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Abstract

Regular matroids are binary matroids with no minors isomorphic to the Fano
matroid F7 or its dual F ∗7 . Seymour proved that 3-connected regular matroids are
either graphs, cographs, or R10, or else can be decomposed along a non-minimal
exact 3-separation induced by R12. Quasiregular matroids are binary matroids with
no minor isomorphic to the self-dual binary matroid E4. The class of quasiregular
matroids properly contains the class of regular matroids. We prove that 3-connected
quasiregular matroids are either graphs, cographs, or deletion-minors of PG(3, 2),
R17 or M12 or else can be decomposed along a non-minimal exact 3-separation
induced by R12, P9, or P

∗
9 .

Mathematics Subject Classifications: 05B35, 05C83

1 Introduction

Let M be a matroid with ground set E. The connectivity function λ is defined as λ(X) =
r(X) + r(E −X) − r(M) for every subset X of E. Observe that λ(X) = λ(E −X). A
simple matroid is 3-connected if λ(A) > 2 for all partitions (A,B) of E with |A| > 3 and
|B| > 3.

Let M be a class of matroids closed under minors. It is sufficient to focus on the 3-
connected members ofM since matroids that are not 3-connected can be pieced together
from 3-connected matroids using the operations of 1-sum and 2-sum ([8], 8.3.1). A 3-
connected matroid is a splitter for a minor-closed class if it is in the class, but every
3-connected single-element extension and coextension is not in the class.

We call a partition (A,B) in a matroid a 3-separation if λ(A) 6 2 and |A| > 3 and
|B| > 3. If λ(A) = 2 we call (A,B) an exact 3-separation. If λ(A) = 2 and |A| = 3 or
|B| = 3 we call (A,B) a minimal exact 3-separation. Thus when λ(A) = 2 and |A| > 4
and |B| > 4, we call (A,B) a non-minimal exact 3-separation. This is the kind of 3-
separation we are interested in finding. Suppose M is a 3-connected matroid in M with
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a 3-connected minor N and suppose N has an exact 3-separation (A,B). If M has an
exact 3-separation (X, Y ) such that A ⊆ X and B ⊆ Y , then we say the 3-separation of
N is induced in M . If, in addition, the exact 3-separation (A,B) is also non-minimal, we
call N a 3-decomposer for M .

The main theorem of this paper is given below:

Theorem 1. Suppose M is a binary 3-connected matroid with no E4-minor. Then either
M has a 3-decomposer in {R12, P9, P

∗
9 } or elseM orM∗ is a graphic matroid or a deletion-

minor of PG(3, 2), R17, M12, or the binary spike Zr, for r > 5.

Matrix representations for F7, P9, E4, M12 and R17 are given below. Columns of all
matrices in this paper are labeled {1, . . . n}, where n is the number of columns.

F7 =

 0 1 1 1
I3 1 0 1 1

1 1 0 1

P9 =


0 1 1 1 1

I4 1 0 1 1 1
1 1 0 1 0
1 1 1 1 0

E4 =


0 1 1 1 1
1 0 1 1 0

I5 1 1 0 1 0
1 1 1 1 0
1 1 0 0 1



M12 =



0 1 1 1 1 1
1 0 1 1 0 0

I6 1 1 0 1 1 0
1 1 1 1 0 1
1 1 0 0 0 1
1 0 0 1 1 1

R17 =


1 0 0 1 1 0 0 1 1 1 1 1
1 1 0 0 1 1 1 0 0 1 1 1

I5 1 1 1 0 0 0 1 1 1 0 1 1
0 1 1 1 0 1 0 0 1 1 1 1
0 0 1 1 1 1 1 1 0 0 1 0


The matroid R17 appears in [3] as a member of the class of binary matroids with no
M∗(K5\e)-minor. It appeared for the first time in [6] as AG(3, 2)× U1,1.

Following the terminology in [8], let EX(M1 . . . ,Mk) denote the class of binary ma-
troids with no minors isomorphic to M1, . . . ,Mk. Splitters and 3-decomposers were in-
troduced by Seymour in his 1980 result on the decomposition of regular matroids (i.e.
the class EX(F7, F

∗
7 )). The significance of Theorem 1 is that EX(E4) is a superset of

EX(F7, F
∗
7 ), with vastly more members, yet it lends itself to a decomposition just like

EX(F7, F
∗
7 ).

