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Department of Mathematics
University of South Carolina

Columbia, South Carolina, U.S.A.

szekely@math.sc.edu

Hua Wang‡

Department of Mathematical Sciences
Georgia Southern University
Statesboro, Georgia, U.S.A.

hwang@georgiasouthern.edu

Shuai Yuan
Department of Mathematics
University of South Carolina

Columbia, South Carolina, U.S.A.

syuan@math.sc.edu

Submitted: Aug 25, 2016; Accepted: July 2, 2018; Published: Jul 27, 2018

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We determine the maximum distance between any two of the center, centroid,
and subtree core among trees with a given order. Corresponding results are obtained
for trees with given maximum degree and also for trees with given diameter. The
problem of the maximum distance between the centroid and the subtree core among
trees with given order and diameter becomes difficult. It can be solved in terms of
the problem of minimizing the number of root-containing subtrees in a rooted tree
of given order and height. While the latter problem remains unsolved, we provide
a partial characterization of the extremal structure.

Mathematics Subject Classifications: 05C05, 05C12, 05C35

1 Preliminaries

Many real-valued functions defined on the vertex set of a tree have been studied in the
literature. Such functions are closely related to graph invariants motivated from practical
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applications (such as the Wiener index in biochemistry [11]) or pure mathematical study
(such as the subtree density [4]). In this paper we are interested in the eccentricity
and distance of a vertex, as well as the number of subtrees containing a vertex. Both
eccentricity and distance of a vertex are minimized at one vertex or two adjacent vertices.
These vertices define the center and centroid respectively of the tree. The number of
subtrees containing a vertex is maximized by one vertex or two adjacent vertices, called
the subtree core of the tree.

The study of the center and centroid (Definitions 1.1 and 1.2) can be traced back to [5].
This paper focuses on the three different middle parts of the tree: the center, the centroid,
and the subtree core. We investigate the geometry of their possible locations, in particular
the extremal problem of how far they can be from each other. The resulting three problems
are solved in Section 2 for arbitrary trees of fixed order, and the corresponding extremal
structures are also characterized. In Section 3, the same three problems are solved for
degree bounded trees and conjectures are proposed for the case of binary trees of fixed
order. In Section 4, we consider the same questions for trees with fixed order and bounded
diameter. In this setting, the maximum distance between the center and the centroid and
between the center and the subtree core are determined, but the problem of the maximum
distance between the centroid and the subtree core becomes challenging. It can be solved
in terms of the problem of minimizing the number of root-containing subtrees in a rooted
tree of given order and height. While this latter problem remains unsolved, in Section 5
we provide a partial characterization of the extremal structure.

Let us begin with formal definitions. The distance in the tree from u to v, denoted
d(u, v), is the number of edges on their unique connecting path P (u, v).

Definition 1.1. The eccentricity of a vertex v in a tree T is

eccT (v) = max
u∈V (T )

d(v, u).

The center of T , denoted C(T ), is the set of vertices which have the minimum eccentricity
among all vertices in the tree.

Definition 1.2. The distance of a vertex v in a tree T , denoted dT (v), is

dT (v) =
∑

u∈V (T )

d(v, u).

The centroid of T , denoted CT (T ), is the set of vertices which have the minimum distance
among all vertices in the tree.

A subtree of tree T is a connected subgraph which is induced on a nonempty set of
vertices. We consider T to be a subtree of itself and a single vertex is also a subtree of T .

Definition 1.3. As the name suggests, the number of subtrees of a vertex v in a tree T ,
denoted FT (v), is the number of subtrees of T which contain v. The subtree core of a tree
T , denoted Core(T ), is the set of vertices that maximize the function FT (.) [8].
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If H is a forest and v is a vertex in H, then FH(v) will be defined, as above, to be
the number of subtrees of H which contain vertex v. In particular, all subtrees which are
counted must be subtrees of the component of H which contains vertex v.

Jordan [5] found that C(T ) consists of either one vertex or two adjacent vertices (see
also Ex. 6.21a in [6]). Given the vertices along any path of a tree, the sequence of FT (.)
function values is strictly concave down ([8]), the sequence of d(.) function values are
strictly concave up (Ex. 6.22 in [6]; [3]), and the sequence of eccT (.) function values are
concave up (Ex. 6.21 in [6]). Strict concavity immediately implies that the sets CT (T )
and Core(T ) either consist of one vertex or two adjacent vertices.

We are specifically interested in how the middle sets are located, relative to one an-
other. It is well-known that C(T ) and CT (T ) can be far apart (Ex. 6.22c in [6]), and
that Core(T ) can differ from them [8].

There are some natural questions that we will explore. How close to each other can
they be? How far apart can they be spread? Must they lie on a common path? Can they
appear in any ordering?

It is easy to find trees where C(T ), CT (T ), and Core(T ) coincide, like the star and
paths of even length to name a few. It is more interesting to see how far apart these
middle sets can be in a single tree.

Considering one vertex from each of C(T ), CT (T ), and Core(T ), any two of these
must lie on a common path. However, it is possible that the vertices from C(T ), CT (T ),
and Core(T ) in the same tree T do not all lie on a common path. Figure 1 provides an
example of this very situation.

. . .

v u

w

︸ ︷︷ ︸
11 vertices

︸ ︷︷ ︸
14 vertices

︸ ︷︷ ︸
15 vertices

︸ ︷︷ ︸
11 vertices

︸ ︷︷ ︸
11 vertices

Figure 1: A tree with v ∈ C(T ), u ∈ CT (T ), w ∈ Core(T ) which do not lie on a common
path. Further, all of these middle parts are singletons.

On the other hand, when the vertices of C(T ), CT (T ), Core(T ) happen to lie on the
same path, they can appear in any order. Figure 2 provides some illustrations.

Among the examples with different ordering of middle vertices, it is interesting to
observe that vertices in Core(T ) often have large degree; vertices in C(T ) often have
small degree; while vertices in CT (T ) behave somewhat between the previous two.

Before proceeding to examining the largest distances between different middle parts,
we formalize some necessary and sufficient conditions for a vertex to be in a middle part.
Although not all of them are formally stated in the literature, we leave their relatively
straightforward proofs to the reader.
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. . .
v uw ︸ ︷︷ ︸

10 vertices
︸ ︷︷ ︸
13 vertices ︸ ︷︷ ︸

10 vertices

︸ ︷︷ ︸
10 vertices

︸ ︷︷ ︸
10 vertices

. . .
w uv ︸ ︷︷ ︸

10 vertices
︸ ︷︷ ︸
10 vertices︸ ︷︷ ︸

11 vertices

︸ ︷︷ ︸
10 vertices

︸ ︷︷ ︸
10 vertices

w vu

Figure 2: Trees with vertices v ∈ C(T ), u ∈ CT (T ), w ∈ Core(T ) on a common path,
but in different orders. Here each middle part is a singleton.

Proposition 1.4. Let T be a tree with at least two vertices. A vertex v is in the center
C(T ) if and only if there are two leaves, u and w, such that P (v, u) ∩ P (v, w) = {v},
d(v, u) = eccT (v), and d(v, w) > eccT (v)− 1.

Corollary 1.5. If there are two leaves u,w such that d(v, w) = d(v, u) = eccT (v), then
C(T ) = {v}. If no such w exists, then |C(T )| = 2 where the neighbor of v on P (u, v) is
also in the center.

Next we give a characterization of the vertices in CT (T ). Note that if uv is an edge in
tree T , then T − uv will denote the forest that results after the deletion of edge uv from
T .

Proposition 1.6. Let T be a tree with at least two vertices. A vertex u is in the centroid
CT (T ) if and only if for each neighbor v of u, we have

nuv(v) 6 nuv(u)

where nuv(u) (nuv(v)) denotes the number of vertices in the component containing u (v)
in T − uv. Furthermore, if u ∈ CT (T ) and equality holds above, then v ∈ CT (T ) as well.

Lastly, Proposition 1.7 gives a characterization of Core(T ).

Proposition 1.7. A vertex u is in Core(T ) if and only if for each neighbor v of u, we
have

FT−uv(u) > FT−uv(v).

Furthermore, if u ∈ Core(T ) and equality holds above, then v ∈ Core(T ) as well.

For completeness, we provide a proof for the following simple fact.
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︸ ︷︷ ︸
r vertices

Figure 3: An r-comet of order n.

Claim 1.8. Among rooted trees of order n, the number of subtrees containing the root is
at most 2n−1, achieved only by the star rooted at the center; and at least n, achieved only
by the path rooted at one end vertex.

