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Abstract

In this paper we construct an infinite family of hypertopes of rank four having the
complete graph K4 as diagram. Their group of rotational symmetries is isomorphic
to PSL(2, q). It turns out some elements of this family are regular hypertopes and
some are chiral. Moreover, we show that the chiral ones have both improper and
proper correlations simultaneously.

Mathematics Subject Classifications: 51E24, 52B11, 20F05

1 Introduction

Abstract polytopes generalize (the face lattice of) convex polytopes to combinatorial
structures. The main interest of the theory of abstract polytopes has been the study of
their symmetries. Hence, highly symmetric polytopes (in particular those regular and
chiral), together with their automorphism groups, are the most studied ones. A polytope
can be regarded as a thin residually connected geometry with linear diagram. The concept

the electronic journal of combinatorics 25(3) (2018), #P3.22 1



of hypertope was introduced in [2] and generalizes the concept of a polytope by dropping
the linear condition on the diagram. This generalization was made in such a way that
the concept of chirality can be extended to hypertopes. As it is the case with maps and
polytopes, we are interested in understanding chiral hypertopes, and finding examples of
them can be the first step to achieve this goal.

In the 1970’s Branko Grünbaum considered rank 4 polytopes that are locally toroidal,
meaning that all their facets and vertex figures are either spherical or toroidal, and not
all of them are spherical. In [5] an almost complete answer to Grünbaum’s problem,
the classification of rank 4 regular locally toroidal polytopes, is given. In this paper we
follow [2] and generalize the concept of a polytope to that of a hypertope, and study some
interesting locally toroidal ones.

In [3] some examples of chiral hypertopes of rank 4 with certain diagrams are given,
satisfying that their residues of rank 3 are either spherical or toroidal. In this paper we
continue with the study of locally toroidal 4-hypertopes, in the sense that their residues of
rank 3 are toroidal. Using PSL(2, q) as their rotational subgroups, we found an infinite
family of hypertopes that contains both regular and chiral hypertopes. Moreover, the
chiral ones have the very interesting property that they admit both proper and improper
correlations, a feature that is known to be impossible for polytopes (see [4, Lemma 3.1]).

We construct these hypertopes as coset geometries Γ = (G; {G0, G1, G2, G3}) where G
is PSL(2, q) with q = p or q = p2 for certain primes p. In these geometries two maximal
parabolic subgroups are alternating groups A4 and the other two are Eq : C3. Therefore
3 must divide q − 1 for our construction to work, and there is a third root of unity e
in the field of order q. In the case q = p2 we require that e is not in the subfield of
order p, which is equivalent to requiring that p ≡ 2 mod 3. We get an infinite family of
regular hypertopes when q = p2 and an infinite family of chiral hypertopes when q = p.
More precisely in the case q = p2 two residues are hypermaps of type (3, 3, 3)(2,0) and
the other two are hypermaps of type (3, 3, 3)(p,0); in the case q = p two residues are
hypermaps (3, 3, 3)(2,0) and the other two are both chiral hypermaps of types (3, 3, 3)(1,e)
and (3, 3, 3)(e,1), respectively.

The paper is organised as follows. In Section 2, we give the definitions and notation
needed to understand this paper. In Section 3, we construct PSL(2, q), with q ∈ {p, p2}
and p a prime, as a C+-group. In Section 4, we show that the C+-groups obtained in the
previous section give hypertopes. In Section 5 we show that the hypertopes obtained are
either regular or chiral. In Section 6, we give a geometric description of the hypertopes
we constructed, in terms of objects of the projective line PG(1, q).

2 Preliminaries

2.1 Incidence geometries

Following [1], an incidence system Γ := (X, ∗, t, I) is a 4-tuple such that

• X is a set whose elements are called the elements of Γ;
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• I is a set whose elements are called the types of Γ;

• t : X → I is a type function, associating to each element x ∈ X a type t(x) ∈ I;

• ∗ is a binary relation on X called incidence, that is reflexive, symmetric and such
that for all x, y ∈ X, if x ∗ y and t(x) = t(y) then x = y.

The incidence graph of Γ is the graph whose vertex set is X and where two vertices are
joined provided the corresponding elements of Γ are incident. A flag is a clique of the
incidence graph of Γ. The type of a flag F is {t(x) : x ∈ F}. A chamber is a flag of type I.