Seymour proved that if M is a 3-connected binary matroid in EX(F7, F
∗
7 ), then either

R12 is a 3-decomposer for M or else M or M∗ is a graphic matroid or R10 [9]. The
matroid R10 is a 10-element rank-5 self-dual matroid. It is a splitter for 3-connected
regular matroids. The matroid R12 is a 12-element rank-6 self-dual matroid. Observe
that EX(F7, F

∗
7 ) has one 3-decomposer R12 (which is self-dual), whereas the non-regular

members in EX(E4) have either P9 or P ∗9 as a 3-decomposer. Besides matroids that can
be decomposed by P9 or P ∗9 , the only non-regular members of EX(E4) are PG(3, 2), R17

and M12. The matroid M12 is a splitter for the class and R17 is a maximal 3-connected
member of the class. This class is one of few excluded minor classes whose members are
described. See Table 1 in [5] for a list of known excluded minor classes. Moreover, after the
decomposition of EX(F7, F

∗
7 ), the matroid F ∗7 became the starting point for the analysis
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of binary non-graphic and non-cographic matroids. As a consequence of Theorem 1, the
starting point for the analysis of binary non-graphic and non-cographic matroids is E4.

The techniques are explained in Section 2. The proof of Theorem 1 is in Section 3.
Section 4 contains a discussion of how the computations are done and next steps.

2 Techniques

Theorem 1 builds on Seymour’s 1980 result as presented in ([8], 13.1.2 and 13.1.3). While
he did not use the term 3-decomposer in his paper, the concept orginated in his paper.
It was named so in [3] and [4] for convenience of notation.

Theorem 2. Suppose M is a 3-connected binary matroid in EX(F7, F
∗
7 ). Then either

R12 is a 3-decomposer for M or else M or M∗ is a graphic matroid or R10.

Binary matrix representations for R10 and R12 are shown below. Note that R12 has a
non-minimal exact 3-separation (A,B), where A = {1, 2, 5, 6, 9, 10}.

R10 =


1 0 0 1 1
1 1 0 0 1

I5 1 1 1 0 0
0 1 1 1 0
0 0 1 1 1

R12 =



1 1 1 0 0 0
1 1 0 1 0 0

I6 1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 1 1
0 0 0 1 1 1


Theorem 2 used the Splitter Theorem ([8], 12.2.1) and a Decomposition Theorem ([9],
Theorem 9.1). Theorem 1 requires the Strong Splitter Theorem ([2], Theorem 1.4) and a
modification of the Decomposition Theorem ([4], Theorem 1.3).

Theorem 3. (Strong Splitter Theorem) Suppose N is a 3-connected proper minor
of a 3-connected matroid M such that, if N is a wheel or a whirl then M has no larger
wheel or whirl-minor, respectively. Further, suppose m = r(M) − r(N). Then there is a
sequence of 3-connected matroids M0,M1, . . . ,Mn, for some integer n > m, such that:

(i) M0
∼= N ;

(ii) Mn = M ;

(iii) for k ∈ {1, 2, . . . ,m}, r(Mk)− r(Mk−1) = 1 and |E(Mk)− E(Mk−1)| 6 3; and

(iv) for m < k 6 n, r(Mk) = r(M) and |E(Mk)− E(Mk−1)| = 1.

Moreover, when |E(Mk) − E(Mk−1)| = 3, for some 1 6 k 6 m, E(Mk) − E(Mk−1) is a
triad of Mk.

We can obtain up to isomorphism M by starting with N and at each step doing a
3-connected single-element extension or coextension, such that at most two consecutive
single-element extensions may occur in the sequence before a single-element coextension
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must occur, unless the rank of the minors involved are the same as the rank of M , as noted
in (iv). Moreover, as the last line indicates, if two consecutive single-element extensions
by elements {e1, e2} are followed by a coextension by element f , then {e1, e2, f} forms a
triad in the resulting matroid. Furthermore, the proof indicates that for binary matroids,
when coextending a single-element extension only rows in series with existing elements
must be considered.

