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Abstract

This paper defines the q-analogue of a matroid and establishes several properties
like duality, restriction and contraction. We discuss possible ways to define a q-
matroid, and why they are (not) cryptomorphic. Also, we explain the motivation
for studying q-matroids by showing that a rank metric code gives a q-matroid.

Mathematics Subject Classifications: 05B35, 05A30

1 Introduction

This paper establishes the definition and several basic properties of q-matroids. Also,
we explain the motivation for studying q-matroids by showing that a rank metric code
gives a q-matroid. We give definitions of a q-matroid in terms of its rank function and
independent spaces. The dual, restriction and contraction of a q-matroid are defined, as
well as truncation, closure, and circuits. Several definitions and results are straightforward
translations of facts for ordinary matroids, but some notions are more subtle. We illustrate
the theory by some running examples and conclude with a discussion on further research
directions involving q-matroids.

2 q-Analogues

The q-analogue of the number n is defined by

[n]q = 1 + q + · · ·+ qn−1 =
qn − 1

q − 1
.

This forms the basis of quantum calculus, and we refer to Kac and Cheung [13] for an
introduction to the subject. In combinatorics, one can view the q-analogue as what
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happens if we generalize from a finite set to a finite dimensional vector space. The “q”
in q-analogue does not only refer to quantum, but also to the size of a finite field. In
the latter case, [n]q is the number of 1-dimensional subspaces of a vector space Fnq ; but
also in general, we can view 1-dimensional subspaces of a finite dimensional space as the
q-analogues of the elements of a finite set. In this text we keep in mind finite fields,
because of applications, but we will consider finite dimensional vector spaces over both
finite and infinite fields.

Most notions concerned with sets have a straightforward q-analogue, as given in the
following table:

finite set finite dim space
element 1-dim subspace

∅ 0
size dimension

n qn−1
q−1

intersection intersection
union sum

Furthermore, the Newton binomial(
n

k

)
=

n!

k!(n− k)!
=
n · · · (n− k + 1)

1 · · · k

counts the number of subsets of {1, . . . , n} of size k. The q-analogue of a factorial is defined
as [n]q! = [n]q[n − 1]q · · · [1]q. This leads to the definition of the Gaussian binomial, or
q-binomial: [

n

k

]
q

=
[n]q!

[k]q![n− k]q!
=

(qn − 1) · · · (qn−k+1 − 1)

(q − 1) · · · (qk − 1)
.

If we consider q as the size of a finite field, the q-binomial counts the number of subspaces
of Fnq of dimension k. For infinite fields, we get a polynomial in q that can be considered
as the counting polynomial of the Grassmann variety of k-dimensional subspaces of an
n-dimensional vector space, see [17].

In most cases, we can go from the q-analogue to the “normal” case by letting q → 1.
(We will not go into the details of a precise definition.) This can also be viewed as
projective geometry over the field F1, as is nicely explained by Cohn [5].

Two notions that were not mentioned above, because they need a bit more caution,
are the difference and the complement. When taking the difference A−B of two subsets A
and B, we mean “all elements that are in A but not in B”. The q-analogue of this would
be “all 1-dimensional subspaces that are in A but not in B”. The problem is that when
A and B are finite dimensional spaces, all these 1-dimensional subspaces together do not
form a subspace. Sometimes this is not a problem, as we will see for example in property
(I3) later on. We have several options for A− B as a subspace. We can take a subspace
C with C ∩ B = 0 and C ⊕ (A ∩ B) = A. However, this space is not uniquely defined.
We can also take the orthogonal complement, but this has the disadvantage that A∩A⊥
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can be non-trivial. Using the quotient space as a complement will lower the dimension of
the ambient space, which makes it perfect for the definition of contraction but not very
suitable for other purposes.

The solution to this problem is to use all options described above, depending on for
which property of A−B we need a q-analogue.

3 Rank function

Although it is not strictly necessary to know about matroids before defining their q-
analogue, the subject probably makes a lot more sense with ordinary matroids in mind.
A great resource on matroids is Oxley [16]. Another one, that we will follow for in our
search for cryptomorphic definitions of a q-matroid and the proofs of their equivalence, is
Gordon and McNulty [9].

Definition 1. A q-matroid M is a pair (E, r) in which E is a finite dimensional vector
space over a field F and r an integer-valued function defined on the subspaces of E, called
the rank, such that for all subspaces A,B of E:

(r1) 0 6 r(A) 6 dimA.

(r2) If A ⊆ B, then r(A) 6 r(B).

(r3) r(A+B) + r(A ∩B) 6 r(A) + r(B).

Note that this definition is a straightforward q-analogue of the definition of a matroid
in terms of its rank. In the same way, we define the following.

Definition 2. Let M = (E, r) be a q-matroid and let A be a subspace of E. If r(A) =
dimA, we call A an independent space. If not, A is called dependent. If A is independent
and r(A) = r(E), we call A a basis. The rank of M is denoted by r(M) and is equal to
r(E). A 1-dimensional subspace that is dependent, is called a loop.

These definitions might cause some confusion at first: we assign a rank to a subspace
that has little to do with its dimension, and we call a complete subspace (in)dependent.
However, we stick to these notions because they are a direct q-analogue of the terminology
for ordinary matroids. Before we go to an example, we prove a lemma that will be used
repeatedly.

Lemma 3. Let (E, r) be a q-matroid. Let A be a subspace of E and let x be a 1-
dimensional subspace of E. Then r(A+ x) 6 r(A) + 1.

Proof. First note that for any q-matroid r(0) = 0 and r(x) is either 0 or 1, by (r1). Now
apply property (r3) to A and x:

r(A+ x) = r(A+ x) + 0

6 r(A+ x) + r(A ∩ x)

6 r(A) + r(x)

6 r(A) + 1.
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Example 4. Let E be a finite dimensional vector space of dimension n over a field F.
Let 0 6 k 6 n be an integer. Define a function r on the subspaces of E as follows:

r(A) =

{
dimA if dimA 6 k
k if dimA > k

To show that (E, r) is a q-matroid, we have to show that r satisfies the properties (r1),
(r2), (r3). First of all, r is an integer valued function. It is clear from the definition of r
that (r1) and (r2) hold. For (r3), let A,B be subspaces of E. We distinguish three cases,
depending on the dimensions of A and B.

If r(A) = dimA and r(B) = dimB, then the definition of r implies that r(A ∩ B) =
dimA ∩B. By the modularity of dimension and (r2) it follows that

r(A+B) + r(A ∩B) = r(A+B) + dimA ∩B
= r(A+B) + dimA+ dimB − dim(A+B)

= r(A+B) + r(A) + r(B)− dim(A+B)

6 r(A) + r(B).

If r(A) = r(B) = k, this implies that also r(A+B) = k. Since r(A∩B) 6 k by definition,
we have that

r(A+B) + r(A ∩B) 6 k + k

= r(A) + r(B).

Finally, let r(A) = dimA and r(B) = k. Since dimB > k, we also have that dimA+B >
k, hence r(A+B) = k.

r(A+B) + r(A ∩B) = k + r(A ∩B)

6 k + dimA ∩B
6 k + dimA

6 r(B) + r(A).

We conclude that (E, r) is indeed a q-matroid. We call it the uniform q-matroid and
denote it by Uk,n(F). Its independent spaces are all subspaces of dimension at most k,
and its bases are all subspaces of dimension k.

Since a q-matroid is defined over a vector space, it is natural to ask if the choice of
basis of the vector spaces fundamentally changes the q-matroids. We therefore introduce
the notion of isomorphism for q-matroids.

Definition 5. Let M1 and M2 be two q-matroids with ground spaces E1 and E2. Then
M1 and M2 are isomorphic if there is an isomorphism ϕ of vector spaces between E1 and
E2 such that for all X ⊆ E1, ϕ(X) is independent in M2 if and only if X is independent
in M1.
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The following two propositions can be viewed as a variation of (r3). We will use them
in later proofs.

Proposition 6. Let r be the rank function of a q-matroid (E, r) and let A,B be subspaces
of E. Suppose r(A + x) = r(A) for all 1-dimensional subspaces x ⊆ B, x 6⊆ A. Then
r(A+B) = r(A).

Proof. We prove this by induction on k = dimB − dim(A ∩ B). Let {x1, . . . , xk} be 1-
dimensional subspaces of E that are in B but not in A such that A+x1+ · · ·+xk = A+B.
So the xi are generated by linearly independent vectors. Note that k is finite, since
dim(A+B) is finite and k 6 dim(A+B). If k = 0, then B ⊆ A so clearly r(A+B) = r(A).

Now assume that r(A + x1 + · · · + xt) = r(A) for all t < k. We have to show that
r(A+ x1 + · · ·+ xk) = r(A). By (r2) we have that r(A) 6 r(A+ x1 + · · ·+ xk). By (r3)
we have that

r((A+ x1 + · · ·+ xk−1) + (A+ xk)) + r((A+ x1 + · · ·+ xk−1) ∩ (A+ xk))

6 r(A+ x1 + · · ·+ xk−1) + r(A+ xk)

which is equal to
r(A+ x1 + · · ·+ xk) + r(A) 6 r(A) + r(A)

and thus r(A + x1 + · · · + xk) 6 r(A). We conclude that equality holds, and since
A+ x1 + · · ·+ xk = A+B, this proves the statement.

Proposition 7. Let r be the rank function of a q-matroid (E, r), let A be a subspace of
E and let x, y be 1-dimensional subspaces of E. Suppose r(A + x) = r(A + y) = r(A).
Then r(A+ x+ y) = r(A).

