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Abstract

We state a sufficient condition for the square of a locally finite graph to contain
a Hamilton circle, extending a result of Harary and Schwenk about finite graphs.

We also give an alternative proof of an extension to locally finite graphs of the
result of Chartrand and Harary that a finite graph not containing K4 or K2,3 as a
minor is Hamiltonian if and only if it is 2-connected. We show furthermore that,
if a Hamilton circle exists in such a graph, then it is unique and formed by the
2-contractible edges.

The third result of this paper is a construction of a graph which answers posi-
tively the question of Mohar whether regular infinite graphs with a unique Hamilton
circle exist.

Mathematics Subject Classifications: 05C63, 05C45

1 Introduction

Results about Hamilton cycles in finite graphs can be extended to locally finite graphs
in the following way. For a locally finite connected graph G we consider its Freudenthal
compactification |G| [7, 8]. This is a topological space obtained by taking G, seen as a
1-complex, and adding certain points to it. These additional point are the ends of G,
which are the equivalence classes of the rays of G under the relation of being inseparable
by finitely many vertices. Extending the notion of cycles, we define circles [9, 10] in |G| as
homeomorphic images of the unit circle S1 ⊆ R2 in |G|, and we call them Hamilton circles
of G if they contain all vertices of G. As a consequence of being a closed subspace of |G|,
Hamilton circles also contain all ends of G. Following this notion we call G Hamiltonian
if there is a Hamilton circle in |G|.
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One of the first and probably one of the deepest results about Hamilton circles was
Georgakopoulos’s extension of Fleischner’s theorem to locally finite graphs.

Theorem 1.1 ([13]). The square of any finite 2-connected graph is Hamiltonian.

Theorem 1.2 ([14, Thm. 3]). The square of any locally finite 2-connected graph is Hamil-
tonian.

Following this breakthrough, more Hamiltonicity theorems have been extended to locally
finite graphs in this way [1, 4, 14, 15, 18, 19, 21].

The purpose of this paper is to extend two more Hamiltonicity results about finite
graphs to locally finite ones and to construct a graph which shows that another result
does not extend.

The first result we consider is a corollary of the following theorem of Harary and
Schwenk. A caterpillar is a tree such that after deleting its leaves only a path is left.
Let S(K1,3) denote the graph obtained by taking the star with three leaves, K1,3, and
subdividing each edge once.

Theorem 1.3 ([16, Thm. 1]). Let T be a finite tree with at least three vertices. Then the
following statements are equivalent:

(i) T 2 is Hamiltonian.

(ii) T does not contain S(K1,3) as a subgraph.

(iii) T is a caterpillar.

Theorem 1.3 has the following obvious corollary.

Corollary 1.4 ([16]). The square of any finite graph G on at least three vertices such
that G contains a spanning caterpillar is Hamiltonian.

While the proof of Corollary 1.4 is immediate, the proof of the following extension
of it, which is the first result of this paper, needs more work. We call the closure H in
|G| of a subgraph H of G a standard subspace of |G|. Extending the notion of trees,
we define topological trees as topologically connected standard subspaces not containing
any circles. As an analogue of a path, we define an arc as a homeomorphic image of
the unit interval [0, 1] ⊆ R in |G|. Note that for standard subspaces being topologically
connected is equivalent to being arc-connected by Lemma 2.5. For our extension we adapt
the notion of a caterpillar to the space |G| and work with topological caterpillars, which
are topological trees T such that T − L is an arc, where T is a forest in G and L denotes
the set of vertices of degree 1 in T .

Theorem 1.5. The square of any locally finite connected graph G on at least three vertices
such that |G| contains a spanning topological caterpillar is Hamiltonian.
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The other two results of this paper concern the uniqueness of Hamilton circles. The
first is about finite outerplanar graphs. These are finite graphs that can be embedded
in the plane so that all vertices lie on the boundary of a common face. Clearly, finite
outerplanar graphs have a Hamilton cycle if and only if they are 2-connected. In a 2-
connected graph call an edge 2-contractible if its contraction leaves the graph 2-connected.
It is also easy to see that any finite 2-connected outerplanar graph has a unique Hamilton
cycle. This cycle consists precisely of the 2-contractible edges of the graph (except for the
K3), as pointed out by Sys lo [27]. We summarise this with the following proposition.

Proposition 1.6. (i) A finite outerplanar graph is Hamiltonian if and only if it is 2-
connected.

(ii) [27, Thm. 6] Finite 2-connected outerplanar graphs have a unique Hamilton cycle,
which consists precisely of the 2-contractible edges unless the graph is isomorphic to
a K3.

Finite outerplanar graphs can also be characterised by forbidden minors, which was
done by Chartrand and Harary.

Theorem 1.7 ([6, Thm. 1]). A finite graph is outerplanar if and only if it contains neither
a K4 nor a K2,3 as a minor.1

In the light of Theorem 1.7 we first prove the following extension of statement (i) of
Proposition 1.6 to locally finite graphs.

Theorem 1.8. Let G be a locally finite connected graph. Then the following statements
are equivalent:

(i) G is 2-connected and contains neither K4 nor K2,3 as a minor.1

(ii) |G| has a Hamilton circle C and there exists an embedding of |G| into a closed disk
such that C is mapped onto the boundary of the disk.

Furthermore, if statements (i) and (ii) hold, then |G| has a unique Hamilton circle.

From this we then obtain the following corollary, which extends statement (ii) of Propo-
sition 1.6.

Corollary 1.9. Let G be a locally finite 2-connected graph not containing K4 or K2,3 as
a minor, and not isomorphic to K3. Then the edges contained in the Hamilton circle of
|G| are precisely the 2-contractible edges of G.

We should note here that parts of Theorem 1.8 and Corollary 1.9 are already known.
Chan [5, Thm. 20 with Thm. 27] proved that a locally finite 2-connected graph not
isomorphic to K3 and not containing K4 or K2,3 as a minor has a Hamilton circle that

1Actually these statements can be strengthened a little bit by replacing the part about not containing
a K4 as a minor by not containing it as a subgraph. This follows from Lemma 4.1.
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consists precisely of the 2-contractible edges of the graph. He deduces this from other
general results about 2-contractible edges in locally finite 2-connected graphs. In our
proof, however, we directly construct the Hamilton circle and show its uniqueness without
working with 2-contractible edges. Afterwards, we deduce Corollary 1.9.

Our third result is related to the following conjecture Sheehan made for finite graphs.

Conjecture 1.10 ([26]). There is no finite r-regular graph with a unique Hamilton cycle
for any r > 2.

This conjecture is still open, but some partial results have been proved [17, 29, 30]. For
r = 3 the statement of the conjecture was first verified by C. A. B. Smith. This was noted
in an article of Tutte [31] where the statement for r = 3 was published for the first time.

For infinite graphs Conjecture 1.10 is not true in this formulation. It fails already with
r = 3. To see this consider the graph depicted in Figure 1, called the double ladder.

Figure 1: The double ladder

It is easy to check that the double ladder has a unique Hamilton circle, but all vertices have
degree 3. Mohar has modified the statement of the conjecture and raised the following
question. To state them we need to define two terms. We define the vertex- or edge-degree
of an end ω to be the supremum of the number of vertex- or edge-disjoint rays in ω,
respectively. In particular, ends of a graph G can have infinite degree, even if G is locally
finite.

Question 1 ([22]). Does an infinite graph exist that has a unique Hamilton circle and
degree r > 2 at every vertex as well as vertex-degree r at every end?

Our result shows that, in contrast to Conjecture 1.10 and its known cases, there are
infinite graphs having the same degree at every vertex and end while being Hamiltonian
in a unique way.

Theorem 1.11. There exists an infinite connected graph G with a unique Hamilton circle
that has degree 3 at every vertex and vertex- as well as edge-degree 3 at every end.

So with Theorem 1.11 we answer Question 1 positively and, therefore, disprove the mod-
ified version of Conjecture 1.10 for infinite graphs in the way Mohar suggested by consid-
ering degrees of both, vertices and ends.

The rest of this paper is structured as follows. In Section 2 we establish all necessary
notation and terminology for this the paper. We also list some lemmas that will serve as
auxiliary tools for the proofs of the main theorems. Section 3 is dedicated to Theorem 1.5
where at the beginning of that section we discuss how one can sensibly extend Corollary 1.4
and which problems arise when we try to extend Theorem 1.3 in a similar way. In Section 4
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we present a proof of Theorem 1.8. Afterwards we describe how a different proof of this
theorem works which copies the ideas of a proof of statement (i) of Proposition 1.6. We
conclude this section by comparing the two proofs. The last section, Section 5, contains
the construction of a graph witnessing Theorem 1.11.

2 Preliminaries

When we mention a graph in this paper we always mean an undirected and simple graph.
For basic facts and notation about finite as well as infinite graphs we refer the reader to
[7]. For a broader survey about locally finite graphs and a topological approach to them
see [8].

Now we list important notions and concepts that we shall need in this paper followed
by useful statements about them. In a graph G with a vertex v we denote by δ(v) the
set of edges incident with v in G. Similarly, for a subgraph H of G or just its vertex
set we denote by δ(H) the set of edges that have only one endvertex in H. Although
formally different, we will not always distinguish between a cut δ(H) and the partition
(V (H), V (G) \ V (H)) it is induced by. For two vertices v, w ∈ V (G) let dG(v, w) denote
the distance between v and w in G.

We call a finite graph outerplanar if it can be embedded in the plane such that all
vertices lie on the boundary of a common face.