Theorem 4. (Decomposition Theorem) Let N be a simple and cosimple matroid in
M with an exact 3-separation (A,B), such that A is a union of circuits and a union of
cocircuits. If λM(A) = 2 for every simple single-element extension and cosimple single-
element coextension of N in M, then the 3-separation (A,B) of N is induced in M for
every M ∈M with N as a minor.

Since the result in this paper uses both the Strong Splitter Theorem and a decomposi-
tion theorem, it is important to point out (as did Seymour in [9]) that in a decomposition
theorem, unlike in the Splitter Theorem, no isomorphism is involved.

We end this section by describing our method for calculating extensions and coexten-
sions which is an alternative to using grafts. This technique for finding single-element
extensions and coextensions, the Strong Splitter Theorem, and the Decomposition Theo-
rem lead to short proofs.

Let N be a GF (q)-representable n-element rank-r matroid represented by the matrix
A = [Ir|D] over GF (q). The columns of A may be viewed as a subset of the columns
of the matrix that represents the projective geometry PG(r − 1, q). Let M be a simple
single-element extension of N over GF (q). Then N = M\e and M may be represented
by [Ir|D′], where D′ is the same as D, but with one additional column corresponding to
the element e. The new column is distinct from the existing columns and has at least
two non-zero elements. If the existing columns are labeled {1, . . . , r, . . . , n}, then the new
column is labeled (n+ 1).

Suppose M is a cosimple single-element coextension of N over GF (q). Then N = M/f
and M may be represented by the matrix [Ir+1|D′′], where D′′ is the same as D, but with
one additional row. The new row is distinct from the existing rows and has at least two
non-zero elements. The columns of [Ir+1|D′′] are labeled {1, . . . , r+ 1, r+ 2, . . . , n, n+ 1}.
The coextension element f corresponds to column r+ 1. The coextension row is selected
from PG(n−r, q). We can visualize the new element f as appearing in the new dimension
and lifting several points into the higher dimension. Observe that f forms a cocircuit
with the elements corresponding to the non-zero elements in the new row. In [Ir+1|D′′]
the labels of columns beyond r are increased by 1 to accomodate the new column r + 1.

We refer to the simple single-element extensions of N as Type (i) matroids and the
cosimple single-element coextensions of N as Type (ii) matroids. The structure of Type
(i) and Type (ii) matroids are shown in Figure 1. Note that for fields of order q > 4, if
the representation of N is not unique, Type (i) and (ii) matroids must be calculated for
each inequivalent representation of N .

Once the simple single-element extensions (Type (i) matroids) and cosimple single-
element coextensions (Type (ii) matroids) are determined, the number of permissable rows
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Figure 1: Structure of Type (i) and Type (ii) matroids

and columns give a bound on the choices for the cosimple single-element extensions of
the Type (i) matroids and the simple single-element extensions of the Type (ii) matroids,
respectively. The structure of the cosimple single-element coextensions of a Type (i)
matroid and the simple single-element extensions of a Type (ii) matroid are shown in
Figure 2.

Figure 2: Structure of M , where |E(M)− E(N)| = 2

When computing a cosimple single-element coextension of a Type (i) matroid, there are
three types of rows that may be inserted into the last row. (This paper is only on binary
matroids, so we will talk only of zeros and ones.)

(I) Rows that can be added to the original matroid N to obtain a coextension, aug-
mented by a 0 or 1 as the last entry;

(II) The identity rows augmented by a 1 in the last position; and

(III) Rows “in-series” to the right-hand side of the matrix with the last entry reversed.

When computing a simple single-element extension of a Type (ii) matroid, there are three
types of columns that may be inserted into the last column.

(I) Columns that can be added to the original matroid N to obtain an extension aug-
mented by a 0 or 1 as the last entry;

(II) The identity columns augmented by a 1 in the last position; and

(III) Columns “in-parallel” to the right-hand side of matrix with the last entry reversed.
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Suppose N ′ is a simple double-element extension of N formed by adding columns e1
and e2 and M is a cosimple single-element coextension of N ′ by element f . Then, by
Theorem 3 M\e1 or M\e2 is 3-connected except when {e1, e2, f} is a triad. Thus the only
3-connected coextension of N ′ we must check is the one formed by adding row [00 . . . 011]
to D. Moreover, no further calculations are necessary.

