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Abstract

Let (G,+) be an abelian group. In 2004, Eliahou and Kervaire found an explicit
formula for the smallest possible cardinality of the sumset A + A, where A ⊆ G
has fixed cardinality r. We consider instead the smallest possible cardinality of the
difference set A−A, which is always greater than or equal to the smallest possible
cardinality of A + A and can be strictly greater. We conjecture a formula for this
quantity and prove the conjecture in the case that G is an elementary abelian p-
group. This resolves a conjecture of Bajnok and Matzke on signed sumsets.

Mathematics Subject Classifications: 05D99,11B13

1 Introduction

Let G be a finite abelian group of order N written with additive notation. Given subsets
A,B ⊆ G, the sumset of A and B is defined as

A+B = {a+ b | a ∈ A, b ∈ B}

and the difference set of A and B is defined as

A−B = {a− b | a ∈ A, b ∈ B}.

Let −A denote the difference set {0} − A = {−a | a ∈ A}.
Given integers r and s with 1 6 r, s 6 N , define

µG(r, s) = min{|A+B| | A,B ⊆ G, |A| = r, |B| = s} (1)

ρ+G(r) = min{|A+ A| | A ⊆ G, |A| = r} (2)

ρ−G(r) = min{|A− A| | A ⊆ G, |A| = r}. (3)
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Observe that taking B = A in (1) yields µG(r, r) 6 ρ+G(r) and taking B = −A yields
µG(r, r) 6 ρ−G(r).

The functions µG(r, s) and ρ+G(r) have held considerable interest for over 200 years. In
1813, Cauchy [3] proved the following classical result, which was rediscovered by Daven-
port [4] in 1935.

Theorem 1 (Cauchy-Davenport Theorem [3, 4]). Let G = Z/pZ where p is prime. Then
µG(r, s) = min{r + s− 1, p} for 1 6 r, s 6 p.

In 2004, Eliahou and Kervaire [6] used a classical result of Kneser [8] to compute
µG(r, s) and ρ+G(r) for all finite abelian groups G.

Theorem 2 (Eliahou and Kervaire, [6, Theorem 2, Proposition 7]). Let G be a finite
abelian group of order N . Then

µG(r, s) = min
d∈D(N)

d
(⌈r
d

⌉
+
⌈s
d

⌉
− 1
)

for 1 6 r, s 6 N , where D(N) denotes the set of positive divisors of N . Furthermore, we
have ρ+G(r) = µG(r, r).

Remark 3. The quantities µG(r, s) and ρ+G(r) depend only on N , r, and s (and not the
group structure of G).

In contrast, there is no known explicit formula for the function ρ−G(r), and it appears
to exhibit more complicated behavior than ρ+G(r). For example, if G = (Z/3Z)2, then
ρ+G(4) = µG(4, 4) = 7 and ρ−G(4) = 9, so the inequality ρ+G(r) = µG(r, r) 6 ρ−G(r) need not
hold with equality. Also, we will see that unlike ρ+G(r), the quantity ρ−G(r) may depend
on the group structure of G and not only on N and r.

However, there are some cases in which ρ−G(r) is known. The results of Bajnok and
Matzke in [1, 2] yield a formula for ρ−G(r) in the case that G is cyclic.

Theorem 4 (cf. [1, Theorem 4]). Let G = Z/NZ. Then

ρ−G(r) = ρ+G(r) = min
d∈D(N)

d
(

2
⌈r
d

⌉
− 1
)

for 1 6 r 6 N .

Their results also imply an upper bound for ρ−G(r) for all groups G, which we conjecture
holds with equality.

Theorem 5 (cf. [1, Theorem 5]). Let G be a finite abelian group of order N . Let
e = expG be the exponent of G; that is, the least common multiple of the orders of the
elements of G. For 1 6 r 6 N , define

D(N, e, r) = {d1d2 | d1 ∈ D(N/e), d2 ∈ D(e), d1e > r}.

Then
ρ−G(r) 6 min

d∈D(N,e,r)
d
(

2
⌈r
d

⌉
− 1
)
.
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Conjecture 6 (cf. [1, Conjecture 10]). The inequality in Theorem 5 holds with equality.
That is, under the hypotheses of Theorem 5, we have

ρ−G(r) = min
d∈D(N,e,r)

d
(

2
⌈r
d

⌉
− 1
)
.