Proof. Applying (r3) to A+ x and A+ y gives the following equivalent statements:

r((A+ x) + (A+ y)) + r((A+ x) ∩ (A+ y)) 6 r(A+ x) + r(A+ y)

r(A+ x+ y) + r(A) 6 r(A) + r(A)

r(A+ x+ y) 6 r(A).

On the other hand, by (r2) we have that r(A) 6 r(A+ x+ y), so equality must hold.

We end this section with a remark about the difference between matroids and q-
matroids. Let (Fnq , r) be a q-matroid defined over a finite field. Let X be the set of
1-dimensional subspaces of E and define a function on the subsets of X as follows:

ρ(A) = r(〈A〉),

that is, we take the rank in the q-matroid of the span of A. Then it is not difficult to show
that (X, ρ) is a matroid. However, this matroid behaves a lot different from the q-matroid
that we started with. For example, it has qn−1

q−1 elements and rank n, which means its rank
is very low in comparison to its cardinality. Also, if we take the usual duality, we do not
get the dual q-matroid (that we define later) because the complement of a subspace in X
is not a subspace. Similar remarks hold for restriction and contraction, as well as for the
link with rank metric codes. In short, by changing to the matroid (X, ρ), we lose a lot of
the structure of the q-matroid (Fnq , r).
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4 Independent spaces

Now that we have defined a q-matroid in terms of its rank function, a logical question
is to ask if we could also define it in terms of its independent spaces, bases, etcetera.
Unfortunately, the answer to this question is not as easy as just taking the q-analogues of
cryptomorphic definitions of an ordinary matroid. The goal of this section is to establish
the next cryptomorphic definition of a q-matroid.

Theorem 8. Let E be a finite dimensional space. If I is a family of subspaces of E that
satisfies the conditions:

(I1) I 6= ∅.

(I2) If J ∈ I and I ⊆ J , then I ∈ I.

(I3) If I, J ∈ I with dim I < dim J , then there is some 1-dimensional subspace x ⊆ J ,
x 6⊆ I with I + x ∈ I.

(I4) Let A,B ⊆ E and let I, J be maximal independent subspaces of A and B, respec-
tively. Then there is a maximal independent subspace of A+B that is contained in
I + J .

and r is the function defined by rI(A) = max{dim I : I ∈ I, I ⊆ A} for all A ⊆ E, then
(E, rI) is a q-matroid and its family of independent spaces is equal to I.

Conversely, if Ir is the family of independent spaces of a q-matroid (E, r), then Ir
satisfies the conditions (I1), (I2), (I3), (I4) and r = rIr .

The first three properties are a direct q-analogue of the axioms we use when we define
an ordinary matroid in terms of its independent sets. The property (I4) however is really
needed, as the next example and counter example show.

Example 9. Let E = F4
2 and let I be the set of all subspaces of dimension at most 2 that

do not contain the 1-dimensional space 〈0001〉. Now I is not empty, so it satisfies (I1). If
a space does not contain 〈0001〉, then all its subspaces also do not contain 〈0001〉, hence
(I2) holds. For (I3), the interesting case is to check for dim I = 1 and dim J = 2, with
I 6⊆ J . From all the three 1-dimensional spaces x in J , there can only be one such that
I + x contains 〈0001〉, hence we have proved (I3). It is not straightforward to check (I4),
but we will see in the next section that I is indeed the family of independent subspaces
of a q-matroid.

Example 10. Let E = F4
2 and let I be the family consisting of

I =

〈
1 0 0 1
0 1 1 0

〉
and all its subspaces. It is not difficult to see that I satisfies (I1), (I2), (I3): in fact, I
is the family of independent spaces of the uniform q-matroid U2,2(F2) embedded into the
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space E. Consider the subspaces

A =

〈 1 0 0 0
0 1 0 0
0 0 1 0

〉
, B =

〈 0 1 0 0
0 0 1 0
0 0 0 1

〉
.

Both A and B have 〈0110〉 as a maximal independent subspace. But A+B = E has I as
a maximal independent subspace, and I is not contained in 〈0110〉. So I does not satisfy
(I4).

Let rI be the rank function defined in Theorem 8. Then

rI(A+B) + rI(A ∩B) = 2 + 1 > 1 + 1 = rI(A) + rI(B),

so property (r3) does not hold for rI and I is not the family of independent spaces of a
q-matroid.

In order to understand why we need the extra axiom (I4), let us investigate a bit what
goes wrong in the counter example.

Lemma 11. Let x and y be loops of a q-matroid. Then the space x+ y has rank 0.

Proof. Apply property (r3) to x and y:

r(x+ y) = r(x+ y) + 0

= r(x+ y) + r(x ∩ y)

6 r(x) + r(y)

= 0.

By (r1), it follows that r(x+ y) = 0.

Or in other words: loops come in subspaces. This lemma might look trivial, but it is
exactly what goes wrong in Example 10. Take the loops 〈1000〉 and 〈0001〉: their sum
has rank 1. The difference with ordinary matroids is that for sets, A ∪ B contains only
elements that were already in either A or B. In the q-analogue this is not true: the space
A + B contains 1-dimensional subspaces that are in neither A nor B. Therefore, it is
“more difficult” to bound r(A + B), making it also more difficult for property (r3) to
hold.

Remark 12. Let I be the family of independent spaces of a q-matroid with ground space
E. Take an embedding ε : E → E ′ with dimE ′ > dimE and let I ′ = {ε(I) : I ∈ I}.
Then I ′ is not the family of independent spaces of a q-matroid over E ′. This is because
all 1-dimensional spaces that are in E ′ but not in E are loops, but they do not form a
subspace: this contradicts Lemma 11. It follows that a set of axioms for I that is invariant
under embedding can never be a full set of axioms that defines a q-matroid.

the electronic journal of combinatorics 25(3) (2018), #P3.2 7



Again, if we look back at Example 10, we see that this counter example was created by
embedding a uniform matroid in a space of bigger dimension. So in order to completely
determine a q-matroid in terms of its independent spaces, we need an extra axiom that
regulates how the spaces in I interact with the other subspaces of the q-matroid. This
is what the axiom (I4) does. We will now prove in three steps that (I4) holds for every
q-matroid.

Proposition 13. Let (E, r) be a q-matroid. Let A ⊆ E and let I be a maximal inde-
pendent subspace of A. Let x ⊆ E be a 1-dimensional space. Then there is a maximal
independent subspace of A+ x that is contained in I + x.

Proof. If x ⊆ A, the result is clear. If r(A) = r(A+ x) then I is a maximal independent
set in A+x and I ⊆ I +x, so we are also done. Therefore assume that x is not contained
in A and r(A) 6= r(A+ x). By Lemma 3 this means r(A+ x) = r(A) + 1.
If A is independent, then A + x = I + x also has to be independent, so the statement is
proven. Assume that A is not independent. Then there are A′, y ⊆ A such that A = A′+y
and I ⊆ A′, hence r(A) = r(A′). Now we use Proposition 7 on A′, x, and y. We have
that r(A′ + x + y) = r(A + x) 6= r(A) by assumption, so r(A′), r(A′ + x) and r(A′ + y)
can not all be equal since this would contradict Proposition 7. Because r(A′) = r(A) and
r(A′ + y) = r(A), it needs to be that r(A′ + x) 6= r(A). In fact, r(A′ + x) > r(A).
If A′ is independent, then A′ = I and we have that A′+ x = I + x is independent as well.
This proves the statement. If A′ is not independent, we repeat the procedure above: find
A′′ and y′ such that A′ = A′′ + y′ and I ⊆ A′′, and apply Proposition 7. We keep doing
this until we arrive at r(I + x) > r(A), which means I + x is independent.

This result has the following consequence. First of all, the result holds for all maximal
independent subspaces I ⊆ A. Suppose that r(A + x) = r(A) + 1. For all 1-dimensional
subspaces z ⊆ A + x, z 6⊆ A, we have that A + x = A + z. Hence, for all these z, we
have that I + z is independent. Also, all these z have to be independent themselves, by
(I2). So if enlarging a space raises its rank, it means all added 1-dimensional subspaces
are independent and all combinations of I + z have to be independent as well.

Proposition 14. Let (E, r) be a q-matroid. Let A ⊆ E and let I be a maximal indepen-
dent subspace of A. Let B ⊆ E. Then there is a maximal independent subspace of A+B
that is contained in I +B.

Proof. The proof goes by induction on dimB. If dimB = 0 then the statement is trivially
true. If dimB = 1 the statement is true by Proposition 13 above. Assume dimB > 1
and the statement is true for all subspaces with dimension less then dimB.
Let B′ be a subspace of B of codimension 1. By the induction hypothesis there is a
maximal independent subspace J of A + B′ that is contained in I + B′. Let x be a 1-
dimensional subspace x ⊆ B, x 6⊆ B′, so B = B′+x and A+B = A+B′+x. Now apply
Proposition 13 to A+B′ and J : there is a maximal independent subspace of A+B that
is contained in J + x ⊆ I +B′ + x = I +B.
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Proposition 15. Let (E, r) be a q-matroid. Let A,B ⊆ E and let I, J be maximal
independent subspaces of A and B, respectively. Then there is a maximal independent
subspace of A+B that is contained in I + J .

Proof. By Proposition 14 there is a maximal independent subspace of A + B that is
contained in I + B. This subspace is also maximal independent in I + B, by (r2) and
I + B ⊆ A + B. So r(A + B) = r(I + B). On the other hand, if we apply the same
Proposition 14 to B and I, we find a maximal independent subspace K of B + I that
is contained in J + I. Again, K is also maximal independent in J + I, by (r2) and
J + I ⊆ B + I. So r(I + B) = r(I + J). This implies that r(A + B) = r(I + J), hence
the subspace K ⊆ I + J is maximal independent in A+B, as was to be shown.