3 Proof of Theorem 1

Observe that F7 = PG(2, 2) and therefore has no 3-connected extensions in the class
of binary matroids. Coextensions of F7 are duals of extensions of F ∗7 . Thus we may
focus on the 3-connected extensions of F ∗7 . The two non-isomorphic 3-connected single-
element extensions of F ∗7 are AG(3, 2) and S8 [9]. Since they are self-dual, they are also
coextensions of F7. The matroid S8 has two non-isomorphic 3-connected single-element
extensions P9 and Z4 and AG(3, 2) has one 3-connected single-element extension Z4 [7].
Matrix representations for S8, AG(3, 2), Z4, P

∗
9 , and the rank-4 binary projective geometry

PG(3, 2) are given below. The simple extensions and cosimple single-element coextensions
of P9 are given in Table 1a and 1b in the Appendix.

S8 =


0 1 1 1

I4 1 0 1 1
1 1 0 1
1 1 1 1

AG(3, 2) =


0 1 1 1

I4 1 0 1 1
1 1 0 1
1 1 1 0

Z4 =


0 1 1 1 1

I4 1 0 1 1 1
1 1 0 1 1
1 1 1 0 1



P ∗9 =


0 1 1 1
1 0 1 1

I5 1 1 0 1
1 1 1 1
1 1 0 0

PG(3, 2) =


0 0 0 0 1 1 1 1 1 1 1

I4 0 1 1 1 0 0 0 1 1 1 1
1 0 1 1 0 1 1 0 0 1 1
1 1 0 1 1 0 1 0 1 0 1


Oxley proved that a 3-connected binary non-regular matroid M has no minor isomorphic
to P9 or P ∗9 if and only if M or M∗ is a deletion-minor of Zr, for r > 4 [7].
The main theorem of this section is the decomposition of 3-connected binary non-regular
matroids with no E4-minor.

Theorem 5. Suppose M is a binary 3-connected non-regular matroid with no E4-minor.
Then either M has a 3-decomposer in {P9, P

∗
9 } or else M or M∗ is a deletion-minor of

PG(3, 2), R17, M12, or Zr, for r > 5.

Proof. Suppose M is a 3-connected binary non-regular matroid with no E4-minor. If M
has no P9 or P ∗9 -minor, then M or M∗ is a deletion-minor of a rank-r binary spike Zr for
r > 4 [7]. Therefore we may assume M has a P9 or P ∗9 -minor. From Tables 1a and 1b we
see that P9 has three non-isomorphic simple single-element extensions D1, D2, and D3,
and eight non-isomorphic cosimple single-element coextensions E1, E2, E3, E4, E5, E6,
E∗6 , and E7.

D1 =


0 1 1 1 1 1

I4 1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 0 0

D2 =


0 1 1 1 1 1

I4 1 0 1 1 1 0
1 1 0 1 0 0
1 1 1 1 0 1

D3 =


0 1 1 1 1 0

I4 1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 0 1


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E1 =


0 1 1 1 1
1 0 1 1 1

I5 1 1 0 1 0
1 1 1 1 0
1 1 0 0 0

E2 =


0 1 1 1 1
1 0 1 1 1

I5 1 1 0 1 0
1 1 1 1 0
1 1 0 1 1

E3 =


0 1 1 1 1
1 0 1 1 1

I5 1 1 0 1 0
1 1 1 1 0
1 1 0 0 1



E4 =


0 1 1 1 1
1 0 1 1 1

I5 1 1 0 1 0
1 1 1 1 0
0 1 0 0 1

E5 =


0 1 1 1 1
1 0 1 1 1

I5 1 1 0 1 0
1 1 1 1 0
1 0 1 0 0

E6 =


0 1 1 1 1
1 0 1 1 1

I5 1 1 0 1 0
1 1 1 1 0
0 0 1 0 1



E∗
6 =


0 1 1 1 1
1 0 1 1 1

I5 1 1 0 1 0
1 1 1 1 0
0 0 1 1 1

E7 =


0 1 1 1 1
1 0 1 1 1

I5 1 1 0 1 0
1 1 1 1 0
0 0 0 1 1


Claim 1. If M has a P9- or P

∗
9 -minor, but no D2, D

∗
2, E4, or E5-minor, then either P9

or P ∗9 is a 3-decomposer for M .

