by puncturing a q-Steiner system Sq(t, k, n), then all subspaces of S′ are distinct.

Proof. Let S be a q-Steiner system Sq(t, k, n). By Theorem 9, all the (k − 1)-subspaces
of S′, the punctured q-Steiner systems Sq(t, k, n;n − 1), are distinct since they form a
q-Steiner system Sq(t − 1, k − 1, n − 1). Hence, we only have to prove that there are no
two equal k-subspaces in S′.

Let X, Y ∈ S, H an hyperplane in Fn
q and U a 1-subspace not contained in X, Y ,

and H. Clearly,

dim((H ∩ 〈X,U〉)∩ (H ∩ 〈Y, U〉)) = dim(〈X,U〉 ∩ 〈Y, U〉)− 1 6 dim(X ∩ Y ) + 1 6 t < k,

which completes the proof.
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3 System of Equations

Corollary 2 yields a set of necessary conditions for the existence of a q-Steiner system
Sq(t, k, n). Similar necessary conditions can be derived for any p-punctured q-Steiner
system. Some of these conditions yield new interesting equations which must be satisfied.
In this section we will derive these new necessary conditions.

Let S̃ be an (n−m)-punctured q-Steiner system Sq(t, k, n;m) and let p = n−m, i.e.
Sq(t, k, n;m) is a p-punctured q-Steiner system. We start with two simple lemmas which
are implied by our previous discussion on punctured subspaces. The first lemma is an
immediate consequence of Lemma 3.

Lemma 15 (dimension of subspaces to be covered). Suppose S is a q-Steiner system
Sq(t, k, n). Let T be the set of t-subspaces which are covered by the blocks of S. Then in
the p-punctured q-Steiner system Sq(t, k, n;m), p = n−m, derived from S, each element
of T corresponds to a p-punctured s-subspace, where max{0, t− p} 6 s 6 min{t,m}.

Lemma 16 (dimension of subspaces which cover the p-punctured s-subspaces).
Suppose S is a q-Steiner system Sq(t, k, n). Let T be the t-subspaces which are covered
by the blocks of S. Then in the p-punctured q-Steiner system Sq(t, k, n;m), p = n −m,
derived from S, each element of T corresponds to a p-punctured s-subspace, covered by a
p-punctured r-subspace, where max{k − p, s} 6 r 6 min{k − t+ s,m}.

Proof. The lower bound is a consequence of Lemma 3 and the fact that an s-subspace can-
not be covered by a subspace of a smaller dimension. Since the subspaces of Sq(t, k, n;m)
are subspaces of Fm

q , it follows that r 6 m. Finally, if a t-subspace X was punctured to
an s-subspace then the k-subspace Y which covers X must also be reduced by at least
t− s times in its dimension and hence r 6 k − t+ s.

We are now in a position to describe a set of equations, related to the p-punctured
q-Steiner system Sq(t, k, n;m), which must be satisfied if the p-punctured q-Steiner system
Sq(t, k, n;m) exists. Each s-subspace X of Fm

q , max{0, t − p} 6 s 6 min{t,m}, yields
one equation related to the way it is covered by Sq(t, k, n;m). Each r-subspace Y of Fm

q ,
max{k − p, 0} 6 r 6 min{k,m}, yields one nonnegative integer variable, aY , which is
the number of appearances of Y in the p-punctured q-Steiner system Sq(t, k, n;m). In
the equation for the s-subspace X we have a linear combination of the variables for the
r-subspaces of Fm

q which contain X.

Example 17. Assume that we want to examine the 5-punctured q-Steiner system
S2(2, 3, 7; 2). Clearly, by Lemma 15, the 2-subspaces of F7

2 were punctured to s-subspaces
of F2

2, where 0 6 s 6 2. There is exactly one 0-subspace, three 1-subspaces, and one
2-subspaces, of F2

2, represented as virtual 2-subspaces by the following five 3×2 matrices.

00
00
00

,
10
10
00

,
01
01
00

,
11
11
00

,
01
10
11

.
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Clearly, by Lemma 16 these s-subspaces of F7
2 are covered by r-subspaces of F2

2, where
0 6 r 6 2. There is exactly one 0-subspace, three 1-subspaces, and one 2-subspaces,
of F2

2, represented as virtual 3-subspaces by the following five 7× 2 matrices.

X =

00
00
00
00
00
00
00

, Y =

10
10
10
10
00
00
00

, Z =

01
01
01
01
00
00
00

, U =

11
11
11
11
00
00
00

, V =

01
01
10
10
11
11
00

.

