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Abstract

We present a strengthening of the countable Menger’s theorem of R. Aharoni.
Let D = (V,A) be a countable digraph with s 6= t ∈ V and let M =

⊕
v∈V Mv be

a matroid on A whereMv is a finitary matroid on the ingoing edges of v. We show
that there is a system of edge-disjoint s→ t paths P such that the united edge set
of these paths is M-independent, and there is a C ⊆ A consisting of one edge from
each element of P for which spanM(C) covers all the s→ t paths in D.

Mathematics Subject Classifications: 05C20; 05C38; 05C40; 05B35; 05C63

1 Notation

The variables ξ, ζ denote ordinals and κ stands for an infinite cardinal. We write ω for
the smallest limit ordinal (i.e. the set of natural numbers). We apply the abbreviation
H + h for the set H ∪ {h} and H − h for H \ {h} and we denote by 4 the symmetric
difference (i.e. H4J := (H \ J) ∪ (J \H)).

The digraphs D = (V,A) of this article could be arbitrarily large and may have
multiple edges and loops (though the later is irrelevant). For X ⊆ V we denote the
ingoing and the outgoing edges of X in D by inD(X) and outD(X). We write D[X] for
the subdigraph induced by the vertex set X. If e is an edge from vertex u to vertex v, then
we write tail(e) = u and head(e) = v. The paths in this paper are assumed to be finite
and directed. Repetition of vertices is forbidden in them (we say walk if we want to allow
it). For a path P we denote by start(P ) and end(P ) the first and the last vertex of P . If
X, Y ⊆ V , then P is a X → Y path if V (P )∩X = {start(P )} and V (P )∩Y = {end(P )}.
For singletons we simplify the notation and write x → y instead of {x} → {y}. For a
path-system (set of paths) P we denote

⋃
P∈P A(P ) by A(P) and we write for the set of
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the last edges of the elements of P simply Alast(P). An s-arborescence is a directed tree
in which every vertex is reachable (by a directed path) from its vertex s.

If M is a matroid and S is a subset of its ground set, then M/S is the matroid we
obtain by the contraction of the set S. We use

⊕
for the direct sum of matroids. For

the rank function we write r and span(S) is the union of S and the loops (dependent
singletons) of M/S. Let us remind that a matroid is called finitary if all of its circuits
are finite. One can find a good survey about infinite matroids from the basics in [3].

2 Introduction

In this paper we generalize the countable version of Menger’s theorem of Aharoni [1] by
applying the results of Lawler and Martel about polymatroidal flows (see [5]).

Let us recall Menger’s theorem (directed, edge version).

Theorem 1 (Menger). Let D = (V,A) be a finite digraph with s 6= t ∈ V . Then the
maximum number of the pairwise edge-disjoint s → t paths is equal to the minimum
number of edges that cover all the s→ t paths.

Erdős observed during his school years that the theorem above remains true for infinite
digraphs (by saying cardinalities instead of numbers). He felt that this is not the “right”
infinite generalization of the finite theorem and he conjectured the “right” generalization
which was known as the Erdős-Menger conjecture. It is based on the observation that
in Theorem 1 an optimal cover consists of one edge from each path of an optimal path-
system. The Erdős-Menger conjecture states that for arbitrarily large digraphs there are
a path-system and a cover that satisfy these complementarity conditions. After a long
sequence of partial results the countable case has been settled affirmatively by R. Aharoni:

Theorem 2 (R. Aharoni, [1]). Let D = (V,A) be a countable digraph with s 6= t ∈ V .
Then there is a system P of edge-disjoint s → t paths such that there is an edge set C
which covers all the s→ t paths in D and C consists of one edge from each P ∈ P.

It is worth to mention that R. Aharoni and E. Berger proved the Erdős-Menger con-
jecture in its full generality in 2009 (see [2]) which was one of the greatest achievements
in the theory of infinite graphs. We present the following strengthening of the countable
Menger’s theorem above.