Proof. As noted in Section 1, the columns of P9 are labeled {1, . . . 9}. It has a non-minimal
exact 3-separation (A,B), where A = {1, 2, 5, 6} is both a circuit and a cocircuit. It is
easy to check that λ({1, 2, 5, 6}) = 2 in D1 and D3 (every column is checked), whereas
D2 is internally 4-connected. The set A = {1, 2, 5, 6} corresponds to A′ = {1, 2, 6, 7} in
the coextension since the fifth column is the coextended element. It is easy to check that
λ({1, 2, 6, 7}) = 2 in every single-element coextension (every row is checked). Further
note that E4 and E5 are self-dual. The claim follows from Theorem 4.

Next, we must consider matroids that have an E5, D2, or D∗2-minor, but no E4-
minor. Consider the 3-connected single-element extensions and coextensions of E5 shown
in Tables 2a and 2b in the Appendix. Observe that E5 has seven non-isomorphic simple
single-element extensions all of which have an E4-minor except A, B and C. Matrix
representations for A, B, and C are given below.

A =


0 1 1 1 1 0
1 0 1 1 0 0

I5 1 1 0 1 1 1
1 1 1 1 0 0
1 1 0 0 0 1

B =


0 1 1 1 1 1
1 0 1 1 0 0

I5 1 1 0 1 1 0
1 1 1 1 0 1
1 1 0 0 0 1

C =


0 1 1 1 1 1
1 0 1 1 0 1

I5 1 1 0 1 1 0
1 1 1 1 0 0
1 1 0 0 0 1


The next claim is the key step in Theorem 5. We use the following representation of E5

(dual of the previous representation, since E5 is self dual):

E5 =


0 1 1 1 1
1 0 1 1 0

I5 1 1 0 1 1
1 1 1 1 0
1 1 0 0 0


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Claim 2. SupposeM is a binary 3-connected matroid with an E5-minor and no E4-minor.
Then M or M∗ is isomorphic to a 3-connected deletion-minor of M12 or R17.

Proof. The proof is in three stages. First, we will show that all the cosimple coextensions
of A, B, and C have an E4-minor with the exception of M12. Suppose M is a cosimple
single-element coextension of A, B, C. The three types of rows that may be added to A,
B and C to obtain M are:

(I) rows that can be added to E5 to obtain a coextension with no E4-minor, with a 0
or 1 as the last entry;

(II) the identity rows with a 1 in the last position; and

(III) the rows “in-series” to the right-hand side of matrices A, B, C with the last entry
reversed.

Type I rows are [001110], [001111] [010010], [010011], [010100], [010101], [011000], [011001],
[100110], [100111], [101010], [101011], [111010], and [111011]. They are obtained from Ta-
ble 2b. Type II rows are [100001], [010001], [001001], [000101], and [000011]. Type III rows
are specific to the matrices A, B, C. For matrix A they are [011111], [101101], [110110],
[111101], and [110000]. For matrix B they are [011110], [101101], [110111], [111100], and
[110000]. For C they are [011110], [101100], [110111], [111101], and [110000].

Type I, II, and III rows are shown in bold in Table 3 of the Appendix. Most result
in matroids that clearly have an E4-minor. Only a few coextensions must be specifically
checked for an E4-minor. They are the 11th coextension of A, denoted as (A, coext11),
the eight coextension of B, denoted as (B, coext8), and five coextensions of C denoted as
(C, coext8), (C, coext9), (C, coext10), (C, coext12), and (C, coext14).

Observe that (A, coext11)/11\3 ∼= E4, (C, coext8)/12\2 ∼= E4, (C, coext9)/12\1 ∼=
E4, (C, coext10)/12\10 ∼= E4, and (C, coext14)/12\6 ∼= E4. Further (B, coext8) ∼=
(C, coext12) and this matroid does not have an E4-minor. This is the matroid M12.