Proof. We proceed by induction on n. Let T be a tree of order n with root ρ and let ρ be
of degree k with neighbors v1, . . . , vk. Denote by Ti the connected component containing
vi in T − {ρ} and let ni = |V (Ti)|.

Then

FT (r) =
k∏

i=1

(1 + FTi
(vi)) 6

k∏
i=1

(
1 + 2ni−1

)
6

k∏
i=1

2ni = 2n−1,

where the first inequality follows from induction hypothesis and equality holds in the
second inequality if and only if ni = 1 for all i (and consequnely k = n− 1); and

FT (r) =
k∏

i=1

(1 + FTi
(vi)) >

k∏
i=1

(1 + ni) > 1 +
k∑

i=1

ni = n,

where the first inequality follows from induction hypothesis and equality holds in the
second inequality if and only if k = 1 and T1 is a path with v1 as a leaf.

2 Maximum distances between middle parts in general trees

In a tree T , the distance d(S, S ′) between vertex sets S and S ′ is defined as the Hausdorff
distance min{d(u, v) : u ∈ S, v ∈ S ′}. Fix an arbitrary n ∈ Z+. Among all trees with
n vertices, we determine the maximum distance that can be realized between the center,
centroid, and subtree core. We will also see that these maximum distances are achieved
precisely when T has a “comet” structure.

Definition 2.1 (Barefoot, Entringer, Székely [2]). An r-comet of order n is formed by
attaching n− r pendant vertices to one end vertex of a path on r vertices (Figure 3).

2.1 Between center and centroid

Theorem 2.2. Fix an arbitrary n ∈ Z+. For any tree T with n > 3 vertices,

d(C(T ), CT (T )) 6

⌊
n− 3

4

⌋
. (1)
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Proof. Fix a tree T on n vertices. Let v ∈ C(T ) and u ∈ CT (T ) such that the graph
distance between u and v is precisely d(C(T ), CT (T )). We assume d(u, v) > 1, otherwise
we have nothing to prove. By the choice of u and v, no vertex on the path P (u, v) other
than u and v is in the center or the centroid of T .

Let P (u, v) denote the path connecting u and v and let Tu denote the component
containing u in T − E(P (u, v)). By Proposition 1.6,

|V (Tu)| > n− |V (Tu)|.

This implies

|V (Tu)| > n

2
.

Let w be a leaf such that P (v, w) and P (u, v) are disjoint, except for v, and the length
of P (v, w) is maximum. Because v ∈ C(T ) and the neighbor of v on P (u, v) is not in
C(T ), Proposition 1.4 tells

d(v, w) = eccT (v).

As n > 3, u is not a leaf. Hence it is easy to see that

d(u, v) 6 eccT (v)− 1.

Therefore, we have

n

2
> n− |V (Tu)| > d(u, v) + d(v, w) > 2d(u, v) + 1.

This implies

d(u, v) <
n− 2

4
.

In particular, if n = 4k + r with r ∈ {0, 1, 2}, then

k − 1

2
6

4k + r − 2

4
6 k.

Since d(u, v) < n−2
4

, when n ≡ r mod 4 for r ∈ {0, 1, 2}, d(u, v) 6 k − 1 where k =
⌊
n
4

⌋
.

When n = 4k + 3,

d(u, v) <
n− 2

4
=

4k + 1

4
= k +

1

4
.

As a result, d(u, v) 6 k.

Proposition 2.3. Let k :=
⌊
n
4

⌋
. Equality holds in (1) exactly when n and T fall into one

of the following categories:

• n = 4k and T is the 2k-comet.

• n = 4k + 1 or n = 4k + 2 and T is one of the following trees:

– 2k-comet
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– 2k-comet on n−1 vertices together with one vertex pendant to one of the degree
2 vertices on the path of the comet

– a tree consisting of a path on 2k+ 1 vertices with an end vertex identified with
the root of a height 2 tree

• n = 4k + 3 and T is a (2k + 2)-comet.

Proof. As in the proof of Theorem 2.2, let v ∈ C(T ) and u ∈ CT (T ) such that the graph
distance between u and v is precisely d(C(T ), CT (T )). Above, we obtained d(u, v) 6⌊
n−3
4

⌋
from ⌊

n− 1

2

⌋
> n− |V (Tu)| (2)

> d(u, v) + d(v, w) (3)

> 2d(u, v) + 1. (4)

If
⌊
n−1
2

⌋
is odd, then d(u, v) =

⌊
n−3
4

⌋
when all of the inequalities above are tight.

Equality in (3) implies that all vertices not in Tu form a path P (u,w). Equality in (4)
implies that the height of Tu is 1 because the neighbor of v on P (u, v) is not in C(T ).
This, together with equality in (2) characterizes the

⌊
n+1
2

⌋
-comet. In particular, when

n = 4k, this is the 2k-comet, and when n = 4k + 3, this is the 2k + 2-comet.
On the other hand, notice that 2d(u, v) + 1 is odd. So when

⌊
n−1
2

⌋
is even, all inequal-

ities cannot be equalities. In particular, exactly one will be strict. If (2) is the one which
is strict, then we have the

⌊
n−1
2

⌋
-comet. If (3) is the one which is strict, then we have

a
⌊
n+1
2

⌋
-comet on n − 1 vertices with one extra vertex pendant to one of the degree 2

vertices. If (4) is the one which is not strict, then Tu has height 2 but all
⌊
n−1
2

⌋
vertices

not in Tu still lie on the path P (u,w).

2.2 Between centroid and subtree core

Next we turn our attention to the centroid and the subtree core.

Theorem 2.4. Let T be a tree with n > 8 vertices. If n > 2dlog2 ne−1 + dlog2 ne, then

d(CT (T ), Core(T )) 6

⌊
n− 1

2

⌋
− blog2 nc − 1

with equality holding if and only if T is the (n− blog2 nc − 1)-comet. Otherwise

d(CT (T ), Core(T )) 6

⌊
n− 1

2

⌋
− blog2 nc .

with equality precisely when T is the (n− blog2 nc)-comet.
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Proof. Fix a tree T with n > 8 vertices. Let u ∈ CT (T ) and v ∈ Core(T ) where the
graph distance between u and v is precisely d(CT (T ), Core(T )). We assume d(u, v) > 1,
otherwise we have nothing to prove. Let P (u, v) denote the path connecting u and v and
let Tu, Tv denote the components containing u, v respectively in T − E(P (u, v)). Let
T − Tv be the component containing v when the edges of Tv are deleted from T . Set
x := |V (Tu)| and y := |V (Tv)|. First observe

d(u, v) 6 n− x− y + 1.

Since u ∈ CT (T ) and the neighbor of u on P (u, v) is not in CT (T ), Proposition 1.6
implies x > n− x, thus x > n

2
. Since x is an integer, x > n+1

2
and consequently

x >

⌈
n+ 1

2

⌉
.

Similarly, since v ∈ Core(T ) and the neighbor of v on P (u, v) is not in Core(T ),
Proposition 1.7 gives

FTv(v) > FT−Tv(w)

where w is the unique neighbor of v on P (u, v). See Figure 4 for an illustration of how
these pieces interact.

vwu

Tu Tv

Figure 4: A representation of tree T for the proof of Theorem 2.4 with path P (u, v), Tu,
Tv, and w labeled.

Further note that every subtree in Tv which contains v can be uniquely identified by
the set of its vertices, excluding v. Thus, by Claim 1.8,

FTv(v) 6 2y−1.

Note that equality holds if and only if every subset of vertices induces a tree which is the
case exactly when Tv is a star centered at v. On the other hand,

FT−Tv(w) > n− y

with equality if and only if T − Tv is a path with w as an end vertex.
Putting these inequalities together for our specific choice of v, Proposition 1.7 yields

2y−1 > n− y.

As y + 2y−1 is an increasing function, there is a unique, real-valued, y0 > 0 such that
2y0−1 = n− y0. Further, for all 0 < y < y0, 2y−1 < n− y, and for all y > y0, 2y−1 > n− y.
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Now let y0 > 0, be the unique real value such that 2y0−1 = n− y0. Then

y0 = log2(n− y0) + 1

< log2(n) + 1.

Substituting the equation y0 = log2(n− y0) + 1 into itself, for n > 8 we find

y0 = log2(n− log2(n− y0)− 1) + 1

> log2(n− log2(n)− 1) + 1

= log2 2(n− log2(n)− 1)

= log2(n+ (n− 2− 2 log2 n))

> log2(n).

In the last inequality, n− 2− 2 log2 n > 0 holds for n > 8.
As a result, we have the bounds

log2(n) < y0 < log2(n) + 1.

