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Abstract

We establish limit theorems that describe the asymptotic local and global geo-
metric behaviour of random enriched trees considered up to symmetry. We apply
these general results to random unlabelled weighted rooted graphs and uniform ran-
dom unlabelled k-trees that are rooted at a k-clique of distinguishable vertices. For
both models we establish a Gromov–Hausdorff scaling limit, a Benjamini–Schramm
limit, and a local weak limit that describes the asymptotic shape near the fixed
root.
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1 Introduction

The main purpose of this paper is to study the limiting behaviour of randomly selected
structures from recursively defined combinatorial classes like (rooted) trees. One of the
challenges is to discount symmetries of these objects. The main results provide universal
descriptions of the asymptotic local and global shape as the size of the random structures
tends to infinity. Specifically, we establish a local weak limit for the vicinity of a fixed root
vertex in Theorem 24 and a Benjamini–Schramm limit describing the neighbourhoods of
a uniformly at random selected point in Theorem 27. We establish a Gromov–Hausdorff
scaling limit for random metrics on these structures in Theorem 28 and provide sharp
diameter tail-bounds in Theorem 29. We present applications to random weighted unla-
belled connected rooted graphs, random unlabelled front-rooted k-dimensional trees, and
simply generated unlabelled rooted trees in Subsections 6.4, 6.5, and 6.6.

The study of large random discrete structures lies at the intersection of probability the-
ory and combinatorics [26]. A combinatorial approach often involves using the framework
of combinatorial classes to express the quantities under consideration in terms of coeffi-
cients of power series, and applying analytic tools such as singularity analysis or saddle-
point methods to obtain very precise limits and concentration results [27, 38, 32, 9, 19, 21].
From a probabilistic viewpoint, the focus is on settings where methods for stochastic pro-
cesses may be applied, and recent work focuses on graph limits describing the asymptotic
shape, either locally in so called local weak limits [7, 66, 22, 20, 13, 58, 15], or globally in
Gromov–Hausdorff scaling limits [45, 41, 2, 51, 53, 52, 59], and more recently, also on an
intermediate scale in local Gromov–Hausdorff scaling limits [10, 72].

When studying random graphs one usually distinguishes their vertices either explicitly
using labels, or implicitly in so called unlabelled graphs. The number of ways to label
an unlabelled graph is given by the quotient of its number of vertices and the size of
its automorphism group. Hence, if we uniformly select an element from a finite set of

the electronic journal of combinatorics 25(3) (2018), #P3.11 3



n-vertex graphs that is closed under relabelling, we are more likely to pick a graph with a
small automorphism group. That is, the labelling does not influence the geometric shape
of the graph, but the measure according to which a graph is drawn. It is natural to wonder
how a random unlabelled graph, that is, one that is sampled without this bias, behaves
asymptotically. However, this poses a particular challenge. Due to the complexity of the
involved symmetries, probabilistic approaches in the past where mostly limited to models
of random unlabelled trees [61, 68, 57, 40, 71]. Models of random unlabelled graphs were
predominantly studied using analytic methods. In this context we mention the work by
Bodirsky, Fusy and Kang [16] and Kraus [47] concerning random unlabelled outerplanar
graphs. Drmota, Fusy, Kang, Kraus and Rué [27] took a unified approach to study so
called families of subcritical classes of unlabelled graphs, and Drmota and Jin [28] and
Gainer-Dewar, Gessel and Ira [36] treated unlabelled k-dimensional trees.

In the present work we aim to combine methods for branching processes with com-
binatorial tools to establish novel graph limits for models of random graphs considered
up to symmetry. The first model considered is that of random unlabelled rooted con-
nected graphs sampled with probability proportional to a product of weights assigned
to their 2-connected components. If the weight-sequence satisfies certain conditions, we
obtain a local weak limit that describes the asymptotic vicinity near the fixed root, a
Benjamini–Schramm limit that describes the asymptotic shape near a random vertex,
and a Gromov–Hausdorff scaling limit. Moreover, we obtain sharp tail bounds for the di-
ameter. In the two local limits, we even obtain total variational convergence of arbitrary
o(
√
n)-sized neighbourhoods of the fixed root and random root, which is best-possible as

the convergence fails for neighbourhoods whose radius is comparable to
√
n. The setting

we consider explicitly includes uniform random unlabelled rooted graphs from so called
subcritical graph classes introduced in [27, Def. 10], such as series-parallel graphs, out-
erplanar graphs, and cacti graphs. As for extremal graph parameters, our results also
establish the correct order of the diameter. The maximum degree and largest 2-connected
component are shown to have typically order O(log n). Our results complement, but
neither include or are included by, the results on random labelled graphs from subcriti-
cal classes given by Panagiotou, S., and Weller [62], and Drmota and Noy [29]. In [27]
additive parameters of these graphs such as the degree distribution were studied using
analytic methods. The two local limits add a probabilistic interpretation to the limit
degree distributions obtained in [27] for the degree of a random vertex and of the fixed
root. Furthermore, general results by Kurauskas [48, Thm. 2.1] and Lyons [56, Thm.
3.2] for Benjamini–Schramm convergent sequences of random graphs may be applied to
deduce laws of large numbers for subgraph count asymptotics and spanning tree count
asymptotics in terms of the Benjamini–Schramm limit.

Shortly after the limit results of the present work were made available on the arXiv
in 2015, Georgakopoulos and Wagner [37] submitted a manuscript to this repository that
provides combinatorial proofs of the local weak limit for labelled and unlabelled rooted
graphs in the subcritical regime, and a novel Benjamini–Schramm limit for subcritical
unrooted unlabelled graphs. (See also the footnote on page 2 of [37] for comments on the
overlap.) The advantage of the approach via branching processes in the present paper
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is that it enables us to describe both the local and global asymptotic geometric shape.
Previous results by Panagiotou, S., and Weller [62] treat scaling limits of random labelled
graphs in a subcriticality regime, but it is important to note that random labelled graphs
from classes that are subcritical in the sense of [27, Def. 5] and random unlabelled rooted
graphs that are subcritical in the sense of [27, Def. 10] are different models. This is
already evident in the simplest case, the class of trees, which is known to be subcritical
in both the labelled and unlabelled sense. The scaling limit of uniform random trees
with vertices labelled from 1 to n is due to Aldous [4], but his result does not encompass
the case of unlabelled rooted trees. The unlabelled case was conjectured to converge in
the global sense in [5, p. 55], and the celebrated proof of this conjecture by Haas and
Miermont [40] brought new ideas to the table. Likewise, the generalization from labelled
trees to subcritical classes of labelled graphs undertaken in [62] does not encompass the
scaling limits for random unlabelled rooted graphs given in the present work, regardless
of the fact that both works use the language of combinatorial species and approximate
the graphs under consideration by conditioned Galton–Watson trees.

The framework of the present paper may also be used to study random unlabelled
k-trees that are rooted at a front of distinguishable vertices. A k-tree consists either
of a complete graph with k vertices, or is obtained from a smaller k-tree by adding a
vertex and connecting it with k distinct vertices of the smaller k-tree. Such objects are
interesting from a combinatorial point of view, as their enumeration problem has a long
history, see [60, 35, 34, 33, 23, 11, 42]. They are also interesting from an algorithmic
point of view, as many NP-hard problems on graphs have polynomial algorithms when
restricted to k-trees [8, 39]. Employing recent results for limits of random unlabelled
Gibbs partitions [69], we obtain a local weak limit for unlabelled front-rooted k-trees that
describes the total variational asymptotic behaviour of arbitrary o(

√
n)-neighbourhoods

of the root-front. We also obtain a Benjamini–Schramm limit describing the asymptotic
shape of o(

√
n)-neighbourhoods of a uniformly at random selected vertex. Furthermore,

we obtain a Gromov–Hausdorff scaling limit. For all three limits, a concentration result is
required that relates the distances of certain points with respect to the k-tree metric and
to a tree-metric in the underlying representation by trees endowed with local symmetries.
We obtain this intermediate result by locating a hidden Markov chain and applying a large
deviation inequality by Lezaud [55] for functions on non-reversible Markov processes.

As a third application, our results also yield local weak limits, Benjamini–Schramm
limits and scaling limits for a family of random unordered trees drawn according to weights
assigned to the vertex degrees. The scaling limit mildly generalizes previous results for
uniform vertex degree restricted trees [57, 40, 61]. From a probabilistic viewpoint it is
natural to consider weights and not only the uniform measure, as this constitutes the
unordered analogue of Galton–Watson trees conditioned on having a large number of
vertices, or more generally so called simply generated plane trees. As demonstrated by
Janson [44], random weighted plane trees may be classified into various regimes, each
exhibiting characteristic asymptotic behaviour. For this reason, it is also natural to work
towards a similar classification for random weighted unordered trees, and the present work
makes a small step in this direction.
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Due to the length of the present paper one might get the impression that the ap-
plications we provide are independent problems that should be treated separately. It is
actually one of the main points we are trying to make here, that this is not the case.
As for the limits, we are going to use the local weak limits to establish a large deviation
result that is crucial for obtaining the scaling limits. Conversely, this result also allows
us to establish the local weak limits and Benjamini–Schramm limits in their strong form,
featuring total variational convergence of o(

√
n)-neighbourhoods.

Moreover, rather than treating each model of random graphs individually, we take a
unified approach and establish a set of limit theorems that apply to the abstract family
of random unlabelled R-enriched trees, with the class R ranging over all combinatorial
classes. Roughly speaking, given a class R of combinatorial objects, an R-enriched tree
is a rooted tree together with a function that assigns to each vertex an R-structure on
its offspring. The model we consider is an unlabelled R-enriched tree with n vertices
considered up to symmetry, that we sample with probability proportional to a weight
formed by taking the product of weights assigned to its local R-structures. The limits
are formed as n becomes large, possibly along a shifted sublattice of the integers. We
are going to explain in detail how the mentioned models of random unlabelled graphs fit
into this framework. Of course it also makes sense to study a labelled analogue, and this
endeavour is undertaken in [67].

There are various reasons for taking this general approach. First of all, the method of
our proofs requires per se that we consider trees enriched with arbitrary structures, not
just the structure that corresponds to the graphs under consideration. The limit objects
are defined in terms of plane trees enriched with local symmetries, and then interpreted
as random graphs according to combinatorial bijections. The benefit of this is that we
may really see how classical probabilistic objects such as Kesten’s tree or asymptotic
fringe distributions [3] are hidden inside. Furthermore, given the immense variety of
combinatorial structures [32], it is interesting that a high-level point of view that covers
a large class of seemingly unrelated discrete structures is even possible.

On a final note, we remark that our techniques enable us (in principle) to strengthen
the Gromov–Hausdorff scaling limits in the present work to more powerful Gromov–
Hausdorff–Prokhorov limits, which entail scaling limits for the distances between multiple
independently sampled random points. Due to the already considerable length of the
manuscript we resist the temptation to make this extension explicit.

Plan of the paper

Section 1 gives an informal description of the topic and the main applications. Section 2
fixes notation related to graphs, trees and k-trees, and recalls necessary background on
local weak convergence, Gromov–Hausdorff convergence and further properties of large
critical Galton–Watson trees. Section 3 is a concise introduction to the combinatorial
framework of species of structures and Boltzmann distributions, with a focus on the de-
composition of symmetries. Section 4 discusses a limit theorem for unlabelled Gibbs
partitions, that we are going to use in our applications. Section 5 explicitly states some
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probabilistic and combinatorial tools related to random walks and Markov chains. Sec-
tion 6 presents the contributions of the present paper in detail. Specifically, Subsection 6.1
introduces the model of unlabelled R-enriched trees under consideration, and discusses
combinatorial bijections that show how this generalizes various models of random graphs
considered up to symmetry, in particular unlabelled block-weighted rooted graphs and
unlabelled front-rooted k-trees. Subsection 6.2 builds the framework concerning the local
structure of enriched trees and states our main local weak limits for the vicinity of the fixed
root vertex in Theorem 24 and for the neighbourhoods of a uniformly at random selected
point in Theorem 27. Subsection 6.3 introduces a general model of random metric spaces
based on random unlabelled enriched trees, and establishes our main scaling limit in The-
orem 28, as well as sharp diameter tail-bounds in Theorem 29. Subsection 6.4 presents
applications of our main results to random weighted unlabelled connected rooted graphs.
In particular, Theorem 33 states a scaling limit with respect to the first-passage percola-
tion metric and sharp diameter tail-bounds. Theorem 31 states a local weak limit for the
vicinity of the fixed root vertex and Theorem 32 gives a Benjamini–Schramm limit. Sub-
section 6.5 discusses applications to random unlabelled front-rooted k-dimensional trees,
for which a scaling limit is established in Theorem 37 and a Benjamini–Schramm limit is
given in Theorem 36. Subsection 6.6 presents further applications to a family of simply
generated unlabelled rooted trees. In Section 7 we collect all proofs.

2 Preliminaries

2.1 Notation

Throughout, we set

N = {1, 2, . . .}, N0 = {0} ∪ N, [n] = {1, 2, . . . , n}, n ∈ N0.

The set of non-negative real numbers is denoted by R>0. We usually assume that all
considered random variables are defined on a common probability space whose measure
we denote by P, and let Lp denote the corresponding space of p-integrable real-valued
functions. All unspecified limits are taken as n becomes large, possibly taking only values

in a subset of the natural numbers. We write
d−→ and

p−→ for convergence in distribution

and probability, and
(d)
= for equality in distribution. An event holds with high probability,

if its probability tends to 1 as n tends to infinity. We let Op(1) denote an unspecified
random variable Xn of a stochastically bounded sequence (Xn)n, and write op(1) for

a random variable Xn with Xn
p−→ 0. We write L(X) to denote the law of a random

variable X. The total variation distance of measures and random variables is denoted by
dTV. Given a power series f(z), we let [zn]f(z) denote the coefficient of zn in f(z).

2.2 Graphs, trees and k-trees

We are going to consider simple graphs, that have no loops or parallel edges. The vertices
that are adjacent to a vertex v in a graph G are its neighbourhood. The cardinality of
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its neighbourhood is called the degree of the vertex v, and denoted by dG(v). We say
G is locally finite, if all its vertices have finite degree. A graph is called connected, if
any two vertices may be joined by a path. More generally, for k > 1 we say a graph
G is k-connected, if it has at least k + 1 vertices and deleting any k − 1 of them does
not disconnect the graph. A cutvertex is a vertex whose removal disconnects the graph.
Hence 2-connected graphs are graphs without cutvertices and size at least three.

A graph isomorphism between graphs G and H is a bijection between their vertex sets
such any two vertices in G are joined by an edge if and only if their images in H are.
In this case we say the two graphs are isomorphic. We say a graph is rooted, if one of
its vertices is distinguished. Graph isomorphisms between rooted graphs are required to
map the roots to each other. More generally, we may consider graphs with an ordered
set of distinguishable root-vertices, that must be respected by graph isomorphisms. A
graph considered up to isomorphism is an unlabelled graph. That is, any two unlabelled
graphs are distinct if they are not isomorphic. Formally, unlabelled graphs are defined as
isomorphism classes of graphs. Unlabelled rooted graphs are defined analogously.

A tree is a graph that is connected and does not contain cycles. In a rooted tree, we
say the vertices lying on the path between a vertex v and the root are the ancestors of
v. The vertices that are joined to v by an edge but are not ancestors are its offspring or
children. The collection of the children of a vertex is its offspring set. The cardinality of
the offspring set of a vertex v in a rooted tree A is its outdegree and denoted by d+

A(v).
Unlabelled rooted trees are also called Pólya-trees, in honour of George Póya.

The complete graph with n vertices is denoted by Kn. That is, in Kn any two distinct
vertices are connected. A subgraph of a graph is called an n-clique, if its isomorphic to
Kn. A k-tree is a graph that may be constructed by starting with a k-clique, and adding
in each step a new vertex that gets connected with k arbitrarily chosen distinct vertices
of the previously constructed graph. The k-cliques of a k-tree are also called its fronts,
and the k + 1-cliques its hedra. In the present work, we are only considering k-trees that
are rooted at a front of distinguishable vertices.

A block B of a graph G is a subgraph that is inclusion maximal with the property
of being either an isolated vertex, a 2-clique, or 2-connected. Connected graphs have a
tree-like block-structure, whose details are explicitly given for example in Diestel’s book
[25, Ch. 3.1]. We mention a few properties, that we are going to use. Any two blocks
of G overlap in at most one vertex. The cutvertices of G are precisely the vertices that
belong to more than one block.

Any connected graph C is naturally equipped with the graph-metric on its vertex set,
that assigns to any two vertices the minimum number of edges required to join them.
We usually denote the graph metric by dC(·, ·). Given a vertex v ∈ C and an integer
k > 0, the k-neighbourhood Vk(C, v) is the subgraph induced by all vertices with distance
at most k from v. We regard Vk(C, v) as rooted at the vertex v. The diameter D(C) is
the supremum of all distances between pairs of vertices. For a rooted graph C•, we may
also consider its height H(C•), which is the supremum of all distances of vertices from the
root of C•. Given a vertex v, we let hC•(v) denote its distance from the root.

Another metric on C is the block-metric dblock. The block-distance between any two
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vertices of C is given by the minimum number of blocks required to cover any joining
path. By standard properties of the block-structure of connected graphs, the choice of
the joining path does not matter. For any vertex v ∈ C and any integer k > 0 we let
Uk(C, v) denote the k-block-neighbourhood, that is, the subgraph induced by all vertices
with block-distance at most k. We regard Uk(C, v) as rooted at the vertex v.

2.3 Local weak convergence

Let G• = (G, vG) and H• = (H, vH) be two connected, rooted, and locally finite graphs.
We may consider the distance

d(G•, H•) = 2− sup{k∈N0 |Vk(G•)'Vk(H•)}

with Vk(G
•) ' Vk(H

•) denoting isomorphism of rooted graphs. This defines a premetric
on the collection of all rooted locally finite connected graphs. Two such graphs have
distance zero, if and only if they are isomorphic. Hence this defines a metric dBS on the
collection B of all unlabelled, connected, rooted, locally finite graphs. The space (B, dBS)
is known to be complete and separable, that is, a Polish space.

A random rooted graph G• ∈ B is the the local weak limit of a sequence G•n = (Gn, vn),
n ∈ N of random elements of B, if it is the weak limit with respect to this metric. That
is, if

lim
n→∞

E [f(G•n)] = E [f(G•)]

for any bounded continuous function f : B→ R. This is equivalent to stating

lim
n→∞

P (Vk(G
•
n) ' G•) = P (Vk(G

•) ' G•) .

for any rooted graph G•. If the conditional distribution of vn given the graph Gn is uniform
on the vertex set V (Gn), then the limit G• is often also called the Benjamini–Schramm
limit of the sequence (Gn)n. This kind of convergence often yields laws of large numbers
for additive graph parameters [56, 48].

2.4 Gromov–Hausdorff convergence

Let X• = (X, dX , x0) and Y • = (Y, dY , y0) denote pointed compact metric spaces. A
correspondence between X• and Y • is a subset R ⊂ X × Y containing (x0, y0) such that
for any x ∈ X there is a point y ∈ Y with (x, y) ∈ R, and conversely for any y ∈ Y there
is a point x ∈ X with (x, y) ∈ R. The distortion of the correspondence is defined as the
supremum

dis(R) = sup{|dX(x1, x2)− dY (y1, y2) | (x1, y1), (x2, y2) ∈ R}.

The (pointed) Gromov–Hausdorff distance between the pointed spaces X• and Y • may be
defined by

dGH(X, Y ) =
1

2
inf
R

dis(R)
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with the index R ranging over all correspondences between X• and Y •. The factor 1/2
is only required in order to stay consistent with an alternative definition of the Gromov–
Hausdorff distance via the Hausdorff distance of embeddings of X• and Y • into common
metric spaces, see [54, Prop. 3.6] and [18, Thm. 7.3.25]. This distance satisfies the axioms
of a premetric on the collection of all compact rooted metric spaces. Two such spaces
have distance zero from each other, if and only if they are isometric. That is, if there
is a distance preserving bijection between the two that also preserves the root vertices.
Hence this yields a metric on the collection K• of isometry classes of pointed compact
metric spaces. The space (K•, dGH) is known to be Polish (complete and separable), see
[54, Thm. 3.5] and [18, Thm. 7.3.30 and 7.4.15].

2.5 Large critical Galton–Watson trees

In this section we let Tn denote a Galton–Watson tree conditioned on having n vertices,
such that the offspring distribution ξ has average value E [ξ] = 1 and finite non-zero vari-
ance σ2. We refer the reader to Drmota’s book [26, Sec. 1.2.7] for a detailed introduction
to this model of random trees.

2.5.1 Convergence toward the CRT

The (Brownian) continuum random tree (CRT) is a random metric space constructed by
Aldous in his pioneering papers [4, 5, 6]. Its construction is as follows. To any continuous
function f : [0, 1]→ [0,∞[ satisfying f(0) = f(1) = 0 we may associate a premetric d on
the unit interval [0, 1] given by

d(u, v) = f(u) + f(v)− 2 inf
u6s6v

f(s)

for u 6 v. The corresponding quotient space (Tf , dTf ) = ([0, 1]/∼, d̄), in which points
with distance zero from each other are identified, is considered as rooted at the coset 0̄
of the point zero. This pointed metric space is an R-tree, see [31, 54] for the definition
of R-trees and further details. The CRT may be defined as the random pointed metric
space (Te, dTe , 0̄) corresponding to Brownian excursion e = (et)06t61 of duration one.

The famous invariance principle,

(Tn,
σ

2
n−1/2dTn , ∅)

d−→ (Te, dTe , 0̄) (1)

in the Gromov–Hausdorff sense, is due to Aldous [6] and there exist various extensions,
see for example Duquesne [30], Duquesne and Le Gall [31], Haas and Miermont [40]. We
are going to use a popular shortened notation for rescaled version of metric spaces, writing
for example simply

σ

2
n−1/2Tn

d−→Te

for Equation (1).
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2.5.2 Bounds for the height and level width

Addario-Berry, Devroye and Janson [1, Thm. 1.2] showed that there are constants C, c > 0
such that for all n and h > 0

P (H(Tn) > h)) 6 C exp(−ch2/n). (2)

The first moment of the number Lk(Tn) of all vertices v with height hTn(v) = k admits a
bound of the form

E [Lk(Tn)] 6 Ck exp(−ck2/n). (3)

for all n and k > 1. See [1, Thm. 1.5].