The last proposition is exactly statement (I4). Before finally proving Theorem 8, we
prove a variation of the properties (I1), (I2), (I3). We denote by 0 the 0-dimensional
subspace that contains only the zero vector.

Proposition 16. Let E be a finite dimensional space and let I be a family of subspaces
of E. Then the family I satisfies the properties (I1), (I2), (I3) above if and only if it
satisfies:

(I1’) 0 ∈ I.

(I2) If J ∈ I and I ⊆ J , then I ∈ I.

(I3’) If I, J ∈ I with dim J = dim I+1, then there is some 1-dimensional subspace x ⊆ J ,
x 6⊆ I with I + x ∈ I.

Proof. We need to show that (I1), (I2), (I3)⇐⇒ (I1’), (I2), (I3’).
⇒: Since I 6= ∅ by (I1) and every subspace of an independent space is independent

by (I2), we have 0 ⊆ I (I1’). (I3’) is just a special case of (I3).
⇐: (I1’) directly implies (I1). Let I, J ∈ I with dim I < dim J . Let I ′ be some

subspace of J with dim I ′ = dim I + 1. Then I ′ is independent by (I2) and we can use
(I3’) to find a 1-dimensional subspace x ⊆ I ′, x 6⊆ I with I + x ∈ I. Since I ′ ⊆ J , clearly
x ⊆ J , x 6⊆ I, so (I3) follows.

Proof (Theorem 8). The proof consists of three parts.

1. r → I. Given a function r with properties (r1), (r2), (r3), define I as {A ⊆ E :
r(A) = dimA} and prove (I1), (I2), (I3), (I4).

2. I → r. Given a family I with properties (I1), (I2), (I3), (I4), define r(A) as
maxI⊆A{dim I : I ∈ I} and prove (r1), (r2), (r3).

3. The first two are each others inverse, that is: I → r → I ′ implies I = I ′, and
r → I → r′ implies r = r′.
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Part 1. Let M = (E, r) be a q-matroid and define the family I to be those subspaces I
of E for which r(I) = dim I. We will show I satisfies (I1’), (I2), (I3’), (I4).

By (r1), r(0) = 0, so r(0) = dim 0 and 0 ∈ I, hence (I1’). (I4) was proven in
Proposition 15.

For (I2), let J ∈ I and I ⊆ J . We use (r3) with A = I and B a subspace of J such
that A ∩ B = 0 and A + B = J , to show dim I = r(I). The following is independent of
the choice of B. Since dim J = r(J), we have

r(I +B) + r(I ∩B) = r(J) + r(0) = dim J.

By (r1), we have
r(I) + r(B) 6 dim I + dim(B) = dim J.

Combining and using (r3) gives

dim J = r(J) + r(0) 6 r(I) + r(B) 6 dim I + dim(B) = dim J,

so we must have equality everywhere. This means, with (r1), that r(B) = dim(B) and
r(I) = dim I. Therefore I ∈ I and (I2) holds.

We will prove (I3’) by contradiction. Let I, J ∈ I with dim I < dim J and let x a
1-dimensional subspace x ⊆ J , x 6⊆ I. Suppose that (I3) fails, so I + x /∈ I. Then we
have r(I) = dim I but r(I + x) 6= dim(I + x) = dim I + 1. By (r1) and (r2) we have that

dim I = r(I) 6 r(I + x) 6 dim(I + x) = dim I + 1.

The second inequality can not be an equality, so the first inequality has to be an equality:
r(I + x) = r(I). Now this reasoning holds for every 1-dimensional subspace x ⊆ J , x 6⊆ I
so by Proposition 6 we have that r(I) = r(I + J). But J ∈ I and we have that

r(I + J) = r(I) = dim I < dim J = r(J)

which contradicts (r2) because J ⊆ I + J . So (I3) has to hold.

Part 2. Let I be a family of subspaces of E that satisfies (I1), (I2), (I3), (I4). Define
r(A) to be the dimension of the largest independent space contained in A. We show r
satisfies (r1), (r2), (r3).

Since the rank is a dimension, it is a non-negative integer. From the definition of r we
have r(A) 6 dimA and from (I1’) we have 0 6 r(A). This proves (r1). If A ⊆ B ⊆ E,
then every independent subspace of A is an independent subspace of B, so

r(A) = max
I⊆A
{dim I : I ∈ I} 6 max

I⊆B
{dim I : I ∈ I} = r(B)

and thus (r2). The difficultly in this part is to prove (r3).
Let A,B ⊆ E and let IA∩B be a maximal independent space in A ∩ B. Use (I3) as

many times as possible to extend IA∩B to a maximal independent space IA ⊆ A, and
the same to get a maximal independent space IB ⊆ B. By Proposition 15 there is a
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maximal independent space IA+B of A + B that is contained in IA + IB. Furthermore,
IA ∩ IB = IA∩B because IA∩B ⊆ IA and IA∩B ⊆ IB, and IA∩B is a maximal independent
space in A ∩ B hence a maximal independent space in IA ∩ IB. Combining all this, we
have

r(A+B) + r(A ∩B) = dim IA+B + dim IA∩B

6 dim(IA + IB) + dim IA∩B

= dim IA + dim IB − dim IA∩B + dim IA∩B

= dim IA + dim IB

= r(A) + r(B)

and this is exactly (r3).

Part 3. Given a rank function r satisfying (r1), (r2), (r3), create a family I by I ∈ I if
dim I = r(I). Then use I to create a (possibly new) rank function r′(A) = maxI⊆A{dim I :
I ∈ I}. We want to show that r′(A) = r(A) for all A ⊆ E. Note that r′(A) = dim I = r(I)
for some I ⊆ A. By (r2), r(I) 6 r(A) so r′(A) 6 r(A). For the reverse inequality, assume
r′(A) < r(A) for some A ⊆ E. Then by definition of r′, for all I ∈ I with I ⊆ A
we must have r(A) > dim I. Let I be a maximum-dimension such space. Then for
all 1-dimensional subspaces x ⊆ A that intersect trivially with I, we have I + x /∈ I.
Thus r(I) = r(I + x) for all such x and by Proposition 6 we have r(I) = r(A) = dim I.
Contradiction, so r′(A) > r(A). Together we have r′(A) = r(A).

Given a family I satisfying (I1), (I2), (I3), (I4), define r by r(A) = maxI⊆A{dim I :
I ∈ I}. Then let I ′ be defined by I ∈ I ′ if r(I) = dim I. We want to show that I = I ′.
Let I ∈ I, then r(I) = dim I by the definition of r, and thus I ∈ I ′. Now let I ∈ I ′, then
r(I) = dim I by the definition of I ′, and thus I is the largest independent subspace of I
and I ∈ I.

5 Rank metric codes

Now that we have established some basic facts about q-matroids, we are ready to discuss
the motivation of studying them. We show that every rank metric code gives rise to a
q-matroid. For more on rank metric codes, see Gabidulin [8]. We consider codes over L,
where L is a finite Galois field extension of a field K. This is a generalization of the case
where K = Fq and L = Fqm of Gabidulin’s [8] to arbitrary characteristic as considered by
Augot, Loidreau and Robert [2, 1]. That the extension is assumed to be Galois becomes
clear from the treatment of the Galois closure and the trace of a rank metric code in [12,
Section 4]. Much of the material here about rank metric codes is taken from [11, 12]. See
also [14].

Let K be a field and let L be a finite Galois extension of K. A rank metric code is
an L-linear subspace of Ln. To all codewords we associate a matrix as follows. Choose a
basis B = {α1, . . . , αm} of L as a vector space over K. Let c = (c1, . . . , cn) ∈ Ln. The
m × n matrix MB(c) is associated to c where the j-th column of MB(c) consists of the
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coordinates of cj with respect to the chosen basis: cj =
∑m

i=1 cijαi. So the matrix MB(c)
has entries cij.

The K-linear row space in Kn and the rank of MB(c) do not depend on the choice
of the basis B, since for another basis B′ there exists an invertible matrix A such that
MB(c) = AMB′(c). If the choice of basis is not important, we will write M(x) for MB(x).
The rank weight wtR(c) = rk(c) of c is by definition the rank of the matrix M(c), or
equivalently the dimension over K of the row space of MB(c). This definition follows
from the rank distance, that is defined by dR(x,y) = rk(x− y). The rank distance is in
fact a metric on the collection of all m× n matrices, see [2, 8].

Note that in the literature rank metric codes are also defined as K-linear subspaces
of Km×n, so the elements of the code are matrices. From the above it follows that our
definition is a special case of the matrix-definition of rank metric codes.

Definition 17. Let C be an L-linear code. Let c ∈ C. Then Rsupp(c), the rank support
of c is the K-linear row space of MB(c). So wtR(c) is the dimension of Rsupp(c).

Note that this definition is the rank metric case of the support weights, or weights of
subcodes, of codes over the Hamming metric.

Definition 18. For a K-linear subspace J of Kn we define:

C(J) = {c ∈ C : Rsupp(c) ⊆ J⊥}.

From this definition it is clear that C(J) is a K-linear subspace of C, but in fact it is
also an L-linear subspace.

Lemma 19. Let C be an L-linear code of length n and let J be a K-linear subspace of
Kn. Then c ∈ C(J) if and only if c · y = 0 for all y ∈ J . Furthermore C(J) is an
L-linear subspace of C.