Therefore, we have 5 variables aX , aY , aZ , aU , and aV . The system of equations consists
of the following five equations:

155 = 7 · aX + aY + aZ + aU
496 = 6 · aY + aV
496 = 6 · aZ + aV
496 = 6 · aU + aV

1024 = 4 · aV

.

The first equation is constructed as follows: there are
[
5
2

]
2

= 155 2-subspaces whose
first two columns are zeroes. For all the seven 2-subspaces resulting from the virtual
3-subspace X the first two columns are zeroes. Only for one such 2-subspaces resulting
from Y , Z, or U the first two columns are zeroes. This explains the first equation. The
other four equations are constructed in a similar way. There is a unique solution for this
set of equations, aX = 5, aY = aZ = aU = 40, and aV = 256, and hence the 5-punctured
q-Steiner system S2(2, 3, 7; 2) exists.

The variables which appear in each equation and their coefficients in the equation
should be computed in advance as will be done next. First we have to compute the
number of t-subspaces in Fn

q which are formed by extending an s-subspace X of Fm
q . Let

N(s,m),(t,n) be the number of distinct t-subspaces in Fn
q which are formed by extending a

given s-subspace X of Fm
q .

Example 18. Let X be the following 2-subspace of F5
2 represented by the 3× 5 matrix,

X =
01001
00101
01100

.

It can be extended to the following N(2,5),(3,7) = 12 3-subspaces of F7
2 represented by the
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7× 7 matrices,

0100100
0010100
0110000
0100101
0010101
0110001
0000001

,

0100110
0010110
0110000
0100111
0010111
0110001
0000001

,

0100110
0010100
0110010
0100111
0010101
0110011
0000001

,

0100100
0010110
0110010
0100101
0010111
0110011
0000001

,

0100100
0010100
0110000
0100110
0010110
0110010
0000010

,

0100101
0010100
0110001
0100111
0010110
0110011
0000010

,

0100100
0010101
0110001
0100110
0010111
0110011
0000010

,

0100101
0010101
0110000
0100111
0010111
0110010
0000010

,

0100100
0010100
0110000
0100111
0010111
0110011
0000011

,

0100101
0010100
0110001
0100110
0010111
0110010
0000011

,

0100100
0010101
0110001
0100111
0010110
0110010
0000011

,

0100101
0010101
0110000
0100110
0010110
0110011
0000011

.

Some of the claims in Lemmas 19, 21, and 22, which follow, can be proved by using
coordinate-free notation. But, we will continue with our coordinate notation since it is
simpler at this point of our exposition.

Lemma 19. If 0 < m < n and 0 6 s 6 t, then N(s,m),(t,n) = qs(n−m−t+s)
[
n−m
t−s

]
q
.

Proof. The s-subspace X of Fm
q is represented by an s × m matrix G1 in reduced row

echelon form. A t-subspace Y formed by extending X to a t-subspace of Fn
q is represented

by a t× n generator matrix G in reduced row echelon form. The upper left s×m matrix

of G is the generator matrix G1 of X and hence G has the following structure.[
G1 B

0 G2

]
.

The new n−m columns (in G relatively to G1), restricted to the last t− s rows, forms a
generator matrix for a (t−s)-subspace of Fn−m

q . This (t−s)×(n−m) generator matrix G2

is in reduced row echelon form, where the columns with leading ones are the ones in which
the dimension is increased during the extension (see Lemma 6). This generator matrix
can be chosen in

[
n−m
t−s

]
q

distinct ways since it forms a (t − s)-subspace of Fn−m
q . In the

other new n − m − t + s columns of G (columns with no leading ones) the dimension
is not increased compared to the original s-subspace X and hence they can be chosen
(after the columns with the leading ones of G2 are fixed; see Lemma 4) in qs(n−m−t+s)

distinct ways. The reason is that B has s rows and n − m columns from which the
entries of n − m − t + s columns can be chosen arbitrarily from Fq. It leads to a total
of qs(n−m−t+s)

[
n−m
t−s

]
q

distinct ways to form this extension. Note, that the columns of G2

do not (and need not) contribute to these extensions. Each (t − s)-subspace of Fn−m
q is

combined with the related s-subspace in Fm
q to form a t-subspace of Fn

q .
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For a given s-subspace X of Fm
q , N(s,m),(t,n) should be equal to the number of r-

subspaces in the p-punctured q-Steiner system Sq(t, k, n;m), max{k−p, s} 6 r 6 min{k−
t+s,m}, which contains X. Note, that if r < k, then there are r-subspaces in Sq(t, k, n;m)
which contain X more than once, since we should look on the k-expansion of the r-
subspace. Clearly, for this purpose we also have to consider the t-expansion of the related
s-subspace X. Let C(s,t),(r,k) be the number of copies of the t-expansion X̃ obtained from
the s-subspace X in Fm

q (note that X is t-expanded in a unique way), which are contained

in the k-expansion Ỹ of an r-subspace Y in Fm
q , such that X is a subspace of Y .