3 Combinatorial species and weighted Boltzmann distributions

In order to study combinatorial objects up to symmetry, it is convenient to use the
language of combinatorial species developed by Joyal [46]. It provides a clean and powerful
framework in which complex combinatorial bijections may be stated using simple algebraic
terms. In order to make the present work accessible to a large audience, we recall the
notions and results required to state and prove our main results. The theory admits an
elegant and concise description using the language of category theory, but we will avoid
this terminology and assume no knowledge by the reader in this regard. The exposition of
the combinatorial and algebraic aspects in the subsequent subsections follows mainly Joyal
[46] and Bergeron, Labelle and Leroux [14]. The probabilistic aspects in the Boltzmann
sampling framework is based on a recent result by Bodirsky, Fusy, Kang and Vigerske
[17, Prop. 38].

3.1 Weighted combinatorial species

A combinatorial species F is a functor or “rule” that produces for each finite set U a finite
set F [U ] of F-objects (or F-structures) and for each bijection σ : U → V a bijective map
F [σ] : F [U ]→ F [V ] such that the following properties hold.

1) F preserves identity maps, that is for any finite set U it holds that

F [idU ] = idF [U ].

2) F preserves composition of maps, that is, for any bijections of finite sets σ : U → V
and σ′ : V → W we require that

F [σ′σ] = F [σ′]F [σ].

The idea behind this is that finite combinatorial objects are composed out of atoms,
and relabelling these atoms yields structurally equivalent objects. For example, we may
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consider the species J of graphs where J [U ] is the collection of all graphs with vertex
set U . The bijection J [σ] is given by the relabelling of vertices according to σ.

We say a combinatorial species F maps any finite set U of labels to the finite set
F [U ] of F-objects and any bijection σ : U → V to the transport function F [σ]. For
any two F -objects FU ∈ F [U ] and FV ∈ F [V ] that satisfy F [σ](FU) = FV , we say FU
and FV are isomorphic and σ is an isomorphism between them. The object FU has size
|FU | = |U | and U is its underlying set. An unlabelled F-object or isomorphism type is
an isomorphism class of F -objects. That is, a maximal collection of pairwise isomorphic
objects. By abuse of notation, we treat unlabelled objects as if they were regular objects.
In our example J , the species of graphs, the size of a graph equals its number of vertices.
An isomorphism between J -objects is a graph isomorphism, and unlabelled J -objects
are unlabelled graphs in the usual sense.

An R>0-weighted species Fω consists of a species F and a weighting ω that produces
for any finite set U a map

ωU : F [U ]→ R>0

such that ωU = ωV ◦ F [σ] for any bijection σ : U → V . Any object F ∈ F [U ] has weight
ωU(F ). By abuse of notation we will often drop the index and write ω(F ) instead of
ωU(F ). Isomorphic structures have the same weight, hence we may define the weight of
an unlabelled F -object to be the weight of any representative. The inventory |F̃ [n]|ω is
defined as the sum of weights of all unlabelled F -objects of size n. Any species may be
considered as a weighted species by assigning weight 1 to each structure, and in this case
the inventory counts the number of F -objects. If we do not specify any weighting for a
species, then we assume that it is equipped with this canonical weighting.

To any weighted species Fω we may associate its ordinary generating series

F̃ω(z) =
∑
n>0

|F̃ [n]|ωzn

=
∑

F unlabelled F-object

ω(F )z|F |.

We may form the species Sym(F) of F-symmetries by letting Sym(F)[U ] be the set of
all pairs (F, σ) with F ∈ F [U ] an F -structure and σ an automorphism of F , that is, a
bijection σ : U → U with F [σ](F ) = F . For any bijection γ : U → V the corresponding
transport function Sym(F)[γ] maps a symmetry (F, σ) ∈ Sym(F)[U ] to the symmetry
(F [γ](F ), γσγ−1) in Sym(F)[V ]. For example, in the species J of graphs a J -symmetry
consists of a pair (G, σ) of a labelled graphG together with one of its graph automorphisms
σ. If we relabel the symmetry according to the bijection γ we change the labels of G
accordingly and form the graph automorphism γσγ−1 of the relabelled graph.

There is a canonical weighting on Sym(F) with weights in the power series ring
R[[s1, s2, . . .]]. By abuse of notation, we also denote this weighting by ω. It is given
by

ω(F, σ) = ω(F )sσ11 s
σ2
2 · · ·
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with σi denoting the number of cycles of length i of the permutation σ. Here we count
fixed points as 1-cycles. The cycle index sum ZFω of Fω may be defined by

ZFω =
∑
n>0

∑
(F,σ)∈Sym(F)[n]

ω(F, σ)/n! ∈ R[[s1, s2, . . .]].

The generating series are related by

F̃ω(z) = ZFω(z, z2, z3, . . .). (4)

See Chapter 2.3 in the book by Bergeron, Labelle and Leroux [14] for details. In the
example J of graphs the initial summands of the cycle index sum are given by

ZJ (s1, s2, . . .) = 1 + s1 + (s2
1 + s2) +

1

6
(5s3

1 + 9s1s2 + 4s3) + · · ·

and the ordinary generating series starts with

J̃ (z) = 1 + z + 2z2 + 3z3 + · · · .

The main reason for considering symmetries is the following enumerative fact.

Lemma 1 (Number of symmetries). For each unlabelled F-object t with size n there are
precisely n! symmetries (F, σ) ∈ Sym(F)[n] such that the isomorphism type t(F ) of the
F-object F is equal to t.

This follows from basic properties of group operations, see for example Joyal [46, Sec.
3]. In particular, if we draw a symmetry (F, σ) from the set Sym(F)[n] at random with
probability proportional to the weight of its F -object, then

P (t(F) = t) = ω(t)/
∑
s∈F̃ [n]

ω(s) (5)

for any unlabelled F -object t of size n.
We say that two species F and G are isomorphic, denoted by F ' G, if there is a

family (αU)U of bijections αU : F [U ] → G[U ], with the index U ranging over all finite
sets, such that the following diagram commutes for any bijection σ : U → V of finite sets.

F [U ]

αU
��

F [σ]
// F [V ]

αV
��

G[U ]
G[σ]

// G[V ]

The family (αU)U is then called a species isomorphism from F to G.
Two weighted species Fω and Gν are called isomorphic, if there exists a species iso-

morphism (αU)U from F to G that preserves the weights, that is, with ν(αU(F )) = ω(F )
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for each finite set U and F -object F ∈ F [U ]. In this case the cycle index sums and hence
also the ordinary generating series of Fω and Gν coincide.

There are some natural examples of species that we are going to encounter frequently.
The species SET with SET[U ] = {U} has only one structure of each size and its cycle
index sum is given by

ZSET(s1, s2, . . .) = exp

(∑
i>1

si
i

)
. (6)

The species SEQ of linear orders assigns to each finite set U the set SEQ[U ] of tuples
(u1, . . . , ut) of distinct elements with U = {u1, . . . , ut}. Its cycle index sum is given by

ZSEQ(s1, s2, . . .) =
1

1− s1

.

The species X is given by X [U ] = ∅ if |U | 6= 1 and X [U ] = {U} if U is a singleton.
The empty species 0 is given by 0[U ] = ∅ for all U , and the species 1 by 1[∅] = {∅} and
1[U ] = ∅ for all finite non-empty sets U .

3.2 Operations on species

Species may be combined in several ways to form new species.

3.2.1 Products

The product F · G of two species F and G is the species given by

(F · G)[U ] =
⊔

(U1,U2)

F [U1]× G[U2]

with the index ranging over all ordered 2-partitions of U , that is, ordered pairs of (possibly
empty) disjoint sets whose union equals U . The transport of the product along a bijection
is defined componentwise. Given weightings ω on F and ν on G, there is a canonical
weighting on the product given by

µ(F,G) = ω(F )ν(G).

This defines the product of weighted species

(F · G)µ = Fω · Gν .

The corresponding cycle index sum satisfies

Z(F·G)µ = ZFωZGν .

We also define the powers of a species by

(Fω)i = Fω · . . . · Fω

with i factors in total, and define (Fω)0 = 0 to be the empty species having no objects at
all.

Example 2. The species X i represents ordered sequences of length i.
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3.2.2 Sums

Let (Fi)i∈I be a family of species such that for any finite set U only finitely many indices
i with Fi[U ] 6= ∅ exist. Then the sum

∑
i∈I Fi is a species defined by(∑

i∈I

Fi

)
[U ] =

⊔
i∈I

Fi[U ].

Given weightings ωi on Fi, there is a canonical weighting µ on the sum given by

µ(F ) = ωi(F )

for any i and F ∈ Fi[U ]. This defines the sum of the weighted species(∑
i∈I

Fi

)µ

=
∑
i∈I

Fωii .

The corresponding cycle index sum is given by

Z∑
i F

ωi
i

=
∑
i

ZFωii .

Example 3. The species SEQ of linear orders admits an isomorphism SEQ '
∑

i>0X i.

3.2.3 Derived species

Given a species F , the corresponding derived species F ′ is defined by

F ′[U ] = F [U ∪ {∗U}]

with ∗U referring to an arbitrary fixed element not contained in the set U . For example,
we could set ∗U = {U}. By abuse of notation, we are often going to drop the index and
just refer to the ∗-atom. Any weighting ω on F may also be viewed as a weighting on
F ′, by letting the weight of a derived object F ∈ F ′[U ] be given by ωU∪{∗U}(F ). The
transport along a bijection σ : U → V is done by applying the transport F [σ′] of the
bijection σ′ : U ∪ {∗U} → V ∪ {∗V } with σ′|U = σ. This defines the weighted derived
species (F ′)ω. Its cycle index sum is given by

Z(F ′)ω =
∂

∂s1

ZFω .

Example 4. The derivation of the species SEQ of linear orders admits an isomorphism
SEQ′ ' SEQ2, since a derived sequence of atoms may be decomposed into the two
sequences of atoms that come before and after the ∗-placeholder.
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3.2.4 Pointing

For any species F we may form the pointed species F•. It is given by the product of
species

F• = X · F ′.
(Recall that X denotes the species consisting of single object of size 1.) In other words, an
F•-object is a pair (F, v) of an F -object F and a distinguished label v which we call the
root of the object. Any weighting ω on F may also be considered as a weighting on F•, by
letting the weight of (F, v) be given by ω(F ). This choice of weighting is consistent with
the natural weighting given by the product and derivation operation X · F ′, if we assign
weight 1 to the unique object of X . The corresponding cycle index sum is consequently
given by

Z(F•)ω = s1
∂

∂s1

ZFω .

3.2.5 Substitution

Given species F and G with G[∅] = ∅, we may form the substitution or composition F ◦G
as the species with object sets

(F ◦ G)[U ] =
⋃
π

(
{π} × F [π]×

∏
Q∈π

G[Q]

)
,

with the index π ranging over all unordered partitions of the set U . Here the transport
(F ◦ G)[σ] along a bijection σ : U → V is done as follows. For any object (π, F, (GQ)Q∈π)
in (F ◦ G)[U ] define the partition

π̂ = {σ(Q) | Q ∈ π},

and let
σ̂ : π → π̂

denote the induced bijection between the partitions. Then set

(F ◦ G)[σ](π, F, (GQ)Q∈π) = (π̂,F [σ̂](F ), (G[σ|Q](gQ))σ(Q)∈π̂).

That is, the transport along the induced bijection of partitions gets applied to the F -
object and the transports along the restrictions σ|Q, Q ∈ π get applied to the G-objects.
Often, we are going to write F(G) instead of F ◦ G. Given a weighting ω on F and a
weighting ν on G, there is a canonical weighting µ on the composition given by

µ(π, F, (GQ)Q∈π) = ω(F )
∏
Q∈π

ν(Q).

This defines the composition of weighted species

(F ◦ G)µ = Fω ◦ Gν .
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The corresponding cycle index sum is given by

Z(F◦G)µ(s1, s2, . . .) = ZFω(ZGν (s1, s2, . . .), ZGν2 (s2, s4, . . .), ZGν3 (s3, s6, . . .), . . .). (7)

Here νi denotes the weighting with (νi)(G) = ν(G)i for all G-structures G.

Example 5. Any graph may viewed as the collection of its connected components. Hence
the species J of graphs admits an isomorphism J ' SET◦C with C denoting the species
of connected graphs. By Equation (6) for the cycle index sum of the species SET and
Equation (4) for the relation of cycle index sums with ordinary generating sums this yields

J̃ (z) = exp

(∑
i>1

C̃(zi)
i

)
.

3.2.6 Restriction

For any subset Ω ⊂ N0 we may restrict a weighted species Fω to objects whose size lies
in Ω and denote the result by FωΩ .

Example 6. The restriction SEQΩ admits an isomorphism SEQΩ '
∑

i∈ΩX i.

3.2.7 Relations between the different operations

The interplay of the operations discussed in this section is described by a variety of natural
isomorphisms. The two most important are the product rule and the chain rule.

Proposition 7 ([46]). Let Fω and Gν be weighted species.

1. There is a canonical choice for an isomorphism

(Fω · Gν)′ ' (Fω)′ · Gν + Fω · (Gν)′.

2. Suppose that G[∅] = ∅. Then there is also a canonical isomorphism

(Fω ◦ Gν)′ ' ((Fω)′ ◦ Gν) · (Gν)′.

We may easily verify the product rule, as the ∗-label in (Fω · Gν)′ may either belong
the F -structure, accounting for the summand (Fω)′ ·Gν , or to the G-structure, accounting
for the second summand. The chain rule also has an intuitive explanation. The idea is
that the partition class or G-structure containing the ∗-label in an (Fω ◦ Gν)′-structure
distinguishes an atom of the F -structure. Hence the (Fω ◦ Gν)′-structure consists of a
(Fω)′ ◦ Gν) composite structure, where all atoms of the F -structure receive a regular G-
structure, except for a marked ∗-atom, to which we assign a derived G-structure, which
accounts for the extra factor (Gν)′.
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3.3 Symmetries of the substitution operation

We are going to need detailed information on the structure of the symmetries of the
composition F◦G. The exposition of this section follows Joyal [46, Sec. 3.2] and Bergeron,
Labelle and Leroux [14, Sec. 4.3]. We are going to discuss the following result.

Lemma 8 (Parametrization of the symmetries of the substitution). Up to isomorphism
of symmetries, any F ◦ G-symmetry may be constructed as described below from an F-
symmetry (F, σ) together with a family of G-symmetries (Gτ , στ )τ with the index τ ranging
over all cycles of the permutation σ.

There is much more to this result, as it lies at the heart of the proof of Equation (7).
We refer the inclined reader to the mentioned literature for details. For our purposes, it
is sufficient to understand how the symmetry and in particular its cycles get assembled.
We are going to use this later in order to define random unlabelled structures based on a
tree-like decomposition of symmetries.

The method of construction referred to in Lemma 8 is a bit involved, hence let us
first recall what an F ◦ G-symmetry is by definition. Let U be a finite set. Any element
of Sym(F ◦ G)[U ] consists of the following objects: a partition π of the set U , an F -
structure F ∈ F [π], a family of G-structures (GQ)Q∈π with GQ ∈ G[Q] and a permutation
σ : U → U . The permutation σ is required to permute the partition classes and induce
an automorphism

σ̄ : π → π, Q 7→ σ(Q)

of the F -object F . Moreover, for any partition class Q ∈ π the restriction σ|Q : Q→ σ(Q)
is required to be an isomorphism from GQ to Gσ(Q).

Note that for any cycle
τ = (Q1, . . . , Q`)

of σ̄, it follows that
σ`|Q1 : Q1 → Q1

is an automorphism of GQ1 . Hence

(Gτ , στ ) := (GQ1 , σ
`|Q1)

is a G-symmetry. The symmetry S together with the bijections

γi := σ|Qi

for 1 6 i 6 ` − 1 already contain all information about the G-objects GQ1 , . . . , GQ` and
the restriction σ|Q1∪...∪Q` . Indeed, it holds that

GQi+1
= G[γi · · · γ1](Gτ )

for all 1 6 i 6 ` − 1, hence we may reconstruct the G-objects. The bijections γi contain
all information about σQ1∪...∪Q`−1

, and it holds that

σ|Q` = γ−1
`−1 · · · γ

−1
1 στ .
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Figure 1: Composition of cycles.

In particular, any k-cycle (a1, . . . , ak) of the permutation στ corresponds to the k`-cycle

(a1, σ(a1), . . . , σ`−1(a1), a2, σ(a2), . . . , σ`−1(a2), . . . , ak, σ(ak), . . . , σ
`−1(ak))

of the permutation σ|Q1∪...∪Q` .
This implies that any F ◦ G-symmetry is isomorphic to a symmetry

((π, F, (GQ)Q∈π), σ)

constructed in the following way, which is illustrated in Figure 1. Start with choosing
an F -symmetry (m,σm). For any cycle τ of the permutation σm choose a G-symmetry
(Gτ , στ ) and let Qτ denote its set of labels. For every atom e of the cycle τ set

Qe := Qτ × {e}

and
(GQe , σQe) := Sym(G)[fe](Gτ , στ )

with fe : Qτ → Qe the canonical bijection. For any label e of the F -structure m set

f(e) := Qe

and let π denote the set of all sets Qe. Thus

F := F [f ](m)

is an F -structure with label set π and

C := (π, F, (GQ)Q∈π)
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is an F ◦G-structure. Let τ be a cycle of σm and ν a cycle of στ . Fix an atom b = b(τ) of
τ and an atom a = a(ν) of ν. Let ` denote the length of τ and k the length of ν. Form
the composed cycle c by

((a, b), . . . , (a, τ `−1(b)), (ν(a), b), . . . , (ν(a), τ `−1(b)), . . . ,

(νk−1(a), b), . . . , (νk−1(a), τ `−1(b))).

Then the product σ of all composed cycles (one for each choice of (c, ν)) is an automor-
phism of the F ◦ G-structure C. The composed cycles are pairwise disjoint, hence it does
not matter in which order we take the product. Note that σ does not depend on the
choice of the a’s but different choices of the b’s result in a different automorphism σ.
More precisely, if for a given cycle τ of σm we choose τ(b) instead of b, then the resulting
automorphism is given by the conjugation

(id, τ)σ(id, τ)−1

instead of σ. But (id, τ) is an automorphism of the F ◦G-structure C, hence the resulting
symmetry

(C, (id, τ)σ(id, τ)−1)

is isomorphic to (C, σ). This implies that the isomorphism type of (C, σ) does not depend
on the choices of the a’s and b’s. Fixing any canonical way of making these choices yields
the construction of Lemma 8.

3.4 Weighted Boltzmann distributions and samplers

Boltzmann distributions crop up in the study of local limit of random discrete structures
and in the limit of convergent unlabelled Gibbs partitions. A Boltzmann sampler is a
possibly recursive procedure involving random choices that generates a structure according
to a Boltzmann distribution. For example, a subcritical or critical Galton–Watson tree
may be considered as a Boltzmann distributed plane tree. A recursive sampler in this
setting is a procedure that draws the offspring of the root and then calls itself for each
offspring vertex.

3.4.1 Boltzmann distributions

Let Fω be a weighted species. For any y > 0 satisfying 0 < F̃ω(y) <∞, the corresponding
Boltzmann distribution for unlabelled F-objects is given by

PF̃ω ,y(F̃ ) = F̃ω(y)−1ω(F̃ )y|F̃ |, F̃ an unlabelled F -object. (8)

Given a sequence y = (yj)j∈N of non-negative parameters yj satisfying 0 < ZFω(y) <∞,
the corresponding Pólya-Boltzmann distribution is given by

PSym(F)ω ,y(F, σ) = ZFω(y)−1ω(F )
yσ11 y

σ2
2 · · ·

|(F, σ)|!
, (F, σ) ∈

∑
m>0

Sym(F)[m], (9)
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with σi denoting the number of i-cycles of a permutation σ. By Lemma 1 and Equation (4),
the Boltzmann distribution for unlabelled objects may be considered as the marginal
distribution of the F -object in special cases of the Pólya-Boltzmann distribution. That is,
the F -object of a PSym(F)ω ,(y,y2,y3,...)-distributed F -symmetry follows a PF̃ω ,y-distribution.

3.4.2 Boltzmann samplers

The following lemma allows us to construct Boltzmann distributed random variables in
the unlabelled setting for the sum, product and composition of species. The results of this
section have been established by Bodirsky, Fusy, Kang and Vigerske [17, Prop. 38] for
species without weights, and the generalization to the weighted setting is straight-forward.

Lemma 9 (Weighted Pólya-Boltzmann samplers).

1. Let Fω and Gν be weighted species, and let X and Y be independent random variables
with distributions L(X) = PSym(F)ω ,y and L(Y ) = PSym(G)ω ,y. Then (X, Y ) may be
interpreted as an (F ·G)-symmetry over the set [|X|]t[|Y |]. If α denotes a uniformly
at random drawn bijection from this set to [|X|+ |Y |], then

L ((F · G)[α](X, Y )) = PSym(F·G)ω ,y.

2. Let (Fωii )i∈I be a family of weighted species, and (Xi)i∈I a family of independent
random variables with distributions PSym(Fi)ωi ,y such that

∑
i ZFωii (y) <∞. If K ∈ I

gets drawn at random with probability proportional to ZFωKK
(y), that is

P (K = k) = ZFωkk
(y)/

∑
i

ZFωii (y),

then
L(XK) = PSym(

∑
i F

ωi
i ),y.

3. Let Fω and Gν be species such that Gν [∅] = ∅ and let y = (yj)j∈N a family of non-
negative parameters with 0 < ZGν (y) < ∞ and 0 < ZFω◦Gν (y) < ∞. For each k
set

yk = (yk, y2k, y3k, . . .).