Proof. The following statements are equivalent:

c ∈ C(J)∑n
j=1 cijyj = 0 for all y ∈ J and i = 1, . . . ,m∑m

i=1(
∑n

j=1 cijyj)αi = 0 for all y ∈ J∑n
j=1(

∑m
i=1 cijαi)yj = 0 for all y ∈ J∑n

j=1 cjyj = 0 for all y ∈ J
c · y = 0 for all y ∈ J

Hence C(J) = {c ∈ C : c · y = 0 for all y ∈ J}. From this description it follows directly
that C(J) is an L-linear subspace of C.

Definition 20. Let C be an L-linear code of length n. Let J be a K-linear subspace of Kn

of dimension t with generator matrix Y . Define the map πJ : Ln → Lt by πJ(x) = xY T ,
and CJ = πJ(C).

So from the code C ⊆ Ln we have now defined C(J) ⊆ C ⊆ Ln and CJ ⊆ Lt.
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Lemma 21. Let C be an L-linear code of length n. Let J be a K-linear subspace of Kn

of dimension t with generator matrix Y . Then πJ is an L-linear map and CJ is an L-
linear code of length t and its dimension does not depend on the chosen generator matrix.
Furthermore we have an exact sequence of vector spaces:

0 −→ C(J) −→ C −→ CJ −→ 0.

Proof. The map πJ is defined by a matrix with entries in K so it is L-linear. The image
of C under πJ is CJ . Hence CJ is an L-linear code.

If G is generator matrix of C, then CJ is the row space of GY T and the dimension of
CJ is equal to the rank of GY T . If G′ is another generator matrix of C and Y ′ another
generator matrix of J , then there exists an invertible k × k matrix A with entries in L
and an invertible t× t matrix B with entries in K such that G′ = AG and Y ′ = BY . The
row space of G′(Y ′)T is the space CJ with respect Y ′. Now

G′(Y ′)T = (AG)(BY )T = A(GY T )BT ,

and A and BT are invertible. Hence G′(Y ′)T and GY T have the same rank. Therefore
the dimension of CJ does not depend on the chosen generator matrix for J .

The map C(J) → C is injective and the map πJ : C → CJ is surjective, both by
definition. Furthermore the kernel of πJ : C → CJ is equal to {c ∈ C : c ·y = 0 for all y ∈
J}, which is equal to C(J) by Lemma 19. Hence the given sequence is exact.

Definition 22. Let C be an L-linear code of length n. Let J be a K-linear subspace of
Kn of dimension t. Define l(J) = dimLC(J) and r(J) = dimLCJ .

Corollary 23. Let C be an L-linear code of length n and dimension k and let J be a
K-linear subspace of Kn. Then l(J) + r(J) = k.

Proof. This is a direct consequence of Proposition 21.

We now know enough about rank metric codes to show that there is a q-matroid
associated to them.

Theorem 24. Let C be a linear rank metric code over L, E = Kn and r the function
from Definition 22. Then (E, r) is a q-matroid.

Proof. First of all, it is clear that r is an integer valued function defined on the subspaces
of E. We need to show that r satisfies the properties (r1), (r2), (r3). Let I, J ⊆ E. We
will make heavy use of Corollary 23, saying r(J) = k − l(J).

(r1) 0 6 r(J) 6 dim J .
This follows from the definition of r(J) = dimCJ and the fact that CJ is a subspace of
Kt with t = dim J .

(r2) If I ⊆ J then r(I) 6 r(J).
Let I ⊆ J and let c ∈ C(J). Then I ⊆ J ⊆ Rsupp(c)⊥. So c ∈ C(I). Hence C(J) ⊆ C(I)
and l(J) 6 l(I). Therefore r(I) 6 r(J).
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(r3) r(I + J) + r(I ∩ J) 6 r(I) + r(J).
Recall that for subspaces I, J,H we have that I+J ⊆ H if and only if I ⊆ H and J ⊆ H.
The following statements are then equivalent:

c ∈ C(I) ∩ C(J)
c ∈ C(I) and c ∈ C(J)

I ⊆ Rsupp(c)⊥ and J ⊆ Rsupp(c)⊥

I + J ⊆ Rsupp(c)⊥

c ∈ C(I + J)

Hence C(I) ∩ C(J) = C(I + J).
Now if c ∈ C(I) then I ⊆ Rsupp(c)⊥ so I ∩ J ⊆ (Rsupp(c))⊥. Hence c ∈ C(I ∩ J). So
C(I) ⊆ C(I ∩ J) and similarly C(J) ⊆ C(I ∩ J). Therefore C(I) + C(J) ⊆ C(I ∩ J).
Combining the above and using the modularity of dimension, we now have

l(I) + l(J) = dimC(I) + dimC(J)

= dim(C(I) ∩ C(J)) + dim(C(I) + C(J))

6 dim(C(I + J)) + dim(C(I ∩ J))

= l(I + J) + l(I ∩ J)

It follows that r(I + J) + r(I ∩ J) 6 r(I) + r(J).
We have shown that the function r satisfies (r1), (r2), (r3), so we conclude that (E, r) is
indeed a q-matroid.

Corollary 25. The rank of the q-matroid M(C) associated to a rank metric code C is
dimC.

Proof. We have that r(M(C)) = r(E) = dimC − l(E) and also E⊥ = 0, so C(E) = 0
and r(M(C)) = dimC.

Corollary 26. Let L′ be a field extension of L such that L′ is Galois over K. Let C ⊗L′
be the the L′-linear code obtained by taking all L′-linear combinations of words of L. Then
the q-matroids associated to C and C ⊗ L′ are the same.

Proof. We first show that (C(I))⊗ L′ = (C ⊗ L′)(I).
Let c ∈ (C(I))⊗ L′. Let b1, . . . ,bl be a basis of C(I) over L. Then b1, . . . ,bl is also

a basis of (C(I)) ⊗ L′ over L′ by definition of the tensor product ⊗L′. Also, bi · x = 0
for all x ∈ I by Lemma 19. There exist λ1, . . . , λl ∈ L′ such that c =

∑l
i=1 λibi. So

by linearity c · x = 0 for all x ∈ I, hence c ∈ (C ⊗ L′)(I) by Lemma 19. Therefore
(C(I))⊗ L′ ⊆ (C ⊗ L′)(I).

Conversely, let c ∈ (C ⊗L′)(I). Then c · x = 0 for all x ∈ I. Let g1, . . . ,gk be a basis
of C over L. Then g1, . . . ,gk is also a basis of C ⊗L′ over L′. There exist λ1, . . . , λk ∈ L′
such that c =

∑k
i=1 λigi. Let α1, . . . , αm be a basis of L′ over L. Then for every i there

exist λi1, . . . , λim ∈ L such that λi =
∑m

j=1 λijαj. Let x ∈ I. Then
∑k

i=1 λijgi · x ∈ L for
all j,

0 = c · x =
m∑
j=1

(
k∑
i=1

λijgi · x

)
αj
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and α1, . . . , αm is a basis of L′ over L. So
∑k

i=1 λijgi ·x = 0 for all j and all x ∈ I. Hence∑k
i=1 λijgi ∈ C(I) for all j. Therefore c ∈ (C(I))⊗ L′, and (C ⊗ L′)(I) ⊆ (C(I))⊗ L′.
We conclude that l(I), the dimension of C(I) over L is also the dimension of (C⊗L′)(I)

over L′. Hence the rank functions of the q-matroids M(C) and M((C ⊗ L′)) are the
same.

Example 27. Let L = F8 and K = F2. Let a ∈ F8 with a3 = 1 + a. Let C be the rank
metric code over L with generator matrix

G =

(
1 a 0 0
0 1 a 0

)
.

We can find the matroid associated to C by finding its bases. They are independent, so
their rank equals their dimension, which is 2. The bases are thus the subspaces J of F4

2

such that l(J) = 0. This means C(J) = 0, i.e., there is no nonzero codeword such that
Rsupp(c) ⊆ J⊥. Now wtR(c) can not be 0 unless c = 0. It can only be 1 if all nonzero
entries in the codeword are the same: such codewords do not exist in this code. So if c is
nonzero, the dimension of Rsupp(c) is at least 2. On the other hand, all codewords have
a zero in the last coordinate of their rank support. This means that if J is perpendicular
to (0, 0, 0, 1), there can not be a nonzero codeword that has Rsupp(c) ⊆ J⊥. The bases of
M(C) are thus the 2-dimensional subspaces of F4

2 that do not contain 〈0001〉. This means
the subspace 〈0001〉 is a loop. In fact, this is the matroid from Example 9.

Using the theory of rank metric codes, we can learn more about the function l(J).

Definition 28. Let C be an L-linear code of length n. Then the dual of C, notated by
C⊥, consists of all vectors of Ln that are orthogonal to all codewords of C.

The next Proposition is the q-analogue of the well-known fact that the minimum
distance is the minimal number of dependent columns in a parity check matrix of the
code.

Proposition 29. Let C be an L-linear code of length n. Then t < dR(C⊥) if and only if
dimL(CJ) = t for all K-linear subspaces J of Kn of dimension t.

Proof. See [8, Theorem 1].

Lemma 30. Let C be an L-linear code of length n. Let dR and d⊥R be the minimum rank
distance of C and C⊥, respectively. Let J be a K-linear subspace of Kn of dimension t.
Let l(J) = dimLC(J). Then

l(J) =

{
k − t for all t < d⊥R

0 for all t > n− dR

Proof. The first inequality is a direct consequence of Proposition 29.
Let t > n − dR and let c ∈ C(J). Then J is contained in the orthogonal complement of
Rsupp(c), so t 6 n− wtR(c). It follows that wtR(c) 6 n− t < dR, so c is the zero word
and therefore l(J) = 0.
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Example 31. Let m > n and let C be an L-linear code of length n, dimension k and
minimum distance dR = n − k + 1. Such a code is called an MRD (maximum rank
distance) code. Gabidulin [8] constructed such codes over finite fields for all n, k and
q. The construction was generalized to characteristic 0 and rational function fields by
Augot, Loidreau and Robert [2, 1]. The dual of an MRD code is again an MRD code and
its minimum distance is therefore d⊥R = k + 1. If we apply Lemma 30, we find that the
function l(J) is completely determined in terms of the dimension t of J :

l(J) =

{
k − t for all t 6 k

0 for all t > k

This means that also r(J) is completely determined:

r(J) =

{
t for all t 6 k
k for all t > k

As we have seen in Example 4, this is the rank function of the uniform q-matroid Uk,n(K).