The main goal of this paper is to prove a special case of Conjecture 6. Suppose that
G is an elementary abelian p-group; that is, a group of the form G = (Z/pZ)d where p is
prime and d > 0. Then Theorem 7 below, which is our main result, computes ρ−G(r). We
will verify in Section 2 that Theorem 7 agrees with the prediction given by Conjecture 6.

Theorem 7. Let G = (Z/pZ)d where p is prime and d > 0. Let t and r be integers with
0 6 t 6 d and pt < r 6 pt+1. Then

ρ−G(r) = pt min

{
2

⌈
r

pt

⌉
− 1, p

}
.

Theorem 7 has applications to questions about h-fold signed sumsets, which were
introduced by Bajnok and Matzke in 2014 [1]. As in [1], if A = {a1, . . . , am} ⊆ G is a set
of size m, we define the h-fold signed sumset

h±A =

{
m∑
i=1

λiai

∣∣∣∣∣ (λ1, . . . , λm) ∈ Zm,
m∑
i=1

|λi| = h

}

and
ρ±(G, r, h) = min{|h±A| | A ⊆ G, |A| = r}

for h > 0 and 1 6 r 6 N . In Section 6, we will prove the following result as a consequence
of Theorem 7.

Theorem 8 ([2, Conjecture 18]). Let p > 2 be a prime number, and let c and v be integers
with 0 6 c 6 p− 1 and 1 6 v 6 p. Let m = cp+ v.

(a) If 1 6 c 6 (p− 3)/2, then

ρ±((Z/pZ)2,m, 2) = (2c+ 1)p.

(b) If c = (p− 1)/2 and v 6 (p− 1)/2, then

ρ±((Z/pZ)2,m, 2) = p2 − 1.

2 An outline of the proof of Theorem 7

Sections 2 to 5 of this paper will contain the proof of Theorem 7, which can be divided
into four steps:
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1. We will show, with the notation of Theorem 7, that

ρ−G(r) 6 pt min

{
2

⌈
r

pt

⌉
− 1, p

}
.

2. We will show that if p is a prime and d1 > d2 > 0 are integers, then ρ−
(Z/pZ)d1 (r) =

ρ−
(Z/pZ)d2 (r) for 1 6 r 6 pd2 .

3. By applying the Cauchy-Davenport Theorem (Theorem 1) repeatedly, we will prove
Theorem 7 in the case that r 6 p2.

4. We will conclude the proof of the theorem by induction on r.

We start with the following result, which is step (1) above.

Lemma 9. With the notation of Theorem 7, we have

ρ−G(r) 6 pt min

{
2

⌈
r

pt

⌉
− 1, p

}
.

Proof. Using the notation of Theorem 5, we have N = |G| = pd and e = expG = p, so

D(N, e, r) = {d1d2 | d1 ∈ D(pd−1), d2 ∈ D(p), d1p > r}
= {pt, pt+1, . . . , pd−1, pd}.

By Theorem 5, we have

min
d∈D(N,e,r)

d
(

2
⌈r
d

⌉
− 1
)

= min

{
pt
(

2

⌈
r

pt

⌉
− 1

)
, pt+1, . . . , pd−1, pd

}
= pt min

{
2

⌈
r

pt

⌉
− 1, p

}
,

as desired.

Remark 10. Here is an explicit example of a subset A ⊆ G achieving the bound of
Lemma 9. Put a total order < on Z/pZ by identifying it with {0, 1, . . . , p − 1} in the
usual way. Then, recall that (Z/pZ)d is totally ordered by the lexicographic order, which
is defined as follows: we say that x = (x1, . . . , xd) precedes y = (y1, . . . , yd) in the lexico-
graphic order if for some i we have xi < yi and xj = yj for j < i. Let A be the set of the
smallest r elements of (Z/pZ)d in the lexicographic order. Then one can easily verify that

|A− A| = pt min

{
2

⌈
r

pt

⌉
− 1, p

}
,

which provides an alternative constructive proof of Lemma 9. It is worth noting that by
[5, Proposition 3.1], the same set A satisfies |A+ A| = ρ+G(r).
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3 Independence of dimension

The following result is step 2 in the proof of Theorem 7.

Lemma 11. Let p be a prime and let d1 > d2 > 0 be integers. Let G = (Z/pZ)d1 and
H = (Z/pZ)d2. Then ρ−G(r) = ρ−H(r) for 1 6 r 6 pd2.