Second, we must establish that M12 is a splitter for EX[E4]. By the Splitter Theorem
and the fact that M12 is self-dual, we only need to check the single-element coextensions
of M12. From Table 3 observe that M12, as a coextension of C, may be obtained by adding
exactly one row. Thus there are no further rows that may be added to form coextensions
without an E4-minor. It follows that M12 is a splitter for the class of binary matroids
with no E4-minor.

Third, we must show that either M ∼= M12 or r(M) 6 5. To show this we compute the
simple single-element extensions of A, B, and C with no E4-minor. From Table 2a the
only columns that can be added to E5 to obtain a matroid with no E4-minor are [00101],
[00110], [01011], [01100] [10011], [11001], and [11101]. They give the matroids D, E, F ,
and G shown below.

D =


0 1 1 1 1 0 0
1 0 1 1 0 0 0

I5 1 1 0 1 1 1 1
1 1 1 1 0 0 1
1 1 0 0 0 1 0

E =


0 1 1 1 1 0 0
1 0 1 1 0 0 1

I5 1 1 0 1 1 1 0
1 1 1 1 0 0 1
1 1 0 0 0 1 1


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F =


0 1 1 1 1 0 1
1 0 1 1 0 0 1

I5 1 1 0 1 1 1 0
1 1 1 1 0 0 0
1 1 0 0 0 1 1

G =


0 1 1 1 1 0 1
1 0 1 1 0 0 1

I5 1 1 0 1 1 1 1
1 1 1 1 0 0 0
1 1 0 0 0 1 1


Specifically, adding to A column [00110], [01100], or [10011] gives D; adding column
[01011] gives E; adding [11001] gives F ; and adding [11101] gives G. Similarly, we can
check that B extends to D and F , and C extends to F and G. Observe that adding all
seven columns to E5 gives the 17-element matroid shown below which is isomorphic to
the representation of R17 shown in the introduction.

R17 =


0 1 1 1 1 0 0 0 0 1 1 1
1 0 1 1 0 0 0 1 1 0 1 1

I5 1 1 0 1 1 1 1 0 1 0 0 1
1 1 1 1 0 0 1 1 0 1 0 0
1 1 0 0 0 1 0 1 0 1 1 1


By Theorem 3 the only cosimple single-element coextensions of D, E, and F we must

consider are the ones with [0000011] as the new row. Let us call them D′, E ′, F ′, and
G′, respectively. In each case we can find an E4 minor. In particular, D′/1\{3, 11} ∼= E4,
E ′/1\{7, 11} ∼= E4, F

′/1\{3, 11} ∼= E4, and G′/1\{7, 11} ∼= E4. This concludes the proof
of Claim 2.

Returning to the proof of Theorem 5 it remains to show that if M has a D2-minor
and no E4-minor, then we do not get any new matroids other than those already found
in Claim 2. Suppose M is a cosimple single-element coextension of D2. From Appendix
Table 4 we see that M is isomorphic to A, B, C, or Z. A matrix representation for Z is
shown below:

Z =


0 1 1 1 1 1
1 0 1 1 1 0

I5 1 1 0 1 0 0
1 1 1 1 0 1
0 0 0 1 1 1


Since Z is formed by adding only one row to D2 (namely [000111]) any coextension of Z
will also be a coextension of A, B, and C.

Suppose M is a single-element extension of D2. From Table 1a we see that that D2

has two single-element extensions X1 and X3 shown below:

X1 =


0 1 1 1 1 1 1

I4 1 0 1 1 1 0 0
1 1 0 1 0 0 1
1 1 1 1 0 1 0

X3 =


0 1 1 1 1 1 0

I4 1 0 1 1 1 0 0
1 1 0 1 0 0 1
1 1 1 1 0 1 1


By Theorem 3 the only coextensions of X1 and X3 we must check are the ones formed
with [00000011] as the new row. Both these matroids have an E4-minor.
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Lastly, suppose M is a simple single-element extension of Z. It is straightforward to
compute the three non-isomorphic simple single-element extensions which are D, F and
Y (obtained by adding one of columns [00111], [01011], [01101], [10101], or [11100]). The
result follows again by Claim 2 and the fact that when we add the above five columns to Z
we get the sixteen element matroid shown below which is isomorphic to R17\{17} = R16.