6 Truncation

We present the notion of truncation of a q-matroid, so that we can use it in our proofs
concerning axioms for bases.

Definition 32. Let M = (E, r) be a q-matroid with r(M) > 1. The truncated matroid
τ(M) is a q-matroid with ground space E and rank function

rτ (A) = min{r(A), r(M)− 1}.

This means that for all subspaces A of E with r(A) < r(M), we have r(A) = rτ (A).
Only for r(A) = r(M) the rank goes down: rτ (A) = r(A)− 1.

Theorem 33. The truncation τ(M) is indeed a q-matroid, that is, rτ satisfies (r1), (r2),
(r3).

Proof. From the definition it is clear that (r1) holds. The properties (r2) and (r3) are
direct for the cases r(A), r(B) < r(M), so we only have to consider the two cases r(A) <
r(M) and r(B) = r(M), and r(A) = r(B) = r(M). To prove (r2), let A ⊆ B and fist
take r(A) < r(M) and r(B) = r(M). Then

rτ (A) = r(A) < r(B) = rτ (B) + 1

and thus rτ (A) 6 rτ (B). Now let r(A) = r(B) = r(M), then

rτ (A) = r(A)− 1 = r(B)− 1 = rτ (B)
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and again rτ (A) 6 rτ (B). This proves (r2). For (r3), first take r(A) < r(M) and
r(B) = r(M). This implies r(A+B) = r(M) and r(A ∩B) < r(M). Then

rτ (A+B) + rτ (A ∩B) = r(A+B)− 1 + r(A ∩B)

6 r(A) + r(B)− 1

= rτ (A) + rτ (B).

Finally, let r(A) = r(B) = r(M). Then again r(A + B) = r(M), but now r(A ∩ B) 6
r(M). We distinguish further between equality and strickt inequality in the latter. If
r(A ∩B) = r(M), then

rτ (A+B) + rτ (A ∩B) = r(A+B)− 1 + r(A ∩B)− 1

= r(A) + r(B)− 2

= rτ (A) + rτ (B).

If r(A ∩B) < r(M), then r(A+B) + r(A ∩B) < r(A) + r(B) and

rτ (A+B) + rτ (A ∩B) = r(A+B)− 1 + r(A ∩B)

6 r(A) + r(B)− 2

= rτ (A) + rτ (B).

This proves (r3) and we conclude that τ(M) is indeed a q-matroid.

We have the following straightforward description of the independent spaces of a trun-
cated q-matroid. From now on we denote by I(M) the independent spaces of the q-matroid
M , and if a q-matroid is defined by I, we denote it by (M, I).

Corollary 34. Let M = (E, I) be a q-matroid with r(E) > 1. Then the independent
spaces I(τ(M)) of the truncation τ(M) are given by

I(τ(M)) = {I ∈ I : dim I < r(M)}.

Because the dimension of an independent space is at most r(M), this means that we
simply remove all maximal independent spaces from I(M) to get I(τ(M)).

Example 35. Let Uk,n(F) be the uniform q-matroid of Example 4. The truncation of
Uk,n(F) has as independent spaces all subspaces of dimension at most k− 1, so it is equal
to Uk−1,n(F).

Example 36. Let M the q-matroid of Example 9. The truncation has as independent
spaces 0 and all 1-dimensional subspaces except 〈0001〉.
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7 Bases

Remark 12 about the axioms for independent spaces, holds for bases as well: if a set of
axioms is invariant under embedding the family of bases B in a space of higher dimension,
then it can not completely determine a q-matroid. This is why we need a fourth axiom.

Theorem 37. Let E be a finite dimensional space. If B is a family of subspaces of E
that satisfies the conditions:

(B1) B 6= ∅

(B2) If B1, B2 ∈ B and B1 ⊆ B2, then B1 = B2.

(B3) If B1, B2 ∈ B, then for every codimension 1 subspace A of B1 with B1 ∩ B2 ⊆ A
there is a 1-dimensional subspace y of B2 with A+ y ∈ B.

(B4) Let A,B ⊆ E and let I, J be maximal intersections of some bases with A and B,
respectively. Then there is a maximal intersection of a basis and A + B that is
contained in I + J .

and I is the family defined by IB = {I : ∃B ∈ B, I ⊆ B}, then (E, IB) is a q-matroid and
its family of bases is B.

Conversely, if BI is the family of bases of a q-matroid (E, I), then BI satisfies the
conditions (B1), (B2), (B3), (B4) and I = IBI .

Remark 38. In property (B3), it can not happen that y ⊆ B1. Indeed, by assumption
y ⊆ B2, this means that y ⊆ B1 ∩B2 ⊆ A. But then A+ y = A, but A can not be a basis
because of (B2). So y /∈ B1.

Example 39. Let M be the q-matroid of Example 9. The bases are the subspaces of
dimension 2 that do not contain 〈0001〉. We illustrate the property (B3). Let B1 =
〈1100, 0010〉 and B2 = 〈1010, 0100〉. Then the intersection B1 ∩B2 is 〈1110〉. This means
we only have one choice for a codimension 1 subspace of B1 that contains B1 ∩B2: it has
to be 〈1110〉. If we add either 〈1010〉 or 〈0100〉 we get B2, which is a basis.

Before proving the theorem, we first prove a slight variation of the axioms.

Proposition 40. Let E be a finite dimensional space and let B be a family of subspaces
of E. Consider the condition:

(B2’) If B1, B2 ∈ B, then dimB1 = dimB2.

The family B satisfies (B1), (B2), (B3) if and only if B satisfies (B1), (B2’), (B3).

Proof. ⇐: It is clear that (B2’) implies (B2).
⇒: Let B1, B2 ∈ B. Then use (B3) multiple times to form B′1, of the same dimension
as B1, that contains only 1-dimensional subspaces that are also in B2. So B′1 ⊆ B2 and
by (B2) they must be equal. So dimB′1 = dimB2 and since dimB1 = dimB′1, we have
dimB1 = dimB2 and thus (B2’).
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Proof (Theorem 37). As with Theorem 8, the proof has three parts:

1. I → B. Given I with properties (I1), (I2), (I3), (I4), define B as the family of
independent spaces that are maximal with respect to inclusion and prove (B1),
(B2), (B3), (B4).

2. B → I. Given B with properties (B1), (B2), (B3), (B4), prove that the properties
(I1), (I2), (I3), (I4) hold for I = {I : ∃B ∈ B, I ⊆ B}.

3. The first two are each others inverse, that is: I → B → I ′ implies I = I ′, and
B → I → B′ implies B = B′.

Part 1. Let M = (E, I) be a q-matroid and define B to be the family of subspaces B that
are subspaces of I of maximal dimension, i.e., B = {B ∈ I : ∀B′ ∈ I, B ⊆ B′ ⇒ B = B′}.
We need to show that B satisfies (B1), (B2’), (B3), (B4).

Now (B1) is easy: since 0 ∈ I by (I1’) and E is finite-dimensional, we can find an
element B ∈ I which is not properly contained in any other independent space. Then
B ∈ B and hence B 6= ∅.

(B2’) is also easy: if there are sets B1, B2 ∈ B with dimB1 < dimB2, then, since
B1, B2 ∈ I and (I3), there is a 1-dimensional subspace x ⊆ B2, x 6⊆ B1, so that B1 + x ∈
I. But B1 is a proper subspace of B1 + x, which contradicts the definition of B, so
dimB1 = dimB2 and hence (B2’).

Next we show (B3). Let B1, B2 ∈ B. Let A be a codimension 1 subspace of B1 with
B1 ∩ B2 = A ∩ B2. Since B1, B2 ∈ I and A is a subspace of B1, we have A ∈ I by
(I2). Apply (I3) to A and B2: since dim(A) < dimB2 by (B2’), there is a 1-dimensional
subspace y ⊆ B2, y 6⊆ A such that A+ y ∈ I. Because B1∩B2 ⊆ A we have that y 6⊆ B1.
We show that A+ y is in B. Suppose not, then there is an B3 ∈ B such that A+ y ⊂ B3

and dim(A+ y) = dimB1 < dimB3, which contradicts (B2’). So (B3) holds.
Finally, for (B4) it is enough to notice that by (I3) every independent space is contained

in a basis. So a maximal independent subspace of A ⊆ E is the same as a maximal
intersection between a member of B and A. Then (B4) is just a re-formulation of (I4) in
terms of bases instead of independent spaces.

Part 2. Let B be a family of subspaces of a finite dimensional space E satisfying (B1),
(B2), (B3), (B4). Define I = {I : ∃B ∈ B, I ⊆ B}. We need to show I satisfies (I1), (I2),
(I3), (I4).

Since B 6= ∅ by (B1) and B ⊆ I, it follows that I 6= ∅ and thus (I1).
To verify (I2), we need to show that if I ′ ⊆ I for some I ∈ I, then I ′ ∈ I. By the

construction of I, we know I ⊆ B for some B ∈ B. But then I ′ ⊆ I ⊆ B and so I ′ ∈ I
and (I2).