Let X = (F, σ) be a PSym(Fω),(Z
Gν1

(y),Z
Gν2

(y2),...)-distributed random F-symmetry and

let (Yi,k)i,k∈N an independent family (that is also independent of X) of random G-
symmetries such that Yi,k follows a PSym(Gν),yk-distribution for all k, i. We may
canonically assign to each cycle τ of the random permutation σ a unique element
Yτ of the list (Yi,|τ |)i>1. For example, we could do this by ordering for each ` the
cycles of σ having length ` according to their smallest atom, and assign Yi,` to the
ith cycle in the ordering. Then (X, (Yτ )τ ) corresponds according to Lemma 8 to an
F ◦ G-symmetry over some set M . Draw a bijection α : M → [|M |] uniformly at
random. Then

L((F ◦ G)[α](X, (Yτ )τ )) = PSym(Fω◦Gν),y.
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3.5 Combinatorial specifications and recursive Boltzmann samplers

3.5.1 Motivation

A recursive procedure is a list of instructions that are to be followed step by step and may
contain references to the procedure itself. For example, a Galton–Watson tree may be
described by the procedure that starts with a root vertex and attaches a random number
of independent calls of itself.

Often one encounter species admitting a recursive isomorphism such as Fω ' X +
(Fω)2. If this decomposition satisfies a certain property (that is, the assumptions of
Theorem 12 below - but let us call it property (R) for now), then for any admissible
parameter we may apply the rules from Section 3.4.2 for the sum, product and composition
of species in order to construct a recursive (Pólya-)Boltzmann sampler for F . That is, a
recursive procedure that terminates almost surely and samples objects according to the
(Pólya)-Boltzmann distribution.

For the given example F , such a recursive Boltzmann sampler would first, by the sum
rule, make a coin flip in order to determine whether it terminates with a single vertex (a
Boltzmann sampler for X κ), or creates, by the product rule, an ordered pair of independent
calls of itself. In other words, its a Galton–Watson tree. Property (R) will guarantee that
this process terminates almost surely, so we also know that this Galton–Watson tree must
be critical or subcritical. It is clear that not any recursive decomposition can have this
desired property. For example, the species 1 which consists of a single object with size
zero admits an isomorphism 1 ' 1 · 1, but applying the product rule yields a recursive
procedure that never terminates.

Precisely stating the property (R) requires us to introduce the complex concepts of
weighted multi-sort species and samplers, as well as related operations such as combina-
torial composition and partial derivatives in this context.

3.5.2 Combinatorial specifications

One should think of multi-sort species as species whose atoms have different colours, such
as vertices of bicoloured graphs. This concept makes sense for arbitrarily many sorts, but
for our purposes it will be sufficient to work with only 2 types of atoms.

A 2-sort species H is a functor that maps any pair U = (U1, U2) of finite sets to a
finite set H[U ] = H[U1, U2] and any pair σ = (σ1, σ2) of bijections σi : Ui → Vi to a
bijection H[σ] : H[U ] → H[V ] (with V = (V1, V2)) in such a way, that identity maps
and composition of maps are preserved. We may interpret the pair U as a set where any
element may either have type 1 or type 2. In this context we often use the term 1-sort
species for regular combinatorial species in order to avoid confusion.

Example 10. We may interpret the collection of properly bicoloured graphs as a 2-sort
species P . Here objects from the set P [U1, U2] are graphs with vertex set given by the
outer disjoint union U1 t U2. Vertices from U1 ⊂ U1 t U2 are coloured blue and vertices
from U2 ⊂ U1tU2 are coloured red in such a way, that there are no monochromatic edges.
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That is, for any edge e = {x, y} of the graph we require that x and y have distinct colours.
Graph isomorphisms of such object are of course required to preserve colours.

The operations of sum and product and composition extend naturally to the multi-
sort-context: Let H and K be 2-sort species and U = (U1, U2) a pair of finite sets. The
sum is defined by

(H +K)[U ] = H[U ] t K[U ].

The transport function (H + K)[σ] is the unique bijection that restricts to H[σ1] on the
subset H[U ], and to K[σ2] on the subset K[U ] (with H[U ] and K[U ] being interpreted as
disjoint subsets of H[U ]tK[U ]). Given another pair W = (W1,W2) of finite sets we write
U = V +W if Ui = Vi ∪Wi and Vi ∩Wi = ∅ for all i ∈ {1, 2}. The product is defined by

(H · K)[U ] =
⊔

V+W=U

H[V ]×K[W ].

The transport functions of the product are defined componentwise. The partial derivatives
are given by

∂1H[U ] = H[U1 ∪ {∗U1}, U2] and ∂2H[U ] = H[U1, U2 ∪ {∗U2}].

We define ∂1H[σ] = H[σ̄] with σ̄ denoting the unique bijective extension of σ to the set
(U1 ∪ {∗U1})× U2. The transport ∂2H[σ] is defined analogously.

Given 1-sort species F1 and F2 with no objects of size 0 we may form the composi-
tion H(F1,F2) which is also a 1-sort species. An H(F1,F2)-structure over a set M is a
quadruple (π, χ, α, β) such that:

1. π is a partition of the set M .

2. χ : π → {1, 2} is a function assigning to each class a sort.

3. α a function that assigns to each class Q ∈ π an Fχ(Q) object α(Q) ∈ Fχ(Q)[Q].

4. β an H-structure over the pair (χ−1(1), χ−1(2)).

That is, we partition the set M and assign one of two types to each partition class in
an arbitrary way. Each class Q of type 1 receives an F1-object from F1[Q] and likewise
for the type 2 classes. Finally we select an H-structure over the typed collection of
partition classes. The transport function is defined in a canonical way, the inclined reader
may consult [46, Sec. 5] for details. This construction is functorial: any pair of species
isomorphisms α1, α2 with αi : Fi ' Gi induces an isomorphism

H[α1, α2] : H(F1,F2) ' H(G1,G2).

If Fω1
1 and Fω2

2 are weighted species with no objects of size zero, then the composition
H(F1,F2) becomes a weighted species that we denote by H(Fω1

1 ,Fω2
2 ). The weight of an

object (π, χ, α, β) is given by ∏
Q∈χ−1(1)

ω1(α(Q))

 ∏
Q∈χ−1(2)

ω2(α(Q))

 .
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Recall that X denotes the species with a unique object of size one. We may consider
the 2-sort species X1 that has a unique element over any set consisting of a single atom
with type 1. The 2-sort species X2 is defined analogously.

Example 11. The sum and product of 1-sort species may be seen as special cases of the
2-sort composition: For any 1-sort species F1 and F2 it holds that

F1 + F2 ' H1(F1,F2) with H1 := X1 + X2

F1 · F2 ' H2(F1,F2) with H2 := X1 · X2.

Recall that 0 denotes the empty 1-sort species with 0[U ] = ∅ for all finite sets U . A
solution of the system Y = H(X ,Y) is pair (A, α) of a species A with A(0) = 0 and an
isomorphism α : A ' H(X ,A). An isomorphism of two solutions (A, α) and (B, β) is an
isomorphism of species u : A ' B such that the following diagram commutes:

A
u

��

α //H(X ,A)

H(id,u)
��

B β
//H(X ,B)

We may now state Joyal’s implicit species theorem.

Theorem 12 ([46], Théorème 6). Let H be a 2-sort species satisfying H(0, 0) = 0. If
(∂2H)(0, 0) = 0, then the system

Y = H(X ,Y)

has up to isomorphism only one solution. Moreover, between any two given solutions there
is exactly one isomorphism.

We say that an isomorphism F ' H(X ,F) is a combinatorial specification for the species
F if the 2-sort species H satisfies the requirements of Theorem 12. If F is endowed with
a weighting ω we additionally require that Fω ' H(X ,Fω) is weight-preserving.

Example 13. Let F be the species of binary unordered rooted trees, where each tree
receives weight 1. Any such tree is either a single root vertex, or root vertex with two
binary trees dangling from it. This yields an isomorphism

F ' X + X · F2,

where the two summands correspond to the two described cases. This may be reformulated
by

F ' H(X ,F) with H := X1 + X1 · X 2
2 .

It holds that (∂2H)(0, 0) = 0. Hence F ' H(X ,F) is a combinatorial specification.
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3.5.3 Recursive Boltzmann samplers

Given a combinatorial specification

Fω ' H(X ,Fω)

and parameters x ∈ RN
>0 with 0 < ZFω(x) < ∞ we may apply the rules of Lemma 9

recursively to construct a recursive procedure that is guaranteed to terminated almost
surely and sample according to a Boltzmann distribution PZFω ,x. A justification of this
fact is given by Bodirsky, Fusy, Kang and Vigerske [17, Thm. 40] in a more specific
settings for species without weights (and using a slightly different terminology), but the
generalization to the weighted setting is straight-forward.

Let us illustrate this construction of recursive Boltzmann samplers with an example.

Example 14. As discussed in Example 13, the species F of binary unordered rooted
trees admits a combinatorial specification

F ' X + X · F2

that we may rewrite as

F ' X · G(F) with G := 1 + X 2

Hence for each parameter x = (xi)i ∈ RN
>0 with 0 < ZF(x) < ∞ we may apply the rules

of Lemma 9 to obtain a recursive procedure that terminates almost surely and whose
output follows a PZF ,x-distribution. Briefly described, the procedure starts with a root-
vertex and then draws a G-symmetry according to a Boltzmann distribution PZG ,(ZF (xi))i>1

,
with xi = (xi, x2i, . . .). There are two different outcomes. Either the G-symmetry has size
0, in which the sampler stops. Or it has size 2, in which case the sampler calls itself
recursively twice to form the subtrees of the root.

4 Unlabelled Gibbs partitions and subexponential sequences

The term Gibbs partition was introduced by Pitman [63] in his comprehensive survey
on combinatorial stochastic processes. It describes a model of random partitions of sets,
where the collection of classes as well as each individual partition class are endowed with
a weighted structure.

Many structures such as classes of graphs may also be viewed up to symmetry. The
symmetric group acts in a canonical way on the collection of composite structures over
a fixed set, and its orbits may be identified with the unlabelled objects. Sampling such
an isomorphism class with probability proportional to its weight is the natural unlabelled
version of the Gibbs partitions model.

Let Fω and Gν be weighted species such that G[∅] = ∅, and such that the ordinary

generating series F̃ω ◦ Gν(z) is not a polynomial. An unlabelled Gibbs partition is a random
composite structure

Sn = (πn,Fn, (GQ)Q∈πn)
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sampled from the set of all n-sized unlabelled F ◦G-objects with probability proportional
to its weight. We are going to describe the asymptotic behaviour of the remainder Rn
obtained by deleting “the” largest component from Sn. More specifically, we make a
uniform choice of a component Q0 ∈ πn having maximal size, and let F′n denote the F ′-
object obtained from the F -object Fn by relabelling the Q0 atom of Fn to a ∗-placeholder.

This yields an unlabelled F ′ ◦ G-object

Rn := (πn \ {Q0},F′n, (GQ)Q∈πn\{Q0}).

In the so called convergent case, the remainder Rn is stochastically bounded and even
converges in total variation toward a limit object.

Theorem 15 ([69, Thm. 3.1]). Suppose that the ordinary generating series G̃ν(z) has
positive radius of convergence ρ, and that the coefficients gi = [zi]G̃ν(z) satisfy

gn
gn+1

∼ ρ,
1

gn

∑
i+j=n

gigj ∼ 2G̃ν(ρ) <∞.

Suppose further that

ZFω(G̃ν(ρ) + ε, G̃ν2((ρ+ ε)2), G̃ν3((ρ+ ε)3), . . .) <∞

for some ε > 0. Then

[zn]F̃ω ◦ Gν(z) ∼ ˜(F ′)ω ◦ Gν(ρ)[zn]Gν(z).

and

dTV(Rn,R)→ 0, n→∞

with R denoting a random unlabelled F ′ ◦ G-element that follows a P ˜(F ′)ω◦Gν ,ρ-Boltzmann

distribution.

Note that the requirements of the theorem are satisfied if gn = f(n)n−βρ−n for some
constant β > 1 and a function f that varies slowly at infinity.

5 Probabilistic and combinatorial tools

5.1 The lattice case of the multivariate central local limit theorem

We will make frequent use of the classical local limit theorem for random walks.

Lemma 16 (Local central limit theorem for lattice distributions). Let Y be a random
vector in Rd whose support is contained in the lattice a + DZd with D ∈ GLd(R), a ∈ Rd,
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and in no proper sublattice. Suppose that Y has a finite non-zero covariance matrix Σ,
and let (Yi)i>1 be a family of independent copies of Y. For all n and y we set

pn(y) := P

(
n∑
i=1

Yi = y

)
,

and as our assumptions imply that Σ is positive-definite, we may also set

p̄n(y) :=
| det D|

(2πn)d/2
√

det Σ
exp

(
− 1

2n
(y − nE [Y])ᵀΣ−1(y − nE [Y])

)
.

Then
sup

y∈a+DZd
|pn(y)− p̄n(y)| = o(n−d/2).

In particular,
pn(y) ∼ p̄n(y)

uniformly for (y − nE [Y])/
√
n bounded.

5.2 A large deviation inequality for functions on finite Markov chains

The following Chernoff-type bound for finite Markov chains was established by Lezaud [55]
and does not require the chain to be reversible.

Lemma 17 ([55, Thm. 3.3]). Let (Xn)n>1 denote an irreducible Markov chain on a finite
state space S with transition matrix P and stationary distribution π. Suppose that the
multiplicative symmetrization K = PᵀP is irreducible, and let ε(K) denote its spectral
gap. Let

f : S → [−1, 1]

denote a function whose expected value with respect to the distribution π equals Eπ[f ] = 0.
Let b > 0 be a constant such that 0 < ‖f‖2 6 b. Then for each initial distribution
q = L(X1) and each 0 < δ 6 1 and n > 1 it holds that

P(|f(X1) + . . .+ f(Xn)| > δn) 6 2Nq exp

(
− nδ2ε(K)

8b2(1 + h(5δ/b2))

)
where Nq = ‖q/π‖2 (the `2-norm of the density of q related to the stationary distribution π)
and

h(x) =
1

2

(√
1 + x− 1 +

x

2

)
.

5.3 A deviation inequality for random walk

The following deviation inequality is found in most textbooks on the subject.
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Lemma 18 (Medium deviation inequality for one-dimensional random walks). Let (Xi)i∈N
be an i.i.d. family of real-valued random variables with

E [X1] = 0 and E
[
etX1

]
<∞

for all t in some interval around zero. Then there are constants δ, c > 0 such that for all
n ∈ N, x > 0 and 0 6 λ 6 δ it holds that

P (|X1 + . . .+Xn| > x) 6 2 exp(cnλ2 − λx).

The proof is by observing that

E
[
eλ|X1|

]
6 1 + cλ2

for some constant c and sufficiently small λ, and applying Markov’s inequality to the
random variable

exp(λ(|X1|+ . . .+ |Xn|)).

5.4 The cycle lemma

The following combinatorial result is given for example in Takács [70].

Lemma 19 (The cycle lemma). For each sequence k1, . . . , kn > −1 of integers with∑
i

ki = −r 6 0

there exist precisely r values of 0 6 j 6 n− 1 such that the cyclic shift

(k1,j, . . . , kn,j) := (k1+j, . . . , kn, k1, . . . , kj)

satisfies
u∑
i=1

ki,j > −r

for all 1 6 u 6 n− 1.

6 Random unlabelled weighted enriched trees with applications

In this section we develop a framework for random enriched trees considered up to sym-
metry and present our main applications to different models of random unlabelled graphs.
We start in Subsection 6.1 by introducing a general model of random weighted unlabelled
R-enriched trees and showing how this encompasses various models of random unlabelled
graphs. We describe the asymptotic local structure of random unlabelled R-enriched
in Subsection 6.2 by the local weak limits stated in Theorems 24 and 27. The global
structure is characterized in Subsection 6.3 by the scaling limit in Theorem 28 and the
sharp diameter tail-bounds in Theorem 29. In Subsections 6.4, 6.5, and 6.6 we apply our
main results to random unlabelled block-weighted graphs, random unlabelled front-rooted
k-trees, and simply generated unlabelled rooted trees. The proofs of all results may be
found in in Section 7.
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Index of notation The following list summarizes frequently used terminology.

Rκ κ-weighted species of R-structures, page 30

AωR ω-weighted species of R-enriched trees, page 30

ρ radius of convergence of the ordinary generating series ÃωR(z), page 33

ÃRn random n-sized unlabelled R-enriched tree, page 30

Cωn random n-sized unlabelled rooted block-weighted connected graph,
page 31

(C•)ω block-weighted species of rooted connected graphs, page 31

Bγ weighted species of 2-connected graphs, page 31

K species of k-dimensional front-rooted trees, page 32

Kn random unlabelled front-rooted k-tree, page 32

K◦ subspecies of K of k-trees where the root front lies in precisely one
hedron, page 32

K◦n random unlabelled k-tree from the class K◦, page 32

dG(·, ·) graph-metric on a connected graph G, page 8

dblock(·, ·) block-metric, page 8

Vk(·) graph-distance k-neighbourhood, page 8

Uk(·) block-distance k-neighbourhood, page 9

Lk(·) number of vertices at height k in a rooted tree, page 11

f(A, v) enriched fringe subtree of an enriched tree A at a vertex v, page 33

(T , β) random Sym(R)-enriched plane tree, page 34

T f fixed point subtree corresponding to (T , β), page 35

(Tn, βn) the random Sym(R)-enriched plane tree (Tn, βn) conditioned on having
n vertices, page 35

T fn fixed point subtree corresponding to (Tn, βn), page 35

(T (`), β(`)) size-biased Sym(R)-enriched tree, page 38

(T (∞), β(∞)) local weak limit of the Sym(R)-enriched tree (Tn, βn), page 39

τ [k] plane tree trimmed at height k, page 39

(τ, γ)<k> G-enriched tree trimmed at height k, page 39

G random G-object, page 35

Ĝ random G-object with a bias on the number of fixed points, page 40

Ḡ random G-object with a bias on the number of non-fixed points, page
41

Ĥ• = (Ĥ, u∗) the local limit of (Tn, βn) near a random vertex, page 42
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6.1 Random weighted R-enriched trees

The concept of R-enriched trees was introduced by Labelle [49], and facilitates the unified
treatment of a large variety of tree-like combinatorial structures.

Given a species of structures R, the corresponding species of R-enriched trees AR is
constructed as follows. For each finite set U let AR[U ] be the set of all pairs (A,α) with
A ∈ A[U ] a rooted unordered tree with labels in U , and α a function that assigns to each
vertex v of A with offspring set Mv an R-structure α(v) ∈ R[Mv]. The transport along a
bijection σ : U → V relabels the vertices of the tree and the R-structures on the offspring
sets accordingly. That is, AR[σ] maps the enriched tree (A,α) to the tree (B, β) with
B = A[σ](A) and β(σ(v)) = R[σ|Mv ](α(v)) for each v ∈ A. The species of R-enriched
trees admits the combinatorial specification

AR ' X · R(AR), (10)

as any R-enriched tree consists of a root vertex (corresponding to the factor X ) together
with an R-structure, in which each atom is identified with the root of a further R-
enriched tree. By Theorem 12 it holds that given any species F with an isomorphism
F ' X ·R(F), there is a natural choice of an isomorphism F ' AR. Hence a large variety
of combinatorial structures have a natural interpretation as enriched trees.

Given a weighting κ on the species R, we obtain a weighting ω on the species AR
given by

ω(A,α) =
∏
v∈A

κ(α(v)). (11)

This weighting is consistent with the isomorphism in (10), that is,

AωR ' X · Rκ(AωR). (12)

We are going to study the random unlabelled enriched tree ÃRn , drawn with probability
proportional to its weight among all unlabelled objects with size n. In the following, we
illustrate how this model of random enriched trees generalizes various models of random
graphs. The list is of course non-exhaustive and a large variety of other special cases of
ÃRn may be found in the literature.

6.1.1 Simply generated Pólya trees

An unordered rooted tree consists of a root vertex with a set of unordered rooted trees
dangling from it. There is no additional structure imposed on the offspring of the root,
which is why the class of unordered rooted trees admits a decomposition of the form (11)
with R given by the species SET that we defined at the end of Section 3.1. The corre-
sponding unlabelled objects are called Pólya trees, see Section 2.2 for details.

Let w = (ωk)k>0 be a sequence of non-negative weights with ωi > 0 for i = 0 and at
least one i > 2. For each k > 0 we may assign weight ωk to the unique k-sized unlabelled
R = SET structure. Then ÃRn is the random unordered unlabelled tree such that any
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Figure 2: Correspondence of rooted connected graphs and enriched trees.

Pólya tree A with n vertices gets drawn with probability proportional to
∏

v∈A ωd+A(v),

with d+
A(v) denoting the outdegree of a vertex v. Note that setting weights to zero allows

us to impose arbitrary degree restrictions.
Janson [44] classified weight-sequences for simply generated plane trees into categories,

each characterized by a common asymptotic behaviour. It is natural to pursue a similar
classification for simply generated Pólya trees.

6.1.2 Random unlabelled connected rooted graphs with weights on the blocks

The species C of connected graphs admits a decomposition in terms of the species B of
graphs that are 2-connected or consist of two distinct vertices joined by an edge. The
well-known combinatorial specification

C• ' X · SET(B′(C•)) (13)

is illustrated in Figure 2. The isomorphism can be found for example in Harary and
Palmer [42, 1.3.3, 8.7.1], Robinson [64, Thm. 4], and Labelle [50, 2.10]. The idea is that
in any rooted connected graph, the root-vertex is incident to an unordered set of blocks,
where each non-root vertex gets identified with the root of a further rooted connected
graph.

Equation (13) allows us to identify the species C• of rooted connected graphs with
SET◦B′-enriched trees. That is, rooted trees, in which each offspring set gets partitioned,
and each partition class Q carries a B′-structure, that has |Q|+ 1 vertices, as the ∗-vertex
receives no label.

Let γ be a weighting on the species B. We may consider the weighting ω on C that
assigns weight

ω(C) =
∏
B

γ(B)

to any graph C, with the index B ranging over the blocks of C. The random graph
Cωn drawn from the unlabelled n-sized C•-objects with probability proportional to its ω-
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weight is distributed like the random unlabelled enriched tree ÃRn for the weighted species
Rκ = (SET ◦B′)κ, with κ assigning the product of the γ-weights of the individual classes
to any assembly of B′-structures.