Example 20. Let X be the following 2-subspace of F4
2 represented by the 3× 4 matrix,

X =
0100
0010
0110

.

If Y = X, then the 3-expansion Ỹ of Y is represented by 7 × 4 matrix, and one of its
extensions Ŷ for a 3-subspace is represented by a 7× 7 matrix as follows:

Ỹ =

0100
0010
0110
0100
0010
0110
0000

, Ŷ =

0100000
0010000
0110000
0100101
0010101
0110101
0000101

.

Ŷ contains C(2,2),(2,3) = 4 2-subspaces extended from X represented by the 3×7 matrices,

0100000
0010000
0110000

,
0100000
0010101
0110101

,
0100101
0010000
0110101

,
0100101
0010101
0110000

.

Lemma 21. If 0 6 s 6 t < k and s 6 r 6 k − t+ s, then C(s,t),(r,k) =
[
k−r
t−s

]
q
qs(k−r−t+s).

Proof. An r-subspace Y of Fm
q can be represented by a (qr − 1) ×m matrix whose rows

are the nonzero vectors of Y . This r-subspace Y is k-expanded in Fm
q by writing in a

(qk − 1) × m matrix vertically qk−r copies of Y and after them (qk−r − 1) × m all-zero
matrix Z. This forms a (qk − 1)×m matrix which represents the k-expansion of Y . If Y
was p-punctured from a k-subspace W of Fn

q , then W is formed from the k-expansion of Y

by concatenating to Z a (qk−r−1)× (n−m) matrix Z̃ which represent a (k− r)-subspace
of Fn−m

q . The k-subspace of Fn
q is a direct sum of this (k − r)-subspace in Fn

q with an
extension of Y to an r-subspace in Fn

q ,
Similarly, the s-subspace X, which is a subspace of Y , is extended and expanded

to a (k − r + s)-subspace by writing in a (qk − 1) × m matrix vertically qk−r copies
of X and after them (qk−r − 1) ×m all-zero matrix Z. Each t-subspace in Fn

q which is
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extended from X, in the q-Steiner system Sq(t, k, n), is constructed by first choosing a
(t− s)-subspace from Z̃, which can be done in

[
k−r
t−s

]
q

different ways. The (t− s)-subspace

is completed to a t-subspace by performing direct sum with the extension of X. The
s-subspace X can be chosen in a few distinct ways from the k-expansion of Y . Each
vector from a given basis of X can be chosen in qk−r distinct ways (since qk−r copies
of Y were written). But, since each vector of X appears qt−s times in the t-expansion

of X, it follows that each choice of X is chosen in ( q
k−r

qt−s )s distinct ways. This implies that

C(s,t),(r,k) =
[
k−r
t−s

]
q
( q

k−r

qt−s )s =
[
k−r
t−s

]
q
qs(k−r−t+s)

Now, for a given s-subspace X of Fm
q , N(s,m),(t,n) should be equal to the sum over all r-

subspaces which contain X, where C(s,t),(r,k), for a given r-subspace Y , is multiplied by aY
(see the definitions after Lemma 16), the number of appearance of Y in the p-punctured
q-Steiner system Sq(t, k, n;m). For a given r, max{k − p, s} 6 r 6 min{k − t + s,m},
let Ds,r,m be the number of r-subspaces which contain a given s-subspace in Fm

q . In other
words, Ds,r,m is the number of variables for r-subspaces which appear in the equation for
any given s-subspace.

Lemma 22. If 0 6 s 6 r 6 m, then Ds,r,m =
[
m−s
r−s

]
q
.