For a graph G and an integer k > 2 we define the k-th power of G as the graph
obtained by taking G and adding additional edges vw for any two vertices v, w ∈ V (G)
such that 1 < dG(v, w) 6 k.

A tree is called a caterpillar if after the deletion of its leaves only a path is left.
We denote by S(K1,3) the graph obtained by taking the star with three leaves K1,3

and subdividing each edge once.
We call a graph locally finite if each vertex has finite degree.
A one-way infinite path in a graph G is called a ray of G, while we call a two-way

infinite path in G a double ray of G. Every ray contains a unique vertex that has degree 1
it. We call this vertex the start vertex of the ray. An equivalence relation can be defined
on the set of rays of a graph G by saying that two rays are equivalent if and only if
they cannot be separated by finitely many vertices in G. The equivalence classes of this
relation are called the ends of G. We denote the set of all ends of a graph G by Ω(G).

The union of a ray R with infinitely many disjoint paths Pi for i ∈ N each having
precisely one endvertex on R is called a comb. We call the endvertices of the paths Pi

that do not lie on R and those vertices v for which there is a j ∈ N such that v = Pj the
teeth of the comb.

The following lemma is a basic tool for infinite graphs. Especially for locally finite
graphs it helps us to get a comb whose teeth lie in a previously fixed infinite set of vertex.

Lemma 2.1 ([7, Prop. 8.2.2]). Let U be an infinite set of vertices in a connected graph
G. Then G contains either a comb with all teeth in U or a subdivision of an infinite star
with all leaves in U .
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For a locally finite and connected graph G we can endow G together with its ends with
a topology that yields the space |G|. A precise definition of |G| can be found in [7, Ch.
8.5]. Let us point out here that a ray of G converges in |G| to the end of G it is contained
in. Another way of describing |G| is to endow G with the topology of a 1-complex and
then forming the Freudenthal compactification [11].

For a point set X in |G|, we denote its closure in |G| by X. We shall often write M
for some M that is a set of edges or a subgraph of G. In this case we implicitly assume to
first identify M with the set of points in |G| which corresponds to the edges and vertices
that are contained in M .

We call a subspace Z of |G| standard if Z = H for a subgraph H of G.
A circle in |G| is the image of a homeomorphism having the unit circle S1 in R2 as

domain and mapping into |G|. Note that all finite cycles of a locally finite connected
graph G correspond to circles in |G|, but there might also be infinite subgraphs H of G
such that H is a circle in |G|. Similar to finite graphs we call a locally finite connected
graph G Hamiltonian if there exists a circle in |G| which contains all vertices of G. Such
circles are called Hamilton circles of G.

We call the image of a homeomorphism with the closed real unit interval [0, 1] as
domain and mapping into |G| an arc in |G|. Given an arc α in |G|, we call a point x
of |G| an endpoint of α if 0 or 1 is mapped to x by the homeomorphism defining α. If
the endpoint of an arc corresponds to a vertex of the graph, we also call the endpoint an
endvertex of the arc. Similarly as for paths, we call an arc an x–y arc if x and y are the
endpoints of the arc. Possibly the simplest example of a nontrivial arc is a ray together
with the end it converges to. However, the structure of arcs is more complicated in general
and they might contain up to 2ℵ0 many ends. We call a subspace X of |G| arc-connected
if for any two points x and y of X there is an x–y arc in X.

Using the notions of circles and arc-connectedness we now extend trees in a similar
topological way. We call an arc-connected standard subspace of |G| a topological tree if
it does not contain any circle. Note that, similar as for finite trees, for any two points
x, y of a topological tree there is a unique x–y arc in that topological tree. Generalizing
the definition of caterpillars, we call a topological tree T in |G| a topological caterpillar
if T − L is an arc, where T is a forest in G and L denotes the set of all leaves of T , i.e.,
vertices of degree 1 in T .

Now let ω be an end of a locally finite connected graph G. We define the vertex- or
edge-degree of ω in G as the supremum of the number of vertex- or edge-disjoint rays
in G, respectively, which are contained in ω. By this definition ends may have infinite
vertex- or edge-degree. Similarly, we define the vertex- or edge-degree of ω in a standard
subspace X of |G| as the supremum of vertex- or edge-disjoint arcs in X, respectively,
that have ω as an endpoint. We should mention here that the supremum is actually an
attained maximum in both definitions. Furthermore, when we consider the whole space
|G| as a standard subspace of itself, the vertex-degree in G of any end ω of G coincides
with the vertex-degree in |G| of ω. The same holds for the edge-degree. The proofs of
these statements are nontrivial and since it is enough for us to work with the supremum,
we will not go into detail here.
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We make one last definition with respect to end degrees which allows us to distinguish
the parity of degrees of ends when they are infinite. The idea of this definition is due to
Bruhn and Stein [3]. We call the vertex- or edge-degree of an end ω of G in a standard
subspace X of |G| even if there is a finite set S ⊆ V (G) such that for every finite set
S ′ ⊆ V (G) with S ⊆ S ′ the maximum number of vertex- or edge-disjoint arcs in X,
respectively, with ω as endpoint and some s ∈ S ′ is even. Otherwise, we call the vertex-
or edge-degree of ω in X, respectively, odd.

Next we collect some useful statements about the space |G| for a locally finite connected
graph G.

Proposition 2.2 ([7, Prop. 8.5.1]). If G is a locally finite connected graph, then |G| is a
compact Hausdorff space.

Having Proposition 2.2 in mind the following basic lemma helps us to work with
continuous maps and to verify homeomorphisms, for example when considering circles or
arcs.

Lemma 2.3. Let X be a compact space, Y be a Hausdorff space and f : X −→ Y be a
continuous injection. Then f−1 is continuous too.

The following lemma tells us an important combinatorial property of arcs. To state
the lemma more easily, let F̊ denote the set of inner points of edges e ∈ F in |G| for an
edge set F ⊆ E(G).

Lemma 2.4 ([7, Lemma 8.5.3]). Let G be a locally finite connected graph and F ⊆ E(G)
be a cut with sides V1 and V2.

(i) If F is finite, then V1 ∩ V2 = ∅, and there is no arc in |G| \ F̊ with one endpoint in
V1 and the other in V2.

(ii) If F is infinite, then V1 ∩ V2 6= ∅, and there may be such an arc.

The next lemma ensures that connectedness and arc-connectedness are equivalent for
the spaces we are mostly interested in, namely standard subspaces, which are closed by
definition.

Lemma 2.5 ([12, Thm. 2.6]). If G is a locally finite connected graph, then every closed
topologically connected subset of |G| is arc-connected.

We continue in the spirit of Lemma 2.4 by characterising important topological prop-
erties of the space |G| in terms of combinatorial ones. The following lemma deals with
arc-connected subspaces. It will be convenient for us to use this in a proof later on.

Lemma 2.6 ([7, Lemma 8.5.5]). If G is a locally finite connected graph, then a standard
subspace of |G| is topologically connected (equivalently: arc-connected) if and only if it
contains an edge from every finite cut of G of which it meets both sides.
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The next theorem is actually part of a bigger one containing more equivalent state-
ments. Since we shall need only one equivalence, we reduced it to the following formula-
tion. For us it will be helpful to check or at least bound the degree of an end in a standard
subspace just by looking at finite cuts instead of dealing with the homeomorphisms that
actually define the relevant arcs.

Theorem 2.7 ([8, Thm. 2.5]). Let G be a locally finite connected graph. Then the fol-
lowing are equivalent for D ⊆ E(G):

(i) D meets every finite cut in an even number of edges.

(ii) Every vertex of G has even degree in D and every end of G has even edge-degree in
D.

The following lemma gives us a nice combinatorial description of circles and will be
especially useful in combination with Theorem 2.7 and Lemma 2.6.

Lemma 2.8 ([3, Prop. 3]). Let C be a subgraph of a locally finite connected graph G.
Then C is a circle if and only if C is topologically connected, every vertex in C has degree
2 in C and every end of G contained in C has edge-degree 2 in C.

A basic fact about finite Hamiltonian graphs is that they are always 2-connected.
For locally finite connected graphs this is also a well-known fact, although it has not
separately been published. Since we shall need this fact later and can easily deduce it
from the lemmas above, we include a proof here.

Corollary 2.9. Every locally finite connected Hamiltonian graph is 2-connected.

Proof. Let G be a locally finite connected Hamiltonian graph and suppose for a contra-
diction that it is not 2-connected. Fix a subgraph C of G whose closure C is a Hamilton
circle of G and a cut vertex v of G. Let K1 and K2 be two different components of G− v.
By Theorem 2.7 the circle C uses evenly many edges of each of the finite cuts δ(K1) and
δ(K2). Since C is a Hamilton circle and, therefore, topologically connected, we also get
that it uses at least two edges of each of these cuts by Lemma 2.6. This implies that v
has degree at least 4 in C, which contradicts Lemma 2.8.

3 Topological caterpillars

In this section we close a gap with respect to the general question of when the k-th power
of a graph has a Hamilton circle. Let us begin by summarizing the results in this field. We
start with finite graphs. The first result to mention is the famous theorem of Fleischner,
Theorem 1.1, which deals with 2-connected graphs.

For higher powers of graphs the following theorem captures the whole situation.

Theorem 3.1 ([20, 25]). The cube of any finite connected graph on at least three vertices
is Hamiltonian.
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These theorems leave the question whether and when one can weaken the assumption
of being 2-connected and still maintain the property of being Hamiltonian. Theorem 1.3
gives an answer to this question.