Further, if y0 < blog2 nc + 1, then for an integer y > 0, 2y − 1 > n − y precisely when
y > blog2 nc+ 1. However, if y0 > blog2 nc+ 1 then for an integer y > 0, 2y − 1 > n− y
precisely when y > blog2 nc+ 2.

When n > 8, our bounds for integers x and y give

d(u, v) 6 n− x− y + 1

6 n−
⌈
n+ 1

2

⌉
− blog2 nc

=

⌊
n− 1

2

⌋
− blog2 nc .

As mentioned earlier, this can be strengthen to d(u, v) 6
⌊
n−1
2

⌋
− blog2 nc − 1 if y0 >

blog2 nc+ 1. However, this will only happen if 2blog2 nc 6 n− blog2 nc − 1 as stated in the
theorem.

As for extremal trees, equality will hold in the upper bound for d(u, v) exactly when
Tu has

⌈
n+1
2

⌉
vertices, Tv is a star, and T−Tv is a path. This describes the C-comet where

C = n−blog2 nc or in the case where n > 2blog2 nc+ dlog2 ne+ 1, C = n−blog2 nc−1.

2.3 Between subtree core and center

The study of this case is similar to that in the previous section. We omit some details.

Theorem 2.5. For any tree T on n > 8 vertices, if n > 2dlog2 ne−1 + dlog2 ne then

d(C(T ), Core(T )) 6

⌊
1

2
(n− blog2 nc − 2)

⌋
the electronic journal of combinatorics 25(3) (2018), #P3.17 9



which is tight for the K-comet with K = n− blog2 nc+ 1. Otherwise

d(C(T ), Core(T )) 6

⌊
1

2
(n− blog2 nc − 1)

⌋
which is tight for the K-comet with K = n− blog2 nc.

Proof. Let u ∈ Core(T ) and v ∈ C(T ) in a tree T with |V (T )| = n and the graph distance
between u and v is precisely d(C(T ), Core(T )). Use Tu (respectively Tv) to denote the
component containing u (v) in T − E(P (u, v)) and let y = |V (Tu)|.

Because v ∈ C(T ) and the neighbor of v on P (u, v) is not in C(T ), there is a leaf w
in Tv with d(v, w) = eccT (v). As argued in the proof of Theorem 2.2,

d(u, v) 6 eccT (v)− 1 < d(v, w),

2d(u, v) + 1 6 d(u, v) + d(v, w) 6 n− y.
Note that these inequalities are tight for the (n− y + 1)-comet.

Because u ∈ Core(T ), we can conclude, as in the proof of Theorem 2.4,

2y−1 > n− y.

Consequently,
y > blog2 nc .

Combining inequalities, we obtain the bound in the theorem statement:

d(u, v) 6

⌊
1

2
(n− y − 1)

⌋
6

⌊
1

2
(n− blog2 nc − 1)

⌋
.

Recall from Theorem 2.4 that if n > 2dlog2 ne−1 + dlog2 ne, then

y > blog2 nc+ 1

and consequently we obtain the slightly better bound

d(u, v) 6

⌊
1

2
(n− y − 1)

⌋
6

⌊
1

2
(n− blog2 nc − 2)

⌋
.

3 Trees with degree restrictions

In Section 2, we saw that, for each pair of middle parts, the maximum distance was
achieved precisely by an appropriate comet. However, the comet has a vertex of large
degree. In this section, we restrict the maximum degree of the tree and ask how the
extremal structures change. We will begin with a discussion of binary trees and then
broaden our scope to trees with maximum degree k > 3.

First we state some results about the maximum or minimum number of root-containing
subtrees in a tree with a specified degree sequence which will be needed later. Note that
among trees (with no maximum degree condition) with n vertices, the number of root-
containing subtrees is minimized by the path, rooted at one end, and maximized by the
star, rooted at the center vertex (Claim 1.8).
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3.1 Trees with a given degree sequence

For a rooted tree, the height of a vertex is the distance to the root. The height of the tree,
h(T ), is the maximum of all vertex heights.

Definition 3.1. In a rooted tree T , the list of multisets (L0, L1, . . . , Lh(T )), where Li

consists of the degrees of the vertices at height i (and L0 consists of the degree of the root
vertex), is called the level-degree sequence of the rooted tree.

Let |Li| be the number of entries in Li counted with multiplicity. It is easy to see
that a list of multisets is the level degree sequence of a rooted tree if and only if (i) the
multiset

⋃
i Li is a degree sequence for a tree, (ii) |L0| = 1, and (iii)

∑
d∈L0

d = |L1|, while∑
d∈Li

(d− 1) = |Li+1| for all i > 1.
In a rooted tree, the down-degree of the root is equal to its degree. The down degree

of any other vertex is one less than its degree.

Definition 3.2. [7] Given the level-degree sequence of a rooted tree, the level-greedy
rooted tree for this level-degree sequence is built as follows: (i) For each i ∈ [n], place
|Li| vertices in level i and to each vertex, from left to right, assign a degree from Li in
non-increasing order. (ii) For i ∈ [n − 1], from left to right, join the next vertex in Li

whose down-degree is d to the first d so far unconnected vertices on level Li+1. Repeat
for i+ 1.

Definition 3.3. [10] Given a tree degree sequence (d1, d2, . . . , dn) in non-increasing order,
the greedy tree for this degree sequence is the level-greedy tree for the level-degree sequence
that has L0 = {d1}, L1 = {d2, . . . , dd1+1} and for each i > 1,

|Li| =
∑

d∈Li−1

(d− 1)

with every entry in Li at most as large as every entry in Li−1.

The greedy tree frequently occurs in the study of extremal structures. A similar
structure with modified root degree is crucial to our study here. Fix a degree sequence
for a tree and distinguish a single value in this sequence which will be the degree of the
root. Similar to the greedy tree, we define the rooted greedy tree.

Definition 3.4. Let d = (d1, d2, . . . , dn) be a tree degree sequence in non-increasing order
with degree di identified as the root degree. Let

d̂ = (d′1, d
′
2, . . . , d

′
n−1) = (d1, d2, . . . , d̂i, . . . , dn)

be the sequence d with di removed. The rooted greedy tree for the degree sequence d is the
level-greedy tree for the level-degree sequence that has L0 = {di}, L1 = {d′1, . . . , d′di} and,
for each i > 1, |Lj| =

∑
d∈Lj−1

(d− 1), where entries of Lj are the next available elements

from d̂.
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Figure 5: A rooted greedy tree with root degree 2 and degree sequence
(4, 3, 3, 3, 3, 2, 2, 1, . . . , 1).

Among trees with given degree sequence, greedy trees are extremal with respect to
many graph invariants. For example, the following result is for root-containing subtrees.

Theorem 3.5 (Andriantiana, Wagner, Wang [1]). Fix a degree sequence d and a positive
integer k. Among rooted trees with degree sequence d, the greedy tree maximizes the number
of subtrees with exactly k vertices which contain the root. Consequently the greedy tree
maximizes the total number of root-containing subtrees.

Fix a degree sequence, distinguish one value in the sequence as the root degree, and fix
a positive integer k′. Among rooted trees with this degree sequence and the specified root
degree, the corresponding rooted greedy tree maximizes the number of subtrees containing
the root and which have k′ vertices. Consequently, the rooted greedy tree maximizes the
total number of root-containing subtrees.

3.2 Binary trees

The study of binary trees is well motivated from its applications in phylogeny. A binary
tree is a tree in which every vertex has degree 1 or 3. A rooted binary tree is a rooted tree
in which the root has degree 2 and all other vertices have degree 1 or 3. Székely and Wang
[8] studied the number of subtrees of a binary tree with labeled vertices. They found that
the extremal structures are good trees, rgood trees, and caterpillars. In our terms, a good
binary tree is a greedy tree with root degree 3 and degree sequence

(3, . . . , 3, 1, . . . , 1)

and an rgood binary tree is a rooted greedy tree with root degree 2 and degree sequence

(3, . . . , 3, 2, 1, . . . , 1).

A binary caterpillar consists of a path P with pendant vertices that make the degree of
each internal vertex 3.

Their results for the number of subtrees are as follows:

Theorem 3.6 (Székely, Wang [9]). Among all binary trees with n leaves, the good binary
tree minimizes the number of subtrees.

Theorem 3.7 (Székely, Wang [8]). Among all binary trees with n leaves, the binary
caterpillar on n leaves minimizes the number of subtrees.
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As an immediate consequence of Theorem 3.5, we obtain the following results for
root-containing subtrees.

Corollary 3.8. Fix n ∈ Z+. Among all binary trees with n vertices and any choice of
the root, the good binary tree (with the default root of the corresponding greedy structure)
has the maximum number of root-containing subtrees.