Theorem 3. Let D = (V,A) be a countable digraph with s 6= t ∈ V . Assume that there
is a finitary matroid Mv on the ingoing edges of v for any v ∈ V . Let M be the direct
sum of the matroids Mv. Then there is a system of edge-disjoint s→ t paths P such that
the united edge set of the paths is M-independent, and there is an edge set C consisting
of one edge from each element of P for which spanM(C) covers all the s→ t paths in D.

Note that on the one hand, if M is a free matroid in Theorem 3, then we get back
the edge version of the countable Menger’s theorem. On the other hand, if exactly the
singletons are independent inMv for v ∈ V \ {t} andMt is a free matroid, then P is an
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internally vertex-disjoint system of s → t paths. Furthermore, if there is no edge from s
to t, then the vertex set

C ′ := {tail(e) : e ∈ C ∩ inD(t)} ∪ {head(e) : e ∈ C \ inD(t)} ⊆ V \ {s, t}

covers all the s → t paths in D and consists of one internal vertex from each path in
P . Thus we obtained both the edge and the vertex version of the countable Menger’s
theorem as a special case of Theorem 3.

In the proof of Theorem 3 it will be more convenient focusing on t − s cuts (X ⊆ V
is a t − s cut if t ∈ X ⊆ V \ {s}) instead of dealing with covers directly. Let us call a
path-system P independent if A(P) is independent in M. Suppose that an independent
system P of edge-disjoint s → t paths and a t − s cut X satisfy the complementarity
conditions:

Condition 4.

1. A(P) ∩ outD(X) = ∅,

2. A(P) ∩ inD(X) spans inD(X) in M.

Then clearly P and C := A(P)∩ inD(X) satisfy the demands of Theorem 3. Therefore
it is enough to prove the following reformulation of the theorem.

3 Main result

Theorem 5. Let D = (V,A) be a countable digraph with s 6= t ∈ V and suppose that
there is a finitary matroid Mv on inD(v) for each v ∈ V and let M =

⊕
v∈V Mv. Then

there are a system P of edge-disjoint s → t paths where A(P) is independent in M and
a t− s cut X such that P and X satisfy the complementarity conditions (Condition 4).

Proof. Without loss of generality we may assume thatM does not contain loops. A pair
(W , X) is called a wave if X is a t−s cut andW is an independent system of edge-disjoint
s → X paths such that the second complementarity condition holds for W and X (i.e.
Alast(W) spans inD(X) in M).

Remark 6. By picking an arbitrary base B of out(s) and taking W := B as a set of
single-edge paths and X := V \ {s} we obtain a wave (W , X) thus there always exists
some wave.

We say that the wave (W1, X1) extends the wave (W0, X0) and write (W0, X0) 6
(W1, X1) if

1. X0 ⊇ X1,

2. W1 consists of the forward-continuations of some of the paths inW0 (i.e. every path
in W1 has an initial segment which is in W0) such that the continuations lie in X0,

3. W1 contains all of those paths of W0 that meet X1.
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If in addition W1 contains a forward-continuation of all the elements of W0, then
the extension is called complete. Note that 6 is a partial order on the waves and if
(W0, X0) 6 (W1, X1) holds, then the extension is proper (i.e. (W0, X0) < (W1, X1) ) iff
X1 ( X0.

Observation 7. If (W1, X1) is an incomplete extension of (W0, X0), then it is a proper
extension thus X1 ( X0. Furthermore, W1 and X0 do not satisfy the second complemen-
tarity condition (Condition 4/2).

Lemma 8. If a nonempty set X of waves is linearly ordered by 6, then X has a unique
smallest upper bound sup(X ).

Proof. We may suppose that X has no maximal element. Let 〈(Wξ, Xξ) : ξ < κ〉 be a
cofinal increasing sequence of (X ,6). We define X :=

⋂
ξ<κXξ and

W :=
⋃
ζ<κ

⋂
ζ<ξ

Wξ.

For P ∈ W we have V (P )∩Xξ = {end(P )} for all large enough ξ < κ hence V (P )∩X =
{end(P )}. The paths in W are pairwise edge-disjoint since P1, P2 ∈ W implies that
P1, P2 ∈ Wξ for all large enough ξ. Since the matroid M is finitary the same argument
shows that W is independent.