Now let us turn our attention towards locally finite infinite graphs. As mentioned in
the introduction, Georgakopoulos has completely generalized Theorem 1.1 to locally finite
graphs by proving Theorem 1.2. Furthermore, he also gave a complete generalization of
Theorem 3.1 to locally finite graphs with the following theorem.

Theorem 3.2 ([14, Thm. 5]). The cube of any locally finite connected graph on at least
three vertices is Hamiltonian.

What is left and what we do in the rest of this section is to prove lemmas about
locally finite graphs covering implications similar to those in Theorem 1.3, and mainly
Theorem 1.5, which extends Corollary 1.4 to locally finite graphs.

Let us first consider a naive way of extending Theorem 1.3 and Corollary 1.4 to
locally finite graphs. Since we consider spanning caterpillars for Corollary 1.4, we need a
definition of these objects in infinite graphs that allows them to contain infinitely many
vertices. So let us modify the definition of caterpillars as follows: A locally finite tree is
called a caterpillar if after deleting its leaves only a finite path, a ray or a double ray is
left. Using this definition Theorem 1.3 remains true for locally finite infinite trees T and
Hamilton circles in |T 2|. The same proof as the one Harary and Schwenk [16, Thm. 1]
gave for Theorem 1.3 in finite graphs can be used to show this.

Corollary 1.4 remains also true for locally finite graphs using this adapted definition of
caterpillars. Its proof, however, is no trivial deduction anymore. The problem is that for a
spanning tree T of a locally finite connected graph G the topological spaces |T 2| and |G2|
might differ not only in inner points of edges but also in ends. More precisely, there might
be two equivalent rays in G2 that belong to different ends of T 2. So the Hamiltonicity of
T 2 does not directly imply the one of G2. However, for T being a spanning caterpillar of
G, this problem can only occur when T contains a double ray such that all subrays belong
to the same end of G. Then the same construction as in the proof for the implication
from (iii) to (i) of Theorem 1.3 can be used to build a spanning double ray in T 2 which
is also a Hamilton circle in |G2|. The idea for the construction which is used for this
implication is covered in Lemma 3.4.

The downside of this naive extension is the following. For a locally finite infinite graph
the assumption of having a spanning caterpillar is quite restrictive. Such graphs can
especially have at most two ends since having three ends would imply that the spanning
caterpillar must contain three disjoint rays. This, however, is impossible because it would
force the caterpillar to contain a S(K1,3). For this reason we have defined a topological
version of caterpillars, namely topological caterpillars. Their definition allows graphs with
arbitrary many ends to have a spanning topological caterpillar. Furthermore, it yields with
Theorem 1.5 a more relevant extension of Corollary 1.4 to locally finite graphs.

We briefly recall the definition of topological caterpillars. Let G be a locally finite
connected graph. A topological tree T in |G| is a topological caterpillar if T − L is an arc,
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where T is a forest in G and L denotes the set of all leaves of T , i.e., vertices of degree 1
in T .

The following basic lemma about topological caterpillars is easy to show and so we
omit its proof. It is an analogue of the equivalence of the statements (ii) and (iii) of
Theorem 1.3 for topological caterpillars.

Lemma 3.3. Let G be a locally finite connected graph. A topological tree T in |G| is a
topological caterpillar if and only if T does not contain S(K1,3) as a subgraph and all ends
of G have vertex-degree in T at most 2.

Before we completely turn towards the preparation of the proof of Theorem 1.5 let us
consider statement (i) of Theorem 1.3 again. A complete extension of Theorem 1.3 to lo-
cally finite graphs using topological caterpillars seems impossible because of statement (i).
To see this we should first make precise what the adapted version of statement (i) most
possibly should be. In order to state it let G denote a locally finite connected graph and
let T be a topological tree in |G|. Now the formulation of the adapted statement should
be as follows:

(i*) In the subspace T 2 of |G2| is a circle containing all vertices of T .

This statement does not hold if T has more than one graph theoretical component. There-
fore, it cannot be equivalent to T being a topological caterpillar in |G|, which is the
adapted version of statement (iii) of Theorem 1.3 for locally finite graphs. Note that any
two vertices of T lie in the same graph theoretical component of T if and only if they lie
in the same graph theoretical component of T 2. Hence, we can deduce that statement (i*)
fails if T has more than one graph theoretical component from the following claim.

Claim. Let G be a locally finite connected graph and let T be a topological tree in |G|.
Then there is no circle in the subspace T 2 of |G2| that contains vertices from different
graph theoretical components of T 2.

Proof. We begin with a basic observation. The inclusion map from G into G2 induces an
embedding from |G| into |G2| in a canonical way. Moreover, all ends of G2 are contained
in the image of this embedding. To see this note that any two non-equivalent rays in G
stay non-equivalent in G2 since G is locally finite. Furthermore, by applying Lemma 2.1
it is easy to see that every end in G2 contains a ray that is also a ray of G. This already
yields an injection from |G| to |G2| whose image contains all of Ω(G2). Verifying the
continuity of this map and its inverse is immediate.

Now let us suppose for a contradiction that there is a circle C in T 2 containing vertices
v, v′ from two different graph theoretical components K,K ′ of T 2. Say v ∈ V (K) and
v′ ∈ V (K ′). Let A1 and A2 denote the two v′–v arcs on C. Since A1 and A2 are disjoint
except from their endpoints, they have to enter K via different ends ω2

1 and ω2
2 of G2 that

are contained in K ⊆ |G2|. Say ω2
1 ∈ A1 and ω2

2 ∈ A2. By the observation above ω2
1 and

ω2
2 correspond to two different ends ω1 and ω2 of G. Only one of them, say ω1, lies on

the unique v′–v arc that is contained in the topological tree T . Now we modify A2 by

the electronic journal of combinatorics 25(3) (2018), #P3.13 10



replacing each edge uw of A2 which is not in E(T ) by a u–w path of length 2 that lies
in T . By Lemma 2.6 this yields an arc-connected subspace of T that contains v and v′.
By our observation above the unique v′–v arc in this subspace must contain the end ω2.
This, however, is a contradiction since we have found two different v′–v arcs in T .

Now we start preparing the proof of Theorem 1.5. For this we define a certain partition
of the vertex set of a topological caterpillar. Additionally, we define a linear order of these
partition classes. Let G be a locally finite connected graph and T a topological caterpillar
in |G|. Furthermore, let L denote the set of leaves of T . By definition, T − L is an arc,
call it A. This arc induces a linear order <A of the vertices of V (T )−L. For consecutive
vertices v, w ∈ V (T )− L with v <A w we now define the set

Pw := {w} ∪ (NT (v) ∩ L)

(cf. Figure 2). If A has a maximal element m with respect to <A, we define an additional
set P+ = NT (m) ∩ L. Should A have a minimal element s with respect to <A, we define
another additional set P− = {s}. The sets Pw, possibly together with P+ and P−, form
a partition PT of V (T ). For any v ∈ V (T ) we denote the corresponding partition class
containing v by Vv. Next we use the linear order <A to define a linear order <T on PT .
For any two vertices v, w ∈ V (T )− L with v <A w set Vv <T Vw. If P+ (resp. P−)
exists, set Pv <T P

+ (resp. P− <T Pv) for every v ∈ V (T )− L. Finally we define for two
vertices v, w ∈ V (T ) with Vv 6T Vw the set

Ivw :=
⋃
{Vu ; Vv 6T Vu 6T Vw}.

v w

Pw

Figure 2: The partition classes Pw.

The following basic lemma lists important properties of the partition PT together with
its order <T . The proof of this lemma is immediate from the definitions of PT and <T .
Especially for Lemma 3.5 and in the proof of Theorem 1.5 the listed properties will be
applied intensively. Furthermore, the proof that statement (iii) of Theorem 1.3 implies
statement (i) of Theorem 1.3 follows easily from this lemma.

Lemma 3.4. Let T be a topological caterpillar in |G| for a locally finite connected graph G.
Then the partition PT of V (T ) has the following properties:

(i) Any two different vertices belonging to the same partition class of PT have distance 2
from each other in T .

(ii) For consecutive partition classes Q and R with Q <T R, there is a unique vertex in
Q that has distance 1 in T to every vertex of R. For Q 6= P−, this vertex is the one
of Q that is not a leaf of T .
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Referring to statement (ii) of Lemma 3.4, let us call the vertex in a partition class Q ∈
PT that is not a leaf of T the jumping vertex of Q.

We still need a bit of notation and preparation work before we can prove the main
theorem of this section. Now let T denote a topological caterpillar with only one graph-
theoretical component. Let (X1,X2) be a bipartition of the partition classes Vv such that
consecutive classes with respect to 6T lie not both in X1, or in X2. Furthermore, let
v, w ∈ V (T ) be two vertices, say with Vv 6T Vw, whose distance is even in T . We define
a (v, w) square string S in T 2 to be a path in T 2 with the following properties:

1. S uses only vertices of partitions that lie in the bipartition class Xi in which Vv and
Vw lie.

2. S contains all vertices of partition classes Vu ∈ Xi for Vv <T Vu <T Vw.

3. S contains only v and w from Vv and Vw, respectively.

Similarly, we define (v, w], [v, w) and [v, w] square strings in T 2, but with the difference
in (3) that they shall also contain all vertices of Vw, Vv and Vv ∪ Vw, respectively. We call
the first two types of square strings left open and the latter ones left closed. The notion
of being right open and right closed is analogously defined. From the properties of PT

listed in Lemma 3.4, it is immediate how to construct square strings.
The next lemma gives us two possibilities to cover the vertex set of a graph-theoretical

component of a topological caterpillar T that contains a double ray. Each cover will
consist of two, possibly infinite, paths of T 2. Later on we will use these covers to connect
all graph-theoretical components of T in a certain way such that a Hamilton circle of G2

is formed.