Proof. It suffices to consider the case that d1 = d2+1. Since H embeds in G as a subgroup,
we have ρ−G(r) 6 ρ−H(r), so it remains to show that ρ−H(r) 6 ρ−G(r).

Take a subset A ⊆ G with |A| = r and |A − A| = ρ−G(r). Considering G as a vector
space of dimension d1 = d2 + 1 over the finite field Fp, there are

pd1 − 1

p− 1
= 1 + p+ · · ·+ pd2 > pd2

lines containing 0 (that is, vector subspaces of dimension 1) in G. On the other hand,
there are only

|A− A| − 1 6 ρ−G(r)− 1 6 ρ−H(r)− 1 < pd2

nonzero elements of A−A. Since no two distinct lines in G containing 0 share a nonzero
element, we conclude that there is a line ` in G such that ` ∩ (A− A) = {0}.

Considering H as a vector space of dimension d2 = d1 − 1 over Fp, fix an Fp-linear
transformation π : G → H whose kernel is the line `. We claim that the restriction
π|A is an injection. To show this, take x, y ∈ A with π(x) = π(y); we will show that
x = y. Since π is linear, we have π(x− y) = 0, so x− y ∈ kerπ = `. Therefore, we have
x− y ∈ ` ∩ (A− A) = {0}. That is, we have x = y, as desired.

Since π|A is an injection, we have |π(A)| = |A| = r, where π(A) is the image of A
under the map π. Therefore

ρ−H(r) 6 |π(A)− π(A)| = |π(A− A)| 6 |A− A| = ρ−G(r)

as desired.

4 The case r 6 p2

In this section, we show that the statement of Theorem 7 holds when r 6 p2, which is
step (3) in the proof of Theorem 7.

Lemma 12. Let p be a prime and let d be a nonnegative integer. Let G be the group
(Z/pZ)d. Then

ρ−G(r) = pt min

{
2

⌈
r

pt

⌉
− 1, p

}
for 1 6 r 6 min{pd, p2}, where t is the unique integer satisfying pt < r 6 pt+1.

The following lemma will be instrumental in the proof of Lemma 12.
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Lemma 13. Let p be a prime, and let m and n be integers with 3 6 n + 2 6 m 6
(p − 1)/2. Let λ = (λ1, . . . , λm) be a sequence of integers with p > λ1 > · · · > λm > 0
and

∑m
k=1 λk > np + 1. Let µ = (µ1, . . . , µ2m−1) be a sequence of integers such that

µi+j−1 > min{λi + λj − 1, p} for 1 6 i, j 6 m. Then

2m−1∑
k=1

µk > (2n+ 1)p.

Proof. We defer the proof to Appendix A.

Proof of Lemma 12. By Lemma 9, we have

ρ−G(r) 6 pt min

{
2

⌈
r

pt

⌉
− 1, p

}
,

so it remains to show that

ρ−G(r) > pt min

{
2

⌈
r

pt

⌉
− 1, p

}
. (4)

If r 6 p, then this follows directly from Lemma 11 and the Cauchy-Davenport Theo-
rem. Thus, we may assume r > p.

By Lemma 11, we may assume that d = 2, so G = (Z/pZ)2. If p = 2, then the theorem
follows easily from enumerating all possible values of r and all sets A ⊆ G, so assume
that p > 2. Let

r′ =

{
p (dr/pe − 1) + 1 if r 6 p(p− 1)/2

p(p− 1)/2 + 1 if r > p(p− 1)/2
.

Since r > r′, replacing r by r′ cannot increase the left-hand side of (4), and it is easy
to check that this replacement leaves the right-hand side unchanged. Therefore, we may
assume that r = np+ 1 where 1 6 n 6 (p− 1)/2. Take a subset A ⊂ G with |A| = r; we
will show that

|A− A| > (2n+ 1)p = pt min

{
2

⌈
r

pt

⌉
− 1, p

}
.