Suppose that e ∈ inD(X) \ A(W). For a large enough ξ < κ we have e ∈ inD(Xξ).
Then the last edges of those elements of Wξ that terminate in head(e) span e in M.
These paths have to be elements of all the further waves of the sequence (because of the
definition of 6) and thus of W as well. Therefore (W , X) is a wave and clearly an upper
bound.

Suppose that (Q, Y ) is another upper bound for X . Then Xξ ⊇ Y for all ξ < κ and
hence X ⊇ Y . Let Q ∈ Q be arbitrary. We know that Wξ contains an initial segment
Qξ of Q for all ξ < κ because (Q, Y ) is an upper bound (see the definition of 6). For
ξ < ζ < κ the path Qζ is a (not necessarily proper) forward-continuation of Qξ. From
some index the sequence 〈Qξ : ξ < κ〉 need to be constant, say Q∗, since Q is a finite
path. But then Q∗ ∈ W . Thus any Q ∈ Q is a forward-continuation of a path in W .
Finally assume that some P ∈ W meets Y . Pick a ξ < κ for which P ∈ Wξ. Then
(Wξ, Xξ) 6 (Q, Y ) guarantees P ∈ Q. Therefore (W , X) 6 (Q, Y ).

Remark 6 and Lemma 8 imply via Zorn’s Lemma the following.

Corollary 9. There exists a maximal wave. Furthermore, there is a maximal wave which
is greater or equal to an arbitrary prescribed wave.

Let (W , X) be a maximal wave. To prove Theorem 5 it is enough to show that
there is an independent system of edge-disjoint s → t paths P that consists of forward-
continuations of all the paths in W . Indeed, condition A(P) ∩ outD(X) = ∅ will be true
automatically (otherwise P would violate independence, when the violating path “comes
back” to X) and hence P and X will satisfy the complementarity conditions.
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We need a method developed by Lawler and Martel in [5] for the augmentation of
polymatroidal flows in finite networks which works in the infinite case as well.

Lemma 10. Let P be an independent system of edge-disjoint s → t paths. Then there
is either an independent system of edge-disjoint s → t paths P ′ with spanMt

(Alast(P)) (
spanMt

(Alast(P ′)) or there is a t − s cut X such that the complementarity conditions
(Condition 4) hold for P and X.

Proof. Call W an augmenting walk if

1. W is a directed walk with respect to the digraph that we obtain from D by changing
the direction of edges in A(P),

2. start(W ) = s and W meets s no more,

3. A(W )4A(P) is independent,

4. if for some initial segmentW ′ ofW the set A(W ′)4A(P) is not independent, then for
the one edge longer initial segmentW ′′ =W ′e the set A(W ′′)4A(P) is independent
again.

If there is an augmenting walk terminating in t, then let W be a shortest such a walk.
Build P ′ from the edges A(W )4A(P) in the following way. Keep untouched those P ∈ P
for which A(W ) ∩ A(P ) = ∅ and replace the remaining finitely many paths, say Q ⊆ P
where |Q| = k, by k + 1 new s → t paths constructed from the edges A(W )4A(Q) by
the greedy method. Obviously P ′ is an independent system of edge-disjoint s→ t paths.
We need to show that

spanMt
(Alast(P)) ( spanMt

(Alast(P ′)).

If only the last vertex of W is t, then it is clear. Let f1, e1, . . . , fn, en, fn+1 be the ingoing-
outgoing edge pairs of t in W with respect to the direction of W (enumerated with respect
to the direction of W ). The initial segments of W up to the inner appearances of t cannot
be augmenting walks (since W is a shortest that terminates in t) hence by condition 4 the
one edge longer and the one edge shorter segments are. It follows that for any 1 6 i 6 n
there exists a Mt-circuit Ci in

Ai := A(P) ∩ inD(t) + f1 − e1 + f2 − e2 + · · ·+ fi

and fi /∈ A(P) and ei ∈ Ci ∩A(P). It implies by induction that Ai \ {ei} spans the same
set in Mt as A(P) ∩ inD(t) whenever 1 6 i 6 n and hence An ∪ {fn+1} spans a strictly
larger set.