Corollary 3.9. Fix n ∈ Z+. Among all rooted binary trees with n vertices, the rgood
binary tree is the unique tree that maximizes the number of root-containing subtrees.

For binary trees, we can examine the distance between vertices of different middle
parts in much the same way that we did in Section 2. While the exact calculations are
quite messy, we believe the following is true.

Conjecture 3.10. The tree T that maximizes d(CT (T ), C(T )) among all binary trees
of order n, is formed by identifying the root of an rgood binary tree with a vertex of
maximum eccentricity in a binary caterpillar (see Figure 6). The same tree structure
maximizes d(Core(T ), CT (T )) as well as d(Core(T ), C(T ))

vu

Tu

Figure 6: An extremal binary tree structure which is conjectured to maximize the dis-
tances d(CT (T ), C(T )), d(Core(T ), CT (T )), and d(Core(T ), C(T )) for u and v as in
Conjecture 3.10. The tree Tu is an rgood binary tree.

3.3 Trees with bounded maximum degree

We now turn our focus to trees on n vertices, all of which have degree at most k. We
previously defined good binary trees and rgood binary trees. In general, for each positive
integer k, a good tree is a greedy tree with degree sequence

(k, k, . . . , k, 1, 1, . . . 1)

while the rgood trees are rooted greedy trees with root degree k − 1 and degree sequence

(k, k, . . . , k, k − 1, 1, 1, . . . 1).

For any fixed k, these trees only exist for certain values of n. Therefore, we extend their
definitions as follows so that we can create similar trees for any n > k.

For positive integers n, k (n > k), a tree with order n and maximum degree k is called
an extended good tree if it is a greedy tree with degree sequence

(k, k, . . . , k, s, 1, . . . , 1)
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Figure 7: An extended good tree with 33 vertices and maximum degree 4.

for some 1 6 s < k (Figure 7). Notice that the degree sequence is determined by n and
k. By the division algorithm, we can uniquely write n− 2 = q′(k− 1) + s′ with s′ < k− 1.
Thus q′ will be the number of vertices of degree k, one vertex will have degree s = s′ + 1,
and the rest will be leaves.

Similarly, for positive integers n, k, the extended rgood tree with order n and maximum
degree k, is a rooted greedy tree with root degree k − 1 and degree sequence

(k, k, . . . , k, k − 1, s, 1, . . . , 1)

for some 1 6 s < k (Figure 8).

Figure 8: An extended rgood tree with 29 vertices and maximum degree 4.

Among all rooted trees with n vertices, maximum degree k, and root degree at most
k − 1, we seek the one with the maximum number of root-containing subtrees.

Theorem 3.11. Among all rooted trees with n vertices, maximum degree k, and root
degree at most k − 1, the extended rgood tree maximizes the number of root-containing
subtrees.

Theorem 3.11 follows from Lemmas 3.12 and 3.14 below.

Lemma 3.12. For any pair (n, k) of positive integers, n > k, a tree with n vertices,
maximum degree k, and root degree at most k − 1 which maximizes the number of root-
containing subtrees must have root degree k − 1.

Proof. For contradiction, suppose T is such a tree with root ρ having degree at most k−2.
Since n > k, there exists a child u of ρ that is not a leaf. Let v be a child of u.

Define T ′ := T − {uv} + {ρv}. Every root-containing subtree in T can be uniquely
identified by its list of vertices. It is easy to see that each list forms a root-containing
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subtree in T ′. However, T ′ also has root-containing subtrees which contain v and not u.
These do not appear in T . Therefore T ′ has more root-containing subtrees than T . This
contradicts our choice of T .

Definition 3.13. Given two positive integer sequences π = (d0, · · · , dn−1) and π′ =
(d′0, · · · , d′n−1), we say π′ majorizes π, denoted π / π′, if for each k ∈ {0, · · · , n− 2},

k∑
i=0

di 6
k∑

i=0

d′i and
n−1∑
i=0

di =
n−1∑
i=0

d′i.

The following is a simpler analogue of Theorem 11 of Andriantiana, Wagner, and
Wang [1]. We skip the details.

Lemma 3.14. Let T and T ′ be rooted greedy trees on n vertices with root degree k − 1.
If T has degree sequence π and T ′ has degree sequence π′ where π / π′, then T ′ has more
root-containing subtrees than T .

In the search for a tree which maximizes the number of root-containing subtrees,
Lemma 3.12 implies that it is sufficient to restrict our attention to trees with root degree
k − 1. Because we are considering only degree sequences on n vertices with maximum
degree k, it is easy to see that the degree sequence of the extended rgood tree majorizes
all other such degree sequences. Thus, Lemma 3.14 then implies that the extended rgood
tree for order n and maximum degree k as stated in Theorem 3.11.

For the purpose of our study of maximum distances between different middle parts,
we also note the following fact.

Remark. Among all rooted trees of given order, root degree at most k− 1, and maximum
degree k:

• the extended rgood tree minimizes the height;

• the path (rooted at one end) minimizes the number of root-containing subtrees and
maximizes the height.

3.4 Middle parts in trees with a given maximum degree

Fix n, k ∈ Z+. Similar to the binary tree case, we restrict our attention to classes of trees
which have order n and maximum degree k. In this section, we detail our findings for the
trees in this class which maximize the distance between different middle parts.

Theorem 3.15. For fixed n, k ∈ Z+, each tree T with order n and maximum degree k
has

d(CT (T ), C(T )) 6
n−

⌈
n+1
2

⌉
− hu

2

where

hu =

⌈
ln
(
dn+1

2
e(k − 2) + 1

)
ln(k − 1)

⌉
− 1.
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This inequality is tight for the tree formed by identifying the root of an extended rgood tree
with one end of a path of appropriate length.

Proof. For a fixed tree T , select vertices u ∈ CT (T ) and v ∈ C(T ) such that d(u, v) =
d(CT (T ), C(T )). Assume d(u, v) > 1, otherwise there is nothing to prove. Let Tu and Tv
name the components containing u and v respectively in T − E(P (u, v)).

Counting the vertices in T , we obtain the inequality

d(u, v) 6 n− |V (Tu)| − |V (Tv)|+ 1 (5)

which is tight when the interior vertices of P (u, v) have degree 2.
Because u ∈ CT (T ), Proposition 1.6 implies |V (Tu)| > n− |V (Tu)| and hence

|V (Tu)| >
⌈
n+ 1

2

⌉
.

Set hu and hv equal to the heights of Tu and Tv respectively. Because v ∈ C(T ),
Proposition 1.4 implies d(u, v) + hu 6 hv (which is tight when C(T ) = {v}) and hence

d(u, v) 6 hv − hu 6 |V (Tv)| − 1− hu (6)

where the last inequality is tight when Tv is a path with v being one end of that path, in
which case hv = |V (Tv)| − 1.

The upper bound in (6) for d(u, v) is maximum when hu is minimum. By Remark 3.3,
the minimum hu is achieved when Tu is the extended rgood tree. Since |V (Tu)| >

⌈
n+1
2

⌉
and the maximum degree is k, we can determine the height of an extended rgood tree
with these conditions. The extended rgood tree with maximum degree k and height h
has at most

∑h
i=0(k − 1)i vertices. The height of Tu will be the smallest value h which

satisfies

|V (Tu)| 6
h∑

i=0

(k − 1)i

=
(k − 1)h+1 − 1

k − 2
.

As a result,

h >
ln (|V (Tu)|(k − 2) + 1)

ln(k − 1)
− 1.

Since h is the smallest value that satisfies the above inequality, when |V (Tu)| =
⌈
n+1
2

⌉
,

we can conclude

h =

⌈
ln
(
dn+1

2
e(k − 2) + 1

)
ln(k − 1)

⌉
− 1.
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Without knowing |V (Tv)| exactly, we can add (5) and (6) and solve for d(u, v) to
obtain the desired upper bound for d(u, v):

2d(u, v) 6 n− |V (Tu)| − hu

d(u, v) 6
1

2
(n− |V (Tu)| − hu)

6

⌊
1

2

(
n−

⌈
n+ 1

2

⌉
− h
)⌋

.

Theorem 3.16. For fixed n, k ∈ Z+, each tree T with order n and maximum degree k
has

d(Core(T ), CT (T )) 6 n− n′ −
⌈
n+ 1

2

⌉
+ 1

where n′ is the minimum order of an extended rgood tree Tu with maximum degree k such
that FTu(u) > n − |V (Tu)|. This inequality is tight for the tree formed by identifying the
root of the extended rgood tree with one end of a path of appropriate length.