Identify G with the two-dimensional vector space F2
p over the field Fp. We will now

count the two-element subsets of A in two ways. By definition, the number of two-element
subsets of A is the binomial coefficient

(
np+1

2

)
. On the other hand, every two-element

subset of A is contained in a unique line (that is, affine subspace of G of dimension 1), so
we can count these subsets according to the lines containing them. This yields∑

`⊂G

(
|A ∩ `|

2

)
=

(
np+ 1

2

)
(5)

where the sum is over all lines ` ⊂ G. Every line in G is parallel to exactly one line `′ ⊂ G
containing 0, so (5) can be rewritten as∑

`′⊂G
`′30

∑
`⊂G
`‖`′

(
|A ∩ `|

2

)
=

(
np+ 1

2

)
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where the outer sum is over all lines `′ ⊂ G containing 0, and the inner sum is over all
lines ` ⊂ G parallel to `′. Since there are exactly p+ 1 lines in G containing 0, there is a
particular line `0 ⊂ G containing 0 such that∑

`⊂G
`‖`0

(
|A ∩ `|

2

)
>

1

p+ 1

(
np+ 1

2

)
.

We may assume, by applying an Fp-linear change of coordinates, that `0 is the line {(0, y) |
y ∈ Fp} ⊂ F2

p = G. For any x ∈ Fp, define the line

`x = {(x, y) | y ∈ Fp}.

Then, the lines in G parallel to `0 are exactly the lines `x for x ∈ Fp. Let

m = max
x∈Fp

|A ∩ `x|.

Since ∑
x∈Fp

|A ∩ `x| = |A| = np+ 1,

we have m > d(np + 1)/pe = n + 1. We consider three cases, depending on whether
m > (p+ 1)/2, or m = n+ 1, or n+ 2 6 m 6 (p− 1)/2.

Case 1 (m > (p + 1)/2):
Take x ∈ Fp such that |A∩ `x| = m. Since `x is a translate of `0, which is isomorphic as a
group to Z/pZ, the Cauchy-Davenport Theorem applies to the difference (A∩ `x)− (A∩
`x) ⊆ `0, yielding

|(A− A) ∩ `0| > |(A ∩ `x)− (A ∩ `x)| > min{2m− 1, p} = p.

(Essentially, we are applying the Cauchy-Davenport Theorem only to the second coordi-
nates of the elements of A ∩ `x, which lie in Z/pZ.) That is, the line `0 is a subset of
A− A.

Now, take any line `′ ⊂ G containing 0. There is a line ` parallel to `′ such that
|A∩`| > d(np+1)/pe = n+1. Since ` is a translate of `′, which is isomorphic as a group to
Z/pZ, the Cauchy-Davenport Theorem again applies to the difference (A∩`)−(A∩`) ⊆ `′,
yielding

|(A− A) ∩ `′| > |(A ∩ `)− (A ∩ `)| > min{2(n+ 1)− 1, p} = 2n+ 1.

Since G \ {0} is equal to the disjoint union⊔
`′⊂G
`′30

(`′ \ {0})
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over all lines `′ ⊂ G containing 0, we conclude

|A− A| = 1 +
∑
`′⊂G
`′30

(|(A− A) ∩ `′| − 1)

> 1 + (p− 1) + p · ((2n+ 1)− 1)

= (2n+ 1)p

which is the desired inequality.

Case 2 (m = n + 1):
Let S = {x ∈ Fp | |A ∩ `x| = n + 1} and let s = |S|. For each x ∈ Fp \ S we have
|A ∩ `x| 6 n, so

1

p+ 1

(
np+ 1

2

)
6
∑
x∈Fp

(
|A ∩ `x|

2

)
= s

(
n+ 1

2

)
+
∑

x∈Fp\S

(
|A ∩ `x|

2

)

6 s

(
n+ 1

2

)
+
∑

x∈Fp\S

n− 1

2
|A ∩ `x|

= s

(
n+ 1

2

)
+
n− 1

2
((np+ 1)− (n+ 1)s),

Simplifying this inequality and using the bound n 6 (p− 1)/2, we obtain

s >
p+ 1− n
p+ 1

· np+ 1

n+ 1

>
p+ 1− (p− 1)/2

p+ 1
· p(p− 1)/2 + 1

(p− 1)/2 + 1

=
p− 1

2
+

p2 + 7

2(p+ 1)2

>
p− 1

2
.

Thus s > (p+ 1)/2, so by the Cauchy-Davenport Theorem, we have |S − S| > min{2s−
1, p} = p, so S − S = Fp.

Now, take any x ∈ Fp. Since x ∈ S − S, there is y ∈ Fp such that y, x + y ∈ S. By
the Cauchy-Davenport Theorem again, we have

|(A− A) ∩ `x| > |A ∩ `x+y − A ∩ `y| > min{2(n+ 1)− 1, p} = 2n+ 1.