Lemma 3.5. Let G be a locally finite connected graph and let T be a topological caterpillar
in |G|. Suppose T has only one graph-theoretical component and contains a double ray.
Furthermore, let v and w be vertices of T with Vv 6T Vw.

(i) If dT (v, w) is even, then in T 2 there exist a v–w path P , a double ray D and two
rays Rv and Rw with the following properties:

• P and D are disjoint as well as Rv and Rw.

• V (T ) = V (P ) ∪ V (D) = V (Rv) ∪ V (Rw).

• v and w are the start vertices of Rv and Rw, respectively.

• Rv ∩ Vx = ∅ for every Vx >T Vw.

• Rw ∩ Vy = ∅ for every Vy <T Vv.

(ii) If dT (v, w) is odd, then in T 2 there exist rays Rv, Rw, R
′
v, R

′
w with the following

properties:

• Rv and Rw are disjoint as well as R′v and R′w.
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• V (T ) = V (Rv) ∪ V (Rw) = V (R′v) ∪ V (R′w).

• v is the start vertex of Rv and R′v while w is the one of Rw and R′w.

• Rv ∩ Vx = R′w ∩ Vx = ∅ for every Vx >T Vw.

• Rw ∩ Vy = R′v ∩ Vy = ∅ for every Vy <T Vv.

Proof. We sketch the proof of statement (i). As v–w path P we take a square string Svw

in T 2 with v and w as endvertices. Depending whether v is a jumping vertex or not we
take a left open or closed square string, respectively. Depending on w we take a right
closed or open square string if w is a jumping vertex or not, respectively. Since dT (v, w) is
even, we can find such square strings. To construct the double ray D start with a (v−, w−]
square string in T 2 where v− and w− denote the jumping vertices in the partition classes
proceeding Vv and Vw, respectively. Using the properties (i) and (ii) of the partition PT

mentioned in Lemma 3.4, the (v−, w−] square string can be extend to a desired double
ray D containing all vertices of T that do not lie in Svw (cf. Figure 3).

To define Rv we start with a square string Sv having v as one endvertex. For the
definition of Sv we distinguish four cases. If v and w are jumping vertices, we set Sv as
a path obtained by taking a (v, w] square string and deleting w from it. If v is not a
jumping vertex, but w is one, take a [v, w] square string, delete w from it and set the
remaining path as Sv. In the case that v is a jumping vertex, but w is none, Sv is defined
as a path obtained from a (v, w) square string from which we delete w. In the case that
neither v nor w is a jumping vertex, we take a [v, w) square string, delete w from it and
set the remaining path as Sv. Next we extend Sv using a square string to a path with v
as one endvertex containing all vertices in partition classes Vu with Vv <T Vu <T Vw. We
extend the remaining path to a ray that contains also all vertices in partition classes Vu
with Vu 6T Vv, but none from partition classes Vx for Vx >T Vw. The desired second ray
Rw can now easily be build in T 2 −Rv.

The rays for statement (ii) are defined in a very similar way (cf. Figure 3). Therefore,
we omit their definitions here.

The following lemma is essential for connecting the parts of the vertex covers of two
different graph-theoretical components of T . Especially, here we make use of the structure
of |G| instead of arguing only inside of T or T 2. This allows us to build a Hamilton circle
using square strings and to “jump over” an end to avoid producing an edge-degree bigger
than 2 at that end.

Lemma 3.6. Let T be a spanning topological caterpillar of a locally finite connected
graph G and let v, w ∈ V (G) where Vv 6T Vw. Then for any two vertices x, y with
Vv <T Vx <T Vw and Vv <T Vy <T Vw there exists a finite x–y path in G[Ivw].

Proof. Let the vertices v, w, x and y be as in the statement of the lemma and, as before,
let L denote the set of leaves of T . Now suppose for a contradiction that there is no finite
x–y path in G[Ivw]. Then we can find an empty cut D of G[Ivw] with sides M and N such
that x and y lie on different sides of it. Since T ∩G[Ivw] contains an x–y arc, there must
exist an end ω ∈M ∩N ∩ T − L.
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Figure 3: Examples for covering the vertices of a caterpillar as in Lemma 3.5.

Let us show next that there exists an open set O in |G| that contains ω and, addition-
ally, every vertex in O is an element of Ivw. To see this we first pick a set OA ⊆ T − L
so that it is open in the subspace T − L, topologically connected and contains ω, but its
closure does not contain the jumping vertices of Vv and Vw. Now let O′ be an open set in
|G| witnessing that OA is open in T − L. We prove that O′ contains only finitely many
vertices of V (G) \ Ivw. Suppose for a contradiction that this is not the case. Then we
would find an infinite sequence (zn)n∈N of different vertices in O′ \ Ivw that must converge
to some point p ∈ |G| by the compactness of |G|. Since T is a spanning topological
caterpillar of G, it contains all the vertices zn. Using that G is locally finite, we get that
the jumping vertices of the sets Vzn also form a sequence that converges to p. So we
can deduce that p ∈ T − L, because T − L is a closed subspace containing all jumping
vertices. Hence, p ∈ O′ ∩ (T − L) = OA. This is a contradiction to our choice of OA en-
suring p /∈ OA. Hence, O′ contains only finitely many vertices of V (G)\Ivw, say v1, . . . , vn
for some n ∈ N. Before we define our desired set O using O′, note that Ov := |G| \ {v}
defines an open set in |G| for every vertex v ∈ V (G). Therefore, O := O′ ∩

⋂n
i=1Ovi is an

open set in |G| containing no vertex of V (G) \ Ivw.
Inside O we can find a basic open set B around ω, which contains a graph-theoretical

connected subgraph with all vertices of B. Now B contains vertices of M and N as well
as a finite path between them, which must then also exist in G[Ivw]. Such a path would
have to cross D contradicting the assumption that D is an empty cut in G[Ivw].

To figure out which parts of the vertex covers of which graph-theoretical components
of T we can connect such that afterwards we are still able to extend this construction to
a Hamilton circle of G, we shall use the next lemma. For the formulation of the lemma,
we use the notion of splits.

Let G be a multigraph and v ∈ V (G). Furthermore, let E1, E2 ⊆ δ(v) such that
E1 ∪ E2 = δ(v) but E1 ∩ E2 = ∅ where Ei 6= ∅ for i ∈ {1, 2}. Now we call a multigraph
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G′ a v-split of G if
V (G′) = V (G) \ {v} ∪ {v1, v2}

with v1, v2 /∈ V (G) and

E(G′) = E(G− v) ∪ {v1w ; wv ∈ E1} ∪ {v2u ; uv ∈ E2}.

We call the vertices v1 and v2 replacement vertices of v.

Lemma 3.7. Let G be a finite Eulerian multigraph and v be a vertex of degree 4 in G.
Then there exist two v-splits G1 and G2 of G both of which are also Eulerian.

Proof. There are 1
2
·
(
4
2

)
= 3 possible non-isomorphic v-splits of G such that v1 and

v2 have degree 2 in the v-split. Assume that one of them, call it G′, is not Eulerian.
This can only be the case if G′ is not connected. Let (A,B) be an empty cut of G′.
Note that G − v has precisely two components C1 and C2 since G is Eulerian and v
has degree 4 in G. So C1 and C2 must lie in different sides of (A,B), say C1 ⊆ A.
Since G was connected, we get that v1 and v2 lie in different sides of the cut (A,B),
say v1 ∈ A. Therefore, A = C1 ∪ {v1} and B = C2 ∪ {v2}. If δ(v) = {vw1, vw2, vw3, vw4}
and {v1w1, v1w2}, {v2w3, v2w4} ⊆ E(G′), set G1 and G2 as v-splits of G such that the
inclusions {v1w1, v1w3}, {v2w2, v2w4} ⊆ E(G1) and {v1w1, v1w4}, {v2w2, v2w3} ⊆ E(G2)
hold. Now G1 and G2 are Eulerian, because every vertex has even degree in each of those
multigraphs and both multigraphs are connected. To see the latter statement, note that
any empty cut (X, Y ) of Gi for i ∈ {1, 2} would need to have C1 and C2 on different sides.
If also v1 and v2 are on different sides, we would have (A,B) = (X, Y ), which does not
define an empty cut of Gi by definition of Gi. However, v1 and v2 cannot lie on the same
side of the cut (X, Y ). This is because otherwise the cut (X, Y ) would induce an empty
cut in G after identifying v1 and v2 in Gi. Since G is Eulerian and therefore especially
connected, we would have a contradiction.

Now we have all tools together to prove Theorem 1.5. Before we start the proof, let
us recall the statement of the theorem.

Theorem 1.5. The square of any locally finite connected graph G on at least three vertices
such that |G| contains a spanning topological caterpillar is Hamiltonian.

Proof. Let G be a graph as in the statement of the theorem and let T be a spanning
topological caterpillar of G. We may assume by Corollary 1.4 that G has infinitely many
vertices. Now let us fix an enumeration of the vertices, which is possible since every locally
finite connected graph is countable. We inductively build a Hamilton circle of G2 in at
most ω many steps. We ensure that in each step i ∈ N we have two disjoint arcs Ai and
Bi in |G2| whose endpoints are vertices of subgraphs Ai and Bi of G2, respectively. Let
ai` and air (resp. bi` and bir) denote the endvertices of Ai (resp. Bi) such that Vai` 6T Vair
(resp. Vbi` 6T Vbir). For the construction we further ensure the following properties in each
step i ∈ N:

1. The vertices air and bir are the jumping vertices of Vair and Vbir , respectively.
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2. The partition sets Vai` and Vbi` as well as Vair and Vbir are consecutive with respect to
6T .