Proof. Let X be an s-subspace of Fm
q . We enumerate the number of distinct r-subspaces

which contain X in Fm
q , by adding linearly independent vectors one by one to X. The first

vector can be chosen in qm − qs distinct ways, the second in qm − qs+1 distinct ways and
the last in qm−qr−1 different ways, for a total of Πs

i=r−1(q
m−qi) different ways. Similarly,

a given r-subspace Y which is formed in this way can be constructed in Πs
i=r−1(q

r − qi)
distinct ways (the first vector can be chosen in qr − qs distinct ways and so on). Hence,
the total number of distinct r-subspaces formed in this way is∏s

i=r−1(q
m − qi)∏s

i=r−1(q
r − qi)

=
s∏

i=r−1

qm − qi

qr − qi
=

s∏
i=r−1

qm−i − 1

qr−i − 1
=

[
m− s
m− r

]
q

=

[
m− s
r − s

]
q

So far, we have described the computation of the components in the equations that
should be satisfied if a p-punctured q-Steiner system Sq(t, k, n;m) exists. The solution for
the variables must be nonnegative integers. Before we describe the specific equations, and
before we reduce the number of equations in some cases, we compute the total number of
equations and the total number of variables in the equations for the p-punctured q-Steiner
system Sq(t, k, n;m).

Lemma 23. The number of equations for the p-punctured q-Steiner system Sq(t, k, n;m),
m = n− p, is

min{t,m}∑
s=max{0,t−p}

[
m

s

]
q

,

i.e.
[
m
s

]
q

equations for all the s-subspaces of Fm
q , where max{0, t− p} 6 s 6 min{t,m}.
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Proof. The range of s is a direct consequence from Lemma 15. For each s-subspaces of
Fm
q we have one equation and hence there are

[
m
s

]
q

equations for each s.

Lemma 24. The number of variables for the p-punctured q-Steiner system Sq(t, k, n;m),
m = n− p, is

min{k,m}∑
r=max{0,k−p}

[
m

r

]
q

,

i.e.
[
m
r

]
q

variables for all the r-subspaces of Fm
q , where max{0, k − p} 6 r 6 min{k,m}.

Proof. The range of r is a direct consequence from Lemma 16 by noting that either s gets
the value of t for a given t and if m < t then also m < k and the value of r is at most m.
For each r-subspaces of Fm

q we have one variable and hence there are
[
m
r

]
q

variables for

each r.

Corollary 25. If m 6 t, then the number of variables is equal to the number of equations,
for the p-punctured q-Steiner system Sq(t, k, n;m). This number is equal to

m∑
e=0

[
m

e

]
q

.

If the equations are linearly independent, then there is a unique solution to the set of
equations in this case (when the variables ore not constrained). If the solution consists of
nonnegative integers then the p-punctured q-Steiner system Sq(t, t+ 1, n;m) exists.

Corollary 26. If m = t + 2, then the number of variables for the p-punctured q-Steiner
system Sq(t, t+ 1, n;m), m = n− p, is equal to

t+1∑
r=0

[
t+ 2

r

]
q

.

The number of equations in this case is equal to

t∑
s=0

[
t+ 2

s

]
q

.

If we set the value of the variable which corresponds to the 0-subspace of Fm
q to be

[n−m
t ]

q

[kt]q
and the equations are linearly independent, then there is a unique solution to the set of
equations in this case (when the variables ore not constrained). If the solution consists of
nonnegative integers then the p-punctured q-Steiner system Sq(t, t+ 1, n;m) exists.
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Proof. If the variable related to the 0-subspace of Fm
q is set to

[n−m
t ]

q

[kt]q
, then all the

[
t+2
1

]
q

variables related to the 1-subspaces of Fm
q are equal to 0. Therefore, the number of

equations in the new set of equations is

t∑
s=1

[
t+ 2

s

]
q

.

The number of variables which are not assigned with values is this new set of equations is

t+1∑
r=2

[
t+ 2

r

]
q

.

Clearly, these two summations are equal and the claim follows.

Corollary 27. If m = t + 1, then the number of variables for the p-punctured q-Steiner
system Sq(t, t+ 1, n;m), m = n− p, is equal to

t+1∑
r=0

[
t+ 1

r

]
q

.

The number of equations in this case is equal to

t∑
s=0

[
t+ 1

s

]
q

.

If we set the value of the variable which corresponds to the 0-subspace of Fm
q to be

[n−m
t ]

q

[kt]q
and the equations are linearly independent, then there is a unique solution to the set of
equations in this case (when the variables ore not constrained). If the solution consists of
nonnegative integers then the p-punctured q-Steiner system Sq(t, t+ 1, n;m) exists.