Summing over all x ∈ Fp yields

|A− A| =
∑
x∈Fp

|(A− A) ∩ `x| > (2n+ 1)p

as desired.
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Case 3 (n + 2 6 m 6 (p− 1)/2):
For 1 6 k 6 p, define

Λk = {x ∈ Fp | |A ∩ `x| > k}
Mk = {x ∈ Fp | |(A− A) ∩ `x| > k}
λk = |Λk|
µk = |Mk|.

By definition, we have p > λ1 > · · · > λm > 0 and p > µ1 > · · · > µp > 0. We have

m∑
k=1

λk =
∑
x∈Fp

|A ∩ `x| = |A| = ap+ 1

because each line `x contributes exactly |A ∩ `x| to the sum. Similarly

p∑
k=1

µk =
∑
x∈Fp

|(A− A) ∩ `x| = |A− A|.

We claim that Mi+j−1 ⊇ Λi − Λj for 1 6 i, j 6 m. To show this, take x1 ∈ Λi and
x2 ∈ Λj; we will show that x1 − x2 ∈ Mi+j−1. By the Cauchy-Davenport Theorem, we
have

|(A− A) ∩ `x1−x2| > |A ∩ `x1 − A ∩ `x2|
> min{|A ∩ `x1|+ |A ∩ `x2| − 1, p}
> min{i+ j − 1, p}
= i+ j − 1

where the last equality follows from the bound i, j 6 m 6 (p − 1)/2. That is, we have
x1 − x2 ∈Mi+j−1, as desired.

By the Cauchy-Davenport Theorem again, we conclude

µi+j−1 = |Mi+j−1| > |Λi − Λj| > min{λi + λj − 1, p} (6)

for 1 6 i, j 6 m.
Therefore, the conditions of Lemma 13 are satisfied, so

|A− A| =
p∑

k=1

µk > (2n+ 1)p

as desired.
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5 Completing the proof of Theorem 7

Before proceeding to the proof of Theorem 7, we prove a general lemma about sets in
vector spaces over finite fields.

Lemma 14. Let p be a prime and let m be an integer. Let G be a vector space over the
field Fp of dimension d > 3, and let S be a subset of G such that

|S ∩H| > mpd−2

for each vector hyperplane H (that is, vector subspace of dimension d − 1) in G. Then
|S| > mpd−1.

Proof of Lemma 14. Assume for the sake of contradiction that |S| < mpd−1. We first
claim that there is a (d− 2)-dimensional vector subspace V0 ⊂ G with |S ∩ V0| 6 mpd−3.
To show this, take a (d− 2)-dimensional vector subspace V ⊂ G uniformly at random. It
is clear that V has pd−2 − 1 nonzero elements, that G has pd − 1 nonzero elements, and
that each nonzero element of G is in V with equal probability. Therefore, the probability
that x ∈ V for a fixed x ∈ G \ {0} is

pd−2 − 1

pd − 1
.

Clearly, the probability that 0 ∈ V is 1. Therefore, by the linearity of expectation, the
expected value of |S ∩ V | is given by

E[|S ∩ V |] = 1 + (|S| − 1)
pd−2 − 1

pd − 1

< 1 + (mpd−1 − 1)
pd−2 − 1

pd − 1

= mpd−3 +
(p2 − 1)(p−m)pd−3

pd − 1

< mpd−3 + 1.

Since mpd−3 is an integer, we conclude that there is a particular (d−2)-dimensional vector
subspace V0 ⊂ G with |S ∩ V0| 6 mpd−3.

Finally, consider the integer N defined by the sum

N =
∑
H

|S ∩H|

where H ranges over all vector hyperplanes with V0 ⊂ H ⊂ G. Such hyperplanes H are
in bijection with lines through the origin in the two-dimensional quotient space G/V0, so
there are p+ 1 of them. Therefore, by the assumption of the theorem, we have

N >
∑
H

mpd−2 = (p+ 1)mpd−2.
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On the other hand, the sum defining N counts every element of S \ V0 once and every
element of S ∩ V0 exactly p+ 1 times, so

N = |S|+ p|S ∩ V0|.

Therefore, we have

|S| = N − p|S ∩ V0| > (p+ 1)mpd−2 − p ·mpd−3 = mpd−1,

which contradicts our assumption that |S| < mpd−1.

We are now ready to restate and prove Theorem 7.