3. If Vv ∩ V (Ai ∪Bi) 6= ∅ holds for any vertex v ∈ V (G), then Vv ⊆ V (Ai ∪Bi).

4. If for any vertex v ∈ V (G) there are vertices u,w ∈ V (G) such that
Vu, Vw ⊆ V (Ai ∪Bi) and Vu 6T Vv 6T Vw, then Vv ⊆ V (Ai ∪Bi) is true.

5. Ai ∩ Ai+1 = Ai and Bi ∩ Bi+1 = Bi, but V (Ai+1 ∪ Bi+1) contains the least vertex
with respect to the fixed vertex enumeration that was not already contained in
V (Ai ∪Bi).

We start the construction by picking two adjacent vertices t and t′ in T that are no
leaves in T . Then Vt and V ′t are consecutive with respect to 6T . Note that G2[Vt] and
G2[Vt′ ] are cliques by property (i) of the partition PT mentioned in Lemma 3.4. We set
A1 to be a Hamilton path of G2[Vt] with endvertex t and B1 to be one of G2[Vt′ ] with
endvertex t′. This completes the first step of the construction.

Suppose we have already constructed An and Bn. Let v ∈ V (G) be the least vertex
with respect to the fixed vertex enumeration that is not already contained in V (An∪Bn).
We know by our construction that either Vv <T Vx or Vv >T Vx for every vertex x ∈
V (An∪Bn). Consider the second case, since the argument for the first works analogously.
Let v′ ∈ V (G) be a vertex such that Vv′ is the predecessor of Vv with respect to 6T .
Further, let w ∈ V (G) be a vertex such that Vw >T Vanr , Vbnr and Vw is the successor of
either Vanr or Vbnr , say Vbnr . By Lemma 3.6 there exists a v′–w path P in G[Ibnr ,v]. We
may assume that E(P ) \ E(T ) does not contain an edge whose endvertices lie in the
same graph-theoretical component of T . Furthermore, we may assume that every graph-
theoretical component of T is incident with at most two edges of E(P )\E(T ). Otherwise
we could modify the path P using edges of E(T ) to meet these conditions.

Next we inductively define a finite sequence of finite Eulerian auxiliary multigraphs
H1, . . . , Hk where Hk is a cycle for some k ∈ N. Every vertex in each of these multigraphs
will have either degree 2 or degree 4. Furthermore, we shall obtain Hi+1 from Hi as a
h-split for some vertex h ∈ V (Hi) of degree 4 until we end up with a multigraph Hk that
is a cycle.

As V (H1) take the set of all graph-theoretical components T1, . . . , Tn of T that are
incident with an edge of E(P ) \E(T ). Two vertices Ti and Tj are adjacent if either there
is an edge in E(P )\E(T ) whose endpoints lie in Ti and Tj or there is a ti–tj arc A in T for
a subgraph A of T and vertices ti ∈ V (Ti) and tj ∈ V (Tj) such that no endvertex of any
edge of E(P ) \E(T ) lies in V (A) ∪NT (A). Since T is a spanning topological caterpillar,
the multigraph H1 is connected. By definition of P , the multigraph H1 is also Eulerian
where all vertices have either degree 2 or 4.

Now suppose we have already constructed Hi and there exists a vertex h ∈ V (Hi) with
degree 4 in Hi. Since Hi is obtained from H1 via repeated splitting operations, we know
that h is incident with two edges d, e in Hi that correspond to edges dP , eP , respectively,
of E(P ) \ E(T ). Furthermore, h is incident with two edges f, g that correspond to arcs Af
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and Ag, respectively, of T for subgraphs Af and Ag of T such that neither V (Af )∪NT (Af )
nor V (Ag)∪NT (Ag) contain an endvertex of an edge of E(P ) \ E(T ). Let Tj be the graph-
theoretical component of T in which each of dP and eP has an endvertex, say wd and we,
respectively. Here we consider two cases:

Case 1. The distance in Tj between wd and we is even.

In this case we define Hi+1 as a Eulerian h-split of Hi such that one of the following
two options holds for the edge di+1 in Hi+1 corresponding to d. The first option is that
di+1 is adjacent to the edge in Hi+1 corresponding to e. The second options is that di+1

is adjacent to the edge in Hi+1 corresponding to either f or g with the property that the
path in Tj connecting wd and Af (resp. Ag) does not contain we. This is possible since
two of the three possible non-isomorphic v-splits of Hi are Eulerian by Lemma 3.7.

Case 2. The distance in Tj between wd and we is odd.

Here we set Hi+1 as a Eulerian h-split of Hi such that the edge in Hi+1 corresponding
to d is not adjacent to the one corresponding to e. As in the first case, this is possible be-
cause two of the three possible non-isomorphic h-splits of Hi are Eulerian by Lemma 3.7.
This completes the definition of the sequence of auxiliary multigraphs.

Now we use the last auxiliary multigraph Hk of the sequence to define the arcs An+1

and Bn+1. Note that P is a w–v′ path in G[Ibnr ,v] where v′ and w lie in the same graph-
theoretical components Tv′ and Tw of T as v and bnr , respectively. Since we may assume
that E(P ) \ E(T ) 6= ∅ holds, let e ∈ E(P ) \ E(T ) denote the edge which contains one
endvertex we in Tw. Then either the distance between we and anr or between we and bnr is
even, say the latter one holds. Now we first extend Bn via a (bnr , we] square string in T 2

and An by a (anr , w
+
e ] square string in T 2 where Vw+

e
is the successor of Vwe with respect

to 6T and w+
e is the jumping vertex of Vw+

e
. Then we extend An further using a ray to

contain all vertices of partition classes Vx with Vx >T Vw+
e

for x ∈ Tw. This is possible
due to the properties (i) and (ii) of the partition PT mentioned in Lemma 3.4.

Next let P1 and P2 be the two edge-disjoint Tv′–Tw paths in Hk. Since every edge of
E(P ) \ E(T ) corresponds to an edge of Hk, we get that e corresponds either to P1 or
P2, say to the former one. Therefore, we will use P1 to obtain arcs to extend Bn and
P2 for arcs extending An. Now we make use of the definition of Hk via splittings. For
any vertex Tj of H1 of degree 4 we have performed a Tj-split. We did this in such a
way that the partition of the edges incident with Tj into pairs of edges incident with a
replacement vertex of Tj corresponds to a cover of V (Tj) via two, possibly infinite, paths
as in Lemma 3.5. So for every vertex of H1 of degree 4 we take such a cover. For every
graph-theoretical component Tm of T such that there exist two consecutive edges TiTj and
TjT` of P1 or P2 that do not correspond to edges of E(P )\E(T ) and Vti <T Vtm <T Vtj or
Vtj <T Vtm <T Vt` holds for every choice of ti ∈ Ti, tj ∈ Tj, t` ∈ T` and tm ∈ Tm, we take
a spanning double ray of T 2

m. We can find such spanning double rays by using again the
properties (i) and (ii) of the partition PT mentioned in Lemma 3.4. Since Hk = P1 ∪ P2

is a cycle, we can use these covers and double rays to extend An and Bn to be disjoint
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arcs αn and βn with endvertices on Tv′ . With the same construction that we have used
for extending An and Bn on Tw, we can extend αn and βn to have endvertices v′j and vj
which are the jumping vertices of Vv′ and Vv, respectively. Additionally, we incorporate
that these extensions contain all vertices of partition classes Vy for y ∈ Tv′ and Vy 6 Vv.
Then we take these arcs as An+1 and Bn+1 where An+1 and Bn+1 are the corresponding
subgraphs of G2 whose closures give the arcs. By setting an+1

r and bn+1
r to be v′j and

vj, depending on which of the two arcs An+1 or Bn+1 ends in these vertices, we have
guaranteed all properties from (1) to (5) for the construction.

Now the properties (3) − (5) yield not only that A and B are disjoint arcs for
A =

⋃
i∈NA

i and B =
⋃

i∈NB
i, but also that V (G) = V (A ∪ B). If there exists nei-

ther a maximal nor minimal partition class with respect to 6T , the union A ∪B forms a
Hamilton circle of G2 by Lemma 2.8. Should there exist a maximal partition class, say
Vanr for some n ∈ N with jumping vertex anr , the vertex anr will also be an endvertex of A.
In this case we connect the endvertices anr and bnr of A and B via an edge. Such an edge
exists since Vanr and Vbnr are consecutive with respect to 6T by property (2) and anr as well
as bnr are jumping vertices by property (1). Analogously, we add an edge if there exists
a minimal partition class. Therefore, we can always obtain the desired Hamilton circle
of G2.

4 Graphs without K4 or K2,3 as minor

We begin this section with a small observation which allows us to strengthen Theorem 1.8
a bit by forbidding subgraphs isomorphic to a K4 instead of minors.

Lemma 4.1. For graphs without K2,3 as a minor it is equivalent to contain a K4 as a
minor or as a subgraph.