Proof. Let u ∈ Core(T ) and v ∈ CT (T ) such that d(u, v) = d(Core(T ), CT (T )). Assume
d(u, v) > 1, otherwise there is nothing to prove. Define Tu and Tv to be the components
of T −E(P (u, v)) containing u and v respectively. Let hu and hv be the heights of Tu and
Tv respectively.

Similar to before, Proposition 1.6 implies

|V (Tv)| >
⌈
n+ 1

2

⌉
.

By Proposition 1.7, u ∈ Core(T ) and its neighbor w on P (u, v) is not in the subtree
core precisely when

FTu(u) > 1 + FT−Tu(w) > d(u, v) + FTv(v) > d(u, v) + |V (Tv)|,
d(u, v) 6 FTu(u)− FTv(v) 6 FTu(u)− |V (Tv)|. (7)

The last inequality is tight if Tv is a path.
Counting the vertices in T , we see

n > d(u, v) + |V (Tu)|+ |V (Tv)| − 1,

d(u, v) 6 n− |V (Tu)| − |V (Tv)|+ 1 6 n−
⌈
n+ 1

2

⌉
− n′ + 1.

where n′ is the minimum number of vertices in a tree Tu with maximum degree k such
that FTu(u) > d(u, v) + |V (Tv)| = n − |V (Tu)| as in (7). Note that FTu(u) is maximized
by the extended rgood tree, giving the extremal tree in the theorem statement.

Theorem 3.17. For fixed n, k ∈ Z+, each tree T with order n and maximum degree k
has

d(Core(T ), C(T )) 6 n− n′ −
⌊

1

2
(n− n′ + h′)

⌋
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where h′ =
⌈
ln(n′(k−2)+1)

ln(k−1)

⌉
− 1 and n′ is the minimum number of vertices in the extended

rgood tree Tu with maximum degree k such that FTu(u) > n− |V (Tu)|. This inequality is
tight for the tree formed by identifying the root of the extended rgood tree with one end of
a path of appropriate length.

Proof. Let u ∈ Core(T ) and v ∈ C(T ) such that d(u, v) = d(Core(T ), C(T )). Define Tu
and Tv to be the components of T − E(P (u, v)) containing u and v respectively. Let hu
and hv be the heights of Tu and Tv respectively.

Because u ∈ Core(T ) and its neighbor on P (u, v) is not in the subtree core, as in (7),
Proposition 1.7 gives

d(u, v) 6 FTu(u)− |V (Tv)| (8)

which is tight when Tv is a path.
Because v ∈ C(T ) and its neighbor on P (u, v) is not in the center, as in the proof of

Theorem 3.15, Proposition 1.4 gives

d(u, v) 6 hv − hu 6 |V (Tv)| − hu − 1.

As in (6), this is also tight when Tv is a path and C(T ) = {v}.
Adding these two inequalities together we obtain the following bound.

d(u, v) 6
1

2
(FTu(u)− hu − 1) .

The upper bound is maximum when FTu(u) is large and hu is small which is optimized
when Tu is the extended rgood tree.

If n′ is the number of vertices in Tu, then because v ∈ C(T ) and Tv is a path, then
eccT (v) is at least half of the diameter of T which translates to

|V (Tv)| >
1

2
(n− n′ + hu).

Any tree on n′ vertices with maximum degree at most k will have height at least
the height of the corresponding extended rgood tree. As determined in the proof of
Theorem 3.15,

hu >

⌈
ln (n′(k − 2) + 1)

ln(k − 1)

⌉
− 1 := h′.

In conclusion,

d(u, v) 6 n− |V (Tu)| − |V (Tv)| 6 n− n′ −
⌊

1

2
(n− n′ + h′)

⌋
.

Further, this upper bound is maximized when n′ is minimized. However, n′ must still
satisfying the condition FTu(u) > d(u, v) + |V (Tv)| = n− |V (Tu)| from (8).
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4 Different middle parts in trees with a given diameter D

Recall that all extremal trees in Section 2 were comets. In the previous section, we
explored the effect of limiting the maximum vertex degree in a tree. Here, we ask how
the distances between middle parts and the corresponding extremal structures change
when the diameter is limited. The next two propositions follow from exactly the same
arguments as those for Theorem 2.2 and Theorem 2.5 in Section 2, we skip the proofs.

Proposition 4.1. For fixed integers D > 2, there exists n0 such that for all n > n0, every
tree T of order n and diameter at most D satisfies

d(C(T ), CT (T )) 6

⌊
D − 2

2

⌋
,

which is achieved by a D-comet.

Proposition 4.2. For fixed D > 2, there exists n0 such that for all n > n0, every tree T
of order n and diameter at most D satisfies

d(C(T ), Core(T )) 6

⌊
D − 2

2

⌋
,

which is achieved by a D-comet.

Finding the maximum of d(CT (T ), Core(T )) is unexpectedly more difficult. Notwith-
standing the progress in the remaining part of this paper, it remains unsolved. Fix integers
D > 2 and n > 1. Among all trees with diameter at most D and order n, fix a tree T
which realizes the maximum value for d(CT (T ), Core(T )).

Select vertices u ∈ Core(T ) and v ∈ CT (T ) such that the graph distance between u
and v is precisely d(CT (T ), Core(T )). We assume d(u, v) > 1, otherwise there is nothing
to prove. In T − E(P (u, v)), let Tu name the component containing u while Tv is the
component containing v. Consider u to be the root of Tu and v to be the root of Tv.

Let w be the neighbor of u on P (u, v). Because u ∈ Core(T ) and w 6∈ Core(T ),
Proposition 1.7 implies

FTu(u) > FT−Tu(w).

Because v ∈ CT (T ) and its neighbor on P (u, v) is not in CT (T ), Proposition 1.6
implies

|V (Tv)| > n− |V (Tv)|.

Suppose Tu is not a star. Create a new tree T ′ from T by replacing Tu with a star T ′u
which is rooted at u and has the same order as Tu. Using the convention that T ′u and T ′v
are the components containing u and v respectively in T ′ −E(P (u, v)), we see that T ′v is
isomorphic to Tv. First observe that

FT ′u(u) > FTu(u) > FT−Tu(w) = FT ′−T ′u(w)

the electronic journal of combinatorics 25(3) (2018), #P3.17 19



which implies w 6∈ Core(T ′) by Proposition 1.7. Further,

|V (T ′v)| = |V (Tv)| > n− |V (Tv)| = n− |V (T ′v)|

which implies the neighbor of v on P (u, v) is not in the centroid of T ′ by Proposition 1.6.
Therefore

d(Core(T ′), CT (T ′)) > dT ′(u, v) = dT (u, v) = d(Core(T ), CT (T )).

By the choice of T , d(Core(T ′), CT (T ′)) = d(Core(T ), CT (T )). So T ′ is also a tree with
diameter at most D and order n which maximizes d(Core(T ), CT (T )).

Now consider the structure of T ′v in T ′. Say T ′v has x vertices and height h. Suppose
T ′v does not minimize the number of subtrees containing v for its height and order. Let T ′′v
be a tree rooted at v with height at most h and order x which minimizes FT ′′v (v). Define
T ′′ to be the tree created from T ′ by replacing T ′v with T ′′v . Observe that

FT ′′u (u) = FT ′u(u) > FT ′−T ′u(w) > FT ′′−T ′′u (w)

which implies w 6∈ Core(T ′′) by Proposition 1.7. Further, for T ′′v being the component of
T ′′ − E(P (u, v)) which contains v,

|V (T ′′v )| = |V (T ′v)| > n− |V (T ′v)| = n− |V (T ′′v )|.

This implies, by Proposition 1.6, that the neighbor of v on P (u, v) in T ′′ is not in CT (T ′′)
and

d(Core(T ′′), CT (T ′′)) > dT ′′(u, v) = dT (u, v) = d(Core(T ), CT (T )).

By the choice of T , d(Core(T ′′), CT (T ′′)) = d(Core(T ), CT (T )) which implies T ′′ is also
a tree with diameter at most D and order n that maximizes the distance between the
subtree core and the centroid.

Remark. Fix n,D ∈ Z+. Among all trees with diameter at most D and order n, one such
tree T which maximizes d(Core(T ), CT (T )) has Tu being a star rooted at u and Tv a
tree which minimizes the number of subtrees containing v for its height and order. This
structure of T is drawn in Figure 9.

In Section 5, we take a closer look at the structure of Tv, a tree which minimizes
the number of subtrees containing v for its height and order. While we determine many
necessary properties of Tv, characterizing the exact structure is still an open problem.