If all γ-weights are equal either to 0 or 1, we obtain random connected graphs from so
called block-classes (or block-stable classes), that is, classes of graphs defined by placing
constraints on the allowed blocks. For example, any class of graphs Ex(M) that may be
defined by excluding a set M of 2-connected minors is also block-stable. Here a minor
of a graph G refers to any graph that may be obtained from G by repeated deletion and
contraction of edges. Prominent examples are outerplanar graphs (the class Ex(K4, K2,3)),
that may be drawn in the plane such that each vertex lies on the frontier of the infinite
face, and series-parallel graphs (the class Ex(K4)), that may be constructed similar to
electric networks in terms of repeated serial and parallel composition. These two classes
fall under the more general setting of random graphs from subcritical block-classes in the
sense of Drmota, Fusy, Kang, Kraus and Rué [27], which also are special cases of the
random graph Cωn.

6.1.3 Random unlabelled front-rooted k-trees

Figure 3: Decomposition
of the class K◦ for k = 2.

Let K denote the species of k-dimensional trees that are
rooted at a front of distinguishable ∗-placeholder vertices.
We let Kn denote the random unlabelled front-rooted k-tree
that gets drawn uniformly at random among all unlabelled
K-objects with n hedra.

We consider the subspecies K◦ front-rooted k-trees where
the root-front is contained in precisely one hedron, and let
K◦n be sampled uniformly at random from the unlabelled K-
objects with n hedra.

Any element from K may be obtained in a unique way
by glueing an arbitrary unordered collection of K◦-objects
together at their root-fronts. Hence

K ' SET(K◦).

As illustrated in Figure 3, any K1-object may be con-
structed in a unique way by starting with a hedron H consisting of the root-front and
a vertex v, and then choosing, for each front M of H that contains v, a k-tree from K
whose root-front gets identified in a canonical way with M . This yields an isomorphism

K◦ ' X · SEQ{k}(K).

Combining the isomorphisms yields

K◦ ' X · (SEQ{k} ◦ SET)(K◦).

This identifies the species K◦ as SEQ{k} ◦ SET-enriched trees, and the species K as
unordered forest of enriched trees. In particular, K◦n corresponds to the random unlabelled
enriched tree Ãωn.
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Figure 4: The encoding of AR-symmetries as Sym(R)-enriched trees.

6.2 Local convergence of random unlabelled enriched trees

In the following, we let Rκ denote an arbitrary weighted species such that the inventory
|R[k]|κ is positive for k = 0 and for at least one k > 2. We let AωR denote the corre-
sponding species of weighted R-enriched trees. The radius of convergence of the ordinary
generating series ÃωR(z) will be denoted by ρ.

6.2.1 A coupling with a random G-enriched (plane) tree

Our first observation is that any symmetry S = ((T, α), σ) of an R-enriched tree A =
(T, α) admits a tree-like decomposition in form of a Sym(R)-enriched tree (T, β). Indeed,
the automorphism σ fixes the root o of T and permutes the roots of the R-enriched
trees dangling from o in such a way, that the induced permutation σ(o) on the offspring
of o is an automorphism of the R-structure α(o). This yields an R-symmetry β(o) :=
(α(o), σ(o)). For each fixed point v of the permutation σ(o) it holds that the restriction of
σ to the R-enriched fringe subtree f(A, v) (the maximum enriched subtree rooted at the
vertex v) yields an AR-enriched symmetry (f(A, v), σ|f(A,v)) and we may proceed with the
construction of β in the same way. For each cycle τ = (v1, . . . , vt) of σ(o) having length
t > 2 the situation is more complicated. We know that σ permutes the R-enriched fringe
subtrees f(A, vi) cyclically. Hence they are all structurally equivalent, and in fact, by
the discussion in Section 3.3, up to isomorphism composed out of isomorphic symmetries
(f(A, vi), σi) with σi = σt|f(A,vi). Hence we may proceed with the construction of β as
before, by considering the individual symmetries. This process is illustrated in Figure 4.
Note that the Sym(R)-enriched tree (T, β) does not contain all information about the
symmetry S, but we may reconstruct S up to relabelling from (T, β).

The fixed points of the automorphism σ form a subtree T f of T . Each fixed point v has
a possibly empty set f(v) of other fixed points as offspring, and the remaining offspring
correspond to a forest F (v) of Sym(R)-enriched fringe subtrees f((T, β), vi), which consist
of non-fixed points of σ. We are going to say the triple

G(v) := (β(v), f(v), F (v))
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is a G-object on the fixed points f(v) and define |f(v)| to be its size. Formally, G-objects do
not correspond to any species, but the analogy is clear, and we may call (T f , (G(v))v∈T f )
a G-enriched tree.

Similarly, we may define the concept of a G-enriched plane tree, in which the label
set of each occurring R-symmetry is required to belong to the collection {[k] | k > 0}.
We are going to use the following recursive procedure illustrated in Figure 5 in order to
sample random AR-symmetries according to a weighted Boltzmann-distribution.

Lemma 20 (A coupling of random unlabelled R-enriched trees with random G-enriched
trees). For any parameter x > 0 with ÃωR(x) <∞ consider the following recursive proce-
dure ΓS(x) which draws a random Sym(R)-enriched plane tree (T , β).

1. Start with a root vertex o and draw a random symmetry

β(o) = (R(o), σ(o))

from the set
⋃
k>0 Sym(R)[k] such that β(o) gets drawn with probability proportional to

κ(R(o))

|R(o)|!
ÃωR(x)σ1(o)Ãω2

R (x2)σ2(o) · · · .

Here σi(o) denotes the number of i-cycles of the permutation σ(o), with fixed points
counting as 1-cycles.

2. For each cycle τ of the permutation σ(o) draw an independent copy (T τ , βτ ) of the
recursively called sampler ΓS(x|τ |). Here |τ | > 1 denotes the length of the cycle. For
each atom a of τ make an identical copy (T a, βa) of (T τ , βτ ).

3. Let k denote the size of the Sym(R)-structure β(o). For each label a ∈ [k] add an
edge between the root vertex o and the root of the plane tree T a. The ordering of the
offspring set is given by the order on the label set [k]. This defines a plane tree T with
root-vertex o. Moreover, for each a ∈ [k] and each vertex v ∈ T a set β(v) := βa(v).
This defines a Sym(R)-enriched plane tree (T , β).

This procedure terminates almost surely and the resulting Sym(R)-enriched plane tree
(T , β) corresponds to a symmetry on the vertex set of the plane tree T . Let ΓZAωR(x)
denote the result of relabelling this symmetry uniformly at random with labels from the set
[n], with n denoting the number of vertices of the tree T . Then for any symmetry (A, σ)
from the set

⋃
k>0 Sym(AR)[k] it holds that

P
(
ΓZAωR(x) = (A, σ)

)
= ω(A)

x|A|

|A|!
ÃωR(x)−1.
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Figure 5: The sampler ΓS(x).

If we condition the sampler ΓZAωR(x) on produc-
ing a symmetry with size n, then any symmetry from
Sym(AR)[n] gets drawn with probability proportional
to the ω-weight of its AR-object. By the discussion in
Section 3.1 it follows that the isomorphism class of this
AR-object is distributed like the random unlabelled R-
enriched tree ÃRn .

Suppose that the radius of convergence ρ of the or-
dinary generating series ÃωR(z) is positive. As we state
below, it holds that ÃωR(ρ) is finite and hence we may
consider the random Sym(R)-enriched (T , β) drawn ac-
cording to the sampler ΓS(ρ). The vertices of T that cor-
respond to fixed points of the symmetry ΓZAωR(ρ) form
a subtree T f ⊂ T containing the root. Note that by the
discussion in Section 3.3 the fixed points correspond precisely to the vertices in which the
sampler ΓS calls itself with parameter ρ (as opposed to parameter ρi for some i > 2).

For each vertex v of T f let GT f (v) = (β(v), f(v), F (v)) denote the corresponding
G-object. Moreover, let (Tn, βn), T fn and GT fn (·) = (βn(·), fn(·), Fn(·)) denote the corre-
sponding random variables conditioned on the event |T | = n. Let G be a random variable
that is identically distributed to the G-object GT f (o) corresponding to the root o of T f .
Moreover, let ξ denote the number of the fixed points of G and ζ the size of the enriched
forest corresponding to the non-fixed points.

Lemma 21 (Properties of the coupling with G-enriched trees). We make the following
observations.

1. The radius of convergence ρ of ÃωR(z) is finite, and the sum ÃωR(ρ) is finite as well.

2. The size of the tree T satisfies

|T | =
∑
v∈T f

(1 + |F (v)|).

3. For any Sym(R)-enriched plane tree (T ′, β′) corresponding to G-objects G1, . . . , G`

it holds that

P ((T , β) = (T ′, β′)) =
∏̀
i=1

P (G = Gi) .

4. An arbitrary sequence of G-objects Gi = (Si, fi, Fi), i = 1, . . . , ` corresponds to a
Sym(R)-enriched tree if and only if

∑̀
i=1

|fi| = `− 1 and
m∑
i=1

|fi| > m for all 1 6 m 6 `− 1.
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Let Gi = (Si, fi,Fi) denote independent identical copies of G. Let L denote depth-
first-search ordered list L of the G-objects of T fn and |L| its length. Then (L | |L| = `)
is distributed like(
(G1, . . . ,G`)

∣∣∣∣∣∑̀
i=1

(1 + |Fi|) = n,
∑̀
i=1

|fi| = `− 1,
m∑
i=1

|fi| > m for all 1 6 m 6 `− 1

)
.

5. The plane tree T f is distributed like a Galton–Watson tree with offspring distribution
ξ having probability generating function

E
[
zξ
]

= ZRκ(zÃωR(ρ), Ãω2

R (ρ2), . . .)ρ/ÃωR(ρ).

6. Given T f , the forests (F (v))v∈T f are conditionally independent. The conditional
distribution of each forest depends only on the outdegree d+

T f (v). The distribution of
the forest size ζ is given by its probability generating function

E
[
zζ
]

= ZRκ(ÃωR(ρ), Ãω2

R ((ρz)2), Ãω3

R ((ρz)3), . . .)ρ/ÃωR(ρ).

In a more specific setting, where the random vector (ξ, ζ) has finite exponential mo-
ments, even more can be said.

Lemma 22 (Further properties of the coupling with R-enriched trees in a specific set-
ting). Suppose that ρ > 0 and that the function

E(z, u) = zZRκ(u, Ãω2

R (z2), Ãω3

R (z3), . . .)

satisfies E(ρ+ ε, ÃωR(ρ) + ε) <∞ for some ε > 0.

1. Then the nth coefficient of ÃωR(z) is asymptotically given by

[zn]ÃωR(z) ∼ span(w)

√
ρEz(ρ, ÃωR(ρ))

2πEuu(ρ, ÃωR(ρ))
ρ−nn−3/2

as n ≡ 1 mod span(w) tends to infinity.

2. The series ÃωR(z) has square root singularities at the points

sk = ρ exp(2πik/span(w)), k = 0, . . . , span(w)− 1,

with local expansions as analytic functions of
√

1− z/sk.

3. The offspring distribution ξ of the Galton–Watson tree T f and the random variable
ζ have finite exponential moments. Moreover,

E [ξ] = Eu(ρ, ÃωR(ρ)) = ρ ˜(R′)κ ◦ AωR(ρ) = 1,

V[ξ] = Euu(ρ, ÃωR(ρ))ÃωR(ρ), and E [ζ] = Ez(ρ, ÃωR(ρ))ρ/ÃωR(ρ)− 1.

Consequently,

P (|T | = n) ∼ span(w)n−3/2

√
1 + E [ζ]

2πV[ξ]
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4. Suppose that at least one R-structure with positive κ-weight has a non-trivial au-
tomorphism. Then the lattice spanned by the support of (ξ, ζ) has a 2-dimensional
Z-basis B ∈ Z2×2, and the covariance matrix Σ of (ξ, ζ) is positive-definite. Set

µ =
1

1 + E [ζ]
, σ2 =

det Σ

V[ζ](1 + E [ζ])3
, and d =

| det B|
span(w)

.

Then, as n ≡ 1 mod span(w) tends to infinity,

√
nP
(
|T fn | = `

)
∼ d

σ
√

2π
exp(− x2

2σ2
)

uniformly for all bounded x satisfying

` := µn+ x
√
n ∈ n+ dZ.

In particular,
|T fn | − nµ√

n

d−→N (0, σ2).

Properties (1) and (2) are an application of results by Bell, Burris and Yeats [12].
The requirement in (4) that R has at least one structure (with positive κ-weight) with
non-trivial symmetries is not really a restriction. If it fails, then almost surely |T fn | = n
for all n, which makes the analysis of Ãωn even easier.

6.2.2 Local convergence around the fixed root

Figure 7: The sampler ΓS(`)(x).

Labelle established in [49, Thm. A] the follow-
ing decomposition of pointed R-enriched trees,
which will aid us studying the behaviour of the
R-structures along paths starting from the root
in random enriched trees. The weighted species
AωR satisfies an isomorphism AωR ' X ·Rκ(AωR).
The derivative operator satisfies a product rule
similar to the product rule for the derivative
of smooth functions, see Proposition 7. Hence
applying the pointing operator yields a weight-
compatible isomorphism

A•R ' AR + X · R′(AR) · A•R.
We may apply Joyal’s implicit species theorem [46, Th. 6] in order to unwind this recur-
sion and obtain an isomorphism

A•R '
∞∑
`=0

A(`)
R , A(`)

R = (X · R′(AR))`AR
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Figure 6: The decomposition of A(`)
R .

corresponding to the pointed enriched trees ((A,α), v) in which the outer root v has
height ` in the rooted tree A. The correspondence is illustrated in Figure 6. Again,
this isomorphism is compatible with the weightings, and we may use it to construct the
following sampler illustrated in Figure 7.

Lemma 23 (A modified random Sym(R)-enriched tree). For any integer ` > 0 and

parameter x > 0 with (Ã(1)
R )ω(x) <∞ consider the following recursive procedure ΓS(`)(x)

that samples a random Sym(R)-enriched plane tree (T (`), β(`)) together with a distin-
guished vertex r which we call the outer root.

1. If ` = 0 then return (an independent copy of) the random enriched plane tree (T , β)
from Lemma 20 with the outer root being the root-vertex of T . Otherwise, if ` > 1,
then proceed with the following steps.

2. Start with a root vertex o and draw a random R′-symmetry (R, σ) from
⋃
k>0

Sym(R′)[k]

with probability proportional to

κ(R)

|R|!
ÃωR(x)σ1Ãω2

R (x2)σ2 · · · .

Set k := |R| and make a uniformly at random choice of a bijection f from the set
[k] ∪ {∗k} of labels of the R-structure R to the set of integers [k + 1]. Relabel the
symmetry via the transport function:

β(o) := (R(o), σ(o)) := Sym(R)[f ](R, σ).
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Let b := f(∗k) denote the vertex corresponding to ∗k.

3. Note that b is a fixed point of the permutation σ(o). For each cycle τ 6= (b) of σ(o)
draw an independent copy (T τ , βτ ) of the sampler ΓS(x|τ |) with |τ | > 1 denoting the
length of the cycle. For each atom a of the cycle τ make an identical copy (T a, βa) of
(T τ , βτ ).

4. Draw an independent copy (T b, βb) of the sampler ΓS(`−1)(x).

5. For each label a ∈ [k + 1] add an edge between the root vertex o and the root of the
plane tree T a. The ordering of the offspring set is given by the order on the label set
[k + 1]. This defines a plane tree T with root-vertex v. Moreover, for each a ∈ [k + 1]
and each vertex u ∈ T a set β(u) := βa(u). This defines an Sym(R)-enriched plane
tree (T (`), β(`)).

This procedure terminates almost surely. As described in Section 6.2.1, the resulting
Sym(R)-enriched plane tree (T (`), β(`)) corresponds to a symmetry on the vertex set of the
tree T (`). Let n denote the number of vertices of the tree T (`) and let ΓZA(`)

R
(x) denote

the result of relabelling this symmetry uniformly at random with labels from the set [n].
Then ΓZA(`)

R
(x) satisfies a weighted Boltzmann distribution, that is, for any symmetry

((A, r), σ) from the set
⋃∞
k=0 Sym(A(`)

R )[k] we have that

P
(

ΓZA(`)
R

(x) = ((A, r), σ)
)

= ω(A)
x|A|

|A|!
Ã(`)
R (x)−1 (14)

In particular,

P
(

ΓZA(`)
R

(x) = ((A, r), σ)
)

= (xR̃′ ◦ AωR(x))`P
(
ΓZAωR(x) = (A, σ)

)
.

Suppose that ρ > 0 and consider the Sym(R)-enriched tree (T (`), β(`)) generated by
the procedure ΓS(`)(ρ). The path from the root to the distinguished vertex in T (`) is its
spine. If we set ` =∞, the above construction yields an infinite but locally finite Sym(R)-
enriched tree (T (∞), β(∞)) having an infinite spine. We will show that this object, is the
local limit weak limit of the random graph Ãωn, if certain conditions are met.

In order to formalize our notion of local convergence, we require the concept of trimmed
G-enriched trees. For any G-enriched plane tree (τ, γ) and any non-negative integer k let
(τ, γ)<k> denote the result of trimming at height k. That is,

(τ, γ)<k> = (τ [k], (γ(v))v∈τ [k−1]),

with τ [k] denoting the plane tree trimmed hat height k. That is, we delete all vertices
from τ with height larger than k. In order to simplify notation, we also set (T ′, β′)<k> :=
(τ, γ)<k> for the Sym(R)-enriched plane tree (T ′, β′) corresponding to (τ, γ).
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Theorem 24 (Local convergence of random unlabelled R-enriched trees). Suppose that
the ordinary generating series ÃωR(z) has radius of convergence ρ > 0, and that the series

E(z, u) = zZRκ(u, Ãω2

R (z2), Ãω3

R (z3), . . .)

satisfies E(ρ+ ε, ÃωR(ρ) + ε) <∞ for some ε > 0. Then for any sequence kn = o(
√
n) of

non-negative integers it holds that

dTV((Tn, βn)<kn>, (T (∞), β(∞))<kn>)→ 0.

as n becomes large.

The limit object (T (∞), β(∞)) admits a more accessible description in terms of G-
enriched trees, that we are going to use in the proof of Theorem 24. Let Ĝ denote a
random variable that is distributed like the G-object corresponding to the root of T (∞).
Here we do not explicitly distinguish the vertex corresponding the ∗-vertex of the R′-
symmetry.

Lemma 25. Suppose that ρ > 0, E [ξ] = 1 and that (ξ, ζ) has a finite covariance matrix.

1. The G-object corresponding to the root of T (∞) together with the fixed point corre-
sponding to the second spine-vertex is distributed like G with a uniformly at random
selected marked fixed point.

2. The distribution of the limit enriched tree (T (∞), β(∞)) may be described as follows.
There are normal fixed points and mutant fixed points, and we start with a mutant
root. Each normal fixed point receives as G-object an independent copy of G, and
each of the fixed points of this G-object is declared normal. Ever mutant fixed point
receives an independent copy of Ĝ, and one of the corresponding fixed points is se-
lected uniformly at random and declared mutant, whereas the remaining fixed points
are declared normal.

3. Let (τ, γ) denote a G-enriched tree with height at least k. Let G1, . . . , Gt denote the
depth-first-search ordered list of the G-objects of τ [k−1]. Then

P
(
(T (∞), β(∞))<k> = (τ, γ)<k>

)
= Lk(τ)

t∏
i=1

P (G = Gi) .

4. For any G-enriched tree (τ, γ) with γ(v) = (βτ (v), fτ (v), Fτ (v)) and any integer
k > 0 we set

Lk(τ) = |{v ∈ τ | hτ (v) = k}|, LGk (τ) =
∑
v∈τ

hτ (v)=k

|Fτ (v)|, HGk (τ) =
k∑
i=0

LGi (τ).
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Let (ξ̂, ζ̂) denote the sizes of the fixed points and non-fixed points of Ĝ. When (τ, γ)
is the G-enriched tree corresponding to (T (∞), β(∞)), it holds for all k > 1 that

E [Lk(τ)] = k(E
[
ξ̂
]
− 1) + 1

E
[
|τ [k]|

]
= k(k + 1)(E

[
ξ̂
]
− 1)/2 + k + 1

E
[
LGk (τ)

]
= k(E

[
ξ̂
]
− 1)E [ζ] + E

[
ζ̂
]

E
[
HGk (τ)− |τ [k]|E [ζ]

]
= (k + 1)(E

[
ζ̂
]
− E [ζ])

V[HGk (τ)− |τ [k]|E [ζ]] = k(k + 1)(E
[
ξ̂
]
− 1)V[ζ]/2 + (k + 1)(V[ζ̂] + V[ζ])

6.2.3 Local convergence around a random root

Inspired by Aldous’ approach [3] on fringe subtrees of random trees, we may also treat local
convergence with respect to a uniformly at random drawn root of the random unlabelled
enriched tree Ãωn in a similar manner. Let v∗ be an uniformly at random drawn vertex
of the tree Tn, and let v0 denote the unique nearest vertex of T fn . That is, v0 = v∗ if
v∗ ∈ T fn , and otherwise v0 is the unique vertex of the fixed point tree whose G-object
contains v∗. For any i > 1, let vi denote the i’th predecessor of v0 in the fixed point tree
T fn , if this predecessor exists. If not, that is, if v0 has height greater than i in T fn , then
set vi = � and f((Tn, βn), vi) = � for some symbol � not contained in the set of G-enriched
trees. (For example, we could use the empty set.) For any k > 0 we consider the vector
of increasing fringe subtrees

Hn[k] := (Hni )06i6k := (f((Tn, βn), v0), . . . , f((Tn, βn), vk)).

We are going to establish convergence of these random vectors of enriched trees toward
extended enriched fringe subtrees of a limit object, which we introduce in the following
lemma.

Lemma 26. Suppose that ρ > 0, E [ξ] = 1 and that (ξ, ζ) has a finite covariance matrix.