Proof. One implication is clear. So suppose for a contradiction we have a graph without
a K2,3 as a minor that does not contain K4 as a subgraph but as a subdivision. Note that
containing a K4 as a subdivision is equivalent to containing a K4 as a minor since K4

is cubic. Consider a subdivided K4 where at least one edge e of the K4 corresponds to
a path Pe in the subdivision whose length is at least two. Let v be an interior vertex of
Pe and a, b be the endvertices of Pe. Let the other two branch vertices of the subdivision
of K4 be called c and d. Now we take {a, b, c, d, v} as branch vertex set of a subdivision
of K2,3. The vertices a and b can be joined to c and d by internally disjoint paths using
the ones of the subdivision of K4 except the path Pe. Furthermore, the vertex v can be
joined to a and b using the paths vPea and vPeb. So we can find a subdivision of K2,3 in
the whole graph, which contradicts our assumption.

Before we start with the proof of Theorem 1.8 we need to prepare two structural
lemmas. The first one will be very convenient for controlling end degrees because it
bounds the size of certain separators.
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Lemma 4.2. Let G be a 2-connected graph without K2,3 as a minor and let K0 be a
connected subgraph of G. Then |N(K1)| = 2 holds for every component K1 of G− (K0 ∪
N(K0)).

Proof. Let K0, G and K1 be defined as in the statement of the lemma. Since G is
2-connected, we know that |N(K1)| > 2 holds. Now suppose for a contradiction that
N(K1) ⊆ N(K0) contains three vertices, say u, v and w. Pick neighbours ui, vi and wi

of u, v and w, respectively, in Ki for i ∈ {0, 1}. Furthermore, take a finite tree Ti in
Ki whose leaves are precisely ui, vi and wi for i ∈ {0, 1}. This is possible because K0

and K1 are connected. Now we have a contradiction since the graph H with V (H) =
{u, v, w} ∪ V (T0) ∪ V (T1) and E(H) =

⋃1
i=0({uui, vvi, wwi} ∪E(Ti)) forms a subdivision

of K2,3.

Let G be a connected graph and H be a connected subgraph of G. We define the
operation of contracting H in G as taking the minor of G which is attained by contracting
in G all edges of H. Now let K be any subgraph of G. We denote by GK the following
minor of G: First contract in G each subgraph that corresponds to a component of G−K.
Then delete all multiple edges.

Obviously GK is connected if G was connected. We can push this observation a bit
further towards 2-connectedness with the following lemma.

Lemma 4.3. Let K be a connected subgraph with at least three vertices of a 2-connected
graph G. Then GK is 2-connected.

Proof. Suppose for a contradiction that GK is not 2-connected for some G and K as in
the statement of the lemma. Since K has at least three vertices, we obtain that GK has
at least three vertices too. So there exists a cut vertex v in GK . If v is also a vertex of G
and, therefore, does not correspond to a contracted component of G −K, then v would
also be a cut vertex of G. This contradicts the assumption that G is 2-connected.

Otherwise v corresponds to a contracted component of G−K. Note that two vertices
of GK both of which correspond to contracted components of G−K are never adjacent by
definition of GK . However, v being a cut vertex in GK must have at least one neighbour
in each component of GK − v. So in particular we get that v separates two vertices, say
x and y, of GK that do not correspond to contracted components of G−K. This yields
a contradiction because K is connected and, therefore, contains an x–y path. This path
still exists in GK and contradicts the statement that v separates x and y in GK .

We shall need another lemma for the proof Theorem 1.8. In that proof we shall
construct an embedding of an infinite graph into a fixed closed disk D by first embedding a
finite subgraph into D. Then we extend this embedding stepwise to bigger finite subgraphs
so that eventually we define an embedding of the whole graph intoD. The following lemma
will allow us to redraw newly embedded edges as straight lines in each step while keeping
the embedding of every edge that was already embedded as a straight line. Additionally,
we will be able to keep the embedding of those edges that are mapped into the boundary
of the disk.
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Lemma 4.4. Let G be a finite 2-connected outerplanar graph and C be its Hamilton cycle.
Furthermore, let σ : G −→ D be an embedding of G into a fixed closed disk D such that
C is mapped onto the boundary ∂D of D. Then there is an embedding σ∗ : G −→ D such
that

(i) σ∗(e) is a straight line for every e ∈ E(G) \ E(C).

(ii) σ∗(e) = σ(e) if e ∈ E(C) or σ(e) is a straight line.

Proof. We prove the statement by induction on ` := |E(G) \ E(C)|. For ` = 0 we can
choose the given embedding σ as our desired embedding σ∗. Now let ` > 1 and suppose
σ does not already fulfill all properties of σ∗. Then there exists an edge e ∈ E(G) \E(C)
such that σ(e) is not a straight line. Hence, G− e is still a 2-connected outerplanar graph
that contains C as its Hamilton cycle. Also σ �G−e is an embedding of G − e into D
such that C is mapped onto ∂D. So by the induction hypothesis we get an embedding
σ̃∗ satisfying (i) and (ii) with respect to σ �G−e. Now let e = uv and suppose for a
contradiction that we cannot additionally embed e as a straight line between u and v.
Then there exists an edge xy ∈ E(G − e) \ E(C) such that σ̃∗(xy) is crossed by the
straight line between u and v. Because σ̃∗(xy) is a straight line between x and y by
property (ii), we know that the vertices u, v, x and y are pairwise distinct. This, however,
is a contradiction to G being outerplanar since the cycle C together with the edges uv
and xy witness the existence of a K4 minor in G with u, v, x and y as branch sets. So we
can extend σ̃∗ by embedding e = uv as a straight line between u and v, which yields our
desired embedding of G into D.

With the lemmas above we are now prepared to prove Theorem 1.8. We recall the
formulation of the theorem.

Theorem 1.8. Let G be a locally finite connected graph. Then the following statements
are equivalent:

(i) G is 2-connected and contains neither K4 nor K2,3 as a minor.

(ii) |G| has a Hamilton circle C and there exists an embedding of |G| into a closed disk
such that C is mapped onto the boundary of the disk.

Furthermore, if statements (i) and (ii) hold, then |G| has a unique Hamilton circle.

Proof. First we show that (ii) implies (i). Since G is Hamiltonian, we know by Corol-
lary 2.9 that G is 2-connected. Suppose for a contradiction that G contains K4 or K2,3 as a
minor. Then G has a finite subgraph H which already has K4 or K2,3 as a minor. Now take
any finite connected subgraph K0 of G which contains H and set K = G[V (K0) ∪N(K0)].
Next let us take an embedding of |G| as in statement (ii) of this theorem. It is easy to
see using Lemma 4.2 that our fixed embedding of |G| induces an embedding of GK into a
closed disk such that all vertices of GK lie on the boundary of the disk. This implies that
GK is outerplanar. So GK can neither contain K4 nor K2,3 as a minor by Theorem 1.7,
which contradicts that H is a subgraph of GK .
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Now let us assume (i) to prove the remaining implication. We set K0 as an arbi-
trary connected subgraph of G with at least three vertices. Next we make the definition
Ki+1 = G[V (Ki) ∪N(Ki)] for every i > 0. Inside G we define the vertex sets
Li = {v ∈ V (Ki) ; N(v) ⊆ V (Ki)} for every i > 1. Let then K̃i+1 = GKi+1

− Li for every
i > 1. By Lemma 4.3 we know that GKi

is 2-connected for each i > 0. Furthermore, GKi

contains neither K4 nor K2,3 as a minor for every i > 0 since it would also be a minor
of G contradicting our assumption. So each GKi

is outerplanar by Theorem 1.7. Using
statement (ii) of Proposition 1.6 we obtain that each GKi

has a unique Hamilton cycle
Ci and that there is an embedding σi of GKi

into a fixed closed disk D such that Ci is
mapped onto the boundary ∂D of D. Set Ei = E(Ci) ∩ E(Ki) for every i > 1.

Next we define an embedding of G into D and extend it to the desired embedding
of |G|. We start by taking σ1. Note again that GK1 is a finite 2-connected outerplanar
graph by Lemma 4.3. Furthermore, σ1(C1) = ∂D. So we can use Lemma 4.4 to obtain
an embedding σ∗1 : GK1 −→ D as in the statement of that lemma. Because of Lemma 4.2
we can extend σ∗1 �K1 using σ2 �K̃2

, maybe after rescaling the latter embedding, to obtain
an embedding ϕ2 : GK2 −→ D such that ϕ2(C2) = ∂D. We apply again Lemma 4.4 with
ϕ2, which yields an embedding σ∗2 : GK2 −→ D as in the statement of that lemma. Note
that this construction ensures σ∗2 �K1= σ∗1 �K1 . Proceeding in the same way, we get an
embedding σ∗ : G −→ D by setting σ∗ :=

⋃
i∈N σ

∗
i �Ki

. The use of Lemma 4.4 in the
construction of σ∗ ensures that all edges are embedded as straight lines unless they are
contained in any Ei. However, all edges in the sets Ei, and therefore also all vertices of G,
are embedded into ∂D. Furthermore, we may assure that σ∗ has the following property:

Let (Mi)i>1 be any infinite sequence of components Mi of G−Ki where
Mi+1 ⊆Mi. Also, let {ui, wi} be the neighbourhood of Mi in G. Then the se-
quences (σ∗(ui))i>1 and (σ∗(wi))i>1 converge to a common point on ∂D.

(∗)

It remains to extend this embedding σ∗ to an embedding σ∗ of all of |G| into D. First
we shall extend the domain of σ∗ to all of |G|. For this we need to prove the following
claim.

Claim 1. For every end ω of G there exists an infinite sequence (Mi)i>1 of components
Mi of G−Ki with Mi+1 ⊆Mi such that

⋂
i>1Mi = {ω}.