5 Rooted trees of given order and height

For any n, h ∈ Z+, this section is devoted to characterizing the rooted trees with n vertices
and height at most h which have the minimum number of root-containing subtrees. For
the remainder of this section, we will call these trees optimal.

To standardize some notation, we restrict our attention to trees T which are rooted
at root ρ, have order n and height at most h unless mentioned otherwise. Note that
h(T ) = eccT (ρ). The degree of a vertex v will be denoted deg(v).
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vwu

Tv

Figure 9: The structure of a tree T with diameter D and order n which maximize
d(Core(T ), CT (T )). Here, u ∈ Core(T ), v ∈ CT (T ), and Tv minimizes the number
of subtrees containing v for its order and height.

For any v ∈ V (T ), let T (v) denote the subtree induced by v and all of its descendants.
We will view T (v) as a tree rooted at v. For each neighbor vi of ρ, set Ti := T (vi). For
f ∈ {0, 1, . . . , h − 1}, define the f -split to be the tree rooted at w1 with h + f vertices,
constructed from paths P1 = (w1, w2, . . . , wh), and P2 = (u1, u2, . . . , uf ) by adding the
edge u1wh−f . In other words, the midpoint of path on 2f edges is joined to the root w1

by an (h − f − 1)-edge path. Our main results from this section are summarized in the
following theorem.

Theorem 5.1. For positive integers n and h, there is an optimal tree T with n vertices
and height at most h such that each Ti is a ki-split with k1 > k2 > . . . > kr (see Figure 10).
Further, the tuple (k1, k2, . . . , kr) is described by one of the following three types:

(i) (Paths) kr = 0, kr−1 ∈ {0, 1}, kr−2 = . . . = k1 = 1.

(ii) (One large) k1 >
⌈√

h+ 5
4
− 1

2

⌉
and ki =

⌊
h+1
k1+1

⌋
for each i ∈ {2, . . . , r} provided⌊

h+1
k1+1

⌋
> h+1

k1
− 1. Further, if n > 5h2, then ki 6 ln(6h) for each i ∈ {2, . . . , r}.

(iii) (Even distribution) k1 6
⌈√

h+ 5
4
− 1

2

⌉
and for all i, j ∈ [r], |ki− kj| 6 1. Further,

if n > 5h2, then ki 6 ln(6h) for each i ∈ {2, . . . , r}.

Here we present several lemmas regarding the characteristics of an optimal tree. These
all work toward the proof of Theorem 5.1.

Lemma 5.2. In any optimal tree T , for any v ∈ V (T ), T (v) minimizes the number
of root-containing subtrees among all rooted trees of the same order and height at most
h− hT (v) where hT (v) is the height of v in T .

Proof. Let T be an optimal tree. Suppose, for contradiction, that there is a vertex v for
which T (v) does not satisfy the lemma. In other words, there is a tree T ′(v), which is
rooted at v, has the same order as T (v), and has

h(T ′(v)) 6 h− hT (v) and FT ′(v)(v) < FT (v)(v).

Let T ′ be the tree obtained from T by replacing T (v) with T ′(v). Then T and T ′ have
the same number of subtrees containing ρ but not v. Define T ∗ := T − (T (v)− {v}) and
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ρ

︸ ︷︷ ︸
kr vertices

︸ ︷︷ ︸
k2 vertices

︸ ︷︷ ︸
k1 vertices

· · · · · · · · ·

Figure 10: The structure of a tree T with height h and order n which minimizes the
number of root-containing subtrees.

let FT ∗(ρ, v) be the number of subtrees of T ∗ that contain both ρ and v. Because T and
T ′ only differ in the descendants of v, we have

FT (ρ)− FT ′(ρ) = FT (v)(v)FT ∗(ρ, v)− FT ′(v)(v)FT ∗(ρ, v) > 0,

a contradiction to the optimality of T .

Lemma 5.3. The height of any leaf in an optimal tree is h.

Proof. If n = h + 1, it is straightforward to see that the path rooted at one end is the
optimal tree. In the case when n > h + 1, some vertex must have at least 2 children.
Suppose, for contradiction, that there is a leaf v ∈ V (T ) whose height is less than h. Let
x be the closest ancestor (possibly the root) of v that has at least two children. Let y be
a child of x that is not on P (x, v) and z be the child of x on P (x, v).

Tx Tx
.

.
.

x

y

z

v

T (x)

.
.

.

x

y z

v

T ′(x)

Figure 11: Trees T (x) and T ′(x) from Lemma 5.3

Let Tx be the component containing x in T − xy − xz and consider the tree

T ′(x) := T (x)− xz + yz

depicted in Figure 11. Note that T ′(x) has the same order as T (x) and has height no
more than h− hT (x) because the height of v in T is less than h.
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Counting the number of subtrees containing x in each tree, we obtain the following
equalities:

FT (x)(x) = FTx(x)(1 + dT (x)(x, v))(1 + FT (y)(y)),

FT ′(x)(x) = FTx(x)
[
1 + (1 + dT (x)(x, v))FT (y)(y)

]
.

Together, these imply

FT (x)(x)− FT ′(x)(x) = dT (x)(x, v)FTx(x) > 0.

Since T was optimal, this contradicts Lemma 5.2.

Lemma 5.4. Every optimal tree has one of the following two properties:

• All non-root vertices have degree at most 3.

• All non-root vertices of height less than h− 1 have degree at most 3. For any vertex
v of height h−1, deg(v) 6 4. Further, if deg(v) = 4, then the parent of v must have
degree 2 or be the root.

Proof. As before, this proof proceeds by contradiction. Let x be a non-root vertex in an
optimal tree T with degree at least 4. Say y, z, and w are three children of x and let u
be the parent of x. Denote by Tu and Tx the components containing u and x respectively
in T − ux− xy − xz − xw. Without loss of generality, assume

FT (w)(w) = max{FT (y)(y), FT (z)(z), FT (w)(w)}.

u

Tu x

Tx
y z w

T (u)

u

Tu x

Tx y/z w

T ′(u)

Figure 12: Trees T (u) and T ′(u) in the proof of Lemma 5.4.

Now consider the tree T ′(u) obtained from T (u) by removing the edges xz and xw,
inserting a path of length 2 between u and w, while identifying the vertices y and z
(Figure 12). Note that T ′(u) has the same height and order as T (u). Counting the
number of subtrees containing u in each, we find

FT (u)(u) = FTu(u)
[
1 + FTx(x)

(
1 + FT (y)(y)

) (
1 + FT (z)(z)

) (
1 + FT (w)(w)

)]
,
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FT ′(u)(u) = FTu(u)
(
2 + FT (w)(w)

) [
1 + FTx(x)

(
1 + FT (y)(y)FT (z)(z)

)]
.

Together, these imply the following

FT (u)(u)− FT ′(u)(u) = FTu(u)
[
FTx(x)FT (y)(y)

(
FT (w)(w)− FT (z)(z)

)
+ FTx(x)

(
FT (y)(y)− 1

)
+
(
FT (w)(w) + 1

) (
FTx(x)FT (z)(z)− 1

)]
> 0. (9)

Because T is an optimal tree, T (u) is an optimal tree by Lemma 5.2. Therefore (9)
must be equality. Note that for any tree H and vertex a ∈ V (H), FH(v) > 1 because
the subtree containing only the vertex v will be counted. Therefore, equality holds in (9)
exactly when FTx(x) = FT (y)(y) = FT (z)(z) = FT (w)(w) = 1, or equivalently, deg(x) = 4
and y, z, w are all leaves so x has height h− 1 in T . Create T ′ from T by replacing T (u)
with T ′(u). Because (9) is equality, FT (u)(u) = FT ′(u)(u). Therefore T ′ is also an optimal
tree.

In T ′, degT ′(x) = 3 but degT ′(u) = degT (u) + 1. Observe u has height h− 2 in T ′. If
u is not the root of T ′ and degT ′(u) > 4, then we can repeat the argument for optimal
tree T ′ and vertex u having degree at least 4. Because the height of u is h − 2, we will
find a contradiction in the step which parallels (9). Therefore degT ′(u) 6 3 which implies
degT (u) 6 2. Since u is not the root of T , we can conclude degT (u) = 2 as stated in the
lemma.

In the proof of Lemma 5.4, in the case where degT (x) = 4, we created another optimal
tree T ′ where degT ′(x) = 3 and no other degree 4 vertices where created. Hence, if an
optimal tree has multiple degree 4 vertices of height h−1, we can repeat this procedure to
obtain an optimal T ′ with all vertices of degree at most 3. This establishes the following
observation.

Observation 5.5. There is an optimal tree in which all non-root vertices have degree at
most 3.