R16 =


0 1 1 1 1 1 0 0 0 1 1
1 0 1 1 1 0 0 1 1 0 1

I5 1 1 0 1 0 0 1 0 1 1 1
1 1 1 1 0 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 1 0


Thus Z does not contribute any new matroids to EX(E4) other than those found in Claim
2. This completes the proof of Theorem 5.

The proof of Theorem 1 follows from Theorems 2 and 5. Once R17 is shown to be
the largest rank-5 member of the class it is straightforward to compute its 3-connected
deletion-minors. See [3] for details.

4 Further research

The next step is to make a more precise identification of the members of EX(E4) that have
P9 or P ∗9 as a 3-decomposer. This seems quite difficult. In the case of regular matroids,
R12 is a 3-sum of a graphic matroid and a cographic matroid. It follows that any regular
matroid having R12 as a 3-decomposer is the 3-sum of a graphic matroid and cographic
matroid. The class of quasiregular matroids is very large. Especially problematic are the
quasiregular matroids with minors isomorphic to all three matroids: P9, P

∗
9 and AG(3, 2).

However, it seems to be an exercise in completeness, since for most practical purposes
knowing that in theory the matroids can be written as 3-sums appears to be enough.

We will end with a discussion of our method for finding the binary simple single-
element extensions. Let M be a binary 3-connected n-element rank r matroid represented
over GF (2) by the matrix A. Note that since M is 3-connected, simple extensions of M
will also be 3-connected. Each of 2r − 1 − n columns {x1, . . . , x2r−1−n} from PG(r −
1, 2) when adjoined to the matrix A gives a single-element extension represented by the
matrix A ∪ xi. We must then check whether M(A ∪ xi) ∼= M(A ∪ xj), for some i, j ∈
{1, 2, . . . , 2r − 1 − n}. To do this first various invariants are calculated for M(A ∪ xi)
and M(A ∪ xj). If the invariants all match, then a list of candidate mappings preserving
element-wise independent sets, circuits, cocircuits, bases, and spanning sets is generated,
and the mappings are tested sequentially for basis preservation. (The matroid software
program Oid finds isomorphisms among other features [1].) When an isomorphism is
obtained, checking that it is indeed an isomorphism is straightforward.

Once isomorphism is determined, equivalence classes are created among the extension
columns. For example, Table 1a shows the three non-isomorphic single-element extensions
of P9: D1 is obtained by adjoining just one column [1110]; D2 is obtained by adjoining any
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one of columns [1001] [0101] [0110], [1010]; and D3 is obtained by adjoining column [0011].
When there is a choice of columns the bolded column is selected for further processing.

Before Oid was created, we found by hand automorphisms of P9, P
∗
9 , and E5, and

expressed them in terms of the row operations that induced them. Consider for example
P9 using the representation in Section 1. Swapping row 1 with row 2 induces an auto-
morphism on P9. Pivoting on element a16 and swapping row 3 with row 4 also induces an
automorphism. The corresponding maps on (x1, x2, x3, x4)

T are shown below:

α : (x1, x2, x3, x4)
T −→ (x2, x1, x3, x4)

T

β : (x1, x2, x3, x4)
T −→ (x1, x2, x4 + x1, x3 + x1)

T

Thus α(1010) = (0110), β(0110) = (0101) and α(0101) = (1001).
Tables 1, 2, and 3 appear in the author’s dissertation. Tables 3 and 4 were created

by Oid and verified by hand since, once Oid gives the exact ismorphism between two
matroids, the isomorphism is easy to verify by hand.
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Appendix

Matroid Extension Columns Name
P9 [1110] D1

[1001] [0101] [0110], [1010] D2

[0011] D3

D1 [0101] [0110] [1001] [1010] X1

[0011] X2

D2 [1010] [1110] X1

[0011] [0101] [0110] X3

D3 [1110] X2

[0101] [0110] [1001] [1010] X3

X1 [0011] [0101] [0110] Y1

[1110] Y2

X2 [0101] [0110] [1001] [1010] Y1

X3 [0101] [0110] [1010] [1110] Y1

Table 1a: Rank 4 extensions of P9

Coextension Rows Name

[11000] [11111] E1

[11011] [11100] E2

[11001] [11101] E3

[01001] [01010] [01101] [01110] [10001] [10010] [10101] [10110] E4

[01011] [01100] [10011] [10100] E5

[00101] [00110] E6

[00111] E∗
6

[00011] E7

Table 1b: Single-element coextensions of P9

Extension Columns Name E4-minor

[00101] [00110] [01011] [01100] A No
[10011] B No
[11001] [11101] C No
[00011] [00111] [01001] [01101] Yes
[01010] [01110] Yes
[10001] [10010] [11011] [11100] Yes
[10101] [10110] [11000] [11111] Yes