Since Ki is finite, there exists a unique component of G−Ki in which all ω-rays have
a tail. Set this component as Mi. It follows from the definition that ω lies in Mi. Further-
more, we get that

⋂
i>1Mi does neither contain any vertex nor an inner point of any edge.

So suppose for a contradiction that
⋂

i>1Mi contains another end ω′ 6= ω. We know there
exists a finite set S of vertices such that all tails of ω-rays lie in a different component
of G − S than all tails of ω′-rays. By definition of the graphs Ki we can find an index
j such that S ⊆ V (Kj). So ω lies in Mj and ω′ in M ′

j where M ′
j is the component of

G − Kj in which all tails of ω′-rays lie. Since G is locally finite, the cut E(Mj, Kj) is
finite. Using Lemma 2.4 we obtain that Mj ∩M ′

j = ∅. Therefore, ω′ /∈ Mj ⊇
⋂

i>1Mi.
This contradiction completes the proof of the claim.
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Now let us define the map σ∗. For every vertex or inner point of an edge x, we
set σ∗(x) = σ∗(x). For an end ω let (Mi)i>1 be the sequence of components Mi of G−Ki

given by Claim 1 and {ui, wi} be the neighbourhood of Mi in G. Using property (∗) we
know that (σ∗(ui))i>1 and (σ∗(wi))i>1 converge to a common point pω on ∂D. We use this
to set σ∗(ω) = pω. This completes the definition of σ∗.

Next we prove the continuity of σ∗. For every vertex or inner point of an edge x, it
is easy to see that an open set around σ∗(x) in D contains σ∗(U) for some open set U
around x in |G|. This holds because G is locally finite and so it follows from the definition
of σ∗ using the embeddings σ∗i . Let us check continuity for ends. Consider an open set
O around σ∗(ω) in D, where ω is an end of G. Let Bε(σ

∗(ω)) denote the restriction to
D of an open ball around σ∗(ω) with radius ε > 0. Then Bε(σ

∗(ω)) is an open set and,
for sufficiently small ε, contained in O. We fix such an ε for the rest of this proof. Let
(Mi)i>1 be a sequence as in Claim 1 for ω and {ui, wi} be the neighbourhood of Mi in G.
By property (∗) and the definition of σ∗, we get that (σ∗(ui))i>1 and (σ∗(wi))i>1 converge
to σ∗(ω) on ∂D. So there exists a j ∈ N such that Bε(σ

∗(ω)) contains σ∗(ui) and σ∗(wi)
for every i > j. By the definitions of σ∗ and σ∗ using the embeddings σ∗i , it follows that
σ∗(Mj) $ Bε(σ

∗(ω)) ⊆ O. At this point we use the property of σ∗ that every edge of G
is embedded as a straight line unless it is embedded into ∂D. Hence, if vw ∈ E(G) and
σ∗(v), σ∗(w) ∈ Bε(σ

∗(ω)), then σ∗(vw) is also contained in Bε(σ
∗(ω)) by the convexity

of the ball. Since Mj together with the inner points of the edges of E(Mj, Kj) is a basic
open set in |G| containing ω whose image under σ∗ is contained in O, continuity holds for
ends too.

The next step is to check that σ∗ is injective. If x and y are each either a vertex or
an inner point of an edge, then they already lie in some Kj. By the definition of σ∗ we
get that σ∗(x) = σ∗(y) if and only if there exists a j ∈ N such that x and y are mapped
to the same point by the embedding of Kj defined by

⋃j
i=1 σ

∗
i �Ki

. So x and y need to be
equal.

For an and ω of G, let (Mi)i>1 be a sequence of components of G − Ki such that⋂
i>1Mi = {ω}, which exists by Claim 1. Let {ui, wi} be the neighbourhood of Mi in G.

Since G is locally finite, there exists an integer j such that y lies in Kj if it is a vertex or
an inner point of an edge, or y lies in M ′

j for some component M ′
j 6= Mj of G −Kj if y

is an end of G that is different from ω. By the definition of σ∗ and property (∗) we get
that the arc on ∂D between σ∗(uj) and σ∗(wj) into which the vertices of Mj are mapped
contains also σ∗(ω) but not y. Hence, σ∗(ω) 6= σ∗(y) if ω 6= y. This shows the injectivity
of the map σ∗.

To see that the inverse function of σ∗ is continuous, note that |G| is compact by
Proposition 2.2 and D is Hausdorff. So Lemma 2.3 immediately implies that the inverse
function of σ∗ is continuous. This completes the proof that σ is an embedding.

It remains to show the existence of a unique Hamilton circle of G that is mapped onto
∂D by σ. For this we first prove that ∂D ⊆ Im(σ). This then implies that the inverse
function of σ∗ restricted to ∂D is a homeomorphism defining a Hamilton circle of G since
it contains all vertices of G. We begin by proving the following claim.

Claim 2. For every infinite sequence (Mi)i>1 of components Mi of G−Ki with
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Mi+1 ⊆Mi there exists an end ω of G such that
⋂

i>1Mi = {ω}.

Let (Mi)i>1 be any sequence as in the statement of the claim. Since for every vertex
v there exists a j ∈ N such that v ∈ Kj, we get that

⋂
i>1Mi is either empty or contains

ends of G. Using that each Mi is connected and that Mi+1 ⊆ Mi, we can find a ray R
such that every Mi contains a tail of R. Therefore,

⋂
i>1Mi contains the end in which R

lies. The argument that
⋂

i>1Mi contains at most one end is the same as in the proof of
Claim 1. This completes the proof of Claim 2.

Suppose a point p ∈ ∂D does not already lie in Im(σ∗). Then it does not lie in
Im(σ∗i �Ki

) for any i > 1. So there exists an infinite sequence (Mi)i>1 of components Mi

of G−Ki with Mi+1 ⊆Mi such that p lies in the arc Ai of ∂D between σ∗(ui) and σ∗(wi)
into which the vertices of Mi are mapped, where {ui, wi} denotes the neighbourhood of Mi

in G. Using Claim 2 we obtain that there exists an end ω of G such that
⋂

i>1Mi = {ω}.
By property (∗) of the map σ∗ the sequences (σ∗(ui))i>1 and (σ∗(wi))i>1 converge to a
common point on ∂D. This point must be p since the arcs Ai are nested. Now the
definition of σ∗ tells us that σ∗(ω) = p. Hence ∂D ⊆ Im(σ∗) and G is Hamiltonian.

We finish the proof by showing the uniqueness of the Hamilton circle of G. Suppose
for a contradiction that G has two subgraphs C1 and C2 yielding different Hamilton
circles C1 and C2. Then there must be an edge e ∈ E(C1) \ E(C2). Let j ∈ N be
chosen such that e ∈ E(Kj). By Lemma 4.2 we obtain that GKj

[E(C1) ∩ E(GKj
)] and

GKj
[E(C2) ∩ E(GKj

)] are two Hamilton cycles of GKj
differing in the edge e. Note that

GKj
is a finite 2-connected outerplanar graph. The argument for this is the same as for

GK in the proof that (ii) implies (i). This yields a contradiction since GKj
has a unique

Hamilton cycle by statement (ii) of Proposition 1.6.

Next we deduce Corollary 1.9. Let us recall its statement first.

Corollary 1.9. The edges contained in the Hamilton circle of a locally finite 2-connected
graph not containing K4 or K2,3 as a minor are precisely the 2-contractible edges of the
graph unless the graph is isomorphic to a K3.

Proof. Let G be a locally finite 2-connected graph not isomorphic to a K3 and not con-
taining K4 or K2,3 as a minor. Further, let C be the subgraph of G such that C is the
Hamilton circle of G. First we show that each edge e ∈ E(C) is a 2-contractible edge.
Note for this that the closure of the subgraph of G/e formed by the edge set E(C) \ {e}
is a Hamilton circle in |G/e|. Hence, G/e is 2-connected by Corollary 2.9.

It remains to verify that no edge of E(G)\E(C) is 2-contractible. For this we consider
any edge e = uv ∈ E(G) \ E(C). Let K be a finite connected induced subgraph of G
containing at least four vertices as well as N(u) ∪ N(v), which is a finite set since G
is locally finite. Then we know by Lemma 4.3 and by using the locally finiteness of G
again that GK is a finite 2-connected graph not containing K4 or K2,3 as a minor. So by
Theorem 1.7 and Proposition 1.6 we get that GK has a unique Hamilton cycle consisting
precisely of its 2-contractible edges. However, as we have seen in the proof of Theorem 1.8,
GK [E(C) ∩ E(GK)] is the unique Hamilton cycle of GK and does not contain e. Since
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GK is outerplanar, we get that the vertex of GK/e corresponding to the edge e is a cut
vertex in GK/e. By our choice of K containing N(u) ∪ N(v), we get that the vertex in
G/e corresponding to the edge e is a cut vertex of G/e too. So e is not 2-contractible.

The question arises whether one could prove the more complicated part of Theorem 1.8,
the implication (i) =⇒ (ii), by mimicking a proof for finite graphs. To see the positive
answer for this question, let us summarize the proof for finite graphs except the part
about the uniqueness.

By Theorem 1.7 every finite graph without K4 or K2,3 as a minor can be embedded
into the plane such that all vertices lie on a common face boundary. Since every face of
an embedded 2-connected graph is bounded by a cycle, we obtain the desired Hamilton
cycle.