We now shift our attention to the structures of Ti for 1 6 i 6 k.

Lemma 5.6. In an optimal tree T , each subtree Ti ∪ {ρ} falls into one of the following
three categories:

• There is at most one non-root vertex with degree 3.

• All non-root vertices of height at most h−3 have degree 2, the vertex of height h−2
has degree 3, and exactly one of its children has degree 3.

• All non-root vertices of height at most h− 2 have degree 2 and the vertex of height
h− 1 has degree 4.
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Proof. We prove this in two pieces, considering the alternatives from Lemma 5.4 sepa-
rately. We start with the optimal trees in which all vertices have degree at most 3.

For contradiction, suppose there exists a Ti ∪ {ρ} with at least two non-root vertices
of degree 3. Let v be a degree 3 vertex of greatest height in Ti and let u,w be the two
children of v. Let z be the closest ancestor of v such that degTi

(z) = 3, z has parent x,
and z has child y /∈ V (P (z, v)). Let `1 denote the distance from v to a leaf in Ti and `2
the length of P (v, z). Let Tx denote the component containing x in T (x)−xz (Figure 13).

Tx Tx

. . . . . .

. . .

u

︸
︷︷

︸`1
w

v

z

︸ ︷︷ ︸`2

x

y

T (x)

. . . . . .

. . .

u = w

v

z

x

y

T ′(x)

Figure 13: Transforming T (x) into T ′(x) when degT (v) = 3 in the proof of Lemma 5.6.

Create a new tree T ′(x) from T (x) by removing the edges vw and zy, inserting a length
2 path between x and y, and identifying u and w (Figure 13). Note that T ′(x) has the
same height and order as T (x). The number of subtrees containing x in each is

FT (x)(x) = FTx(x)
[
1 + (1 + FT (y)(y))[`2 + (`1 + 1)2]

]
,

FT ′(x)(x) = FTx(x)(2 + FT (y)(y))
(
`2 + 2 + `21

)
.

By Lemma 5.3, the height of each leaf in T is h, hence V (T (y)) > `1 + `2. Now we have

FT (x)(x)− FT ′(x)(x) = FTx(x)
[
(1 + FT (y)(y))(2`1 − 1)− (`21 + `2 + 1)]

]
> FTx(x)

[
(1 + `1 + `2)(2`1 − 1)− (`21 + `2 + 1)]

]
(10)

= FTx(x)(`21 + 2`1`2 + `1 − 2`2 − 2)

> 0. (11)

When either (10) or (11) is strict inequality, we have a contradiction to the optimality of
T . Equality holds exactly when `1 = `2 = 1 and |V (T (y))| = `1 + `2. In other words,
T (y) is a single path on two vertices with y having height h − 1. Since T ′ (constructed
from T by replacing T (x) with T ′(x)) is an optimal tree, if x is not the root, degT ′(x) 6 3
since x has height h − 3. Therefore degT (x) 6 2 as described in the second property of
the lemma.

If T falls into the second category listed in Lemma 5.4, then consider a subtree Ti with
a vertex v of degree 4 at height h − 1. We will show that all other non-root vertices in
Ti ∪ {ρ} must have degree 2. Suppose to the contrary that v has an ancestor z of degree
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3. (In this way, we are able to simultaneously handle the case when there are two vertices
of degree 4 in Ti ∪{ρ} because they would have to share a common ancestor of degree 3.)
Label the vertices as before with s being the third child of v (Figure 14).

Create T ′(x) by altering T (x) in a manner similar to that described above. Define

T ′(x) = T (x)− wv − yz + xw + wy

as shown in Figure 14.

Tx Tx

.
.

.

u w s

v

z

︸ ︷︷ ︸`2

x

y

T (x)

.
.

.

u s

v

z
w

x

y

T ′(x)

Figure 14: Transforming T (x) into T ′(x) when v has degree 4 in the proof of Lemma 5.6.

Let `2 be the distance from z to v in T (x). Because all leaves have height h, FT (y)(y) >
`2+1 which is tight when T (y) is a path. Now if we calculate FT (x)(x) and FT ′(x)(x) exactly
and take their difference, we find

FT (x)(x) = FTx(x)
(
1 + (1 + FT (y)(y))(`2 + 8)

)
FT ′(x)(x) = FTx(x)(2 + FT (y)(y))(`2 + 5)

FT (x)(x)− FT ′(x)(x) = FTx(x)
(
3FT (y)(y)− `2 − 1

)
> FTx(x) (3(`2 + 1)− `2 − 1)

= FTx(x) (2`2 + 2)

> 0.

This contradicts our choice of T . Thus Ti ∪ {ρ} can have at most one vertex of degree 4
and all other non-root vertices must have degree 2 as described in the third property of
the lemma.

Once again, it is useful to note that for each of the optimal trees described in the
second two properties of Lemma 5.6, the proof supplies T ′ analogues which have the same
number of root-containing subtrees and yet fall under the first property description in
Lemma 5.6. This gives the following observation.

Observation 5.7. There is an optimal tree with each Ti∪{ρ} having at most one non-root
vertex of degree 3.
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Observation 5.7 establishes that each Ti is a ki-split for some integer ki with 0 6 ki 6
h− 1. To minimize some notation, we state the following structural observation.

Observation 5.8. In an optimal tree T , the number of root-containing subtrees in a
ki-split together with root ρ is

sh(ki) := h+ k2i + ki + 1.

This definition also makes sense for the 0-split (together with ρ), which has h + 1 root-
containing subtrees.

Lemma 5.9. Among the Ti subtrees in an optimal tree, at most two of them can be
0-splits.

Proof. Suppose, for contradiction, that Ti, Tj and Tk are each 0-splits in an optimal tree.
Consider S := Ti ∪Tj ∪Tk ∪{ρ}. Create S ′ from S by replacing Ti with a 1-split, Tj with
an (h− 1)-split and deleting Tk (Figure 15).

u u

v v

ρ ρ

. . .
... . . . . . . . . .

.
.

.

S S ′

Figure 15: Trees S and S ′ from the proof of Lemma 5.9

The difference in the number of subtrees is

FS(ρ)− FS′(ρ) = (sh(0))3 − sh(1)sh(h− 1)

= (h+ 1)3 − (h+ 3)(2h+ (h− 1)2)

= 2(h− 1)

> 0.

This contradicts the optimality of T because the tree obtained from T by replacing S
with S ′ has fewer root-containing subtrees than T .

Lemma 5.10. If some Ti is a 0-split, then for each j 6= i, Tj is either a 0-split or a
1-split.

Proof. Suppose instead that Ti is a 0-split and Tj is a kj-split where 1 < kj 6 h− 1. Let
S be the tree induced by Ti, Tj, and ρ. Construct S ′ from S by replacing Ti with a 1-split
and replacing Tj with a (kj − 1)-split (Figure 16).

Note that S ′ has the same height and order as S, and

FS(ρ)− FS′(ρ) = sh(0)sh(kj)− sh(1)sh(kj − 1)
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.

..
.

vv

x = yyx

u u

ρ ρ

S S ′

Figure 16: Tree S and tree S ′ from the proof of Lemma 5.10.

= (h+ 1)
[
h+ k2j + kj + 1

]
− (h+ 3)

[
h+ (kj − 1)2 + kj

]
= 2 [(kj − 1)(h− kj) + (kj − 1)]

> 0. (for kj > 1)

This contradicts the optimality of T because the tree obtaining from T by replacing S
with S ′ has fewer root-containing subtrees than T .

Lemma 5.11. A rooted tree T is not optimal if for any Ti (ki-split) and Tj (kj-split), we
have ki(1 + kj) > h+ 1 for 1 6 ki 6 kj 6 h− 1.

Proof. Define T2 be the subtree of T which consists of the root ρ together with Ti and Tj.
Construct T ′2 from T2 by replacing Ti with a (ki − 1)-split and replacing Tj with a

(kj + 1)-split. This construction is well-defined because 1 6 ki and kj 6 h− 1.
It is easy to see that T ′2 has the same height and order as T2. We have

FT2(ρ) = sh(ki)sh(kj) and FT ′2
(ρ) = sh(ki − 1)sh(kj + 1).

Since ki 6 kj and ki(1 + kj) > h+ 1, we have

FT2(ρ)− FT ′2
(ρ) = −2(ki − kj − 1)(ki + kikj − h− 1) > 0,

which contradicts the optimality of T .

By reversing the roles of ki and kj in the previous lemma, we obtain the following
corollary.

Corollary 5.12. A rooted tree T is not optimal if for any Ti, which is a ki-split, and Tj,
which is a kj-split, we have kj(1 + ki) < h+ 1 and ki < kj − 1.

