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Abstract

The Hales-Jewett theorem for alphabet of size 3 states that whenever the Hales-
Jewett cube [3]n is r-coloured there is a monochromatic line (for n large). Conlon
and Kamcev conjectured that, for any n, there is a 2-colouring of [3]n for which
there is no monochromatic line whose active coordinate set is an interval. In this
note we disprove this conjecture.

Mathematics Subject Classifications: 05D10

1 Introduction

In order to state the Hales-Jewett theorem we need some notation. Given positive integers
k and n let [k]n be the set of all words in symbols {1, . . . , k} of length n. A set L ⊂ [k]n

is called a combinatorial line if there exist a nonempty set S ⊂ [n] and integers ai ∈ [k]
for all i 6∈ S such that L = {(x1, . . . , xn) : xi = ai for all i 6∈ S, xi = xj for all i, j ∈ S}.
The set S is called the set of active coordinates of L.

Theorem 1. (Hales-Jewett [2]). For any k and r there exists n such that whenever [k]n

is r-coloured there is a monochromatic combinatorial line.

As noted by Conlon and Kamcev in [1], by following Shelah’s proof [3] of the Hales-
Jewett theorem it can be shown that one can always find a monochromatic combinatorial
line whose active coordinate set S is an union of at most HJ(k − 1, r) intervals, where
HJ(k− 1, r) is the smallest integer n for which the Hales-Jewett theorem holds for k− 1
and r.

In the case k = 3, since HJ(2, r) = r, this says that one can always find a monochro-
matic line whose active coordinate set is a union of at most r intervals. Conlon and
Kamcev proved in [1] that this bound is tight for r odd: in other words, they showed that
for each odd r there is an r-colouring of [3]n (for any n) for which every monochromatic
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line has active coordinate set made up of at least r intervals. They conjectured that this
would also be the case for r even. In particular, for r = 2, they conjectured that for all n
there exists a 2-colouring of [3]n for which there exists no monochromatic combinatorial
line whose active coordinate set is an interval.

In this note we will prove that, perhaps surprisingly, their conjecture is false. This
can be stated in the following form.

Theorem 2. For all sufficiently large n, whenever [3]n is 2-coloured there exists a
monochromatic combinatorial line whose active coordinate set is an interval.

2 The proof of Theorem 2

The idea of the proof is as follows. By applying Ramsey’s theorem, we will pass to a
subspace on which the colour of a word depends only on its ‘pattern’ of intervals, and not
on its ‘breakpoints’ (the places where the word changes from one letter to another). Once
this is done, we can consider some particular small patterns.

For a word w let w be obtained from w by contracting every interval on which w is
a constant to a single letter. We will consider the particular words s1 = 132, s2 = 1232,
s3 = 1312, s4 = 13232 and s5 = 13132. Set ti to be the length of the word si. Put
n0 = 4 and for 1 6 i 6 5 let ni = R(ti−1)(ni−1) where R(t)(s) = R(t)(s, s) is the t-set
Ramsey-number. Finally set n = n5 + 1.

Let c be any 2-colouring of [3]n. For a word w we define the set of breakpoints T (w)
by T (w) = {a1, . . . , am} if wai−1+1 = · · · = wai and wai 6= wai+1 for all 1 6 i 6 m + 1,
with the convention a0 = 0, am+1 = n. For example, w = 1122333111 has breakpoints
T (w) = {2, 4, 7}.

Let s be a sequence of length t and T1 = {a1, . . . , am} ⊂ [n − 1] with |T1| = t − 1.
We say that w ∈ [3]n has breakpoints in T1 with pattern s if T (w) = T1 and w = s. For
example w = 1122333111 has breakpoints T (w) = {2, 4, 7} with pattern s = 1231. Note
that if w = s then there exists a unique set T1 of size |s| − 1 for which w has breakpoints
T1 with pattern s.

Set T5 = [n − 1]. Suppose that |Ti| > ni is given, and recall that ti is the length of
the word si defined at the start of the proof. For all A ∈ [n− 1](ti−1) define wA to be the
unique sequence which has breakpoints A with pattern si.

Now c induces a 2-colouring ci on the set T
(ti−1)
i given by ci(A) = c(wA). Hence

by Ramsey’s theorem and the choice of ni’s it follows that there exists Ti−1 ⊂ Ti with

|Ti−1| > ni−1 such that T
(ti−1)
i−1 is monochromatic for the colouring ci, say with colour di.

Thus we obtain sets T0 ⊂ T1 ⊂ · · · ⊂ T5 with |T0| > 4 and colours d1 . . . , d5 such that

ci restricted to T
(ti+1−1)
i is constant with value di+1. Note that it is impossible to choose

colours d1, . . . , d5 without at least one of the following sets

N1 = {d1, d2}
N2 = {d1, d3}
N3 = {d2, d4}
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N4 = {d3, d5}
N5 = {d1, d4, d5}

having just one element (i.e. all colours being equal). Indeed, if all the sets N1, N2, N3, N4

contain both colours we must have d2 = d3 and d1 = d4 = d5, which implies that |N5| = 1.
Let a1 < a2 < a3 < a4 be elements of T0. We will use the shorthand w = [b1b2b3b4b5] for

the word which has wi = bj for all aj−1 < i 6 aj with the convention a0 = 0 and a5 = n.
Note that we will allow bi = bi+1. Hence T (w) ⊂ {a1, . . . , a4} ⊂ T0 and w = b1b2b3b4b5.

Set w1 = [13332], w2 = [12232], w3 = [13112], w4 = [13232] and w5 = [13132]. It is
easy to verify that for all i we have wi = si and also T (wi) ⊂ T0 ⊂ Ti−1. Furthermore set
v1 = [11132], v2 = [11232], v3 = [13122] and u1 = [13222]. As before it is easy to verify
that vi = si, u1 = s1, and by construction T (vi) ⊂ T0 ⊂ Ti−1 and T (u1) ⊂ T0. Thus by
definition of the sets Ti−1 it follows that c(wi) = di, c(vi) = di and c(u1) = d1.

It is straightforward to verify that

• v1, w2, w1 forms a combinatorial line L1 with S1 = {a1 + 1, . . . , a3}

• w3, u1, w1 forms a combinatorial line L2 with S2 = {a2 + 1, . . . , a4}

• v2, w2, w4 forms a combinatorial line L3 with S3 = {a1 + 1, . . . , a2}

• w3, v3, w5 forms a combinatorial line L4 with S4 = {a3 + 1, . . . , a4}

• w5, w4, w1 forms a combinatorial line L5 with S5 = {a2 + 1, . . . , a3}

It is clear that the colours used to colour elements of the line Li are exactly the colours
in the set Ni. As observed earlier, one of the sets Ni contains only one colour, which
implies that the associated line Li is monochromatic. Since all the sets Si are intervals,
this completes the proof.
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