Theorem 7. Let G = (Z/pZ)d where p is prime and d > 0. Let t and r be integers with
0 6 t 6 d and pt < r 6 pt+1. Then

ρ−G(r) = pt min

{
2

⌈
r

pt

⌉
− 1, p

}
.

Proof. We proceed by induction on r. If t < 2, then the result follows from Lemma 12,
so we may assume t > 2. By Lemma 11, we may also assume that d = t + 1. Let
m = min{2 dr/pte − 1, p}. We wish to show that ρ−G(r) = mpt. By Lemma 9, we have
ρ−G(r) 6 mpt, so it remains to show that ρ−G(r) > mpt. Let A be a subset of G with
|A| = r; we will show that |A− A| > mpt.

Consider G as a vector space of dimension d = t+1 > 3 over Fp. By Lemma 14 applied
to S = A−A, it suffices to show that |(A−A) ∩H| > mpt−1 for each vector hyperplane
H ⊂ G. For this, note that there are exactly p distinct translates H + x, where x ∈ G,
and that the entire space G is the disjoint union of these p translates. Therefore, there
exists x0 ∈ G such that |A ∩ (H + x0)| > dr/pe. By the inductive hypothesis,

|(A− A) ∩H| > |(A ∩ (H + x0))− (A ∩ (H + x0))| > ρ−H(dr/pe) = mpt−1

as desired.

6 Applications to signed sumsets

In this section, we prove Theorem 8. In particular, we will show that it is a consequence
of the following more general result.

Lemma 15. Let G be a finite abelian group of order N . Then

ρ±(G,m, 2) > min{ρ−G(m), ρ−G(2m)− 1}

for 1 6 m 6 N/2.

Proof. Let A ⊆ G be a subset with |A| = m. We will show that

2±A > min{ρ−G(m), ρ−G(2m)− 1}.

We consider two cases, depending on whether or not A ∩ (−A) = ∅.
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Case 1 (A ∩ (−A) 6= ∅):
Choose x ∈ A∩ (−A). By definition, the signed sumset 2±A contains 0 = x+ (−x) and it
contains the difference of any two distinct elements of A. Therefore, we have A−A ⊆ 2±A.
It follows that

|2±A| > |A− A| > ρ−G(m) > min{ρ−G(m), ρ−G(2m)− 1},

as desired.

Case 2 (A ∩ (−A) = ∅):
Let B = A ∪ (−A). Then |B| = 2|A|. By definition, the signed sumset 2±A contains
(B −B) \ {0}, so

|2±A| > |B −B| − 1

> ρ−G(2m)− 1

> min{ρ−G(m), ρ−G(2m)− 1},

as desired.

Now, we shall restate and prove Theorem 8.

Theorem 8 ([2, Conjecture 18]). Let p > 2 be a prime number, and let c and v be integers
with 0 6 c 6 p− 1 and 1 6 v 6 p. Let m = cp+ v.

(a) If 1 6 c 6 (p− 3)/2, then

ρ±((Z/pZ)2,m, 2) = (2c+ 1)p.

(b) If c = (p− 1)/2 and v 6 (p− 1)/2, then

ρ±((Z/pZ)2,m, 2) = p2 − 1.

Proof. (a) By Lemma 15 and Theorem 7, we have

ρ±((Z/pZ)2,m, 2) > min{ρ−G(m), ρ−G(2m)− 1}

= min

{
(2c+ 1)p,

(
4c+ 2

⌈
2v

p

⌉
+ 1

)
p− 1

}
= (2c+ 1)p.

The reverse inequality ρ±((Z/pZ)2,m, 2) 6 (2c+ 1)p follows from [1, Theorem 5].

(b) By Lemma 15 and Theorem 7, we have

ρ±((Z/pZ)2,m, 2) > min{ρ−G(m), ρ−G(2m)− 1}
= min{p2, p2 − 1}
= p2 − 1.

The reverse inequality ρ±((Z/pZ)2,m, 2) 6 p2− 1 follows from [1, Proposition 8].
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A Proof of Lemma 13

In this appendix, we prove Lemma 13. The main tool used in the proof is [7, Lemma 2.1],
which we restate here for convenience.

Lemma 16 ([7, Lemma 2.1]). If a1, . . . , am, b1, . . . , bn ∈ R, then

1

m+ n− 1

m+n∑
i=2

max
j
{aj + bi−j | 1 6 j 6 m, 1 6 i− j 6 n} > 1

m

m∑
i=1

ai +
1

n

n∑
i=1

bi.