Table 2a: Simple single-element extensions of E5

Coextension Rows Name

[00111] [01001] [01010] [01100] A∗

[10011] B∗

[10101] [11101] C∗

[00011] [00101] [01011] [01101]
[00110] [01110]
[10001] [10010] [10111] [11100]
[10100] [11001] [11010] [11111]

Table 2b: Cosimple single-element coextensions of E5
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Matroid Name Coextension Row

A coext 1 [000011] [000101] [001010] [011010] [101111] [111001]
coext 2 [000110] [110011] [110101]
coext 3 [000111] [101011] [111011]
coext 4 [001001] [010110] [011111]
coext 5 [001011] [011011] [100111]
coext 6 [001100] [011100] [110000]
coext 7 [001101] [010010] [010100] [011101] [101110] [111000]
coext 8 [001110] [011000] [101101] [110010] [110100] [111101]
coext 9 [001111] [011001] [100011] [100101] [101010] [111010]
coext 10 [010001] [100010] [100100]
coext 11 [010011] [010101] [100110]
coext 12 [010111]
coext 13 [100001] [101000] [111110]
coext 14 [101001] [110110] [111111]

B coext 1 [000011] [000101] [000110] [001001] [001010] [001111] [010010]
[010100] [010111] [011000] [011011] [011110]

coext 2 [000111] [001011] [010110] [011010]
coext 3 [001100] [010001] [011101]
coext 4 [001101] [001110] [010011] [010101] [011001] [011100]
coext 5 [100001] [100010] [100100] [101000] [101101] [101110] [110000]

[110011] [110101] [111001] [111100] [111111]
coext 6 [100011] [100101] [101010] [101111] [111000] [111011]
coext 7 [100110] [101001] [110010] [110100] [110111] [111110]
coext 8 [100111] [101011] [111010]

C coext 1 [000011] [000101] [001001] [001111] [010010] [010100] [011000]
[011110] [100010] [100100] [101000] [101110] [110011] [110101]
[111001] [111111]

coext 2 [000110] [010111]
coext 3 [000111] [010110] [100110] [110111]
coext 4 [001010] [011011]
coext 5 [001011] [011010] [101010] [111011]
coext 6 [001100] [011101]
coext 7 [001101] [011100] [101100] [111101]
coext 8 [001110] [010011] [010101] [011001]
coext 9 [010001]
coext 10 [100001] [110000]
coext 11 [100011] [100101] [101111] [111000]
coext 12 [100111]
coext 13 [101001] [110010] [110100] [111110]
coext 14 [101011] [111010]

Table 3: Cosimple single-element coextensions of A B and C

Matroid Coextension Rows Name Relevant minors

D2 [000011] [000101] [000110] [001111] [100111] [101000] A26 A E5, E∗
6 , E7

[000111] A31 Z E7, R10

[001001] [010100] [011101] A23 E4, E5

[001010] [001100] [010001] [010010] [011011] [011110] A20 E4, E6

[001011] [001101] [010101] [010110] [011001] [011100] A21 E4, E5

[001110] [010011] [011010] A24 E4

[100001] [101000] [101011] [101101] [110110] [111001] A15 E2, E5

[100010] [100100] [110000] [110101] [111100] [111111] A6 E1, E4

[100011] [100101] [110010] [110111] [111000] [111011] A16 E2, E3, E4, E∗
6

[100110] [101010] [101100] [101111] [110001] [111110] A7 E4, E5

[100111] [110011] [111010] A18 C E3, E5, E∗
6 , E7

[101001] A27 B E5

Table 4: Cosimple single-element coextensions of D2
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