Note, that if there is a unique solution to the set of equations, then the existence of
the related design, i.e. p-punctured q-Steiner system Sq(t, k, n;m) is not guaranteed yet.
Only if the unique solution is a nonnegative integer solution, then the design exists. We
also did not consider the linear independence of the equations, although it can be proved
in some cases. It is also important to understand that the number of equations and the
number of variables can be large, and in most cases the number of variables is much larger
than the number of equations. In this case there are many free variables, which usually
make it even harder to find if the set of equations have a solution with nonnegative integer
values for the variables.

In the sequel we will examine cases, where the set of equations have a solution with
nonnegative integers. In these cases it will be proved that the p-punctured q-Steiner
system Sq(t, k, n;m) exists. In most cases we will consider uniform solutions, i.e. solutions
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in which for each r, the number of r-subspaces in the systems is equal for any two r-
subspaces of Fm

q , i.e. the related variables have the same value. The related design will
be called a uniform design. For such systems we can reduce the number of variables and
the number of equations. The choice of uniform solution is usually a good choice when
the equations are linearly independent. In such a case the solution is uniform in many
cases.

Let S be a uniform p-punctured q-Steiner system Sq(t, k, n;m), m = n− p. Let Z be
an r-subspace of Fm

q and let Xr,m be the number of appearances of Y in S. The conclusion
of our discussion is the following set of equations for uniform designs.

Theorem 28 (For a uniform p-punctured q-Steiner system Sq(t, k, n;m)).
Let S be a uniform p-punctured q-Steiner system Sq(t, k, n;m), m = n − p. For each s,
max{0, t− p} 6 s 6 min{t,m}, the following equation must be satisfied.

N(s,m),(t,n) =

min{k−t+s,m}∑
r=max{k−p,s}

Ds,r,m · C(s,t),(r,k) ·Xr,m .

Proof. The left side of the equation is the number of distinct t-subspaces in Fn
q which

are formed by extending a given s-subspace Y of Fm
q . The right hand side is summing

over all the r-subspaces of Fm
q which contain Y (the range is obtained from Lemma 16),

where Ds,r,m is the number of r-subspaces which contain X, C(s,t),(r,k) is the number of
appearances of Y in such a given r-subspace, and Xr,m is the number of appearances of
each r-subspace in S.

4 Examples for Existing Systems

In this section we will give examples of p-punctured q-Steiner system Sq(t, k, n;m) for
various parameters. We start with the 3-punctured q-Fano plane Sq(2, 3, 7; 4) and continue
with Sq(3, 4, 8; 4), S2(3, 4, 8; 5), Sq(4, 5, 11; 6), and Sq(5, 6, 12; 6). We conclude with a more
general example for the k-punctured q-Steiner system Sq(3, 4, 2k; k), k ≡ 2 or 4 (mod 6),
k > 4.

The 3-punctured q-Steiner system Sq(2, 3, 7; 4):

There are
[
4
s

]
q

equations for each 0 6 s 6 2, for a total of 1 + (q3 + q2 + q + 1) +

(q2 + 1)(q2 + q + 1) equations. There are
[
4
r

]
q

variables for each 0 6 r 6 3, for a total of

1 + (q3 + q2 + q + 1) + (q2 + 1)(q2 + q + 1) + (q3 + q2 + q + 1) variables.
For s = 0, there is a unique equation for the 0-subspace (the null space) given by[

3

2

]
q

= (q2 + q + 1)a+ bi1 + bi2 + · · ·+ biq3+q2+q+1
,

where a is the unique variable related to the 0-subspace, while bij is a variable for an
1-subspace. To have a unique solution we must have linearly independent equations in
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which the number of variables equals the number of equations. Hence, we set a = 1 which
implies that bij = 0 for each j.

For s = 1, there are q3 + q2 + q + 1 equations related to the 1-subspaces, where each
equation is of the form

q2
[
3

1

]
q

= (q2 + q)b+ ci1 + ci2 + · · ·+ ciq2+q+1
,

where b is a variable related to an 1-subspace and hence b = 0, while cij is a variable for
a 2-subspace.

For s = 2, there are (q2 +1)(q2 +q+1) equations for 2-subspaces, where each equation
is of the form

q6
[
3

0

]
q

= q2c+ di1 + di2 + · · ·+ diq+1 ,

where c is a variable related to a 2-subspace, while dij is a variable related to a 3-subspace.
This system of equations has a unique solution, which is also a solution for a uniform

design (uniform punctured system), X0,4 = 1, X1,4 = 0, X2,4 = q2, and X3,4 = q4(q − 1).