Proof of Lemma 13. For each i with 2 6 i 6 2m, let

ci = max{λj + λi−j | 1 6 j 6 m, 1 6 i− j 6 m}.

Let h be the largest integer such that ch+1 > p + 1, or 0 if no such integer exists. Then
µi > p > ci+1 − p for i 6 h and µi > ci+1 − 1 for i > h.

Proceed by induction on m. We consider two cases, depending on whether h 6 1 or
h > 2.

Case 1 (h 6 1):
First, assume n = 1 and m = 3 and h = 1. Then

2m−1∑
k=1

µk = µ1 + µ2 + µ3 + µ4 + µ5

> p+ (λ1 + λ2 − 1) + (λ1 + λ3 − 1) + (λ2 + λ3 − 1) + 1

> p+ 2(λ1 + λ2 + λ3)− 2

> p+ 2(p+ 1)− 2

= 3p

as desired.
Next, assume n = 1 and m > 4 and h = 1. Then 2λ1 = c2 > p+ 1, so λ1 > (p+ 1)/2.

Therefore µk > λ1+λk−1 > (p+1)/2 for 1 < k < m and µk > λm+λk−m+1−1 > λk−m+1

for k > m, so

2m−1∑
k=1

µk > p+
m−1∑
k=2

p+ 1

2
+

2m−1∑
k=m

λk−m+1

= p+ (m− 2)
p+ 1

2
+ (np+ 1)

> 3p

as desired.
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Thus we may assume that either h = 0, or h = 1 and n > 2. Then h 6 n− 1, so

2m−1∑
k=1

µk >
2m∑
k=2

ci − (2m− 1− h)− ph

> (2m− 1)
2

m
(np+ 1)− (2m− 1− h)− ph

> (2m− 1)
2

m
(np+ 1)− (2m− 1)− (p− 1)(n− 1)

= (3n+ 1)p+ n+ 4− 2

m
(np+ 1)− 2m

where the second inequality follows from Lemma 16. It remains to show that

(3n+ 1)p+ n+ 4− 2

m
(np+ 1)− 2m > (2n+ 1)p. (7)

for 3 6 n + 2 6 m 6 (p− 1)/2. Each side of (7) is a linear function of the variable p, so
it is enough to verify (7) after substituting p = 2m and in the limit as p→∞.

After substituting p = 2m (or equivalently m = p/2), the left-hand side of (7) becomes

(3n+ 1)p+ n+ 4− 4

p
(np+ 1)− p = (2n+ 1)p+ (n− 1)(p− 3) +

(
1− 4

p

)
> (2n+ 1)p

as desired.
Observe that

3n+ 1− 2n

m
> 2n+ 1,

so the coefficient of p on the left-hand side of (7) is greater than the coefficient of p on
the right-hand side. Thus (7) also holds in the limit as p → ∞, so it holds whenever
3 6 n+ 2 6 m 6 (p− 1)/2.

Case 2 (h > 2):
Define the sequence λ′ = (λ′1, . . . , λ

′
m−1) by λ′k = λk+1 for 1 6 k 6 m − 1. Then, define

µ′ = (µ′1, . . . , µ
′
2m−3) by

µ′k = max
k=i+j−1

min{λ′i + λ′j − 1, p}

for 1 6 k 6 2m− 3, where the maximum is over all 1 6 i, j 6 m− 1 with k = i+ j − 1.
We have

m−1∑
k=1

λ′k =

(
m∑
k=1

λk

)
− λ1 > (n− 1)p+ 1,

so by the inductive hypothesis we have

2m−3∑
k=1

µ′k > (2n− 1)p.
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On the other hand, we have

µk+2 = max
k+2=i+j−1

(λi + λj − 1) > max
k=i+j−1

(λ′i + λ′j − 1) = µ′k

for 1 6 k 6 2m− 3, where the inequality follows from replacing (i, j) with (i− 1, j − 1).
Therefore

2m−1∑
k=1

µk = 2p+
2m−3∑
k=1

µ′k > (2n+ 1)p

as desired.
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[2] Béla Bajnok and Ryan Matzke. On the minimum size of signed sumsets in elementary
abelian groups. Journal of Number Theory, 159:384 – 401, 2016.

[3] Augustin-Louis Cauchy. Recherches sur les nombres. In Oeuvres complètes, volume 1,
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