1. Let Ḡ = (S̄, f̄, F̄) denote the random G-object with distribution given by

P
(
Ḡ = (S, f, F )

)
= (1 + |F |)P (G = (S, f, F )) /(1 + E [ζ]).

We define an infinite random G-enriched tree Ĥ in terms of its sequence (Ĥk)k>0 of
increasing extended enriched fringe subtrees. The distribution of the fringe subtree
tree Ĥk is given as follows. There are normal fixed points and special fixed points,
and we start with a special root. Each normal fixed point receives as G-object an
independent copy of G, and all fixed points of this G-object are declared normal.
Every special fixed point with height less than ` receives an independent copy of
Ĝ, and one of the corresponding fixed points is selected uniformly at random and
declared special, whereas the remaining fixed points are declared normal. A special
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fixed point with height ` receives Ḡ and all fixed points of this G-object are declared
normal.

Then the special vertices of Ĥ form an infinite spine u0, u1, . . . that grows backwards,
with

Ĥk = f(Ĥ, uk)

for all k. We distinguish a point u∗ that is drawn uniformly at random from the set
{u0}∪F̂(u0), with F̂(u0) denoting the set of non-fixed points of G-object corresponding
to the root of Ĥ0, and set Ĥ• = (Ĥ, u∗).

2. For any two G-enriched trees A and A′, let Q(A,A′) denote the number of fixed
point children v of the root of A with f(A, v) = A′. For any increasing fringe
subtree representation H = (Hi)06i6k of a G-enriched tree we set

p(H) =
k∏
i=1

Q(Hi, Hi−1).

Then p(H) counts the number of fixed points v at height k in Hk with the property,
that the extended enriched fringe subtree representation with respect to v is identical
to H.

3. Let u be either the root of H0 or a non-fixed point of G-object corresponding to the
root of H0, and let G1, . . . , Gt be the G-objects corresponding to Hk. Then

P
(
Ĥ[k] = H

)
= p(H)(1 + E [ζ])−1

t∏
i=1

P (G = Gi) .

4. For any G-enriched tree (τ, γ) with γ(v) = (βτ (v), fτ (v), Fτ (v)) let #f (τ, γ) = |τ |
denote its number of fixed points, and #(τ, γ) =

∑
v∈τ (1+Fτ (v)) its total size. Then

for any sequence kn =
√
ntn of non-negative integers with tn = o(1) it holds with

probability tending to one that

#f Ĥkn 6 ntn and |#Ĥkn − E [ζ] #f Ĥkn| 6
√
ntn.

We may now establish convergence of the extended enriched fringe subtrees, that will
help us to apply our main theorems to specific examples of random discrete structures,
in particular random graphs.

Theorem 27 (Local convergence of random unlabelled R-enriched trees around a random
root). Suppose that the ordinary generating series ÃωR(z) has radius of convergence ρ > 0,
and that the series

E(z, u) = zZRκ(u, Ãω2

R (z2), Ãω3

R (z3), . . .)
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Figure 8: Patching together discrete metric spaces.

satisfies E(ρ+ ε, ÃωR(ρ) + ε) <∞ for some ε > 0. Then for any sequence kn = o(
√
n) of

non-negative integers the increasing fringe subtree sequence Hn[kn] of length kn, correspond-

ing to the uniformly at random drawn vertex v∗ of (Tn, βn), converges in total variation
to the fringe subtree sequence of Ĥ with the same length. That is,

dTV((Hn[kn], v
∗), (Ĥ[kn], u

∗))→ 0. (15)

Here u∗ denotes a random vertex of Ĥ that we defined in Lemma 26.

6.3 Scaling limits of metric spaces based on R-enriched trees

6.3.1 Patching together discrete metric spaces

We study metric spaces patched together from metrics associated to the vertices of a tree.
Let A be a rooted tree. For each vertex v ∈ A let Mv denote its offspring set. Let δ
be a map that assigns to each vertex v of A a metric δ(v) on the set Uv := Mv ∪ {v}.
This induces a metric d on the vertex vertex set V (A) that extends the metrics δ(v) by
patching together as illustrated in Figure 8. Formally, we define this metric as follows.
Consider the graph G on the vertex set of A obtained by connecting any two vertices
x 6= y if and only if there is some vertex v of the tree A with x, y ∈ Uv and assigning the
weight δ(v)(x, y) to the edge. The resulting graph is connected and the distance of any
two vertices a and b is defined by the minimum of all sums of edge-weights along paths
joining a and b in the graph G.

Suppose that for each finite set U and each R-structure R ∈ R[U ] we are given a
random metric δR on the set U ∪ {∗U} with ∗U denoting an arbitrary fixed element not
contained in U . For example, we could set ∗U := {U}. Let ÃRn = (Ãn, αn) denote the
random n-sized R-enriched tree drawn with probability proportional to its ω-weight. We
construct a random n-element metric space Yn as follows. For each vertex v of ÃRn with
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offspring set Mv let δn(v) be the metric on the set Mv ∪ {v} obtained by taking an
independent copy of δαn(v) and identifying ∗Mv with v. Let dYn denote the metric patched
together from the family (δn(v))v as described in the preceding paragraph.

In order for this to be a sensible model of a random tree-like structure we require the
following two assumptions.

1. We assume that there is a real-valued random variable χ > 0 such that for any
R-structure R the diameter of the metric δR is stochastically bounded by the sum
of |R| independent copies χR1 , . . . , χ

R
|R| of χ.

2. For any bijection σ : U → V of finite sets and for any R-structure R ∈ R[U ] we
require that the metric δR[σ](R) is identically distributed to the push-forward of the
metric δR by the bijection σ̄ : U ∪ {∗U} → V ∪ {∗V } with σ̄|U = σ.

Recall that by Lemma 22 the radius of convergence ρ of ÃωR(z) is finite, and the sum
ÃωR(ρ) is finite as well.

Theorem 28 (Scaling limits of spaces based on unlabelled enriched trees). Suppose that
the ordinary generating series ÃωR(z) has radius of convergence ρ > 0 and that the series

E(z, u) = zZRκ(u, Ãω2

R (z2), Ãω3

R (z3), . . .)

satisfies
E(ρ+ ε, ÃωR(ρ) + ε) <∞

for some ε > 0. Then the rescaled space (Yn, n
−1/2dYn) converges weakly to a constant mul-

tiple of the (Brownian) continuum random tree Te with respect to the Gromov–Hausdorff
metric as n ≡ 1 mod span(w) tends to infinity.

An explicit expression of the scaling constant in Theorem 28 is given in the correspond-
ing proof in Section 7.2. It is interesting to note that the local weak limit (T (∞), β(∞))
contains some information on the scaling limit, as it is responsible for one of the factors
in the scaling factor. We also provide the following sharp tail-bound for the diameter.

Theorem 29 (Tail bounds for the diameter). Under the same assumptions of Theorem 28
there are constants C, c > 0 such that for all n and x > 0 it holds that

P (D(Yn) > x) 6 C(exp(−cx2/n) + exp(−cx)).

Again it holds that if χ is bounded, then we have the tail-bound

P (D(Yn) > x) 6 C exp(−cx2/n)

for some constants C, c > 0.
The main idea of the proofs of Theorems 28 and Theorem 29 is that we may use the

random Sym(R)-enriched tree (T (`), β(`)) of Lemma 23 to relate for any two vertices x, y ∈
T fn distances dYn(x, y) and dT fn (x, y) by constant factor. The following basic observation
then takes care of the rest.
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Lemma 30. Suppose that ρ > 0 and that the function

E(z, u) = zZRκ(u, Ãω2

R (z2), Ãω3

R (z3), . . .)

satisfies E(ρ+ ε, ÃωR(ρ) + ε) <∞ for some ε > 0. Then the following assertions hold:

1. There are constants C, c > 0 such that for all n and x > 0

P
(

max
v∈T fn

(|fn(v)|+ |Fn(v)|) > x

)
6 Cn5/2 exp(−cx).

2. For any vertex v let Dv denote the dYn-diameter of the subspace {v} ∪ Fn(v) ⊂ Yn.
Then there are constants C, c > 0 such that for all h > 0

P
(

max
v∈T fn

Dv > h

)
6 Cn5/2 exp(−ch).

3. We have that √
(1 + E [ζ])V[ξ]

2
√
n

T fn
d−→Te

in the Gromov–Hausdorff sense as n ≡ 1 mod span(w) tends to infinity.

A result similar to Lemma 30 was used in [61] to provide a combinatorial proof for
the scaling limit of uniform random Pólya trees (with possible degree restrictions). The-
orem 28 is more general, as it applies for example to scaling limits of models of random
graphs with respect to the first-passage-percolation metric, and its proof is deeper and
more involved, as it requires the interplay with the Sym(R)-enriched tree (T (`), β(`)) of
Lemma 23 that is related to the local weak limit.

6.4 Applications to random unlabelled rooted connected graphs

Let C denote the class of connected graphs and B its subclass of graphs that are two-
connected or a single edge with its ends. Recall that the rooted class C• may be identified
with the class of SET ◦ B′-enriched trees as discussed in Section 6.1.2. Suppose that we
have a weighting γ on the class B, that is, for each B-graph B we are given a weight
γ(B) > 0 such that the weights of isomorphic graphs agree. This induces a weighting κ
on the species SET ◦ B′ by setting the weight of a set of graphs to the product of the
individual weights. Hence we also have a weighting ω on C given by

ω(C) =
∏
B

γB

for all C-objects C, with the index B ranging over all blocks of the graph C. In the
following, we study random unlabelled rooted graph Cωn drawn from the unlabelled C•-
objects of size n with probability proportional to its ω-weight. This corresponds to the
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model of random unlabelled enriched trees ÃRn in Section 6.1 for the special case Rκ =
(SET ◦ B′)κ.

Under the premise that the cycle index sums related to the random graph Cωn sat-
isfy Equation (16), we establish a local weak limit for the vicinity of the fixed root in
Theorem 31 and a Benjamini–Schramm limit in Theorem 32. In both cases we actu-
ally establish total variational convergence of arbitrary o(

√
n)-neighbourhoods, which is

best-possible in this setting. We also consider the first-passage-percolation metric on the
graph Cωn, which is more general than the graph-metric, and establish sharp exponential
tail-bounds for the diameter and a Gromov–Hausdorff scaling limit in Theorem 33. As a
byproduct, we also obtain a bound for the size of the largest 2-connected component.

As an important special case, these Theorems apply to uniform random unlabelled
rooted graph from a subcritical block class. This model was studied by Drmota, Fusy,
Kang, Kraus and Rué in [27, Def. 10], and includes uniform random rooted unlabelled
cacti graphs, outerplanar graphs, and series-parallel graphs [27, Thm. 15]. The scaling
limit Theorem 33 is a strong result in this context and also establishes the correct order
of the diameter of this type random graphs.

6.4.1 Local weak limit

The infinite Sym(SET ◦ B′)-enriched tree (T (∞), β(∞)) from Section 6.2.2 is naturally
also a SET ◦ B′-enriched tree, and may hence be interpreted as an infinite locally finite
random graph Ĉ according to the bijection in Section 6.1.2. Theorem 24 yields local weak
convergence of the random graph Cωn with respect to neighbourhoods around its fixed root
vertex.

Theorem 31 (Local convergence of random unlabelled graphs). Suppose that the weighted
ordinary generating series (C̃•)ω(z) has radius of convergence ρ > 0, and that

E(z, u) = zZ(SET◦B′)κ(u, (C̃•)ω2

(z2), (C̃•)ω3

(z3), . . .) (16)

satisfies E(ρ + ε, (C̃•)ω(ρ) + ε) < ∞ for some ε > 0. Then for any sequence kn = o(
√
n)

of non-negative integers it holds that

dTV(Ukn(Cωn), Ukn(Ĉ))→ 0, (17)

and likewise for the graph-metric neighbourhoods Vkn(·). Thus, the infinite random graph
Ĉ is the local weak limit of the random graph Cωn as n becomes large.

Note that this form of convergence is best-possible, as the diameter of Cωn has order√
n by Theorem 33, and hence (17) fails if the order of kn is comparable to

√
n.

6.4.2 Benjamini–Schramm limit and subgraph count asymptotics

The infinite G-enriched tree Ĥ• from Section 6.2.2 may be interpreted as an infinite locally
finite random graph Ĉ• according to the bijection in Section 6.1.2. Theorem 27 yields
Benjamini–Schramm convergence of the random graph Cωn.
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Theorem 32 (Benjamini–Schramm convergence of random unlabelled graphs). Suppose
that the weighted ordinary generating series (C̃•)ω(z) has radius of convergence ρ > 0, and
that

E(z, u) = zZ(SET◦B′)κ(u, (C̃•)ω2

(z2), (C̃•)ω3

(z3), . . .)

satisfies E(ρ + ε, (C̃•)ω(ρ) + ε) < ∞ for some ε > 0. Let v∗ be a uniformly at random
drawn vertex of the random graph Cωn. Then for any sequence kn = o(

√
n) of non-negative

integers it holds that
dTV(Ukn(Cωn, v

∗), Ukn(Ĉ•))→ 0,

and likewise for the graph-metric neighbourhoods Vkn(·). Thus, the infinite random graph
Ĉ• is the Benjamini–Schramm limit of the random graph Cωn as n tends to infinity.

Again this form of convergence is best-possible, as the diameter of Cωn has order
√
n

by Theorem 33. Benjamini–Schramm convergent sequences have many nice properties,
for example we may apply general results by Kurauskas [48]) and Lyons [56, Thm. 3.2]
to deduce laws of large numbers for subgraph count statistics and spanning tree count
statistics.

6.4.3 Scaling limit and diameter tail-bounds

We apply our results to first-passage percolation on graphs. Let ι > 0 denote a random
variable which has finite exponential moments. Given a connected graph G we may
consider the first-passage percolation metric dFPP on G by assigning an independent copy
of ι to each edge of G, letting for any two vertices x, y the distance dFPP(x, y) be given
by the minimum of all sums of weights along paths joining x and y. We let DFPP(·) and
HFPP(·) denote the diameter and height with respect to the dFPP-distance Theorems 28
and 29 and the fact, that the diameter and height of the CRT are related by

E [D(Te)] =
4

3
E [H(Te)] =

4

3

√
π

2
,

readily yield the following result.

Theorem 33 (First passage percolation random unlabelled rooted graphs). Suppose that
the weighted ordinary generating series has radius of convergence ρ > 0, and that the
series

E(z, u) = zZ(SET◦B′)κ(u, (C̃•)ω2

(z2), (C̃•)ω3

(z3), . . .)

is finite at the point (ρ+ ε, C̃•ω(ρ) + ε) for some ε > 0. Then there exists a constant a > 0
such that

(Cωn, an
−1/2dFPP)

d−→ (Te, dTe)

in the Gromov–Hausdorff sense as n ≡ 1 mod span(w) becomes large. Furthermore, if
the random edge-length ι is bounded then there are constants C, c > 0 with

P (D(Cωn, dFPP) > x) 6 C exp(−cx2/n)
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for all n and x > 0. In particular, the rescaled height and diameter converge in the space
Lp for all p > 1. We have asymptotically

E [DFPP(Cωn)] ∼ 4

3
E [HFPP(Cωn)] ∼ 4

3a

√
πn

2
.

Lemma 30 also yields the following result for the size of the largest 2-connected com-
ponent of the random graph Cωn.

Corollary 34. There is a constant C > 0 such that the largest block in the random graph
Cωn has size at most C log n with probability tending to 1 as n becomes large. Likewise, the
maximum degree admits an O(log(n)) bound with high probability.

6.5 Applications to random unlabelled front-rooted k-dimensional trees

We consider the species K of front-rooted k-trees and the subclass K◦ where the root-front
is required to lie in a single hedron. Let Kn denote a uniform random unlabelled K-object
with n hedra and likewise K◦n a uniform random K◦-object with n hedra. As discussed in
Section 6.1.3, the two species are related by the equations

K ' SET ◦ K◦, K◦ ' X · (SEQ{k} ◦ SET)(K◦).

This identifies the random k-tree K◦n with the random enriched tree ARn for the special
case R = SEQ{k} ◦ SET. The random front-rooted k-tree Kn may be interpreted as a
random unordered forest of R-enriched trees. We let ρ denote the radius of convergence
of K̃◦(z) = ÃωR(z). Note that

ZR(z1, z2, . . .) = exp(k
∞∑
i=1

zi/i).

Lemmas 21 and 22 readily yield 0 < ρ < 1 and K̃◦(ρ) <∞. Hence

ZR(K̃◦(ρ) + ε, K̃◦((ρ+ ε)2), K̃◦((ρ+ ε)3)) <∞

for some ε > 0. This parallels some arguments from Drmota and Jin [28], where among
other enumerative results the asymptotic number of unlabelled unrooted and rooted k-
trees was determined.

6.5.1 Local weak limit

Theorem 24 readily yields a local weak limit of the random graph K◦n with respect to
neighbourhoods of the root-front, or any fixed vertex of the root-front. The limit ob-
ject is the infinite random k-tree K̂◦ that corresponds to the limit Sym(R)-enriched tree
(T (∞), β(∞)) according to the bijection in Section 6.1.3.

The random unlabelled front-rooted k-tree Kn may be viewed as a random unlabelled
Gibbs-partition. By Theorem 15 it follows that Kn exhibits a giant component of size n+
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Op(1), and the small fragments converge in total variation toward a Boltzmann limit R that

follows a P ˜SET◦K◦,ρ distribution. We let K̂ denote the infinite random k-tree obtained by

identifying the root-front of K̂◦ with the root-front of the front-rooted k-tree corresponding
to R according to the bijection in Section 6.1.3.

Theorem 35 (Local convergence of random unlabelled front-rooted k-trees). For any
sequence kn = o(

√
n) it holds that

dTV(Vkn(Kn), Vkn(K̂))→ 0.

Thus the infinite random graph K̂ is the local weak limit of the random front-rooted k-tree
Kn as n becomes large. Here we may interpret Vkn(·) as the neighbourhood of the root-
front, or of any fixed vertex of the root-front. By exchangeability, it does not matter which
we choose.

Note that Theorem 35 does not follow directly from the above discussion, as we still
need to relate the height of vertices in the G-enriched tree representation with the height
in the corresponding k-tree. We provide a detailed justification in Section 7.3.

6.5.2 Benjamini–Schramm limit

The infinite G-enriched tree Ĥ• from Section 6.2.2 may be interpreted as an infinite k-tree
K̂• according to the bijection in Section 6.1.3.

As we are going to argue in detail in Section 7.3, a random vertex in Kn lies with high
probability in the largest K◦-component. Theorem 27 together with a large deviation esti-
mate yield Benjamini–Schramm convergence of the random k-tree K◦n toward the random
graph K̂•, and hence also Benjamini–Schramm convergence for the largest K◦-component
of Kn. Moreover, within this component, a random vertex is unlikely to lie anywhere near
the root. Thus K̂ is also the Benjamini–Schramm limit of the random front-rooted k-tree
Kn.

Theorem 36 (Benjamini–Schramm convergence of unlabelled front-rooted k-trees). Let
v∗ denote a uniformly at random selected vertex of the random unlabelled front-rooted
k-tree Kn. Then for any sequence of positive integers kn = o(

√
n) it holds that

dTV(Vkn(Kn, v
∗), Vkn(K̂•))→ 0.

Thus K̂• is the Benjamini–Schramm limit of Kn as n becomes large.

6.5.3 Scaling limit

By Theorem 15 we know that Kn exhibits a giant K◦-component of size n+Op(1). Hence
in order to establish a scaling limit for Kn it suffices to study the random k-tree K◦n where
the root-front lies in a single hedron. In order to establish a scaling limit for K◦n we may
not apply Theorem 28 directly, as the metric of K◦n does not fit in the general scheme of
random metric spaces considered in Section 6.3. Rather than that, we make direct use of
the size-biased G-enriched tree of Lemma 23 and the results of Lemma 30.
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Theorem 37. There is a constant ak > 0 such that

(Kn, akn
−1/2dKn)

d−→ (Te, dTe)

in the Gromov–Hausdorff sense as n becomes large.

As a byproduct, we obtain the following properties of the random k-tree K◦n.

Lemma 38. It holds that

(K◦n, akn
−1/2dKn)

d−→ (Te, dTe).

Moreover, there are constants C, c > 0 such that for all x > 0 and n > 1

P (D(K◦n) > x) 6 C exp(−cx2/n).

6.6 Applications to simply generated Pólya trees

Let (κi)i∈N be a sequence of non-negative weights with κ0 > 0 and κi > 0 for some i > 2.
Hence κ can be seen as a weighting on the species SET. Let d denote the greatest common
divisor of the set of all indices i with κi > 0. For n ≡ 1 mod d large enough we may
draw a random Pólya tree τn having n vertices with probability P (τn = τ) proportional
to
∏

v∈τ κd+τ (v) for any unlabelled unordered tree τ with size n. This corresponds to the

random unlabelled enriched tree ÃRn for Rκ = SETκ. We let ρ denote the radius of
convergence of the corresponding generating series Ã(z) := ÃωR(z).

In the following, we only consider the case where

ρ > 0 and ZSETκ(Ã(ρ) + ε, Ã((ρ+ ε)2), . . .) <∞ (18)

for some ε > 0.

6.6.1 Local weak limit

Let τ̂ denote the tree T (∞) for the special case Rκ = SETκ. Theorem 24 readily yields
the following result.

Theorem 39. If Condition (18) is satisfied, then for any sequence kn = o(
√
n) of positive

integers it holds that
dTV(Vkn(τn), Vkn(τ̂))→ 0.

Thus, τ̂ is the local weak limit of τn as n becomes large.

6.6.2 Benjamini–Schramm limit

Let τ̂ • denote the pointed plane tree corresponding to the tree Ĥ• for the case Rκ =
SETκ. Theorem 27 applies directly and yields a Benjamini–Schramm limit for the simply
generated Pólya tree τn.
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Theorem 40. Suppose that Condition (18) holds. Let v∗ denote a uniformly at random
selected vertex of the tree τn. Then for any sequence kn = o(

√
n) of positive integers it

holds that
dTV(Vkn(τn, v

∗), Vkn(τ̂ •))→ 0.