The 4-punctured q-Steiner system Sq(3, 4, 8; 4):

There are
[
4
s

]
q

equations for each 0 6 s 6 3, and there are
[
4
r

]
q

variables for each

0 6 r 6 4. To have a unique solution, which also forms a uniform design, we set
X0,4 = 1 which implies that X1,4 = 0, and the system of equations has the unique
solution, X2,4 = q2(q2 + 1), X3,4 = q4(q4 − 1), and X4,4 = q12 − q11 + q7.

The 3-punctured q-Steiner system Sq(3, 4, 8; 5):

It is left for the reader to verify that the following set T is a 3-punctured q-Steiner
system Sq(3, 4, 8; 5). contains:

1. One 1-subspace which is punctured into the unique 0-subspace of F4
q.

2. The q2(q2 + 1)(q2 + q + 1) distinct 2-subspaces of F5
q, which are punctured into a

2-subspace of F4
q, each one is contained exactly once in T.

3. The (q2 + q + 1)(q2 + 1) distinct 3-subspaces of F5
q, which are punctured into a

2-subspace of F4
q, each one is contained q4 times in T.

4. The q3(q3 + q2 + q + 1) distinct 3-subspaces of F5
q, which are punctured into a

3-subspace of F4
q, each one is contained q(q3 − 1) times in T.

5. The q3 +q2 +q+1 distinct 4-subspaces of F5
q, which are punctured into a 3-subspace

of F4
q, each one is contained q7(q − 1) times in T.

6. The q4 distinct 4-subspaces of F5
q, which are punctured into the unique 4-subspace

of F4
q, each one is contained q8 − q7 + q3 times in T.
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The 5-punctured q-Steiner system Sq(4, 5, 11; 6):

There are
[
6
s

]
q

equations for each 0 6 s 6 4 and there are
[
6
r

]
q

variables for each

0 6 r 6 5. To have a uniform design we set X0,6 = 1 which implies that X1,6 = 0 and
the system of equations will have a unique solution X2,6 = q2(q2 + 1), X3,6 = q9 + q7− q4,
X4,6 = q14 − q9 + q7, and X5,6 = (q18 + q11)(q − 1).

The 6-punctured q-Steiner system Sq(5, 6, 12; 6):

There are
[
6
s

]
q

equations for each 0 6 s 6 5 and there are
[
6
r

]
q

variables for each

0 6 r 6 6. A solution for a uniform design for the system of equations is X0,6 = 1,
X1,6 = 0, X2,6 = q2(q4+q2+q), X3,6 = q4(q8+q6+q5−1), X4,6 = q7(q11+q9+q7−q6+1),
X5,6 = q11(q13 − q7 + q6 − 1), and X6,6 = q16(q14 − q13 + q7 − q6 + 1).

The k-punctured q-Steiner system Sq(3, 4, 2k; k), k ≡ 2 or 4 (mod 6), k > 4:

In this case, we will consider only a possible uniform design. For this design we

have that X0,k =
[k3]q
[43]q

, X1,k = 0, X2,k = qk−2 q
k−1
q2−1 , X3,k = qk(qk − 1), and X4,k =

(q3k−q2k+3+qk+3)(q−1)
qk−3−1 . We note that the reminder in the division of the polynomials in X4,k

is q7 − q6 and hence X4,k is an integer only for k = 4 and all q’s. This solution was given
in a previous example for Sq(3, 4, 8; 4).

The k-punctured q-Steiner system Sq(2, 3, 2k + 1; k + 1), k ≡ 1 or 3 (mod 6),
k > 3:

The number of equations in the system is
∑2

s=0

[
k+1
s

]
q
. The number of variables is∑3

r=0

[
k+1
r

]
q
. We will consider only uniform designs and hence we only have 3 equations

and 4 variables.
The first equation for the 0-subspace of Fk+1

q is N(0,k+1),(2,2k+1) = D0,0,k+1 · C(0,2)(0,3) ·
X0,k+1 +D0,1,k+1 ·C(0,2)(1,3) ·X1,k+1 which is equal to

[
k
2

]
q

=
[
3
2

]
q
·X0,k+1 +

[
k+1
1

]
q
·X1,k+1.

If we set X0,k+1 =
[k2]q
[32]q

, then we have X1,k+1 = 0.

The second equation for 1-subspaces is N(1,k+1),(2,2k+1) = D1,1,k+1 · C(1,2)(1,3) ·X1,k+1 +

D1,2,k+1 · C(1,2)(2,3) · X2,k+1. Since N(1,k+1),(2,2k+1) = qk−1
[
k
1

]
q

= qk−1 q
k−1
q−1 and D1,2,k+1 =[

k
1

]
q

= qk−1
q−1 = qk−1 + qk−2 + · · ·+ q + 1, it follows that

qk−1
[
k

1

]
q

= qk−1
qk − 1

q − 1
= (q2 + q)X1,k+1 + (qk−1 + qk−2 + · · ·+ q + 1)X2,k+1 .