An element x is incident to a flag F and we write x ∗ F for that, when x is incident
to all elements of F . An incidence system Γ is a geometry or incidence geometry if every
flag of Γ is contained in a chamber. The rank of Γ is the number of types of Γ, namely
the cardinality of I.

Let Γ := (X, ∗, t, I) be an incidence geometry and F a flag of Γ. The residue of F in
Γ is the incidence geometry ΓF := (XF , ∗F , tF , IF ) where

• XF := {x ∈ X : x ∗ F, x 6∈ F};

• IF := I \ t(F );

• tF and ∗F are the restrictions of t and ∗ to XF and IF .

An incidence system Γ is connected if its incidence graph is connected; Γ is residually
connected when each residue of rank at least two of Γ (including itself) has a connected
incidence graph; Γ is called thin (resp. firm) when every residue of rank one of Γ contains
exactly two (resp. at least two) elements. As in [2], we say that a hypertope is a thin
incidence geometry which is residually connected.

Let Γ := (X, ∗, t, I) be an incidence system. An automorphism of Γ is a mapping
α : (X, I)→ (X, I) : (x, t(x)) 7→ (α(x), t(α(x))) where

• α is a bijection on X;

• for each x, y ∈ X, x ∗ y if and only if α(x) ∗ α(y);

• for each x, y ∈ X, t(x) = t(y) if and only if t(α(x)) = t(α(y)).

Note that α induces a bijection on I. When t(x) = i we say that x is an element of type i,
or equivalently, that x is an i-element. The set of automorphisms of Γ is a group denoted
by Aut(Γ).

An automorphism α of Γ is called type preserving when for each x ∈ X, t(α(x)) = t(x)
(i.e. α maps each element on an element of the same type). The set of type-preserving
automorphisms of Γ is a group denoted by AutI(Γ) and obviously AutI(Γ) 6 Aut(Γ).

A correlation is a non-type-preserving automorphism, that is an element of Aut(Γ) \
AutI(Γ). A duality is correlation that induces an involutory permutation on I.

An incidence geometry Γ is chamber-transitive if AutI(Γ) is transitive on all chambers
of Γ. Finally, an incidence geometry Γ is regular if AutI(Γ) acts regularly on the chambers,
that is, the action is semi-regular (free) and transitive.
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Observe that chamber-transitivity implies flag-transitivity, that is, for each J ⊆ I,
there is a unique orbits on the flags of type J under the action of Aut(Γ).

Sometimes, when Aut(Γ) is not transitive on the chambers of Γ, it has two orbits. We
are also interested in those hypertopes having two orbits with an extra condition. Two
chambers C and C ′ of a thin incidence geometry of rank r are called i-adjacent if C and
C ′ differ only in their i-elements. We then denote C ′ by Ci. Let Γ(X, ∗, t, I) be a thin
incidence geometry. We say that Γ is chiral if AutI(Γ) has two orbits on the chambers of
Γ such that any two adjacent chambers lie in distinct orbits. Moreover, if Γ is residually
connected, we call Γ a chiral hypertope.

When Γ is a chiral hypertope, if Aut(Γ) 6= AutI(Γ), correlations may either interchange
the two orbits or preserve them. A correlation that interchanges the two orbits is said to
be improper and a correlation that preserves them is said to be proper.

The following proposition shows how to construct an incident geometry starting from
a group.

Proposition 1. (Tits Algorithm, 1956) [7] Let n be a positive integer and I := {1, . . . , n}.
Let G be a group together with a family of subgroups (Gi)i∈I , X the set consisting of all
cosets Gig with g ∈ G and i ∈ I, and t : X → I defined by t(Gig) = i. Define an
incidence relation ∗ on X ×X by :

Gig1 ∗Gjg2 iff Gig1 ∩Gjg2 6= ∅.

Then the 4-tuple Γ := (X, ∗, t, I) is an incidence system having a chamber. Moreover, the
group G acts by right multiplication as an automorphism group on Γ. Finally, the group
G is transitive on the flags of rank less than 3.

When a geometry Γ is constructed using the proposition above, we denote it by
Γ(G; (Gi)i∈I) and call it a coset geometry. The subgroups (Gi)i∈I are called the maxi-
mal parabolic subgroups.