Suppose now that none of the augmenting walks terminates in t. Let us denote the
set of the last vertices of the augmenting walks by Y . We show that P and X := V \ Y
satisfy the complementarity conditions. Obviously X is a t − s cut. Suppose, to the
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contrary, that e ∈ A(P) ∩ outD(X). Pick an augmenting walk W terminating in head(e).
Necessarily e ∈ A(W ), otherwise We would be an augmenting walk contradicting the
definition of X. Consider the initial segment W ′ of W for which the following edge is e.
Then W ′e is an augmenting walk (if W ′ itself is not, then it is because of condition 4)
which leads to the same contradiction.

To show the second complementarity condition assume that f ∈ inD(X) \ A(P).
Choose an augmenting walkW that terminates in tail(f). We may suppose that f /∈ A(W )
otherwise we consider the initial segment W ′ of W for which the following edge is f (it
is an augmenting walk, otherwise W ′f would be by applying condition 4 contradicting
the definition of X). The initial segments of Wf that terminate in head(f) cannot be
augmenting walks. Let f1, e1, . . . , fn, en be the ingoing-outgoing edge pairs of head(f) in
W with respect to the direction of W (enumerated with respect to the direction of W )
and let fn+1 := f . Then for any 1 6 i 6 n+ 1 there is a unique M-circuit Ci in

A(P) ∩ inD(head(f)) + f1 − e1 + f2 − e2 + · · ·+ fi.

It follows by using condition 4 and the definition of X that for 1 6 i 6 n

1. fi /∈ A(P) and ei ∈ Ci ∩ A(P),

2. tail(ei), tail(fi) ∈ Y (tail with respect to the original direction),

3. Ci ⊆ inD(X).

Assume that we already know for some 1 6 i 6 n that fj is spanned by F := A(P)∩inD(X)
in M whenever j < i. Any element of Ci \ {fi} which is not in F has a form fj for some
j < i thus by the induction hypothesis it is spanned by F and hence we obtain that
fi ∈ spanM(F ) as well. By induction it is true for i = n+ 1.

Proposition 11. Assume that (W , X) and (Q, Y ) are waves where X ⊇ Y and Q consists
of the forward-continuation of some of the paths in W where the new terminal segments
lie in X. Let WY := {P ∈ W : end(P ) ∈ Y }. Then for an appropriate Q′ ⊆ Q the pair
(WY ∪Q′, Y ) is a wave with (W , X) 6 (WY ∪Q′, Y ).

Proof. The path-systemWY ∪Q (not necessarily disjoint union) is edge-disjoint since the
edges in A(Q) \A(W) lie in X. For the same reason it may violate independence only at
the vertices {end(P ) : P ∈ WY } ⊆ Y . Pick a base B of inD(Y ) for which

Alast(WY ) ⊆ B ⊆ Alast(WY ) ∪ Alast(Q).

It is routine to check that the choice Q′ = {P ∈ Q : A(P ) ∩B 6= ∅} is suitable.

For A0 ⊆ A let us denote (D−spanM(A0),M/spanM(A0)) by D(A0). We may iterate
this operation i.e. for A1 ⊆ A − spanM(A0) we define D(A0)(A1) similarly (which is of
course D(A0 ∪ A1)). Note that for any A0 the matroid corresponding to D(A0) has no
loops and (D,M) = D(∅) =: D.
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Observation 12. If (W , X) is a wave and for some A0 ⊆ A \ A(W) the set A0 ∪ A(W)
is independent, then (W , X) is a D(A0)-wave as well.

Lemma 13. If (W , X) is a maximal D-wave and e ∈ A \A(W) for which A(W)∪{e} is
independent, then all the extensions of the D(e)-wave (W , X) in D(e) are complete.

Proof. Assume that we have an incomplete extension (Q, Y ) of (W , X) with respect to
D(e). Observe that necessarily e ∈ inD(Y ) and rM(inD(Y )/Alast(Q)) = 1. Furthermore,
Y ( X by Observation 7.