In particular, τ̂ • is the Benjamini–Schramm limit of τn as n becomes large.

6.6.3 Scaling limit and diameter tail-bound

Another application of Theorems 28 and 29 is the following scaling limit with a sharp
tail-bound for the diameter.

Theorem 41 (Scaling limits of simply generated Pólya trees). If Condition (18) is sat-
isfied, then there is a constant a > 0 such that

(τn, an
−1/2dτn)

d−→ (Te, dTe)

with respect to the Gromov–Hausdorff metric as becomes large. Moreover, there are con-
stants c, C > 0 such that for all x > 0 and n it holds that

P (D(τn) > x) 6 C exp(−cx2/n).

This is a mild extension of results for uniformly drawn Pólya trees with n vertices and
vertex degree restrictions, whose scaling limits were studied in [57, 40, 61].

7 Proofs of the main results

7.1 Proof of the local convergence of unlabelled enriched trees in Section 6.2

Proof of Lemma 20. As discussed in Section 3.5.3, the rules of Lemma 9 concerning the
interplay of Boltzmann distributions and operations on species may be used to construct
recursive samplers, if the concerning isomorphism satisfies the conditions of Theorem 12.
This is the case for isomorphism

AωR ' X · Rκ(AωR),

which corresponds to the combinatorial specification Y = H(X ,Y) with H(X ,Y) =
X ·Rκ(Y). Indeed, it holds that H(0, 0) = 0 ·Rκ(0) = 0 and ∂2H(0, 0) = 0 · (R′)κ(0) = 0.

Thus we may apply the product rule and substitution rule of Lemma 9 to construct a
recursive procedure that samples according to the PSym(AωR),(xi)i-Boltzmann distribution.
The result is the procedure described in Lemma 20, with one important difference. Ac-
cording to Lemma 9 we would have to apply Lemma 8 for each recursive call to construct
an AR-symmetry out of the R-symmetry and the attached AR-symmetries, and then
relabel uniformly at random. Instead of doing this for each recursive call, we skip this
step and keep track of all the R-symmetries, yielding the Sym(R)-enriched tree (T , β).
As discussed at the beginning of the Section 6.2.1, we may construct the symmetry that
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corresponds to (T , β) in one step by applying Lemma 8 for each of its vertices, starting
with the leaves and working our way upwards. Thus (T , β) corresponds to a symme-
try on the vertex set of the plane tree T . Moreover, instead of relabelling uniformly at
random after each application of Lemma 8, we may postpone this step and just relabel
the symmetry corresponding to (T , β) once uniformly at random. The result ΓZAωR(x)
then follows PSym(AωR),(xi)i-Boltzmann distribution, meaning that for each n > 0 and each
symmetry (A, σ) ∈ Sym(AR)[n] it holds that

P
(
ΓZAωR(x) = (A, σ)

)
= ω(A)

xn

n!
ZAωR(x, x2, . . .)−1.

By Equation (4) we know that

ZAωR(x, x2, . . .) = ÃωR(x).

This completes the proof.

Proof of Lemma 21. As for claim (1), note that the isomorphism ÃωR ' X · Rκ(ÃωR)
implies that

ÃωR(z) = zZRκ(ÃωR(z), ÃωR(z2), . . .).

By assumption, there is an R-structure with size zero and one with size at least two such
that both have a positive κ-weight. It follows that there are constants a, b > 0 and k > 2
with the property that for all 0 6 x < ρ it holds that

ÃωR(x) > x(a+ bÃωR(x)k).

This implies that limx↑ρ ÃωR(x) <∞ and hence, by non-negativity of coefficients, ÃωR(ρ) <
∞.

Claims (2) - (6) all follow after a moments consideration from the explicit description
of the sampler in Lemma 20.

Proof of Lemma 22. Claims (1) and (2) follow from a general enumeration theorem by
Bell, Burris and Yeats [12, Thm. 28] which implies the asymptotic behaviour of the
coefficients of the power series ÃωR(z).

Claim (3): The expressions for the moments of ξ and ζ follow from the equations
describing the corresponding probability generating functions in Lemma 21. In order
to verify that E [ξ] = 1, note that by Pringsheim’s theorem the function ÃωR(z) cannot
be analytically continued in a neighbourhood of ρ, and hence by the implicit function
theorem it must hold that the function

H(z, u) := u− E(z, u)

satisfies
Hu(ρ, ÃωR(ρ)) = 0.

In other words, E [ξ] = Eu(ρ, ÃωR(ρ)) = 1. (Compare with the proof of [12, Cor. 12].)
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Claim (4): Let Λ denote the lattice spanned by all differences x − y of vectors that
(ξ, ζ) assumes with positive probability. We assumed that there is an R-structure with
size zero and positive κ-weight. Its automorphism is the empty map with no cycles at all.
Hence P ((ξ, ζ) = (0, 0)) > 0, and Λ is actually generated by the support of (ξ, ζ).

We assumed further that at least one R-structure R with positive κ-weight has a non-
trivial automorphism group. Hence there are positive numbers a∗, b∗ and c∗ such that
(ξ, ζ) assumes (a∗, 0) and (b∗, c∗) with positive probability, as these points correspond the
trivial and a non-trivial automorphism of R. Hence the lattice Λ contains three points
that do not lie on any straight line. Consequently, it has rank 2, that is, Λ ' Z2 as abelian
group.

Let B ∈ Z2×2 be a basis of the lattice Λ. As the support of (ξ, ζ) is not contained on
a straight line, it follows that the covariance matrix Σ is positive-definite. Let (ξi, ζi)i∈N
denote a family of independent copies of (ξ, ζ). By Lemma 21 it holds for any positive
integer n and ` that

P
(
|T | = n, |T f | = `

)
= P

(∑̀
i=1

(ξi, ζi) = (`− 1, n− `),
m∑
i=1

ξi > m for all m < `

)
.

Using rotational symmetry and the cycle lemma 19, it follows that

P
(
|T | = n, |T f | = `

)
=

1

`
P

(∑̀
i=1

(ξi, ζi) = (`− 1, n− `)

)
. (19)

We know by Claim (1) that if n is larger than some fixed constant, then P (|T | = n) > 0
if and only if n− 1 is divisible by span(w). We shall check below that for each such n

{` ∈ Z | (`− 1, n− `) ∈ Λ} = n+ Zd (20)

with d = | det B|/span(w). For now, let us assume that (20) holds. Let M > 0 be a fixed
constant. Then it holds uniformly for all ` = (1 + E [ζ])n+ x

√
n with |x| 6M that

` ∼ n/
√

1 + E [ζ]

and
`−1/2 ((`− 1, n− `)− `E [(ξ, ζ)]) ∼ (0,−x(1 + E [ζ])3/2).

The central local limit theorem given in Lemma 16 yields that

1

`
P

(∑̀
i=1

(ξi, ζi) = (`− 1, n− `)

)
∼ (1 + E [ζ])| det B|

n2
√

2π det Σ
exp(− x2

2σ2
). (21)

with σ2 = det Σ/(V[ζ](1 + E [ζ])3). By Claim (3) we know that

P (|T | = n) ∼ span(w)n−3/2

√
1 + E [ζ]

2πV[ξ]
.
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Using Equation (19) it follows that

P
(
|T fn | = `

)
∼ d

σ
√

2πn
exp(− x2

2σ2
).

The central limit theorem now follows from Equation (20), as for any fixed a < b

P
(
a 6
|T fn | − n/(1 + E [ζ])√

n
6 b

)
∼ d√

n

∑
x

1

σ
√

2π
exp(− x2

2σ2
)

∼
∫ b

a

1

σ
√

2π
exp(− x2

2σ2
) dx,

with the sum index x ranging over [a, b] ∩ ((1− µ)
√
n+ Zd/

√
n).

It remains to verify Equation (20), which requires careful reasoning, as we have to
relate span(w) with the involved lattice. In order to simplify our calculations, we would
like to pick a “nice” basis B of Λ. Note that it does not matter for (20) which basis of Λ we
choose, as for any two bases B1 and B2 there is a matrix M ∈ GL2(Z) with B1 = MB2,
and as det M ∈ {1,−1} it follows that | det B1| = | det B2|. The inconvenient part is
that, contrary to vector spaces, not every linear independent subset of a lattice may be
extended to a basis. However, a classical algebraic result states that for any free Z-module
M with rank r(M) and for any submodule N ⊂ M with rank r(N) there is a Z-basis
v1, . . . , vr(M) of M and integers λ1, . . . , λr(N) such that λ1v1, . . . , λkvk is a basis of N . See
for example Roman’s book [65, Thm. 6.7], which states this in the more general context
of modules over principal ideal domains. If B = (b1,b2) is such a basis of Λ for the
submodule N := Z(a∗, 0)ᵀ ⊂ Λ (recall that we defined a∗ at the beginning of the proof,
when we showed that Λ has rank 2), then there is an integer λ with λb1 ∈ Z(a∗, 0)ᵀ. But
this implies that the second coordinate of b1 must be zero, and hence

B =

(
a b
0 c

)
(22)

with a, b, c > 0 is an upper-triangular matrix. For any `, n it holds that (`− 1, (n− 1)−
(`− 1))ᵀ ∈ Λ if and only if (`− 1, n− 1)ᵀ ∈ Λ′ := CZ2 with

C =

(
1 0
−1 1

)−1(
a b
0 c

)
=

(
a b
a b+ c

)
.

We may easily calculate that

(`− 1, n− 1) ∈ CZ2 if and only if n− 1 ∈ Z gcd(a, b+ c), ` ∈ n+ Zac/ gcd(a, b+ c).

Indeed, it necessarily holds that n − 1 ∈ Za + Z(b + c) = Z gcd(a, b + c). Conversely, if
n− 1 = λ0a+ µ0b, then any pair (λ, µ) ∈ Z2 satisfies λa+ µb = n− 1 precisely if there is
an arbitrary integer t with λ− λ0 = t(b+ c)/ gcd(a, b+ c) and µ− µ0 = ta/ gcd(a, b+ c).
Hence (`− 1, n− 1)ᵀ = C(λ, µ)ᵀ reduces to ` = n+ act/ gcd(a, b+ c) with t ∈ Z.
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Since det(B) = ac, it remains to check that span(w) = gcd(a, b + c). That is, we
show that span(w) is the span of the projection of Λ′ on the y-axis. The support S of
(|T f | − 1, |T | − 1) is a subset of the lattice Λ′. Hence span(w), which is the span of the
projection of S to the y-axis, is a multiple of gcd(a, b + c). In order to show equality
we need to verify that indeed two successive multiples of gcd(a, b + c) exist that |T | − 1
assumes with positive probability. We may do this probabilistically. Let C > 0 be a given
constant. By Equation 19 and the central local limit theorem given in Lemma 16 it follows
that there is a positive integer L such that for all ` > L and all n with (l− 1, n− 1)ᵀ ∈ Λ′

and

`−1/2 ‖((`− 1, n− `)− `E [(ξ, ζ)])‖ 6 C (23)

it holds that P
(
|T | = n, |T f | = `

)
> 0. There is a constant c > 0 such that for every

n at least c
√
n consecutive integers ` > L exist that satisfy Inequality (23). If n − 1 is

additionally a constant multiple of gcd(a, b+ c), then the intersection Γn of the lattice Λ′

and the affine space (0, n − 1)ᵀ + Z(1, 0) is non-empty, and hence an affine subspace of
rank one, whose span does not depend on n. In particular, Γn hits the cone (23) about
a constant fraction of

√
n many times. This proves that span(w) = gcd(a, b + c) and

concludes the proof of Claim (4).

Proof of Lemma 23. The task is to provide a sampler for the species A(`)
R using the iso-

morphism
A(`)
R ' (X · (R′)κ(AωR))`AωR.

Note that for ` = 0 we have A(0)
R = AωR and for ` > 1 it holds that

A(`)
R ' X · (R

′)κ(AωR) · A(`−1)
R .

Thus for ` > 1 we may apply the product rule and substitution rule of Lemma 9 to
construct a procedure that samples according to the P

Sym(A(`)
R ),(xi)i

-Boltzmann distribution,

employing a P
Sym(A(`−1)

R ),(xi)i
-distributed symmetry, which we may sample by a recursive

call to the sampler for `− 1.
The result is essentially the procedure described in Lemma 23, but we make some

modifications. According to Lemma 9 we would have to apply Lemma 8 to construct
an AR-symmetry out of the R′-symmetry, the attached AR-symmetries, and the A(`−1)

R -
symmetry, and relabel uniformly at random afterwards. Instead of doing this for each
call, we skip this step and keep track of all the R′-symmetries. Also, instead of taking
AR-symmetries directly, we use the Sym(R)-enriched tree (T , β) from Lemma 23. This
yields the Sym(R)-enriched tree (T (`), β(`)).

As discussed at the beginning of the Section 6.2.1, we may construct the symmetry
that corresponds to (T (`), β(`)) in one step by applying Lemma 8 for each of its vertices,
starting with the leaves and working our way upwards. If we additionally relabel uniformly
at random, the resulting symmetry ΓZA(`)

R
follows a P

Sym(A(`)
R ,(xi)i

-distribution.
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We defined A(`)
R as a subspecies of the species of pointed R-enriched trees. In partic-

ular, for all n > 0 and any symmetry ((A, r), σ) ∈ Sym(A(`)
R ) we have that (A, σ) is an

AωR-symmetry and r is a fixed point of the automorphism σ. It follows from the definition
of the Boltzmann distributions and

Ã(`)
R (x) = (x ˜(R′)κ ◦ AωR(x))`ÃωR(x)

that

P
(

ΓZA(`)
R

(x) = ((A, r), σ)
)

= ω(A)
x|A|

|A|!
Ã(`)
R (x)−1

= (x ˜(R′)κ ◦ AωR(x))−`P
(
ΓZAωR(x) = (A, σ)

)
.

Proof of Lemma 25. Claim (1): By Lemma 23, the R-symmetry (R̂, σ̂) of Ĝ follows, up to
relabeling, a weighted Pólya-Boltzmann distribution for the species (R′)κ with parameter
ÃωR(ρ). It makes no difference whether we distinguish the vertex corresponding to the
∗-fixed point, or a uniformly at random drawn fixed point, as the results are identically
distributed. By the discussion in Section 3.2 it holds that

Z(R′)κ(s1, s2, . . .) =
∂

∂s1

ZRκ(s1, s2, . . .).

Hence, for any R-symmetry (R, σ) with a marked fixed point u, the probability that
(R̂, σ̂) = (R, σ) and that precisely the fixed point u gets marked, is simply given by
the probability that a Pólya-Boltzmann distributed R-symmetry with parameter ÃωR(ρ)
equals (R, σ). Consequently, for any G-object G with a marked fixed point u the proba-
bility that Ĝ assumes G and that precisely the vertex u is marked is given by P (G = G).

Claim (2): This is a reformulation of Lemma 23 in terms of G-enriched trees.
Claim (3): The event (T (∞), β(∞))<k> = (τ, γ)<k> corresponds to precisely Lτ (k)

different outcomes of the first k− 1 levels, depending on which leaf of τ [k] the spine of the
fixed point tree (T (∞))f is supposed to pass through. By Claim (1), each of these events
is equally likely with probability

∏t
i=1 P (G = Gi).

Claim (4): The k+1-th level of (T (∞), β(∞)) interpreted as G-enriched tree is obtained
by taking for each fixed point of the k-th level an independent copy of G, except for the
unique distinguished fixed point, which receives an independent copy of Ĝ. This yields

E [Lk(τ)] = (E [Lk−1(τ)]− 1)E [ξ] + E
[
ξ̂
]

= . . . = k(E
[
ξ̂
]
− 1) + 1,

E
[
|τ [k]|

]
= E [L0(τ) + . . .+ Lk(τ)] = k(k + 1)(E

[
ξ̂
]
− 1)/2 + k + 1,

E
[
LGk (τ)

]
= (E [Lk]− 1)E [ζ] + E

[
ζ̂
]

= . . . = k(E
[
ξ̂
]
− 1)E [ζ] + E

[
ζ̂
]
,

E
[
HGk (τ)− |τ [k]|E [ζ]

]
=

k∑
i=0

(E
[
LGi (τ)

]
− E [Li(τ)]E [ζ]) = (k + 1)(E

[
ζ̂
]
− E [ζ]).
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For the variance, note that

V[HGk (τ)− |τ [k]|E [ζ]] = E
[
(D0 + . . . Dk)

2)
]

with
Di := LGi (τ)− Li(τ)E [ζ]− E

[
ζ̂
]

+ E [ζ]

satisfying E [Di | Li(τ) = `] = 0 for all `. In particular, for all i < j,

E
[
DiDj | (τ [k], (γ(v))v∈τ [k−1])

]
= DiE [Dj | Lj(τ)] = 0.

It also holds that
E
[
D2
i | Li(τ)

]
= Li(τ)V[ζ] + V[ζ̂],

and consequently

V[HGk (τ)− |τ [k]|E [ζ]] =
k∑
i=0

E
[
D2
i

]
=

k∑
i=0

(E [Li(τ)]V[ζ] + V[ζ̂])

= k(k + 1)(E
[
ξ̂
]
− 1)V[ζ]/2 + (k + 1)(V[ζ̂] + V[ζ]).

Proof of Theorem 24. Let E denote the countably infinite set of all G-enriched plane trees
and set

Ek = {A<k> | A ∈ E}.

We have to show that

lim
n→∞

sup
H⊂Ekn

|P
(
(Tn, βn)<kn> ∈ H

)
− P

(
(T (∞), β(∞))<kn> ∈ H

)
| = 0. (24)

Recall that for any G-enriched tree (τ, (Gτ (v))v) with Gτ (v) = (βτ (v), fτ (v), Fτ (v)) and
any integer k > 0 we set

Lk(τ) = |{v ∈ τ | hτ (v) = k}|, LGk (τ) =
∑
v∈τ

hτ (v)=k

|Fτ (v)|, and HGk (τ) =
k∑
i=0

LGi (τ).

By assumption, there is a sequence tn → 0 with kn =
√
ntn. We may without loss of

generality assume that kn tends to infinity. For any C > 0 and all k and n we define with
foresight the set EC,k,n of all (τ, γ) ∈ Ek satisfying P

(
(T (∞), β(∞))<k> = (τ, γ)

)
> 0 and

1 6 Lk(τ) 6 C(ntn)1/2, |HGk−1(τ)− |τ [k−1]|E [ζ] | 6 C(ntn)1/2, |τ [k−1]| 6 ntn.

Using Markov’s and Chebyshev’s inequalities and the expressions of the moments in
Lemma 25, it follows that there is a constant C such that

lim
n→∞

P
(
(T (∞), β(∞))<kn> ∈ EC,kn,n

)
= 1. (25)

the electronic journal of combinatorics 25(3) (2018), #P3.11 57



Hence, if we verify (24) with the index H ranging only over all subsets of EC,kn,n, then
(25) implies that

lim
n→∞

P
(
(Tn, βn)<kn> /∈ EC,kn,n

)
= 1 (26)

and consequently (24) already holds with the index ranging over all subsets of Ekn . So
the only thing that is left to show is that (24) holds for H ⊂ EC,kn,n. That is, we have to
verify that for any ε > 0 it holds for large enough n that

sup
H⊂EC,kn,n

|P
(
(Tn, βn)<kn> ∈ H

)
− P

(
(T (∞), β(∞))<kn> ∈ H

)
| 6 ε. (27)

Let B,Σ, µ, σ and d = | det B|/span(w) be as in Lemma 22. We have shown in this
Lemma that, as n ≡ 1 mod span(w) tends to infinity,

√
nP
(
|T fn | = `

)
∼ d

σ
√

2π
exp(− x2

`

2σ2
) (28)

uniformly for all bounded x` with

` := µn+ x`
√
n ∈ n+ dZ.

Moreover,
|T fn | − nµ√

n

d−→N (0, σ2)

and for any ε1 > 0 there is a constant M > 0 such that for all n

P
(
|T fn | /∈ In

)
6 ε1 with In := (n+ dZ)∩ [n/(1 +E [ζ])−M

√
n, n/(1 +E [ζ]) +M

√
n].

Hence the expression in (27) may be bounded by

ε1 + sup
(τ,γ)∈EC,kn,n

∣∣∣∣∣P
(
(Tn, βn)<kn> = (τ, γ), |T fn | ∈ In

)
P ((T (∞), β(∞))<kn> = (τ, γ))

− 1

∣∣∣∣∣ . (29)

Let (τ, γ) ∈ EC,kn,n and let Gi = (Ri, fi, Fi), 1 6 i 6 t be the depth-first-search ordered list
of its G-objects. We set (h,H) :=

∑t
i=1(|fi|, |Fi|). Moreover, let Gi = (Ri, fi,Fi) denote a

family of independent copies of the random G-enriched tree G. For each G-enriched plane
tree G set πG = P (G = G). By Lemma 21 it follows that for all ` the probability

P
(
(T , β)<kn> = (τ, γ), |T f | = `

)
= πG1 · · · πGt ·

P

( ∑̀
i=t+1

(|fi|, |Fi|) = (`− 1− h, n− `−H),
m∑

i=t+1

fi > m− h for all 1 6 m < `

)
.

Using rotational symmetry and the Cycle Lemma 19, this may be simplified further to

πG1 · · · πGt
h− t+ 1

`− t
P

( ∑̀
i=t+1

(|fi|, |Fi|) = (`− 1− h, n− `−H)

)
.
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The tree τ has precisely h− t+ 1 many leaves with height k and thus Lemma 25 implies
that

P
(
(T (∞), β(∞))<kn> = (τ, γ)

)
= πG1 · · · πGt(h− t+ 1).

It holds uniformly for (τ, γ) ∈ EC,kn,n and ` = µn+ x`
√
n ∈ In that

`−1/2 |(`− 1− h, n− `−H)− (`− t)E [(ξ, ζ)]| ∼ (0,−x`(1 + E [ζ])3/2)

as n becomes large. Hence, as `− t ∼ `, we may apply the bivariate Central Local Limit
Theorem 16 to obtain

1

`− t
P

( ∑̀
i=t+1

(|fi|, |Fi|) = (`− 1− h, n− `−H)

)
∼ (1 + E [ζ])| det B|

n2
√

2π det Σ
exp(− x2

`

2σ2
).