2.2 Coset geometries from C+-groups

As in [2], consider a pair (G+, R) with G+ being a group and R := {α1, . . . , αr−1} a set
of generators of G+. Define α0 := 1G+ and αij := α−1i αj for all i, j ∈ I := {0, . . . , r − 1}.
Let G+

J := 〈αij | i, j ∈ J〉 for J ⊆ I.
If the pair (G+, R) satisfies the following condition called the intersection property

IP+, we say that (G+, R) is a C+-group.

G+
J ∩G

+
K = G+

J∩K ,

for all J,K ⊆ I, with |J |, |K| > 2. The following construction produces an incidence
system from a C+-group.

Construction 2.1. [2] Let R = {α1, . . . , αr−1} be an independent generating set of the
group G+. Define Gi := 〈αj|j 6= i〉 for i = 1, . . . , r − 1 and G0 := 〈α−11 αj|j > 2〉. The
coset geometry Γ(G+, R) := Γ(G+; (Gi)i∈{0,...,r−1}) constructed using Tits’ algorithm (see
Proposition 1) is the incidence system associated to the pair (G+, R).
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We denote Γ(G+, R) simply by Γ whenever G+ and R are clear from the context. We
set I := {0, . . . , r − 1}, where r := |R|+ 1.

It is convenient to represent (G+, R) by a graph B with r vertices which we call the
B-diagram of (G+, R). The vertex set of B is the set {α0, . . . , αr−1}. The edges {αi, αj} of
this graph are labelled by o(α−1i αj) = o(α−1j αi). We take the convention of dropping an
edge if its label is 2 and of not writing the label if it is 3. Vertices of B are represented by
small circles. Finally, we sometimes attach to each vertex αi the corresponding subgroup
Gi defined in Construction 2.1.

Observe that, thanks to Proposition 1 that ensures that G+ is transitive on the flags
of rank less than 3, we not only know the number of elements of type i for every i, that
is the index of Gi in G+, but also the number of elements of type j incident to a given
element of type i, that is the index of Gi ∩Gj in Gi.

The residue of the element Gi is the coset geometry Γ(Gi, (Gi∩Gj)j∈I\{i}). Its diagram
is obtained by removing the vertex αi from the diagram of Γ(G+; (Gi)i∈I).

The coset geometry Γ(G+, R) gives an incidence system using Proposition 1. In what
follows we prove that any such coset geometry has a connected incidence graph if its rank
is at least 3.

Proposition 2. If |R| > 2, then Γ(G+, R) has a connected incidence graph.

Proof. As for any g ∈ G+, {Gig | i ∈ I} is a set of mutually incident elements of Γ, it is
sufficient to prove that Gi and Gig are in the same connected component of the incidence
graph (of Γ) for every g ∈ G+ and every i ∈ I. As G+ = 〈αi | i ∈ I〉, we can assume
g ∈ {αi : i ∈ I}. If i 6= 0, then Gi ∩Giαj = Gi for any j ∈ I \ {i}. Moreover, Gi ∗Gk and
Gk ∗Giαi for any k ∈ I \ {0, i}, which is a non-empty set since |I| − 2 = |R| − 1 > 1. If
i = 0, then G0 ∗Gk and Gk ∗G0αj for any k ∈ I \ {1, j}.

Although the incidence geometry Γ has a connected incidence graph, it need not be
residually connected. Moreover, Γ might not be a thin geometry, and hence Γ need not
be a hypertope. Furthermore, in general Γ might not be transitive on flags of rank 3,
and it might have many orbits of chambers. In the construction we shall give in the next
section, the geometry that we obtain will in fact be a hypertope and have only two orbits
of chambers. The following theorem will help us to decide if a hypertope is regular of
chiral.

Theorem 3. [2] Let (G+, R) be a C+-group. Let Γ := Γ(G+, R) be the coset geometry
associated to (G+, R) using Construction 2.1. If Γ is a hypertope and G+ has two orbits
on the set of chambers of Γ, then Γ is chiral if and only if there is no automorphism of G+

that inverts all the elements of R. Otherwise, there exists an automorphism σ ∈ Aut(G+)
that inverts all the elements of R and the group G+ extended by σ is regular on Γ.