The third equation for 2-subspaces is N(2,k+1),(2,2k+1) = D2,2,k+1 · C(2,2)(2,3) · X2,k+1 +

D2,3,k+1 · C(2,2)(3,3) ·X3,k+1. Since N(2,k+1),(2,2k+1) = q2k and D2,3,k+1 =
[
k−1
1

]
q

= qk−1−1
q−1 =

qk−2 + qk−3 + · · ·+ q + 1, it follows that

q2k = q2X2,k+1 + (qk−2 + qk−3 + · · ·+ q + 1)X3,k+1 .
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The solution for this set of equations is X0,k+1 =
[k2]q
[32]q

, X1,k+1 = 0, X2,k+1 = qk−1, and

X3,k+1 = qk+1(q − 1).

5 A Recursive Construction

In this section we present a recursive construction for a p-punctured q-Steiner system
Sq(2, 3, 2k + 1; k + 1 + bk+1

3
c), p = k − bk+1

3
c, where k ≡ 1 or 3 (mod 6). The basis for

the construction is the trivial q-Steiner system Sq(2, 3, 3).
Let k ≡ 1 or 3 (mod 6), which implies that 2k + 1 ≡ 3 or 7 (mod 12), and assume

that there exists a p-punctured q-Steiner system Sq(2, 3, k; bk+1
3
c), p = k − bk+1

3
c. Let S

be a k-punctured q-Steiner system Sq(2, 3, 2k + 1; k + 1) presented in Section 4. For S

we have that X0,k+1 =
[k2]q
[32]q

, X1,k+1 = 0, X2,k+1 = qk−1, and X3,k+1 = qk+1(q − 1). In

the recursive construction, we will generate a system T, a p-punctured q-Steiner system
Sq(2, 3, 2k + 1; k + 1 + bk+1

3
c), p = k − bk+1

3
c.

Let r = bk+1
3
c be the number of columns that should be appended to the subspaces

(of dimension 0, 2, and 3) of S to form T. To each one of the
[
k+1
3

]
q

distinct 3-subspaces

of S we append the q3r possible combinations of r columns. Each column has q3 possible
combinations by Lemma 4. Since X3,k+1 = qk+1(q − 1), it follows that each such com-
bination (a 3-subspace of Fk+1+r

q ), whose r-punctured subspace is also a 3-subspace, will

appear qk+1−3r(q−1) times in T. To the
[k2]q
[32]q

0-subspaces of S we append the subspaces of

a (k− r)-punctured q-Steiner system Sq(2, 3, k; r) system which exists by our assumption.
Hence, we have completed the extension of the 0-subspaces and 3-subspaces of S. To
complete our construction we have to extend the 2-subspaces of S.

For the extension of the 2-subspaces we need two more concepts, namely spreads and
large sets in Gq(k + 1, 2) (known as 1-spreads and 1-parallelisms in PG(k, q) ). A spread
in Gq(k + 1, 2) is a set of 2-subspaces whose nonzero elements form a partition of all the
elements of Fk+1

q \ {0}, i.e. each nonzero vector of Fk+1
q appears in exactly one 2-subspace

of the spread. In other words, a spread in Gq(k+1, 2) is a q-Steiner system Sq(1, 2, k+1). A
large set (1-parallelism) of q-Steiner systems Sq(1, 2, k+1) is a partition of all 2-subspaces
of Gq(k + 1, 2) into q-Steiner systems Sq(1, 2, k + 1) (spreads). If q = 2, then such large
sets are known to exist whenever k + 1 is even [2]

We continue by considering the case of q = 2. Note, that k+1 is even and hence there
exists a spread in G2(k + 1, 2). The size of such spread is 2k+1−1

3
, i.e. it contain 2k+1−1

3

subspaces. The total number of subspaces in G2(k+ 1, 2) is
[
k+1
2

]
2

= (2k+1−1)(2k−1)
3

. There
exists a partition (large set) of these 2-subspaces into disjoint spreads and hence there
are 2k− 1 disjoint spreads in such a large set. We continue and arbitrarily partition these
2k − 1 disjoint spreads into 2r sets of spreads, one set with 2k−r − 1 spreads and 2r − 1
sets each one with 2k−r spreads. To each one of these 2r − 1 sets we assign arbitrarily a
different nonzero row vector of length r, and the all-zero vector of length r is assigned to
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the set of size 2k−r − 1.
For demonstration of the construction, each 2-subspace of S is represented by a

3× (k + 1) matrix, each 2-subspace of T is represented by a 3× (k + 1 + r) matrix, and
each 3-subspace of T is represented by a 7× (k + 1 + r) matrix.