By Lemma 22 we know that

P (|T | = n) ∼ span(w)n−3/2

√
1 + E [ζ]

2πV[ξ]
.

It follows that uniformly for all (τ, γ) ∈ EC,kn,n

P
(
(Tn, βn)<kn> = (τ, γ), |T fn | ∈ In

)
P ((T (∞), β(∞))<kn> = (τ, γ))

∼ d√
n

∑
`∈In

1

σ
√

2π
exp(− x2

`

2σ2
)

∼
∫ M

−M

1

σ
√

2π
exp(− x2

2σ2
) dx.

Taking ε1 = ε/2 and M sufficiently large it follows that the bound (29) is smaller than ε
for sufficiently large n. This completes the proof.

Proof of Lemma 26. Claims (1) and (2) are straight-forward. For Claim (3), note that
the event Ĥ[k] = H[k] means that Ĥk = Hk, and that u0 lies at one of the p(H) many
locations, and that u∗ lies in precisely the location in {u0} ∪ F (u0) that corresponds to
u, with F (u0) denoting the forest of non-fixed points of the G-object corresponding to u0.
Let G1, . . . , Gt denote the depth-first-search ordered list of the G-objects Gi = (Si, fi, Fi)
of Hk and let G`1 , . . . , G`2 be the segment that corresponds to H0. For any G-object
G = (S, f, F ) with a marked fixed point v from f , the probability for Ĝ = (Ŝ, f̂ , F̂ ) to
assume G and that a uniformly at random drawn fixed point of f̂ equals v is given by

P
(
Ĝ = G

)
|f |−1 = P (G = G) .

Likewise, if we distinguish a vertex v from {∗} t F , then the probability for Ḡ = (S̄, f̄, F̄)
to assume G and that a uniformly at random drawn vertex from {∗}t F̄ equals v is given
by

P
(
Ḡ = G

)
(1 + |F |)−1 = P (G = G) (1 + E [ζ])−1.
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Thus

P
(

(Ĥ[k], u
∗) = (H, u)

)
= p(H)P (G = G`1) (1 + E [ζ])−1

∏
i 6=`1

P (Gi = Gi) .

For Claim (4), let us start with the fixed points. By assumption, there is a sequence
tn → 0 such that kn = tn

√
n → ∞. For any integer m > 0 let Sm denote the sum of

m independent copies of the size of the ξ-Galton–Watson tree T f . The number of fixed
points #f Ĥk is given by the sum of

#f Ĥ0
(d)
= 1 + S|̄f|.

and the independent differences

#f Ĥi −#f Ĥi−1
(d)
= S|̂f|−1.

Consequently,

#f Ĥk
(d)
= 1 + SMk

with Mk = |̄f| +
∑k

i=1(ξ̂i − 1) and (ξ̂i)i>1 denoting a family of independent copies of |̂f|.
By a general result for the size of Galton–Watson forests, there is a constant C > 0 such
that

P (Sm > x) 6 Cmx−1/2

for all m and x > 0. See Devroye and Janson [24, Lem. 2.3] and Janson [43, Lem. 2.1].
As ξ̂ and |̄f| have finite first moments, it follows that

P (SMk
> x) 6 CE [Mk]x

−1/2 = C(E
[
|̄f|
]

+ k(E
[
ξ̂
]
− 1))x−1/2.

Setting x = ntn − 1 and k = kn, it follows that #f Ĥkn 6 ntn with probability tending to
one as n becomes large.

For the second statement, let Rm denote the sum of m independent copies of |T | −
(1 + E [ζ])|T f |. The difference #Ĥk − (1 + E [ζ])#f Ĥk is given by the sum of

#Ĥ0 − (1 + E [ζ])#f Ĥ0
(d)
= |F̄| − E [ζ] +R|̄f|

and the independent differences

#Ĥi −#Ĥi−1 − (1 + E [ζ])(#f Ĥi −#f Ĥi−1)
(d)
= |F̂| − E [ζ] +R|̂f|−1, i = 1 . . . k.

Consequently,

#Ĥk − (1 + E [ζ])#f Ĥk
(d)
= |F̄| − E [ζ] +

k∑
i=1

(ζ̂i − E [ζ]) +RMk
(30)
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with ζ̂i denoting independent copies of |F̂|. Markov’s inequality implies that for k = kn

||F̄| − E [ζ] +
kn∑
i=1

(ζ̂i − E [ζ])| 6
√
ntn/2 (31)

with probability tending to one as n becomes large.
It remains to show that |RMkn

| 6
√
ntn/2 with probability tending to one. If ξ and

ζ were independent, then this would be rather simple. But, as this is not necessarily the
case, it requires a bit of effort. We may write

|T | − (1 + E [ζ])|T f | =
∞∑
i=0

Di with Di = LGi (T f )− Li(T f )E [ζ] . (32)

The sum is finite, as Di = 0 for i > H(T f ). Since

P
(
H(T f ) > h

)
∼ 2/(V[ξ]h)

as h becomes large, it follows that the probability for the maximum height of m indepen-
dent copies of T f to be less than kn/

√
tn is given by(

1− (1 + o(1))2
√
tn

V[ξ]kn

)m
, (33)

with the o(1) term not depending on m. As E [Mkn ] ∼ kn(E
[
ξ̂
]
−1) and V[Mkn ] = knV[ξ̂],

it follows by Chebyshev’s inequality that

|Mkn − kn| 6 k3/4
n

with probability tending to one. Hence Expression (33) implies that the probability for
the maximum height of Mkn independent copies of T f to be smaller than kn/

√
tn tends

to one as n becomes large. Equation (32) hence implies for all x that

P
(
|RMkn

| > x
)
6 o(1) + P (|U1 + . . .+ Ukn| > x) (34)

with the Uj denoting independent copies of
∑bkn/√tnc

i=0 Di. We aim to apply Chebyshev’s
inequality again, and hence compute the expected value and variance of the Uj. It holds
for all i and ` that

E
[
Di | Li(T f ) = `

]
= E

[∑̀
j=1

ζj − `E [ζ]

]
= 0,

with (ζj)j denoting a family of independent copies of ζ. Consequently, for all k

E

[
k∑
i=0

Di

]
= 0 and V[

k∑
i=0

Di] =
k∑
i=0

E
[
D2
i

]
+ 2

∑
06i<j6k

E [DiDj] .
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For all 0 6 i < j it holds that

E
[
DiDj | ((T f )[j], (β(v))v∈(T f )[j−1]

]
= DiE

[
Dj | Lj(T f )

]
= 0,

because for all `

E
[
Dj | Lj(T f ) = `

]
= E

[∑̀
r=1

ζi − `E [ζ]

]
= 0.

Clearly it also holds that
E
[
D2
j | Lj(T f ) = `

]
= `V[ζ].

Hence,

V[
k∑
i=0

Di] = V[ζ]E

[
k∑
i=0

Li(T f )

]
= (k + 1)V[ζ].

Setting k = bkn/
√
tnc, we may thus apply Chebyshev’s inequality to (34) and obtain

P
(
|RMkn

| >
√
ntn/2

)
6 o(1) +

kn(kn/
√
tn + 1)V[ζ]

ntn/4
= o(1).

Together with (30) and (31) this implies that

|#Ĥkn − (1 + E [ζ])#f Ĥkn| 6
√
ntn

with probability tending to one as n becomes large.

Proof of Theorem 27. For any k, let Ek denote the set of pairs (H, u) where H = (Hi)06i6k

is a representation of a G-enriched tree as sequence of increasing enriched fringe subtrees,
and u is either the root of H0 or an element of the non-fixed points of the G-object
corresponding to the root of H0. We need to show that

lim
n→∞

sup
H⊂Ekn

|P
(
(Hn[kn], v

∗) ∈ H
)
− P

(
(Ĥ[kn], u

∗) ∈ H
)
| = 0. (35)

By assumption, there is a sequence tn → 0 such that kn =
√
ntn. We define the subset

Ek,n = {((Hi)06i6k, u) ∈ Ek | #fHk 6 ntn, |#Hk − (1 + E [ζ])#fHk| 6
√
ntn}.

Lemma 26 implies that (Ĥ[kn], u
∗) lies in Ekn,n with probability tending to one as n becomes

large. Hence, if we verify Equation (35) with the index H only ranging over the subsets
of Ekn,n, then it follows that (Hn[kn], v

∗) also lies with probability tending to one in Ekn,n.

But this already verifies (35) when H ranges over all subsets of Ekn , and we are done.
So it remains to show that for any ε > 0 it holds for sufficiently large n that

sup
H⊂Ekn,n

|P
(
(Hn[kn], v

∗) ∈ H
)
− P

(
(Ĥ[kn], u

∗) ∈ H
)
| 6 ε. (36)
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In order to show this, we first exert some control over the number of fixed points in
(Tn, βn). Let B,Σ, µ and σ be as in Lemma 22. If follows from this Lemma that, as n ≡ 1
mod span(w) tends to infinity,

√
nP
(
|T fn | = `

)
∼ d

σ
√

2π
exp(− x2

`

2σ2
)

uniformly for all bounded x` ∈ R with

` := µn+ x`
√
n ∈ n+ dZ.

Furthermore,
|T fn | − nµ√

n

d−→N (0, σ2)

and for any ε1 > 0 there is a constant M > 0 such that for all n

P
(
|T fn | /∈ In

)
6 ε1 with In := (n+ dZ)∩ [n/(1 +E [ζ])−M

√
n, n/(1 +E [ζ]) +M

√
n].

Hence we may bound the expression in (36) by

ε1 + sup
(H,u)∈⊂Ekn,n

∣∣∣∣∣∣
P
(

(Hn[kn], v
∗) = (H, u), |T fn | ∈ In

)
P
(

(Ĥ[kn], u∗) = (H, u)
) − 1

∣∣∣∣∣∣ . (37)

Throughout the rest of the proof, we set k = kn. Let (H, u) ∈ Ek,n with H = (Hi)06i6k

be given. We set L = Lk(Hk) + LGk (Hk) and let F0 denote the size of the forest of the
G-object corresponding to the root of H0. Let A denote a G-enriched tree with a total
number of vertices #A = n. Given (Tn, βn) = A, the vertex v∗ is drawn uniformly at
random from A. Given (Tn, βn) = A and Hnk = Hk, the vertex v∗ is drawn uniformly at
random from L possible locations. Out of these, exactly p(H)(1 + F0) many correspond
to the event Hn[k] = H, since the number p(H) defined in Lemma 26 counts the number
of fixed points v at height k in Hk with the property, that the extended enriched fringe
subtree representation with respect to v is identical to H. Moreover, given additionally
Hn[k] = H, there is precisely one out of 1 + F0 possible locations such that v∗ = u. Hence

P
(
Hn[k] = H | (Tn, βn) = A

)
= P

(
Hkn = Hk | (Tn, βn) = A

)
p(H)/L. (38)

There is a 1 to L correspondence between the fixed points v of A with f(A, v) = Hk, and
the possible locations for v∗ such that Hnk = Hk. Hence

P
(
Hkn = Hk | (Tn, βn) = A

)
= E

∑
v∈T fn

1f((Tn,βn),v)=Hk | (Tn, βn) = A

L/n (39)

Let (G1, . . . , Gt) and Gni , i = 1, . . . , |T fn | denote the depth-first-search ordered lists of
G-objects of the enriched trees Hk and T fn . The occurrences of (G1, . . . , Gt) as substrings
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of (Gni )i correspond precisely to the vertices of T fn where the fringe-subtree equals Hk. As
Equations (38) and (39) hold uniformly for all G-enriched trees with n vertices, it follows
that

P
(
Hn[k] = H, |T fn | ∈ In

)
=
∑
`∈In

E

[∑̀
j=1

Jnj , |T fn | = `

]
p(H)/n (40)

with Jnj denoting the indicator variable for the event (Gnj , . . . ,G
n
j+t−1) = (G1, . . . , Gt).

Here we set Gni := Gni−` whenever i > `. Note that Jj = 0 whenever j + t− 1 > `, as then
the sequence (Gni )j6i6j+t−1 does not correspond to any G-enriched tree at all. Hence the
sum of the Jj really counts the number of occurrences of (Gi)16i6t in (Gi)16i6`. Recall
that by Lemma 21 there is a natural coupling of the unconditioned G-enriched tree (T , β)
with a family (Gi)i∈N of independent copies Gi = (Si, fi,Fi) of the random G-object G,
conditioned on the event that there is an initial segment of (Gi)i∈N that corresponds to an
G-enriched tree. Let (Jj)j=1,...,` denote the unconditioned pendants of Jnj for the sequence
(Gi)16i6`. Lemma 21 implies that

E

[∑̀
j=1

Jnj , |T fn | = `

]
=

P
(
|T fn | = `

)
E

[∑̀
j=1

Jj |
∑̀
i=1

(|fi|, |Fi|) = (`− 1, n− `),
m∑
i=1

|fi| > m for all m < `

]
.

The sum
∑`

j1
Jj is invariant under cyclic permutations of the list (G1, . . . ,G`). Hence the

Cycle Lemma 19 yields

E

[∑̀
j=1

Jnj , |T fn | = `

]
= P

(
|T fn | = `

)
E

[∑̀
j=1

Jj |
∑̀
i=1

(|fi|, |Fi|) = (`− 1, n− `)

]
.

Conditioned on this simpler event, the Jj are all identically distributed. Hence

E

[∑̀
j=1

Jnj , |T fn | = `

]
= `P

(
|T fn | = `

)
E

[
J1 |

∑̀
i=1

(|fi|, |Fi|) = (`− 1, n− `)

]
.

Setting πG = P (G = G) for all G-objects G, it follows that

E

[
J1,
∑̀
i=1

(|fi|, |Fi|) = (`− 1, n− `)

]
=

πG1 · · · πGtP

( ∑̀
i=t+1

(|fi|, |Fi|) = (`− 1− t, n−#Hk)

)
.
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It holds uniformly for (H, u) ∈ Ekn,n and ` = µn+ x`
√
n ∈ In that

`−1/2 |(`− 1− t, n−#Hk)− (`− t)E [(ξ, ζ)]| ∼ (0,−x`(1 + E [ζ])3/2)

as n becomes large. Hence, as `− t ∼ `, we may apply the multivariate local central limit
theorem (Lemma 16) to obtain

P

( ∑̀
i=t+1

(|fi|, |Fi|) = (`− 1− t, n−#Hk)

)
∼ | det B|
n
√

2π det Σ
exp(− x2

`

2σ2
).

Likewise, the probability P
(∑`

i=1(|fi|, |Fi|) = (`− 1, n− `)
)

has precisely the same asymp-

totic order. It follows from Equation (40) that

P
(
Hn[k] = H, |T fn | ∈ In

)
∼ p(H)πG1 · · · πGt

∑
`∈In

`

n
P
(
|T fn | = `

)
.

Since `/n ∼ (1+E [ζ])−1 and P
(
|T fn | /∈ In

)
6 ε1 it follows that uniformly for (H, u) ∈ Ekn,n∣∣∣∣∣∣

P
(
Hn[k] = H, |T fn | ∈ In

)
p(H)(1 + E [ζ])−1πG1 · · · πGt

− 1

∣∣∣∣∣∣ 6 ε1 (41)

for n large enough. Setting ε1 = ε/2, Inequality (41) and Lemma 26 imply that the
bound in (37) is smaller than ε for large enough n. This verifies (36) and hence the proof
is complete.

7.2 Proofs of the scaling limits and diameter tail bounds in Section 6.3

Proof of Lemma 30. Claim (1): Let x > 0 be arbitrary and let E denote the event that
there is a vertex v ∈ T f with |f(v)|+ |F (v)| > x. It follows from Claim (1) that

P (|T | = n) = [zn]ÃωR(ρz)/ÃωR(ρ) = Θ(n−3/2)

and hence
P (E | |T | = n) = O(n3/2)P (E , |T | = n) .

By Lemma 21, the probability P (E , |T | = n) is given by

P(∃` 6 n : max(ξ1 + ζ1, . . . , ξ` + ζ`) > x,∑̀
i=1

ξi = `− 1,
∑̀
i=1

(1 + ζi) = n,∀m < ` :
m∑
i=1

ξi > m),

with (ξi, ζi)i∈N denoting a list of independent copies of (ξ, ζ). We are not interested in
precise asymptotics here and hence bound this very roughly by

P (E , |T | = n) 6 P (max(ξ1 + ζ1, . . . , ξn + ζn) > x) 6 nP (ξ + ζ > x) .
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As (ξ, ζ) has finite exponential moments, it follows that

P (E , |T | = n) 6 Cn5/2 exp(−cn)

for some constants C, c > 0 that do not depend on n.
Claim (2): We may form a random metric space Y by constructing a metric dY on

the vertex set of ΓS(ρ) by patching together independent copies of the metrics δR just
as in the construction of the metric space Yn. Hence Yn is distributed like the space Y
conditioned on having size n. For any vertex v of the fixed point tree T f let Dv denote
the dY-diameter of the subspace {v} ∪ F (v) ⊂ Y. Given h > 0 let E ′ denote the event
that Dv > h for at least one vertex v ∈ T f .

Using Claim (1) it follows that

P (E ′ | |Y| = n) = O(n3/2)P (E ′, |Y| = n) = O(n5/2)P (Do > h) (∗)

with o denoting the root of the fixed point tree T f .
By assumption, for any vertex u ∈ F (o), the distance dY(o, u) is bounded by the sum

of
∑

e d
+
T (e) many independent copies of a real-valued random variable χ > 0 having finite

exponential moments, with the sum index e ranging over all ancestors of the vertex u in
the tree T . Clearly we have that ∑

e

d+
T (e) 6 |F (o)|

for all u ∈ F (o). Since Do 6 2 supu∈F (o) dY(o, u), it follows that

P (Do > h) 6
∞∑
k=0

P (|F (o)| = k) kP (χ1 + . . .+ χk > h/2)

with (χi)i∈N a family independent copies of χ. Moreover,

P (|F (o)| = k) = P (ζ = k) = O(γk1 )

for some constant 0 < γ1 < 1. By the deviation inequality given in Lemma 18 it follows
that there are constants a, b > 0 such that

γk1P (χ1 + . . .+ χk > h/2) 6 2e−ak−bh

for all k and h. Hence
P (Do > h) = O(γh2 )

for some constant 0 < γ2 < 1. Hence Equality (∗) implies that

P (E ′ | |Y| = n) = O(n5/2)γh2

and we are done.
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Claim (3): Set t :=
√

(1 + E [ζ])σ/2 with σ2 = V[ξ]. Let g : K• → R denote a
Lipschitz-continuous, bounded function defined on the space of isometry classes of pointed
compact metric spaces. Note that T fn conditioned on having size ` is distributed like
T f conditioned on having size `. Hence it is distributed like a ξ-Galton–Watson tree
conditioned on having ` vertices, which we denote by T ′` . It follows from claim ii) that

E
[
g(tT fn /

√
n)
]

= o(1) +
∑
`

E
[
g(tT ′` /

√
n)
]
P
(
|T f | = `

)
with the sum index ` ranging over all integers ` ≡ 1 mod span(w) contained in the
interval (1± n−s) n

1+E[ζ]
. Since g is Lipschitz-continuous, we have that

|E
[
g(tT ′` /

√
n)
]
− E

[
g(σT ′` /(2

√
`))
]
| 6 an,`E

[
D(T ′` )/

√
`
]

for some constants an,` with sup`(an,`) → 0 as n ≡ 1 mod span(w) tends to infinity.

Moreover, the average rescaled diameter E
[
D(T ′` )/

√
`
]

converges as ` becomes large to a

multiple of the expected diameter of the CRT Te. In particular, it is a bounded sequence.

Since E
[
g(

σT ′`
2
√
`
)
]

converges to E [g(Te)] as ` becomes large, it follows that E
[
g( tT

f
n√
n

)
]

converges to E [g(Te)] as n becomes large. This concludes the proof.

Proof of Theorem 28. By Lemma 30 it follows that with high probability all vertices
v ∈ T fn have the property that the dYn-diameter of the subspace {v} ∪ F (v) is at most
O(log(n)). This implies that the Gromov–Hausdorff distance between the metric spaces
(Yn, dYn/

√
n) and (T fn , dYn/

√
n) converges in probability to zero. Moreover, by Lemma 30

we know that (T fn , cdT fn /
√
n) with c =

√
(1 + E [ζ])V[ξ]/2 converges weakly to the CRT

Te. It remains to show that there is a constant c′ such that the Gromov–Hausdorff distance
between (T fn , dYn/

√
n) and (T fn , c′dT fn /

√
n) converges in probability to zero.

We define the random number η as follows. Choose a random R′-symmetry (R, σ)
from

⋃
k>0 Sym(R′)[k] with probability proportional to the weight

κ(R)

|R|!
ÃωR(ρ)σ1ÃωR(ρ2)σ2 · · ·

and let η denote the δR-distance of the two distinct ∗-labels. Note that by our assumptions
on the cycle index sum ZRκ we have that |R| has finite exponential moments. Moreover,
the diameter of the metric δR is bounded by |R| many independent copies of a real-valued
random variable χ > 0 with finite exponential moments. Hence η has finite exponential
moments. We are going to show that the Gromov–Hausdorff distance of (T fn , dYn/

√
n) and

(T fn ,E [η] dT fn /
√
n) converges in probability to zero. By the discussion in the preceding

paragraph this implies that √
(1 + E [ζ])V[ξ]

2E [η]
√
n

Yn
d−→Te

and we are done.
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Let s > 1 and t > 0 be arbitrary constants and set sn = log(n)s and tn = nt. Let
ε > 0 be given and let E1 denote the event that there exists a fixed point v ∈ T fn and an
ancestor u of v with the property that

dT fn (u, v) > sn and dYn(u, v) /∈ (1± ε)E [η] dTn(u, v).

Likewise, let E2 denote the event that there exists a vertex v and an ancestor u of v with

dTn(u, v) 6 sn and dYn(u, v) > tn.