2.3 Toroidal hypermaps of type (3, 3, 3)(a,b)

The hypertopes we shall construct in Section 4 have residues of rank 3 with a known
structure, namely, they are toroidal hypermaps of type (3, 3, 3).
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If Γ is a hypertope of rank three, then it is also a hypermap. A toroidal hypertope
(or toroidal hypermap) is either a map or a hypermap embeddable on the torus. The
toroidal (regular or chiral) hypertopes of rank 3 are divided into the following families: the
toroidal maps {3, 6}(a,b), {6, 3}(a,b), {4, 4}(a,b), and the hypermaps (3, 3, 3)(a,b) with (a, b) 6=
(1, 1). Note that the hypermap (3, 3, 3)(a,b) is obtained from the toroidal map {6, 3}(a,b)
by doubling the fundamental region. Indeed as {6, 3}(a,b) is bipartite it is possible to take
one monochromatric set of vertices to be the hyperedges of the hypermap (3, 3, 3)(a,b) (see
[8]).

The rotation subgroupG of the automorphism group of a rank three toroidal hypermap
is as follows for some integers a and b.

〈x, y |x3, y3, (x−1y)3, (xy−1x)a(xy)b} (1)

This hypermap is denoted by (3, 3, 3)(a,b). The above presentation readily shows that such
a hypermap has a B-diagram that is a triangle with no numbers on the edges.

2.4 PSL(2, q) acting on the projective line

For a prime power q = pn let GF (q)∗ be the multiplicative group of the Galois field GF (q)
on q elements.

A primitive element of GF (q) is a generator of the multiplicative group GF (q)∗.
For any positive integer k < q, a solution of xk = 1 which is not a solution of xj = 1

for any j ∈ {1, . . . , k − 1} is called a kth primitive root of unity. If i is a kth primitive

root of unity, then k divides q − 1 and
k−1∑
j=0

ij = 0.

Let V be the 2-dimensional vector space GF (q)2 over GF (q). Consider the relation ∼
in V \ {(0, 0)} defined as follows.

(x0, x1) ∼ (y0, y1) if and only if (y0, y1) = λ(x0, x1), for some λ ∈ GF (q)∗.

The projective line PG(1, q) is the set of equivalence classes V \{(0, 0)}/ ∼. The elements
of the projective line [x0, x1] can be identified with their non-homogeneous coordinates by
the following bijection where i is a (q − 1)th root of unity.

PG(1, q) → {0, 1, i, i2, . . . , iq−2,∞} ,

[x0, x1] 7→
{

x0
x1

if x1 6= 0,

∞ if x1 = 0 .

Consider the special linear group SL(2, q) = {A ∈ GL(2, q) | det(A) = 1} and denote
by Id its identity matrix. As PSL(2, q) = SL(2, q)/Z where Z = {±Id}, the elements
of PSL(2, q) can be seen as unordered pairs ±A with A ∈ SL(2, q). Observe that in
characteristic 2, |Z| = 1. For convenience, we shall denote PSL(2, q) by G+. An element
of G+ will be given by one of its two representative elements in SL(2, q). Consequently
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Eq : C3 ◦

55555555 ◦

								 A4

Eq : C3 ◦ ◦ A4

Figure 1: Tetrahedral B-diagram for PSL(2, q).

equalities are to be taken modulo Z = {±Id}. For A =

(
a b
c d

)
∈ SL(2, q) and

z ∈ PG(1, q), consider the correspondence

ϕ : G+ × PG(1, q)→ PG(1, q), (±A, z) 7→ Az

defined as follows.

Az =
az + b

cz + d
.

As −Az = Az , ϕ is well-defined and gives an action of G+ on PG(1, q).

Lemma 4. [6, Lemma 5.3] Let q be a power of a prime. Then SL(2, q) is generated by
the elementary matrices of the form(

1 0
c 1

)
and

(
1 b
0 1

)
with b, c ∈ GF (q).

3 A C+-group for PSL(2, q)

Let q ∈ {p, p2} for a prime number p with 3 being a divisor of q−1, and let e ∈ GF (q) be
a third primitive root of unity. In the case q = p2 we also assume that 3 is not a divisor
of p− 1 so that

GF (p2) ∼= {a+ eb : a, b ∈ GF (p)} .

In this section we prove that PSL(2, q) is a C+-group with the B-diagram of Figure 1
(where the labels of the corners are the groups corresponding to each rank 3 residue).