So for our purpose we would first need to prove a version of Theorem 1.7 for |G| where
G is a locally finite connected graph. This can similarly be done in the way we have
defined the embedding for the Hamilton circle in Theorem 1.8 by decomposing the graph
into finite parts using Lemma 4.2. Since none of these parts contains a K4 or a K2,3 as a
minor, we can fix appropriate embeddings of them and stick them together. However, in
order to obtain an embedding of |G| we have to be careful. We also need to ensure that
the embeddings of finite parts that converge to an end in |G| also converge to a point in
the plane where we can map the corresponding end to.

The second ingredient of the proof is the following lemma pointed out by Bruhn and
Stein, but which is a corollary of a stronger and more general result of Richter and
Thomassen [24, Prop. 3].

Lemma 4.5 ([2, Cor. 21]). Let G be a locally finite 2-connected graph with an embedding
ϕ : |G| −→ S2. Then the face boundaries of ϕ(|G|) are circles of |G|.

These observations show that the proof idea for finite graphs is still applicable for locally
finite graphs.

Let us compare the proof for the implication (i) =⇒ (ii) of Theorem 1.8 that we
sketched right above, with the one we outlined completely. The two proofs share a big
similarity. Both need to show first that |G| can be embedded into the plane such that all
vertices lie on a common face boundary if G is a connected or 2-connected, respectively,
locally finite graph without K4 or K2,3 as a minor. At this point the proof we outlined
completely already incorporates further properties into the embedding without too much
additional effort. Especially, we use the 2-connectedness of the graph there by finding
suitable finite 2-connected contraction minors. Then we apply Proposition 1.6 for these.
The embeddings we obtain for the contraction minors allow us to define an embedding
of |G| into a fixed closed disk. Furthermore, this embedding of |G| has the additional
property that its restriction onto the boundary of the disk directly witnesses the existence
of a Hamilton circle. The second proof, however, takes a step backward and argues more
general. There the 2-connectedness of G is used to apply Lemma 4.5, which, as noted
before, is a corollary of a more general result of Richter and Thomassen [24, Prop. 3].
At this point we forget about the special embedding of |G| into the plane that we had
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to construct before. We continue the argument with an arbitrary one given that G is a
2-connected locally finite graph. So for the purpose of proving the implication (i) =⇒ (ii)
of Theorem 1.8, the outlined proof is more straightforward and self-contained.

5 A cubic infinite graph with a unique Hamilton circle

This section is dedicated to Theorem 1.11. We shall construct an infinite graph with a
unique Hamilton circle where all vertices in the graph have degree 3. Furthermore, all
ends of that graph have vertex-degree 3 as well as edge-degree 3. The main ingredient
in our construction is the finite graph T depicted in Figure 4. This graph has three
distinguished vertices of degree 1, which we denote by u, l and r as in Figure 4. For
us, the important feature of T is that we know where all Hamilton paths, i.e., spanning
paths, of T − u and T − r proceed. Tutte [31] came up with the graph T to construct a
counterexample to Tait’s conjecture [28], which said that every 3-connected cubic planar
graph is Hamiltonian. The crucial observation of Tutte in [31] was that T − u does not
contain a Hamilton path. We shall use this observation as well, but we need more facts
about T , which are covered in the following lemma. The proof is straightforward, but
involves several cases that need to be distinguished. Therefore, we omit the proof.

Lemma 5.1. There is no Hamilton path in T − u, but there are precisely two in T − r
(see Figure 4).

` r

u

T
v

w
x y

c
t

s

` r

u

T
v

w
x y

t
c

s

` r

u

T
v

w
x y

c
t

s

Figure 4: The fat edges in the most left picture are in every Hamilton path of T − r. The
fat edges in the other two pictures mark the two Hamilton paths of T − r.

Using Lemma 5.1 we shall now prove Theorem 1.11 by constructing a prescribed graph.
During the construction we shall often refer to certain distinguished vertices of T that are
named as depicted in Figure 4. Let us recall the statement of the theorem.

Theorem 1.11. There exists an infinite connected graph G with a unique Hamilton circle
that has degree 3 at every vertex and vertex- as well as edge-degree 3 at every end.

Proof. We construct a sequence of graphs (Gn)n∈N inductively and obtain the desired one
G as a limit of the sequence. We start with G0 = T 1

0 = T .
Now suppose we have already constructed Gn for n > 0. Furthermore, let

{T i
n ; 1 6 i 6 2n} be a specified set of disjoint subgraphs of Gn each of which each is
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isomorphic to T . We define Gn+1 as follows. Take Gn and two copies Tc and Tv of T
for each T i

n ⊆ Gn. Then identify for every i the vertices of Tc that correspond to u, `
and r, respectively, with the vertices of the related T i

n ⊆ Gn corresponding to `, s and t,
respectively. Also identify for every i the vertices of Tv corresponding to u, ` and r, re-
spectively, with the ones of the related T i

n ⊆ Gn corresponding to w, x and y, respectively.
Finally, delete in each T i

n ⊆ Gn the vertices corresponding to c and v, see Figure 5. This
completes the definition of Gn+1. It remains to fix the set of 2n+1 many disjoint copies of
T that occur as disjoint subgraphs in Gn+1. For this we take the set of all copies Tc and
Tv of T that we have inserted in the subgraphs T i

n of Gn.

` r

u

T
v

w
x y

c
t

s

` r

u

G1

T 1
1

T 2
1

t

s

x
w

y

Figure 5: A sketch of the construction of G1. The fat black, grey and dashed edges
incident with the grey vertices in the right picture correspond to the ones in the left
picture.

Using the graphs Gn we define a graph Ĝ as a limit of them. We set

Ĝ = G[Ê] where Ê =

{
e ∈

⋃
n∈N

E(Gn) ; ∃N ∈ N : e ∈
⋂
n>N

E(Gn)

}
.

Note that an edge e ∈ E(Gn) is an element of Ê if and only if it was not deleted during
the construction of Gn+1 as an edge incident with one of the vertices that correspond to
c or v in T i

n for some i. Finally, we define G as the graph obtained from Ĝ by identifying
the three vertices that correspond to u, ` and r of T 1

0 .
Next let us verify that every vertex of G has degree 3 and that every end of G has

vertex- as well as edge-degree 3 in G. Since every vertex of T except u, ` and r has
degree 3, the construction ensures that every vertex of G has degree 3 too. In order to
analyse the end degrees, we have to make some observations first. The edges of G that
are adjacent to vertices corresponding to u, ` and r of any T i

n define a cut E(Ai
n, B

i
n) of G.

Note that for any finite cut of a graph all rays in one end of the graph have tails that lie
completely on one side of the cut. Therefore, the construction of G ensures that for every
end ω of G there exists a function f : N −→ N with f(n) ∈ {1, . . . , 2n} such that all rays

in ω have tails in B
f(n)
n for each n ∈ N and B

f(n)
n ⊇ B

f(n+1)
n+1 with

⋂
n∈NB

f(n)
n = ∅. Using

that |E(Ai
n, B

i
n)| = 3 for every n and i, this implies that every end of G has edge-degree

at most 3. Since there are three disjoint paths from {u, `, r} to {s, `, t} as well as to
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{x,w, y} in T , we can also easily construct three disjoint rays along the cuts E(Ai
n, B

i
n)

that belong to an arbitrary chosen end of G. So every end of G has vertex-degree 3. In
total this yields that every end of G has vertex- as well as edge-degree 3 in G.

It remains to prove that G has precisely one Hamilton circle. We begin by stating
the edge set of the subgraph C defining the Hamilton circle C of G. Let E(C) consist of
those edges of E(G) ∩ T i

n for every n and i that correspond to the fat edges of T in the
most right picture of Figure 4. Now consider any finite cut D of G. The construction of
G yields that there exists an N ∈ N such that D is already a cut of the graph obtained
from Gn by identifying the vertices corresponding to u, ` and r of T 1

0 ⊆ Gn for all n > N .
Using this observation we can easily see that every vertex of G has degree 2 in C. We also
obtain that every finite cut is met at least twice, but always in an even number of edges
of C. By Lemma 2.6 we get that C is topologically and also arc-connected. Therefore,
every end of G has edge-degree at least 1 and at most 3 in C. Together with Theorem 2.7
this implies that every end of G has edge-degree 2 in C. Hence, Lemma 2.8 tells us that
C is a circle, which is Hamiltonian since it contains all vertices of G.

We finish the proof by showing that C is the unique Hamilton circle of G. Since
any Hamilton circle H of G meets each cut E(Ai

n, B
i
n) precisely twice, H induces a path

through T that contains all vertices of T except one out of the set {u, `, r}. By Lemma 5.1
we know that such paths must contain the edge adjacent to u. Let us consider any T i

n in
Gn. Now let T j

n+1 be the copy of T whose vertices of degree 1 we have identified with the
vertices corresponding to the neighbours of c in T i

n during the construction of Gn+1. The
way we have identified the vertices implies that the path induced by H through T i

n must
also use the edge adjacent to ` since the induced path in T j

n+1 must use the edge adjacent
to u. With a similar argument we obtain that the induced path inside T i

n must use the
edge corresponding to vw. We know from Lemma 5.1 that there is a unique Hamilton
path in T − r that uses the edges `c and vw, namely the one corresponding to the fat
edges in the most right picture of Figure 4. So the edges which must be contained in
every Hamilton circle are precisely those of C.

Remark. After reading a preprint of this paper Max Pitz [23] carried further some ideas
of this paper. Also using the graph T , he recently constructed a two-ended cubic graph
with a unique Hamilton circle where both ends have vertex- as well as edge-degree 3. He
further proved that every one-ended Hamiltonian cubic graph whose end has edge-degree
3 (or vertex-degree 3) admits a second Hamilton circle.
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