We show that (W , X) has a proper extension with respect to D as well contradicting its
maximality. Without loss of generality we may assume that inD(X) = Alast(W). Indeed,
otherwise we delete the edges inD(X) \A(W) from D and fromM. It is routine to check
that after the deletion (W , X) is still a wave and a proper extension of it remains a proper
extension after putting back these edges.

Contract V \ X to s and contract Y to t in D and keep M unchanged. Apply
the augmenting walk method (Lemma 10) in the resulting system with the V \ X → Y
terminal segments of the paths in Q. If the augmentation is possible, then the assumption
inD(X) = Alast(W) ensures that the first edge of any element of the resulting path-system
R is the last edge of some path inW . By uniting the elements ofR with the corresponding
paths from W we can get a new independent system of edge-disjoint s → Y paths Q′
(with respect to D). Furthermore, rM(inD(Y )/Alast(Q)) = 1 guarantees that Alast(Q′)
spans inD(Y ) in M and hence (Q′, Y ) is a wave. Thus by Proposition 11 we get an
extension of (W , X) and it is proper because Y ( X which is impossible.

Thus the augmentation must be unsuccessful which implies by Lemma 10 that there
is some Z with Y ⊆ Z ⊆ X such that Z and Q satisfy the complementarity conditions.
By Observation 7 we know that Z ( X. For the initial segments QZ of the paths in Q up
to Z the pair (QZ , Z) forms a wave. Thus by applying Proposition 11 with (W , X) and
(QZ , Z) we obtain an extension of (W , X) which is proper because Z ( X contradicting
the maximality of (W , X).

Proposition 14. If (W , X) is a maximal wave and v ∈ X, then there is a v → t path Q
in D[X] such that A(W) ∪ A(Q) is independent.

Proof. It is equivalent to show that there exists a v → t path Q in D − spanM(A(W ))
(path Q will necessarily lie in D[X] because D− spanM(A(W )) does not contain any edge
entering into X.) Suppose, to the contrary, that it is not the case. Let X ′ ( X be the
set of those vertices in X that are unreachable from v in D − spanM(A(W )) (note that
v /∈ X ′ but t ∈ X ′ by the indirect assumption). Let W ′ consist of the paths in W that
meet X ′. If we prove that (W ′, X ′) is a wave, then we are done since it would be a proper
extension of the maximal wave (W , X). Assume that f ∈ inD(X ′) \ A(W ′). Then by the
definition of X ′ we have tail(f) ∈ V \ X thus f ∈ inD(X). Hence f is spanned by the
last edges of the paths inW terminating in head(f) and all these paths are inW ′ as well.
Therefore (W ′, X ′) is a wave.

Lemma 15. Let (W , X0) be a maximal wave and assume that P ∈ W and let W0 =
W \ {P}. Then there is an s-arborescence A such that
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1. A(P ) ⊆ A(A),

2. A(A) ∩ A(W0) = ∅,

3. A(A) ∪ A(W0) is independent,

4. t ∈ V (A),

5. there is a maximal wave with respect to D(A(A)) which is a complete extension of
the D(A(A))-wave (W0, X0).

Proof.

Proposition 16. The pair (W0, X0) = (W \ {P}, X0) is a maximal wave with respect to
D(A(P )).

Proof. It is clearly a wave thus we show just the maximality. Seeking a contradiction,
suppose that (Q, Y ) is a proper extension of (W \ {P}, X0) with respect to D(A(P )).
Necessarily end(P ) ∈ Y otherwise it would be a wave with respect to D which properly
extends (W , X0). Let e be the last edge of P . We know that Alast(Q) spans inD(Y ) in
M/e. Since A(Q) is [M/spanM(A(P ))]-independent it follows that (Q ∪ {P}, Y ) is a
D-wave. But then it properly extends (W , X0) which is a contradiction.

Fix a well-ordering of A with order type |A| 6 ω. We build the arborescence A by
recursion. Let A0 := P . Assume that Am,Wm and Xm have already been defined for
m 6 n in such a way that

1. A(Am) ∩ A(Wm) = ∅,

2. A(Am) ∪ A(Wm) is independent,

3. (Wm, Xm) is a maximal wave with respect to Dm := D(A(Am)) and a complete
extension of the Dm-wave (Wk, Xk) whenever k < m,

4. for 0 6 k < n we have Ak+1 = Ak + ek for some ek ∈ outD(V (Ak)).