Now we prove (I3). Let I1, I2 ∈ I with dim I1 < dim I2. We may assume without
loss of generality that I2 is a basis, by truncating the matroid sufficiently many times by
Theorem 33. Now I1 is contained in a basis B1 and I2 = B2 is a basis. There exists a
codimension 1 subspaces A of B1 that contains I1, since dim I1 < dim I2. Furthermore, we
can choose A such that B1 ∩ I2 ⊆ A. Hence by (B3) there is a one dimensional subspace
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y of I2 such that A + y is a basis and dimA + y = dim I2. Now y is not contained in A,
since dimA = dim I2 − 1. Therefore I1 + y ⊆ A+ y and A+ y is independent. So I1 + y
independent and y is not contained in I1.

Finally, for (I4) we have the same reasoning as in part 1: (I4) is a re-formulation of
(B4) in terms of independent spaces instead of bases.

Part 3. Given a family of subspaces I satisfying (I1), (I2), (I3), (I4) create a family
B = {B ∈ I : ∀B′ ∈ I, B ⊆ B′ ⇒ B′ = B}. Then use B to create a (possibly new) family
I ′ = {I : ∃B ∈ B, I ⊆ B}. We want to show that I ′ = I. Let I ∈ I, then I ⊆ B for
some B ∈ B that is of maximal dimension, so immediately I ∈ I ′. On the other hand, if
I ′ ∈ I ′, then I ′ ⊆ B for some B ∈ I of maximal dimension. By (I2), I ′ ∈ I, so I ′ = I.

Given a family B satisfying (B1), (B2), (B3), (B4) create a family I = {I : ∃B ∈
B, I ⊆ B}. Then let B′ be the members of I of maximal dimension, that is, B′ = {B ∈
I : ∀B′ ∈ I, B ⊆ B′ ⇒ B′ = B}. We will show that B′ = B. Let B ∈ B and suppose
B /∈ B′. Then B is not a member of I of maximal dimension, so B ( B′ for some B′ ∈ I,
which contradicts (B2’). Hence B ∈ B′. If B′ ∈ B′, then B′ ∈ I, so B′ ⊆ B for some
B ∈ B Since B′ is a member of I of maximal dimension and B ∈ I as well, we get B′ ∈ B
so B′ = B.

8 Duality

Definition 41. Let M = (E, r) be a matroid and let

r∗(A) = dimA− r(M) + r(A⊥)

be an integer-valued function defined on the subspaces of E. Then M∗ = (E, r∗) is the
dual of the q-matroid M .

We need to show that this definition is well-defined, so that the the dual of a q-matroid
is again a q-matroid.

Theorem 42. The dual q-matroid is indeed a q-matroid, that is, the function r∗ satisfies
(r1), (r2), (r3).

Proof. Let A,B ⊆ E. We start with proving (r2), so assume A ⊆ B. Then B⊥ ⊆ A⊥.
This means we can find independent vectors x1, . . . , xk such that A⊥ = B⊥+x1 + · · ·+xk,
where k = dimA⊥ − dimB⊥. By repeating Lemma 3 multiple times, we find that

r(A⊥) 6 r(B⊥) + k = r(B⊥) + dimA⊥ − dimB⊥.

We have the following equivalent statements:

r(A⊥) 6 r(B⊥) + dimA⊥ − dimB⊥

r(A⊥)− dimA⊥ 6 r(B⊥)− dimB⊥

r(A⊥) + dimE − dimA⊥ 6 r(B⊥) + dimE − dimB⊥

r(A⊥) + dimA 6 r(B⊥) + dimB
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Then it follows that

r∗(A) = dimA− r(M) + r(A⊥)

6 dimB − r(M) + r(B⊥)

= r∗(B)

and we have proved (r2). For (r1), notice that r∗(0) = 0− r(M) + r(E) = 0 and by (r2)
it follows that 0 6 r∗(A) for all A ⊆ E. The other inequality of (r1) is proved via

r∗(A) = dimA− r(M) + r(A⊥)

6 dimA− r(M) + r(M)

= dimA.

We show (r3) using the modularity of dimension and semimodularity of r:

r∗(A+B) + r∗(A ∩B)

= dim(A+B) + dim(A ∩B)− 2 · r(E) + r((A+B)⊥) + r((A ∩B)⊥)

= dimA+ dimB − 2 · r(E) + r(A⊥ ∩B⊥) + r(A⊥ +B⊥)

6 dimA+ dimB − 2 · r(E) + r(A⊥) + r(B⊥)

= r∗(A) + r∗(B).

Now r∗ satisfies (r1), (r2), (r3), so we conclude that the dual q-matroid is indeed a q-
matroid.

Proposition 43. Choosing another inner product (non-degenerate, symmetric bilinear
form) will result in a corresponding q-matroid dual that is an isomorphic with the q-
matroid dual with respect to the standard inner product.

Proof. Any non-degenerate, symmetric bilinear form on Fn is given by 〈x,y〉P = xPP TyT

for x,y ∈ Fn where P is an invertible n × n matrix with entries in F. The dual with
respect to the standard inner product of a linear subspace A in Fn is denoted by A⊥ and
with respect to the inner product 〈x,y〉P is denoted by A⊥P . The dual rank with respect
to the standard inner product is denoted by r∗ and with respect to the inner product
〈x,y〉P is denoted by r∗P , i.e.

r∗P (A) = dimA− r(M) + r(A⊥P ).

Consider the map π : Fn → Fn given by π(x) = xP . Then π is isomorphism of F-
linear vector spaces. Furthermore 〈x,y〉P = 〈π(x), π(y)〉. Hence A⊥P = π(A)⊥ and
r∗P (A) = r∗(π(A)). So X ⊆ Fn is independent with respect to the matroid M∗P if and
only if π(X) is independent with respect to M∗. Therefore M∗P and M∗ are isomorphic
q-matroids.

An easy consequence of the definition of duality is the following:
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Corollary 44. The rank of the dual q-matroid is dimE − r(M).

Proof. We have r∗(M) = r∗(E) = dimE − r(M) + r(0) = dimE − r(M) as was to be
shown.

We can also characterize the bases of the dual q-matroid.

Theorem 45. Let M = (E, r) be a q-matroid with B as collection of bases, and let

B∗ = {B⊥ : B ∈ B}.

Then the dual q-matroid M∗ has B∗ as collection of bases.

Proof. The following statements are equivalent:

B is a basis of M∗

r∗(B) = dimB = r∗(E)
r(B⊥) = r(M) and dimB = dimE − r(M)

r(B⊥) = r(M) and r(M) = dimB⊥

B⊥ is a basis of M

This proves that M∗ = (E,B∗).

This is a straightforward consequence of the theorem above:

Corollary 46. Let M be a q-matroid. Then (M∗)∗ = M .

Example 47. Consider the uniform q-matroid Ur,n(F) from Example 4. We know that its
bases are all subspaces of dimension r. This means the bases of the dual are all subspaces
of dimension n− r. Thus, the dual of Ur,n(F) is Un−r,n(F).

We have discussed in Section 5 that rank metric codes give rise to q-matroids. We show
that the q-matroid associated to the dual code is the same as the dual of the q-matroid
associated to the code.

Theorem 48. Let K ⊆ L be a finite Galois field extension and let C ⊆ Ln be a rank
metric code. Let M(C) be the q-matroid associated to the code C. Then M(C)∗ = M(C⊥).

Proof. We will show that both matroids have the same set of bases. Let C be a k
dimensional rank metric code over L and let G be a generator matrix of C. A basis of
M(C)∗ is of the form B⊥ where B is a basis of M(C). Pick such a basis B of M(C), then
r(B) = r(M) = dimB = k. After a K-linear coordinate change of Kn we may assume
without loss of generality that B has generator matrix Y = (Ik|O). (See Berger [3] for
more details on rank metric equivalence.)

Let G = (G1|G2), where G1 consists of the first k columns of G and G2 consists of the
last n−k columns of G. Then GY T = G1 is a generator matrix of CB. Now dimL(CB) = k,
since B is a basis. So CB = Lk. Hence, after a base change of C we may assume without
loss of generality that C has generator matrix G′ = (Ik|P ). Therefore H = (−P T |In−k) is
a parity check matrix of C and a generator matrix of C⊥. Now Z = (O|In−k) is a generator
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matrix of B⊥ and HZT = In−k is a generator matrix of (C⊥)B⊥ . So (C⊥)B⊥ = Ln−k and
B⊥ is a basis of M(C⊥). Therefore B(M(C)∗) ⊆ B(M(C⊥)).

The other inclusion follows from using duality and replacing C by C⊥, leading to the
following equivalent statements:

B(M(C)∗) ⊆ B(M(C⊥))
B∗(M(C)∗) ⊆ B∗(M(C⊥))
B(M(C)) ⊆ B(M(C⊥)∗)
B(M(C⊥)) ⊆ B(M(C)∗)

We conclude that B(M(C)∗) = B(M(C⊥)) and hence M(C)∗ = M(C⊥).

Corollary 49. The minimum rank distance dR(C) of a rank metric code C is determined
by M(C), i.e., rank metric codes that give rise to isomorphic q-matroids will have the
same minimum rank distance.

Proof. This is a direct consequence of Proposition 29 and Theorem 48.

Example 50. Let L = F8 and K = F2. Let a ∈ F8 with a3 = 1 + a. Let C⊥ be the rank
metric code that is the dual of the code defined in Example 27. It is generated by

H =

(
a2 a 1 0
0 0 0 1

)
.