Consider now these two sets of spreads:

1. For the set which contains 2k−r − 1 spreads, each 2-subspace X from each spread is
contained 2k−1 times in the S. The 2-subspaces X is extended to several 2-subspaces
in Fk+1+r

2 as follows. The first k + 1 columns which represent these 2-subspaces are
equal to the 3× (k+ 1) matrix which represents X. In the last r columns there are
4 possible options in each column and thus 22r distinct combinations of r columns.
Each such combination will appear 2k−1−2r times in T.

2. For a set which contains 2k−r spreads (there are 2r − 1 such sets in the partition),
each 2-subspace X from each spread is contained 2k−1 times in S. There is a nonzero
vector v of length r which is assigned to this set. The 2-subspace X is extended
to several 3-subspaces in Fk+1+r

2 as follows. The first three rows in the first k + 1
columns which represent these subspaces are equal to the 3× (k + 1) matrix which
represents X. The next three rows in these k + 1 columns are also equal to the
3 × (k + 1 + r) matrix which represents X. The seventh and the last row in these
k + 1 columns is a row of zeroes. We turn now to complete the last r columns in
the 7 × (k + 1 + r) matrices which represents the 3-subspaces extended from X.
The entries of the last (seventh) row in these columns are assigned with the values
of v. The first column in which v has a one has values which corresponds to the
unique extension from a 2-subspace to a 3-subspace as proved in Lemma 6. Finally,
in each other column there are 4 possible distinct combinations: if the related entry
in v is a zero, it relates to the extension from 2-subspace to 2-subspace; and if the
related entry in v is a one it relates to the extension from 3-subspace to 3-subspace
in which there are 4 combinations, out of the 8 combinations, with a one in a given
coordinate. In total there are 22(r−1) distinct combinations for these r columns.
Each such combination will appear 2k−1−2(r−1) times in T.

The proof that T is p-punctured q-Steiner system Sq(2, 3, 2k+ 1; k+ 1 + r), p = k− r,
follows immediately from the described construction.

The generalization for q > 2 is similar, as explained before the requirement is the
existence of large set of q-Steiner system Sq(1, 2, k + 1), where k ≡ 1 or 3 (mod 6). Such
a large set is known to exist for q > 2 only if k+ 1 is a power of 2 [3], making the possible
generalizations for q > 2 with limited number of parameters. The recursive construction,
with the basis of Sq(2, 3, 3), leads to the following theorem.

Theorem 29. There exists a p-punctured q-Steiner system Sq(2, 3, 2
`−1; 2`−1−b2`−1

3
c),

p = b2`−1
3
c, ` > 3.

For q = 2 the construction can be applied also by starting with the q-Steiner system
S2(2, 3, 13) [4].
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6 Conclusions

We have presented a new framework to examine the existence of q-Steiner systems. Based
on this framework we have defined a new set of q-designs which are punctured q-Steiner
systems. Necessary conditions for the existence of such designs were presented. Several
parameters where these new designs exist, were given. A recursive construction for one
set of parameter for such designs was given. For future research the main problem in this
direction is to find lower bounds on m for any given (n−m)-punctured q-Steiner system
Sq(t, k, n;m).

The new framework was as a basis to find a punctured q-Fano plane (also known as
a residual q-Fano plane), i.e. a punctured q-Steiner system Sq(2, 3, 7; 6), for each prime
power q > 2 [16]. The construction is based on extending the 3-punctured q-Steiner
system Sq(2, 3, 7; 4). This system is very interesting. It consists of 2-subspaces of F6

q,
which form a spread. Each 2-subspace of F6

q which is not part of the spread is contained
in exactly q2 3-subspaces of the system. These new findings give us a renewed hope to
construct a q-Fano plane for q > 2, as the system cannot be extended for q = 2.

The new framework can be used to prove that in the q-Fano plane (if exists) we can
force three 3-subspaces with four columns of zeroes - one in the first four columns, one in
the last four columns, and one in the first two and the last two columns. Such a result as
well as other derived properties are left as an exercise to the interested reader.
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