If t ∈ V (An), then An satisfies the requirements of Lemma 15 thus we are done. Hence
we may assume that t /∈ V (An).

Proposition 17. outD−spanM(A(Wn))(V (An)) 6= ∅.

Proof. We claim that the Dn-wave (Wn, Xn) is not a D-wave. Indeed, suppose it is,
then end(P ) /∈ Xn (since Alast(Wn) does not span the last edge e of P ) and therefore
Xn ( X0 thus it extends (W , X0) properly with respect to D contradicting the maximality
of (W , X0). Hence the s-arborescence An needs to have an edge e ∈ inD(Xn). Let Q be a
path that we obtain by applying Proposition 14 with (Wn, Xn) and head(e) in the system
Dn. Consider the last vertex v of Q which is in V (An). Since v 6= t there is an outgoing
edge f of v in Q and hence f ∈ outD−spanM(A(Wn))(V (An)).
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Pick the smallest element en of outD−spanM(A(Wn))(V (An)) and let An+1 := An+en. Let
(Wn+1, Xn+1) be a maximal wave with respect to Dn+1 which extends (Wn, Xn) (exists
by Corollary 9 ). Lemma 13 ensures that it is a complete extension. The recursion is
done.

Suppose, to the contrary, that the recursion does not stop after finitely many steps
(i.e. the arborescence never reaches t). Let

A∞ :=

(
∞⋃
n=0

V (An),
∞⋃
n=0

A(An)

)
.

Note that A(A∞) is independent. Furthermore, 〈(Wn, Xn) : n < ω〉 is an 6-increasing se-
quence of D(A(A∞))-waves. Let (W∞, X∞) be a maximal D(A(A∞))-wave which extends
supn(Wn, Xn) (see Lemma 8).

It cannot be a wave with respect to D (the reason is similar as in the first part of the
proof of Proposition 17). Hence the s-arborescence A∞ contains an edge e ∈ inD(X∞).
Apply Proposition 14 with (W∞, X∞) and head(e) in the system D(A(A∞)). Consider
the last vertex v of the resulting Q which is in V (A∞). Since v 6= t by assumption there
is an outgoing edge f of v in Q. Then f ∈ outD−spanM(A(W∞))(V (A∞)) which implies that
for some n0 < ω we have f ∈ outD−spanM(A(Wn))(V (An)) whenever n > n0. But then the
infinitely many pairwise distinct edges {en : n0 < n < ω} are all smaller than f in our
fixed well-ordering of A which contradicts the fact that the type of this well-ordering is
at most ω.

Theorem 3 follows easily from Lemma 15. Indeed, pick a maximal wave (W0, X0)
with respect to D0 := D where W0 = {Pn}n<ω. Apply Lemma 15 with P0 ∈ W0.
The resulting arborescence A0 contains a unique s → t path P ∗0 which is necessarily a
forward-continuation of P0 (usage of a new edge from inD(X0) would lead to dependence).
Then by Lemma 15 we have a maximal wave (W1, X1) (where X1 ⊆ X0) with respect
to D1 := D0(A(A0)) such that W1 = {P 1

n}16n<ω where P 1
n is a forward-continuation of

Pn. Then we apply Lemma 15 with the D1-wave (W1, X1) and P 1
1 ∈ W1 and continue

the process recursively. By the construction
⋃
n<mA(P ∗n) is independent for each m < ω.

Since M is finitary
⋃
n<∞A(P ∗n) is independent as well thus P := {P ∗n}n<ω is a desired

paths-system that satisfies the complementarity conditions with X0.

4 Open problems

We suspect that one can omit the countability condition for D in Theorem 5 by analysing
the famous infinite Menger’s theorem [2] of Aharoni and Berger. We also think that it
is possible to put matroid constraints on the outgoing edges of each vertex as well but
this generalization contains the Matroid intersection conjecture for finitary matroids as a
special case, which problem is hard enough itself. The finitarity of the matroids is used
several times in the proof; we do not know yet if one can omit this condition.
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