We have seen that M(C) is the q-matroid we defined in Example 9. Its bases are the
2-dimensional subspaces of E = F4

2 that do not contain 〈0001〉. This means the bases of
M(C)∗ are the 2-dimensional subspaces of E that do not have 〈0001〉 in their complement.
We check that these spaces are indeed the bases of M(C⊥). As argued in Example 27,
we need to show that there are no nonzero codewords of C⊥ such that Rsupp(c) ⊆ B,
where B is a basis of M(C) (which is the orthogonal complement of a basis of M(C)∗).
But Rsupp(c) for a nonzero word of C⊥ has either dimension 3, because a2, a and 1 are
algebraically independent in F8, or it is a multiple of 〈0001〉. In both cases we can not
have that Rsupp(c) ⊆ B. So we find that the bases of M(C⊥) are the same as the bases
of M(C)∗, hence the two q-matroids are the same.

We conclude this section with a definition we will need later.

Definition 51. A 1-dimensional subspace that is not in the orthogonal complement of a
basis is called an isthmus.

Corollary 52. Let e be a loop of the q-matroid M . Then e is an isthmus of the dual
q-matroid M∗.
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9 Restriction and contraction

Definition 53. Let M = (E, r) be a q-matroid and let H be a hyperplane of E. Then
the restriction M |H is a q-matroid with ground space H and rank function

rM |H (A) = rM(A)

defined on the subspaces A ⊆ H.

Before proving that restriction is well defined, a remark on deletion. For ordinary
matroids, deletion of an element e is the same as restriction to the complement of e. For
q-matroids, we could say that restriction to H is the same as deletion of the 1-dimensional
subspace e orthogonal to H. However, since H might contain e, the term “deletion of e”
is a bit misleading. Therefore we prefer to talk about restriction.

Theorem 54. The restriction M |H is indeed a q-matroid, that is, rM |H satisfies (r1),
(r2), (r3).

Proof. For all A ⊆ H, we have that A ⊆ E. Hence the function rM |H inherits the
properties (r1), (r2), (r3) directly from rM . We conclude that M |H is indeed a q-matroid.

Definition 55. Let M = (E, I) be a q-matroid and let e be a 1-dimension subspace of E.
Consider the projection π : E → E/e. For every A ⊆ E/e, let B be the unique subspace
of E such that e ⊆ B and π(B) = A. Then the contraction M/e is a q-matroid with
ground space E/e and rank function

rM/e(A) = rM(B)− rM(e)

defined on the subspaces A ⊆ E/e.

Theorem 56. The contraction M/e is indeed a q-matroid, that is, rM/e satisfies (r1),
(r2), (r3).

Proof. Because e ⊆ B we have that rM(e) 6 rM(B), hence rM/e(A) > 0. For the other
inequality of (r1), first consider rM(e) = 0, i.e., e is a loop. Then rM(B) < dimB =
dimA + 1 and thus rM/e(A) = rM(B) 6 dimA. On the other hand, if rM(e) = 1, then
rM/e(A) = rM(B)−1 6 dimB−1 = dimA. This proves (r1). For (r2), let A1 ⊆ A2 ⊆ E/e
with corresponding B1, B2 ⊆ E. Then B1 ⊆ B2 so rM(B1) 6 rM(B2), and it follows that
rM/e(A1) 6 rM/e(A2).

For (r3), take A1, A2 ⊆ E/e with corresponding B1, B2 ⊆ E. Since π preserves
inclusion, we have that π(B1 ∩ B2) = π(B1) ∩ π(B2) = A1 ∩ A2, and because π is a
homomorphism, we have that π(B1 +B2) = π(B1) + π(B2) = A1 + A2. Hence

rM/e(A1 + A2) + rM/e(A1 ∩ A2) = rM(B1 +B2)− rM(e) + rM(B1 ∩B2)− rM(e)

6 rM(B1)− rM(e) + rM(B2)− rM(e)

= rM/e(A1) + rM/e(A2).

This proves (r3). We conclude that M/e is indeed a q-matroid.
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Before we give examples, we describe the independent spaces of restriction and con-
traction.

Theorem 57. Let M = (E, r) be a q-matroid. Let e be a 1-dimension subspace of E that
is not a loop and consider the projection π : E → E/e. Then the the independent spaces
of the restriction to e⊥ and the contraction of e are given by

• Restriction: I(M |e⊥) = {I ∈ I(M) : I ⊆ e⊥}

• Contraction: I(M/e) = {π(I) : I ∈ I(M), e ⊆ I}

Proof. For restriction this is quite clear: a subspace I is independent in M |e⊥ if rM |
e⊥

(I) =
dim I. By definition, this means rM(I) = dim I, so I is independent inM . For contraction,
let I be an independent subspace of M/e. Let J be the unique subspace of E such that
π(J) = I and e ⊆ J . Then we have that

dim I = rM/e(I) = rM(J)− 1 6 dim J − 1 = dim I,

so equality must hold everywhere. Hence rM(J) = dim J and J is independent in M .

Note that for contraction of a loop e, the result above does not hold: it would give
the empty set.

Example 58. Let Uk,n(F) be the uniform q-matroid of Example 4 and let e be a 1-
dimensional subspace of E. Then the restriction Uk,n(F)|e⊥ has as independent spaces all
subspaces of dimension at most k that are contained in e⊥. So Uk,n(F)|e⊥ = Uk,n−1(F) for
any e. The contraction Uk,n(F)/e has as independent subspaces all subspaces of dimension
at most k containing e, mapped to E/e. This gives all subspaces in E/e of dimension at
most k − 1. So Uk,n(F)/e = Uk−1,n−1(F) for any e.

Example 59. Let M be the matroid of Example 9 and let e = 〈(0, 0, 0, 1)〉. Consider
the restriction to e⊥. The independent spaces that are contained in e⊥ can not contain
e, because e is not in e⊥. This means all subspaces of e⊥ of dimension 2 or less are
independent in the restriction, hence M |e⊥ is the uniform matroid U2,3(F2).

An important result is that restriction and contraction are related via duality.

Theorem 60. Let M a q-matroid and e ⊆ E. Then restriction and contraction are dual
notions, that is, M∗/e ∼ (M |e⊥)∗ and (M/e)∗ ∼M∗|e⊥.

Proof. Consider the projection π : E → E/e. For every A ⊆ E/e, let B be the unique
subspace of E such that e ⊆ B and π(B) = A. Because e ⊆ B, we have that B⊥ ⊆ e⊥

(we use the notation ·⊥ only for orthogonality with respect to the standard inner product
of E). Let ϕ : E/e → e⊥ be the isomorphism of vector spaces that takes A ⊆ E/e to
the orthogonal complement of B⊥ in e⊥ with respect to the standard inner product of e⊥.
This isomorphism is well-defined because of the following dimension argument:
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dimϕ(A) = dim e⊥ − dimB⊥

= (dimE − dimB⊥)− (dimE − dim e⊥)

= dimB − dim e

= dimA

We use this result in the following:

r(M∗|
e⊥ )
∗(ϕ(A)) = dimϕ(A)− rM∗|

e⊥
(e⊥) + rM∗|

e⊥
(B⊥)

= dimA− rM∗(e⊥) + rM∗(B
⊥)

= dimA−
(
dim e⊥ − rM(E) + rM(e)

)
+
(
dimB⊥ − rM(E) + ρM(B)

)
= rM(B)− rM(e)

= rM/e(A).

This implies that (M∗|e⊥)∗ ∼ M/e. On the one hand, replacing M by M∗ gives that
(M |e⊥)∗ ∼ M∗/e. On the other hand, applying duality at both sides gives that M∗|e⊥ ∼
(M/e)∗. This proves that restriction and contraction are dual operations.

10 Towards more cryptomorphisms

An important strength of ordinary matroids is that they have so may cryptomorphic
definitions. For q-matroids we already saw a definition in terms of the rank function,
independent spaces, and bases. We saw that taking the q-analogue of two cryptomorphic
definitions of a matroid can result in statements that are not cryptomorphic. In this
section we lay some ground work for more cryptomorphisms.

10.1 Circuits

Definition 61. Let M = (E, I) be a q-matroid and let C ⊆ E. Then C is a circuit of
M if C is a dependent subspace of E and every proper subspace of C is independent.

Example 62. Let Uk,n(F) be the uniform q-matroid of Example 4. Its circuits are all the
subspaces of E of dimension k + 1.

Example 63. Let M be the q-matroid of Example 9. Its circuits are the 3-dimensional
spaces not containing 〈0001〉 and the 2 dimensional spaces that do contain 〈0001〉.

The circuits of a q-matroid satisfy the following properties.

Theorem 64. Let M = (E, I) be a q-matroid and C its family of circuits. Then C
satisfies:

(C1) 0 /∈ C
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(C2) If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.

(C3) If C1, C2 ∈ C distinct and x ⊆ C1 ∩ C2 a 1-dimensional subspace, then there is a
C3 ⊆ C1 + C2 with x 6⊆ C3 so that C3 ∈ C.

Proof. Since 0 is independent by (I1’), it is not a circuit and thus (C1) holds. (C2) follows
from the definition of a circuit.

To show (C3), let C1, C2 ∈ C with nontrivial intersection. The space C1 + C2 is
dependent, since it contains C1 and C2, so it has to contain at least one circuit. We
have to prove that for a 1-dimensional x ⊆ C1 ∩ C2 we have such a circuit that trivially
intersects x. Consider a codimension 1 subspace D of C1 + C2 that does not contain x.
Then dimD = dim(C1 + C2)− 1. Assume that D is independent.

Now we know that C1 − C2 can not be empty, because then C1 ⊆ C2 which violates
(C2). Similarly, C2 − C1 is nonempty. Let X ⊆ C1 of codimension 1 with C1 ∩ C2 ⊆ X.
Such an X exists because C1 −C2 is nonempty. X is independent, because it is a proper
subspace of a circuit. Use (I3) multiple times to extend X to a maximal independent space
in C1 +C2, call it Y . Now Y contains C1 ∩C2, but it does not contain all of C1 or C2 by
construction. So dimY 6 (dimC1−1)+(dimC2−1)−dim(C1∩C2) 6 dim(C1 +C2)−2.