We are going to show that with high probability none of the events E1 and E2 takes place
This suffices to show the claim: Take s = 2 and t = 1/4 and suppose that the

complementary events Ec1 and Ec2 hold. Given vertices a 6= b in the tree T fn let x denote
their lowest common ancestor. If x ∈ {a, b} then we have

dYn(a, b) = dYn(a, x) + dYn(b, x).

If x 6= a, b, then let a′ denote the offspring of x that lies on the T fn -path joining a and x
and likewise b′ the offspring of x lying on the path joining x and b. Hence we have that

dYn(a, b) = dYn(a, x) + dYn(b, x) +R with R = dYn(a, a′)− dYn(a′, x)− dYn(b′, x).

By property Ec2 and the triangle inequality it follows that |R| = −R 6 2n1/4. Thus,
regardless whether x ∈ {a, b}, it holds that

dYn(a, b) = dYn(a, x) + dYn(b, x) +O(n1/4).

Moreover, if dT fn (a, x) > log(n)2, then it follows by property Ec1 that

dYn(a, x) ∈ (1± ε)E [η] dT fn (a, x).

Otherwise, if dT fn (a, x) < log(n)2 then it follows by property Ec2 that dYn(a, x) 6 n1/4 and
thus

|dYn(a, x)− E [η] dT fn (a, x)| 6 Cn1/4

for a fixed constant C that does not depend on n or the points a and x. It follows that

|dYn(a, b)/
√
n− E [η] dT fn (a, b)/

√
n| 6 εD(T fn )/

√
n+ o(1),

with D(T fn ) denoting the diameter. Thus

dGH(Yn,E [η] T fn ) 6 εD(T fn )/
√
n+ o(1)

holds with high probability. Since we may choose ε arbitrarily small, and D(T fn )/
√
n

converges in distribution (to a multiple of the diameter of the CRT), it follows that
dGH(Yn,E [η] T fn )→ 0 in probability and we are done.
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For each finite subset U ∈ N and each R-structure R ∈ R[U ] let (δiR)i∈N0 be a family
of independent copies of the metric δR. Given a AR-symmetry S = ((T, α), σ) with label
set [k] for some k > 0 we may form the family (δS(v))v∈T of random metrics by traversing
bijectively the vertices of T in ascending order 1, 2, . . . k and assigning to each vertex v
the “leftmost” unused copy from the list (δ1

α(v), δ
2
α(v), . . .). The metrics can be patched

together to a metric dS on the vertex set [k] of the tree T just as described in Section 6.3.
We may assume that all random variables considered so far are defined on the same

probability space and that the metric dYn of Yn coincides with the metric dZn with Zn
denoting the sampler ΓZAωR(ρ) conditioned on having size n. Given the family (δiR)R,i let
H ⊂

⋃∞
k=0 Sym(AR)[k] denote the finite set symmetries of size n such that the event E1

takes place if and only if Zn ∈ H. By the definition of the event E1 for any symmetry
S = ((T, α), σ) ∈ H we may choose a fixed point vS of σ having the property that there
exists an ancestor u in the tree T with

dT (u, vS) > sn and dS(u, vS) /∈ (1± ε)E [η] dT (u, v).

Let `S denote the height hT (vS). Note that since vS is a fixed point, the tupel (T, α, vS, σ)

is a A(`S)
R -symmetry. By Lemma 22 the probability for the sampler ΓZAωR(ρ) to have size

n is Θ(n−3/2) and we have that ρR̃′ ◦ AωR(ρ) = 1. Hence Equation (14) implies that the
conditional distribution of the event E1 given (δiR)R,i equals∑

S∈H

P
(
Zn = S | (δiR)R,i

)
= Θ(n3/2)

∑
S∈H

P
(

ΓZA(`S)

R
(ρ) = (S, vS) | (δiR)R,i

)
.

Let v0, . . . , v` denote the spine of ΓZA(`)
R

(ρ), that is, v` is the outer root, v0 is the inner root,

and (v0, . . . , v`) is the directed path connecting the roots. It follows that the probability
for the event E1 is bounded by

Θ(n3/2)
n∑
`=1

`−sn∑
k=0

P

(
d

(
ΓZ
A(`)
R

(ρ)

)
(vk, v`) /∈ (1± ε)E [η] (`− k)

)
(∗)

But the d

(
ΓZ
A(`)
R

(ρ)

)
-distance between spine vertices vi and vj is distributed like the sum

η1 + . . . + η|i−j| of independent copies (ηi)i of η. We know that η has finite exponential
moments and hence by the deviation inequality in Lemma 18 the bound (∗) converges
to zero as n ≡ 1 mod span(w) tends to infinity. Thus with high probability E1 does not
hold. By the same arguments we may bound the probability for the event E2 by

Θ(n3/2)
n∑
`=1

min(sn,`)∑
k=1

P (η1 + . . .+ ηk > tn)

which also converges to zero. This concludes the proof.
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Proof of Theorem 29. It suffices to show that there are constants C, c,N > 0 such that
for all n > N and h >

√
n we have that

P (H(Xn) > h) 6 C(exp(−ch2/n) + exp(−ch)).

For any fixed point v ∈ T fn set

`(v) =
∑
u

d+
Tn(u)

with the sum index u ranging over all ancestors of the vertex v in the plane tree T fn . Note
that we are summing up the outdegrees in the tree Tn and not in the tree T fn . Moreover,
for any vertex y ∈ Tn let vy denote its closest fixed point, that is, vy = y if y is a fixed
point and otherwise vy is the unique vertex with y ∈ Fn(vy). If y has height hYn(y) > 2h
then hYn(vy) > h or dYn(u, vy) > h. Thus either HYn(T fn ) > h or there exists a fixed point
v ∈ T fn such that the dYn-diameter Dv of the subspace {v}∪F (v) is greater than or equal
to h.

Let s > r > 0 be constants. Given h >
√
n let E2h denote the event that H(Xn) > h.

It follows that
E2h ⊂ Eh0 ∪ Eh1 ∪ Eh2 ∪ Eh3

with the events Ehi given as follows. Eh0 is the event that there exists a fixed point v ∈ T fn
with Dv > h. Eh1 is the event that H(T fn ) > rh. Eh2 is the event that H(T fn ) 6 rh and
`(v) > sh for some fixed point v ∈ T fn . Eh3 is the event that `(v) 6 sh for all fixed points
v ∈ T fn and HYn(T fn ) > h.

We are going to show that if we choose r and s sufficiently small, then each of these
events is sufficiently unlikely. By Lemma 30 we have that

P
(
Eh0
)

= O(n5/2)γh

for some 0 < γ < 1. Hence there are constants C0, c0 > 0 such that

P
(
Eh0
)
6 C0 exp(−c0h

2/n)

if h 6 n and
P
(
Eh0
)
6 C0 exp(−c0h)

if h > n.
In order to bound the probability for the event Eh1 note that the tree T fn conditioned on

having size ` is distributed like T f conditioned on having size `. That is, it is identically
distributed to a ξ-Galton–Watson tree conditioned on having size ` which we denote by
T ′` . Hence

P
(
Eh1
)
6

n∑
`=1

P
(
|T fn | = `

)
P (H(T ′` ) > rh) .
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By Inequality (2) there exist constants C1, c1 > 0 that do not depend on n or h such that
for all 1 6 ` 6 n we have the tail bound

P (H(T ′` ) > rh) 6 C1 exp(−c1r
2h2/`)

6 C1 exp(−c1r
2h2/n).

In particular, it holds that

P
(
Eh1
)
6 C1 exp(−c1r

2h2/n)

for all n and h.
We proceed to bound the probability for the event Eh2 . Let Zn denote the sampler

ΓZAωR(ρ) conditioned on having size n and let

H ⊂
∞⋃
k=0

Sym(AR)[k]

denote the set of AR-symmetries S = ((T, α), σ) having the property that there exists a
fixed point vertex vS in T with the property that

`S := hT (vS) 6 rh

and ∑
u

d+
T (u) > sh

with the sum-index u ranging over all ancestors of the vertex v in the tree T . By Equa-
tion 14 we may bound the probability for the event Eh2 by

P
(
Eh2
)

= P (Zn ∈ H)

= O(n3/2)
∑
S∈H

P
(

ΓZA(`S)

R
(ρ) = (S, vS)

)
.

Let η denote the outdegree of the root in the sampler ΓZA(1)
R

(ρ). By the assumptions

on the cycle index sum ZAωR it follows that η has finite exponential moments. Note that
the outdegrees along the spine of ΓZA(`)

R
are distributed like independent copies of η. It

follows that

P
(
Eh2
)

= O(n3/2)

min(n,rh)∑
`=1

P (η1 + . . .+ η` > sh)

= O(n5/2)P
(
η1 + . . .+ ηbrhc > sh

)
.

By the deviation inequality in Lemma 18 it follows that there are constants c, λ > 0 such
that the above quantity is bounded by a constant multiple of exp(5/2 log(n)+ crh−λsh).
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We assumed that h >
√
n, hence if we choose r sufficiently small depending only on s, c

and λ, it follows that there are constants C2, c2 > 0 such that

P
(
Eh2
)
6 C2 exp(−c2h).

It remains to treat the event Eh3 . By assumption, for any fixed point v ∈ T fn we have
that the height hYn(v) is bounded by `(v) many independent copies of a random variable
χ having finite exponential moments. Thus

P
(
Eh3
)
6 nP

(
χ1 + . . .+ χbshc > h

)
with (χi)i∈N a family of independent copies of χ. By the deviation inequality in Lemma 18
there are constants c, λ > 0 such that this quantity is bounded by a constant multiple of

exp(log(n) + bshcc− λh).

We assumed that h >
√
n, hence we may bound this by

exp(h(log(n)/
√
n+ sc− λ)).

If s is sufficiently small, then it follows that there are constants C3, c3 > 0 such that

P
(
Eh3
)
6 C3 exp(−c3h)

for all n and h >
√
n.

Thus there exist constants C, c > 0 with

P
(
E2h
)
6
∑
i

P
(
Ehi
)

6 C(exp(−ch2/n) + exp(−ch))

for all n and h >
√
n. This concludes the proof.

7.3 Proofs concerning the applications

7.3.1 Random weighted graphs

As argued in Section 6.4, Theorems 31, 32 and 33 are special cases of the more general
results we established in Sections 6.2 and 6.3.

7.3.2 Random front-rooted k-dimensional trees

We start with global geometric properties, as some intermediate results in there will also
be useful in the study of the local properties.

Proof of Theorem 37. By Theorem 15 it follows that the largest K◦-component of the
random front-rooted k-tree Kn has size n+Op(1). Hence Lemma 38 readily implies that
Kn converges toward the CRT after rescaling by the same factor as for K◦n.
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Proof of Lemma 38. The random front-rooted k-tree K◦n corresponds to the random en-
riched tree ÃRn for R = SEQ{k} ◦ SET. Hence our framework applies.

We first show a tail-bound for the diameter. By the bijection discussed in Section 6.1.3,
we know that the distance between any vertex in (Tn, βn) and its offspring is always 1, as
the two vertices are also joined by an edge in the corresponding k-tree. Let

√
n 6 x 6 n

be given. If H(K◦n) > x, then it follows that H(Tn > x). (Here we define the height
with respect to the vertex that corresponds to the root of Tn.) Hence H(T fn ) > x/2 or
|F (v)| > x/2 for some v ∈ T fn . Let us denote these events by E1 and E2. Lemma 30 states
that there are constants C1, c1 > 0 such that uniformly for all n and non-negative x

P
(

max
v∈T fn

(|fn(v)|+ |Fn(v)|) > x

)
6 C1n

5/2 exp(−c1x). (42)

As we assumed that
√
n 6 x 6 n, it follows that

P (E2) 6 C1n
5/2 exp(−c1x/2) 6 C2 exp(−c2x

2/n)

with the constants C2, c2 > 0 not depending on n or x. As for the event E1, Lemma 2
implies that there are constants C3, c3 > 0 that do not depend on n or x such that

P (E1) =
n∑
`=1

P
(
|T fn | = `

)
P
(
H(T fn ) > x/2 | |T fn | = `

)
6 C3

n∑
`=1

P
(
|T fn | = `

)
exp(−c3x

2/`)

6 C3 exp(−c3x
2/`).

Thus, there are constants C4, c4 > 0 such that

P (H(K◦n) > x) 6 P (E1) + P (E2)

6 C4 exp(−c4x
2/n)

for all n and all
√
n 6 x 6 n. It is clear that, by possibly adjusting the constants involved,

such an inequality also holds for all x > 0. This verifies the exponential tail-bound for
the diameter of the k-tree K◦n.

It remains to establish the scaling limit. Inequality (42) implies that with high prob-
ability all vertices v ∈ T fn have the property that the number of vertices in the forest
F (v) is at most O(log(n)). This implies that the (pointed) Gromov–Hausdorff distance
between the k-tree K◦n and the subspace corresponding to the vertices of the fixed point
tree T fn is with high probability at most O(log n). Consequently, it suffices to show that
there is a constant ak > 0 such that this subspace rescaled by ak/

√
n converges toward

the continuum random tree.
Let

bk =

(
k

k∑
i=1

1

i

)−1

. (43)
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We are going to show that there are exponents t > 0 and 1/2 < s < 1 such that with high
probability

|dK◦n(u, v)− bkdT fn (u, v)| 6 dT fn (u, v)s + logt n (44)

for all u, v ∈ T fn . This suffices to complete the proof. Indeed, it follows that with high
probability

dGH((T fn , dK◦n), (T fn , bkdT fn )) 6 D(T fn )s + logt n (45)

By Lemma 30 we know that(
T fn ,

√
(1 + E [ζ])V[ξ]

2
√
n

dT fn

)
d−→ (Te, dTe). (46)

in the (pointed) Gromov–Hausdorff sense. In particular, D(T fn ) = Op(
√
n), and hence it

follows from Equation (45) that

dGH((T fn , n−1/2dK◦n), (T fn , bkn−1/2dT fn ))
p−→ 0. (47)

Equations (46) and (47) then readily imply that the subspace of the k-tree K◦n, that
corresponds to T fn , converges toward the CRT after rescaling the metric by ck/

√
n with

ck =

√
(1 + E [ζ])V[ξ]

2bk
.

It follows that
(K◦n, ckn

−1/2dK◦n)
d−→ (Te, dTe).

Hence Inequality (44) is sufficient to complete the proof.
Let u, v ∈ T fn be arbitrary vertices and let x ∈ T fn denote their youngest common

ancestor. Let o denote the root of T fn . Then any shortest path in K◦n from o to u, or o to
v, or u to v contains at least one vertex with dK◦n-distance at most 1 from x. Thus the
expression

|dK◦n(u, v)− (dK◦n(o, u) + dK◦n(o, v)− 2dK◦n(o, x))|

is bounded by a fixed constant that does not depend on u, v or x. Thus, in order to show
Inequality (44), it suffices to show that for a sufficiently small but fixed constant c > 0
and it holds with high probability that

|dK◦n(o, v)− bkdT fn (o, v)| 6 c(dT fn (o, v)s + logt n) (48)

for all v ∈ T fn .
To this end, let Zn denote the sampler ΓZAωR(ρ) conditioned on having size n. That is,

Zn is the symmetry corresponding to the Sym(R)-enriched tree (Tn, βn). Consider the set
H ⊂

⋃∞
k=0 Sym(AR)[k] of AR-symmetries S = ((T, α), σ) having the property that the
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there exists a fixed point vertex vS in T with the property that `S := hT (vS) > logt(n)
but the corresponding distance h∗(vS) in the k-tree corresponding to (T, α) satisfies

|h∗(vS)− bk`S| > c`sS.

By Lemma 22 the probability for the sampler ΓZAωR(ρ) to have size n is Θ(n−3/2). It
follows from Equation 14 that

P (Zn ∈ H) = O(n3/2)
∑
S∈H

P
(

ΓZA(`S)

R
(ρ) = (S, vS)

)
6 O(n3/2)

∑
logt n6`6n

p`, (49)

with p` denoting the probability that the k-tree distance d` between the root vertex v0

and the tip v` of the spine v0, . . . , v` in ΓZA(`S)

R
(ρ) satisfies

|d` − bk`| > c`s.

We are going to bound the p` to show that the bound in (49) converges to zero. In
order to simplify the calculations, let u denote any fixed vertex of the ∗-place-holder root-
front of the k-tree corresponding to ΓZA(`S)

R
(ρ). Let d′` denote the k-tree distance from u

to v`. Thus
|d` − d′`| 6 1

for all ` and it suffices to study the deviation of d′` from bk`. We are going to exploit
properties of the bijection in Section 6.1.3 to take a Markov chain approach. Consider
the set M0 consisting of all k unlabelled vertices. The vertex v1 is incident to v0 and to
a k − 1-element subset S0 ⊂M0. By the construction in Lemma 23 each (k − 1)-element
subset of M0 is equally likely. The distance of v1 to u is given by

d′1 = 1 + min
v∈S0

d(u, v)

with d(·, ·) denoting the k-tree distance. This follows from the fact that M0 ∪ {v0} is a
(k + 1)-clique. Setting M1 = {v0} ∪ S0, the distance of v2 to u is again given by

d′2 = 1 + min
v∈S1

d(u, v)

with S1 ⊂ M1 denoting the (k − 1)-element subset of M1 that is incident with v2. Here
each (k − 1)-element subset of M1 is (conditionally) equally likely. We may continue this
construction, yielding sequences S0, . . . , S`−1 and M0, . . . ,M`, such that for all 0 6 i 6
`− 1 it holds that

d′i+1 = 1 + min
v∈Si

d(u, v) and Mi+1 = {vi} ∪ Si, (50)

and such that, conditioned on Mi, the subset Si gets drawn uniformly at random among
the (k − 1)-element subsets of Mi. Note that for all v ∈ Mi it holds that d(u, v) = d′i or
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d(u, v) = d′i − 1. For all 0 6 i 6 ` we let 1 6 Xi 6 k denote the number of vertices in Mi

with d(u, v) = d′i − 1. Equation (50) implies that for all 0 6 i 6 `− 1

d′i+1 =

{
d′i, Xi+1 < k

d′i + 1, Xi+1 = k
.

As d′0 = 1 and X0 = 1, it holds that

d′` = 1 +
∑̀
i=1

1Xi=k. (51)

Recall that given Mi, the set Si gets drawn uniformly at random from the (k − 1)-
element subsets of Mi. Thus, (Xi)i is Markov chain with the transition probabilities
pij = P (Xn+1 = j | Xn = i) given by the matrix

P = (pij)i,j =



k−1
k

1
k

2
k

k−2
k
3
k

k−3
k

. . . . . .
k−1
k

1
k

1


∈ Rk×k.

Here we use the convention, that empty spaces in a matrix denote zero entries. The
stationary distribution is given by

π = (πi)16i6k =
1∑k
i=1

1
i

(
1,

1

2
, . . . ,

1

k

)
.

This chain is clearly irreducible. However, unless k = 2, it is not reversible. As the
multiplicative symmetrization PᵀP is irreducible, we may apply Lemma 17 to obtain that
there are constants a, b > 0 such that for all sufficiently small ε > 0 and all ` > 1 it holds
that

P (|d′` − 1− πk`| > ε`) 6 a exp(−bε2`).

As πk = bk, follows that for any 1/2 < s < 1 we may choose t > 0 large enough such that
the bound in (49) tends to zero as n becomes large.

Thus, it holds with high probability that all vertices v ∈ T fn with dT fn (o, v) > logt n
satisfy

|dK◦n(o, v)− bkdT fn (o, v)| 6 cdT fn (o, v)s. (52)

This readily verifies Equation (48) and hence completes the proof.

Proof of Theorem 35. Let kn = o(
√
n) be a given sequence. The random front-rooted

unlabelled k-tree Kn may be viewed as a Gibbs partition. Theorem 15 ensures that Kn
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exhibits a giant component, and that the small fragments converge in total variation
toward a Boltzmann limit. Thus, it suffices to show that

dTV(Vkn(K◦n), Vkn(K̂◦))→ 0 (53)

as n becomes large. Set hn = 2bkkn + n1/4 = o(
√
n) with bk defined in Equation (43).

Theorem 24 ensures that

dTV((Tn, βn)<hn>, (T (∞), β(∞))<hn>)→ 0.

as n becomes large.
By Equation (52) we know that with high probability the trimmed tree (Tn, βn)<hn>

already contains all information required to determine the kn-neighbourhood Vkn(K◦n).
This verifies Equation (53) and hence completes the proof.

Proof of Theorem 36. Let kn = o(
√
n) be a given sequence. Theorem 15 ensures that

Kn exhibits a giant component, which is distributed like K(rn)◦ for some random size
rn = n+Op(1). A uniformly at random selected vertex of Kn lies with high probability in
this giant component and outside of its root-front. Conditioned on this event, the random
vertex is uniformly distributed among the non-root vertices of the large component. Note
that every path from a vertex of the giant component to a vertex of a smaller component
must pass through the root-front. Thus, it suffices to show that if v∗ is a random vertex
of (Tn, βn), then

dTV(Vkn(K◦n, v
∗), Vkn(K̂◦))→ 0,

and with high probability Vkn(K◦n, v
∗) contains no vertex of the root-front of K◦n. Set

hn = 2bkkn + n1/4 = o(
√
n) with bk defined in Equation (43). By Theorem 27 it follows

that

dTV((Hn[hn], v
∗), (Ĥ[hn], u

∗))→ 0.

and that with high probability the vertex v∗ has height hTn(v∗) > hn. By Equation (52) it
follows that with high probability it holds that hK◦n(v∗) > kn and that (Hn[kn], v

∗) already

contains all information necessary to determine Vkn(K◦n, v
∗). This completes the proof.

7.3.3 Simply generated Pólya trees

We argued in Section 6.6 how Theorems 39, 40 and 41 follow from the results on random
R-enriched trees of Sections 6.2 and 6.3.
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[16] M. Bodirsky, É. Fusy, M. Kang, and S. Vigerske. Enumeration and asymptotic
properties of unlabeled outerplanar graphs. Electron. J. Combin., 14(1):#R66, 2007.
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[45] S. Janson and S. Ö. Stefánsson. Scaling limits of random planar maps with a unique
large face. Ann. Probab., 43(3):1045–1081, 2015.
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