Corollary 5.13. Fix an optimal tree T in which each Ti is a ki-split with ki > ki+1. If

k1 >
√
h+ 5

4
− 1

2
, then ki <

√
h+ 5

4
− 1

2
for each i > 2.
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Proof. Let T be an optimal tree, as described in the corollary, with k1 >
√
h+ 5

4
− 1

2
. For

contradiction, suppose k2 >
√
h+ 5

4
− 1

2
. Observe

k2(k1 + 1) >

(√
h+

5

4
− 1

2

)(√
h+

5

4
+

1

2

)
= h+ 1.

However, this contradicts the statement of Lemma 5.11. Therefore the corollary holds.

Corollary 5.14. Fix an optimal tree T in which each Ti is a ki-split. For any pair {ki, kj}
with ki, kj 6

√
h+ 5

4
− 1

2
, we can conclude |ki − kj| 6 1.

Proof. Suppose ki, kj 6
√
h+ 5

4
− 1

2
with kj > ki + 2. Observe

kj(1 + ki) 6 kj(kj − 1)

6

(√
h+

5

4
− 1

2

)(√
h+

5

4
− 3

2

)

= h+ 2− 2

√
h+

5

4

< h+ 1.

This contradicts Corollary 5.12, finishing the proof.

Going further in this direction, we have the following even more specific statements.

Lemma 5.15. Suppose k1 > k2 > . . . > kk. If k1 >
⌈√

h+ 5
4
− 1

2

⌉
, then for each i > 1,

h+ 1

k1
− 1 6 ki 6

h+ 1

k1 + 1
. (12)

In particular, k2 = k3 = . . . = kk =
⌊

h+1
k1+1

⌋
provided

⌊
h+1
k1+1

⌋
> h+1

k1
− 1.

Proof. Since k1 >
√
h+ 5

4
− 1

2
, Corollary 5.13 implies k2 <

√
h+ 5

4
− 1

2
. Since T is

optimal, Lemma 5.11 yields ki(1 + k1) 6 k2(1 + k1) 6 h+ 1. Thus

ki 6
h+ 1

k1 + 1
.

Because k1 >
⌈√

h+ 5
4
− 1

2

⌉
, then necessarily ki 6 k2 < k1 − 1. Corollary 5.12 gives

k1(1 + ki) > h+ 1.

This is equivalent to

ki >
h+ 1

k1
− 1.
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We have established the three cases detailed in Theorem 5.1, aside from the further
information when n > 5h2. In the rest of this section, we examine the number of Ti
subtrees which can be a ki-splits in an optimal tree. This will shed light on the values
of ki in an optimal tree with a large number of vertices, compared to its height, and also
lends insight into the degree of the root vertex. First we prove a technical lemma.

Lemma 5.16. For fixed h, n ∈ Z, let T be an optimal tree with n vertices, height h, and
where Ti is a ki-split. Fix t ∈ R, t > 2 which satisfies the inequality h1/(t+1) > ln(6h).
For x ∈

[
h1/(t+1), h1/t

]
with n > (h+ x)(h+ x− 1) + 1, then

|{i : ki = x}| < h+ x− 1.

Proof. Let T be a tree such that each Ti is a ki-split. Suppose for contradiction that
k1 = k2 = . . . = kh+x−1 = x (where the ki values are not necessarily in non-increasing
order).

Let H be the subtree induced by T1, . . . , Th+x−1 and the root ρ. Here, each Ti is an
x-split. Thus the number of root-containing subtrees in H is

FH(ρ) = (h+ x2 + x+ 1)h+x−1.

Let T ′i be an (x−1)-split. Define a new tree T ′ by replacing Ti with T ′i for each i ∈ [h+x−1]
and increasing the degree of the root by one so that the new branch T ′0 is also an (x− 1)-
split. Let H ′ be the subtree induced by T ′0, T

′
1, . . . , T

′
h+x−1 and the root of T ′. The number

of root-containing subtrees in H ′ is

FH′(ρ) = (h+ x2 − x+ 1)h+x.

In order to compare the number of root-containing subtrees of T and T ′, it suffices to
compare the number of root-containing subtrees of H and H ′.

In order to compare these, consider the ratio:

FT (ρ)

FT ′(ρ)
=
FH(ρ)

FH′(ρ)
=

(h+ x2 + x+ 1)h+x−1

(h+ x2 − x+ 1)h+x

=
1

h+ x2 − x+ 1

(
1 +

2x

h+ x2 − x+ 1

)h+x

>
1

h+ h2/t + h1/t + 1

(
1 +

2h1/(t+1)

h+ h2/t − h1/(t+1) + 1

)h+h1/(t+1)

since x ∈ [h1/(t+1), h1/t]. The last expression can be further rewritten as

1

h+ h2/t + h1/t + 1

(
1 +

2

ht/(t+1) + h(t+2)/(t2+t) − 1 + h−1/(t+1)

)h+h1/(t+1)
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>
1

3h

(
1 +

2

ht/(t+1) + h(t+2)/(t2+t)

)h

since h1/(t+1) > 1

>
1

3h

(
1 +

2

ht/(t+1) + ht/(t+1)

)ht/(t+1)h1/(t+1)

since t+2
t2+t

< t
t+1

=
1

3h

(
1 +

1

ht/(t+1)

)ht/(t+1)h1/(t+1)

>
1

3h
· 1

2
eh

1/(t+1)

since
(

1 + 1
y

)y
> 1

2
e for y > 1

>1 since h1/(t+1) > ln(6h).

Thus, T is not an optimal tree because T ′ also has n vertices and height h but has fewer
subtrees which contain its root.

As a consequence we obtain the following corollary:

Corollary 5.17. Fix h > 550 and n ∈ Z with n > 5h2. Let T be an optimal tree with
subtrees Ti which are ki-splits. Using the terminology from Theorem 5.1, if T has an “even
distribution” of ki values, then ki 6 ln(6h) for all i ∈ {1, 2, . . . , r}. If T has “one large”
ki values, then ki 6 ln(6h) for all i ∈ {2, . . . , r}.
Proof. Fix n, h with n > 5h2. Let T be an optimal tree with height h and n vertices.

Toward a contradiction, suppose there is an integer x ∈ (ln(6h),
√
h+ 5

4
− 1

2
] such that

some Ti is an x-split. Consider two cases.
If x ∈

(
ln(6h), t1/3

]
, then setting t := lnh

lnx
−1, we have h1/(t+1) = x > ln(6h) and t > 2.

Since n > 5h2 and x < h1/3, then clearly n > (h+x)(h+x−1)+1. Thus by Lemma 5.16,
there are at most h+ x− 1 subtrees Ti of T which can be x-splits.

If instead x ∈
[
h1/3,

√
h+ 5

4
− 1

2

]
⊆
[
h1/3, h1/2

]
(where h > 550), then set t := 2. In

this case, again h1/(t+1) > ln(6h), t > 2, and x ∈ [h1/(t+1), h1/t] with n > (h + x)(h + x−
1) + 1. Therefore, by Lemma 5.16, there are at most h+x− 1 subtrees Ti of T which can
be x-splits.

Now if T has an “even distribution” of ki values, then ki ∈ {x−1, x} for some x 6
√
h

for all i ∈ {1, 2, . . . , r}. Based on the conclusions here, the number of vertices in T can
be bounded as follows, which yields a contradiction:

n 6 (h+ x)(h+ x− 1) + (h+ x− 1)(h+ x− 2) + 1

6 (h+
√
h)(h+

√
h− 1)(h+

√
h− 1)(h+

√
h− 2) + 1

< 5h2.

On the other hand, if T has “one large” ki value, then k1 6 h − 1 and there is an
integer x <

√
h such that ki = x for i ∈ {2, 3, . . . , r}. Therefore, the number of vertices

in T is bounded as follows, which produces a contradiction:

n 6 (h+ k1) + (h+ x)(h+ x− 1) + 1 6 2h+ (h+
√
h)(h+

√
h− 1) + 1 < 5h2.

Thus we have established Theorem 5.1.
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6 Concluding remarks

In this study, we considered distances between three fundamental concepts of middle parts
of the tree: the center, centroid, and subtree core. The maximum distances between each
pair of these is first examined for general trees. The extremal structures that achieve
these maximum distances contained a vertex of large degree and a long path, motivating
us to study the same question for trees with degree restrictions and for trees with bounded
diameter. The latter leads us to an interesting and difficult problem of minimizing number
of root-containing subtrees among trees with given order and height. While we do not
yet have a complete characterization of such optimal trees, we have established many of
their structural properties to guide our continued study of this topic.
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