We now have two independent spaces in C1 + C2: D and Y . But dimY < dimD
contradicts the maximality of Y . So D has to be dependent and we can find a circuit
C3 ⊆ D with x 6⊆ C3. This proves (C3).

We can already say that these three properties (C1), (C2), (C3) will not be enough to
determine a q-matroid, for the same reasons as mentioned in Remark 12. If we take the
family of circuits of a q-matroid and embed them in a space of higher dimension, then
the properties (C1), (C2), (C3) still hold, but Lemma 11 fails.

10.2 Closure

Definition 65. Let M = (E, r) be a q-matroid. For all subspaces A ⊆ E we define the
closure of A as

cl(A) =
⋃
{x ⊆ E : r(A+ x) = r(A)}.

So cl is a function from the subspaces of E to the subspaces of E. If a subspace is equal
to its closure, we call it a flat.

Note that the closure is in fact a subspace, by Proposition 7 and (r3).

Example 66. Let Ur,n(F) be the uniform q-matroid of Example 4. All subspaces of
dimension at most k− 1 are flats, since adding a 1-dimensional subspace will increase the
rank. The closure of a basis is the whole space E – in fact, this is true for any q-matroid.

Example 67. Let M be the q-matroid of Example 9. To find the closure of a 1-
dimensional space, we can always add the loop 〈0001〉.

The closure satisfies the following properties.
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Theorem 68. Let M = (E, r) be a q-matroid and cl its closure. Then cl satisfies for all
A,B ⊆ E and 1-dimensional subspaces x, y ⊆ E:

(cl1) A ⊆ cl(A)

(cl2) If A ⊆ B then cl(A) ⊆ cl(B).

(cl3) cl(A) = cl(cl(A))

(cl4) If y ⊆ cl(A+ x) and y 6⊆ cl(A), then x ⊆ cl(A+ y).

Proof. Property (cl1) follows directly from the definition of closure. For (cl2), assume
A ⊆ B. By (r3) we have that

r(cl(A) +B) + r(cl(A) ∩B) 6 r(cl(A)) + r(B) = r(A) + r(B).

Because A ⊆ cl(A) ∩ B we have by (r2) that r(A) 6 r(cl(A) ∩ B). Combing gives
that r(cl(A) + B) 6 r(B). On the other hand, B ⊆ cl(A) + B, hence (r2) gives that
r(B) 6 r(cl(A) + B). It follows that equality must hold, so r(B) = r(cl(A) + B) and
therefore B+cl(A) ⊆ cl(B). Finally, since cl(A) ⊆ cl(A)+B, it follows that cl(A) ⊆ cl(B).

We prove (cl3) by proving the two inclusions. From (cl1) it follows that cl(A) ⊆
cl(cl(A)). For the other inclusion, let x ⊆ cl(cl(A)) be a 1-dimensional subspace. Then we
have r(cl(A)+x) = r(cl(A))+r(A). But by (r2), we have r(cl(A)+x) > r(A+x) > r(A),
so equality must hold in throughout this statement. It follows that x ⊆ cl(A), hence
cl(cl(A) ⊆ cl(A) and (cl3) is proved.

To prove (cl4), let y ⊆ cl(A + x) and y 6⊆ cl(A). Then r(A + x + y) = r(A + x) and
r(A+ y) 6= r(A), so by Lemma 3 it follows that r(A+ y) = r(A) + 1. We have that

r(A) + 1 = r(A+ y) 6 r(A+ y + x) = r(A+ x) 6 r(A) + 1,

so equality must hold everywhere. This means r(A+y) = r(A+y+x), hence x ⊆ cl(A+y)
and we have proved (cl4).

It is not known if these properties (cl1), (cl2), (cl3), (cl4) are enough to completely
determine a q-matroid.

11 Further research directions

We have established the definitions and several basic properties of q-matroids. However,
this is just the beginning of the research: in potential, all that is known about matroids
could have a q-analogue. In this section we make a modest (and somewhat personal)
wish-list on where to go next with the research in q-matroids.

In a late stadium, we learned about the work of Crapo [6] on a very closely related
topic. Defining an ordinary matroid by its rank function can be viewed as assigning a
rank to every element of a Boolean lattice, in such a way that the following properties
hold:
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(r1) 0 6 r(A) 6 h(A)

(r2) If A 6 B, then r(A) 6 r(B).

(r3) r(A ∨B) + r(A ∧B) 6 r(A) + r(B)

Here h(A) is the height of A in the Boolean lattice, that is, the size of the subset. Join
and meet in the Boolean lattice correspond to union and intersection. In this work, we
assign a rank with the same properties to every element in a (finite) subspace lattice. The
height of an element in the subspace lattice is its dimension, and the equivalents of join
and meet are sum and intersection. The work of Crapo generalises this idea: it turns out
that for every complemented modular lattice, one can give the elements a rank function
that satisfies the above properties.

One can view q-matroids as a special case of the objects studied by Crapo. However,
results on the two objects vary a lot: Crapo uses a purely combinatorial approach, while
our work relies heavily on linear algebra and therefore might not be easily generalised to
other lattices than the subspace lattice. We strongly believe that a combination of the
two approaches can greatly benefit the study of q-matroids.

Independently of the work of Crapo, Terwilliger developed the notion of a quantum
matroid [18]. This can roughly be viewed as the lattice-based approach of Crapo, but
with the axioms of independence rather than the axioms for the rank function. Examples
of quantum matroids are q-matroids that do not satisfy axiom (I4), called V -matroids in
[18].

There are many more ways to define matroids that probably have a q-analogue. For
example in terms of circuits, flats, hyperplanes, or the closure function. First steps in
this direction were taken in Section 10. Another property of matroids that could have a
q-analogue is that of connectivity and the direct sum. Special properties of matroids for
which we want to decide whether there is a q-analogue include Pappus, Desargues and
Vamos.

The motivation to study q-matroids comes from rank metric codes. There is a link
between the weight enumerator of a linear code (in the Hamming metric) and the Tutte
polynomial of the associated matroid. It can be established via the function l(J). Can
we do the same for q-matroids and rank metric codes?

To answer this question, we must first find the right definition of the Tutte polynomial.
Originally, it was defined in terms of internal and external activity of bases of a matroid.
It seems not so easy to do the same for q-matroids. A better place to start would be the
rank generating polynomial:

RM(X, Y ) =
∑
A⊆E

Xr(E)−r(A)Y |A|−r(A).

First notice that in order to get a finite sum, we need E to be a vector space over a
finite field – or maybe we need a different definition to begin with. In the case of a finite
field the formula above has a straightforward q-analogue: just replace |A| with dimA.
For normal matroids, this polynomial is equivalent to the Tutte polynomial. Greene [10]
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was the first to prove the link between the Tutte polynomial and the weight enumerator.
He used that both behave the same under deletion and contraction. How would that
work in q-matroids? This is by no means straightforward. In ordinary matroids, we have
that |B(M − e)| + |B(M/e)| = |B(M)|, which can be used to show the relation between
the Tutte polynomials (hence rank generating polynomials) of M , M − e and M/e. For
q-matroids, life is less pretty. B(M |e⊥) comes from the bases of M that are contained in
e⊥ while B(M/e) comes from the bases of M that contain e. Because of self-duality in
finite vector spaces, these families are not disjoint and also together they do not have to
give all bases of M .

Another question regarding the Tutte polynomial, that looks easier to solve, is how it
behaves under duality.

For linear error-correcting codes and matroids, the notions of puncturing and short-
ening of codes generalize to deletion and contraction in matroids. For rank metric codes,
the operations of puncturing and shortening are studied in [14]. Linking the notions of
restriction and contraction of q-matroids and puncturing and shortening in rank metric
codes should help to find a q-analogue for the proof of Greene [10] of the link between the
Tutte polynomial and the weight enumerator.

We can consider q-matroids that arise from rank metric codes as representable, analo-
gous to the case for normal matroids. Are all q-matroids representable? A big difference
between normal matroids and q-matroids is that all uniform q-matroids are representable
by MRD codes, as we have seen in Example 31, and MRD codes are known tho exist
for all parameters over finite fields [8], in characteristic zero [2], as well as over rational
function fields [1].

A very important reason why matroids are studied extensively, is that they are gener-
alizations of many objects in discrete mathematics. It is interesting to see if this holds for
q-matroids as well. It is known [7] that Steiner systems give matroids, so called perfect
matroid designs : these are matroids where all flats of the same rank have the same size.
Do q-ary Steiner systems, the q-analogue of Steiner systems, also give us a special kind of
q-matroids? Currently, there is only one q-ary Steiner system known [4]. Perfect matroid
designs have been used to construct new Steiner systems. If a q-analogue of a perfect
matroid design exists, it provides a new tool in the search for q-ary Steiner systems.

Matroids generalize graphs and graphs are an important class of matroids. For q-
matroids, it is not clear if they generalize a q-analogue of a graph. We would expect that
if such analogy exists, it follows directly from the notion of circuits of q-matroids. There
are some results about q-Kneser graphs, see for example [15], which are the q-analogues
of Kneser graphs. But these q-Kneser graphs are still “ordinary” graphs, so it is unlikely
that they play the role to q-matroids as graphs do for matroids.

To summarize, we think that one should study q-matroids for the same reasons one
should study matroids. There are a lot of problems and questions regarding q-matroids
waiting for interested researchers.
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