In order to construct this C+-group we consider the following elements of PSL(2, q):

α1 :=

(
0 1
−1 1

)
, α2 :=

(
e e2

0 e2

)
and α3 :=

(
e2 e
0 e

)
,

and we let G+ = 〈α1, α2, α3〉, Gi := 〈αj|j 6= i〉 for i = 1, 2, 3 and G0 := 〈α−11 αj|j > 2〉. In
what follows we show that G2 := 〈α1, α3〉 and G3 := 〈α1, α2〉 are both isomorphic to A4,
while G0 := 〈α−11 α2, α

−1
1 α3〉 and G1 := 〈α2, α3〉 are both isomorphic to Eq : C3.

Lemma 5. The groups G2 and G3 are both isomorphic to A4 and their intersection is
〈α1〉. Moreover (G2, {α1, α3}) and (G3, {α1, α2}) are C+-groups with triangular B-diagram
of type (3, 3, 3).
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(0, 1,∞,−e2)
α1↙ ↘α3

(1,∞, 0,−e2) (1,−e2,∞, 0)
α1↙ ↘α3 α1↙ ↘α3

(∞, 0, 1,−e2) (−e2,∞, 1, 0) (∞,−e2, 0, 1) (−e2, 0,∞, 1)
α3↓ α3↓ ↓α1 ↓α1

(∞, 1,−e2, 0) (0,∞,−e2, 1) (0,−e2, 1,∞) (−e2, 1, 0,∞)

α1↘ ↙α3

(1, 0,−e2,∞)

Figure 2: Action of G2 on the 4-tuple (0, 1,∞,−e2).

Proof. We first observe that, for each i ∈ {2, 3}, {α1, αi} is an independent set, which is
sufficient to guarantee that it gives a set of generators of a C+-group. Now let us compute
the order of the elements that give the B-diagram. It is straightforward to see that α1

has order 3. To compute the order of the other elements we use the fact that e is a third
root of unity and hence e2 + e + 1 = 0. Therefore the following equalities hold for any
c ∈ GF (q). (

e 0
c e2

)2

=

(
e2 0
−c e

)
,

(
e 0
c e2

)3

= Id ;(
e c
0 e2

)2

=

(
e2 −c
0 e

)
,

(
e c
0 e2

)3

= Id .

In particular, this shows that both α2 and α3 have order 3. In addition,

α−11 α2 =

(
e 0
e e2

)
and α−11 α3 =

(
e2 0
e e

)
,

hence these elements have also order 3.
To prove that the groups are isomorphic to A4 we first observe that for i ∈ {2, 3}

α3
1 = α3

i = (α−11 αi)
3 = (α1α

−1
i α1)

2 = Id.

As Id, α1, αi, α
2
1, αiα1, α1αi, α

2
i , αiα

2
1, α

2
iα1, α

2
1αi, α1α

2
i , α1α

2
iα1 are distinct elements of

〈α1, αi〉, from 1 we conclude that Gi is isomorphic to A4, the rotational subgroup of the
hypermap of type (3, 3, 3)(2,0). From the given enumeration of the elements of these two
groups we conclude that their intersection is 〈α1〉.

Figures 2 and 3 show that G2 is in the stabilizer of {0, 1,∞,−e2}, while G3 is in the
stabilizer of {0, 1,∞,−e} (and both groups are isomorphic to A4).
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(0, 1,∞,−e)
α1↙ ↘α2

(1,∞, 0,−e) (1,−e,∞, 0)
α1↙ ↘α2 α1↙ ↘α2

(∞, 0, 1,−e) (−e,∞, 1, 0) (∞,−e, 0, 1) (−e, 0,∞, 1)
α2↓ α2↓ ↓α1 ↓α1

(∞, 1,−e, 0) (0,∞,−e, 1) (0,−e, 1,∞) (−e, 1, 0,∞)

α1↘ ↙α2

(1, 0,−e,∞)

Figure 3: Action of G3 on the 4-tuple (0, 1,∞,−e)
.

Lemma 6. The groups G0 and G1 are both isomorphic to Eq : C3, more precisely, G0 =
H0 : 〈α−12 α3〉 and G1 = H1 : 〈α−12 α3〉 where H0 and H1 are the following elementary
abelian p-groups of order q.

H0 =

{(
1 0
c 1

)
| c ∈ GF (q)

}
and H1 =

{(
1 b
0 1

)
| b ∈ GF (q)

}
.

Moreover G0 ∩ G1 = 〈α−12 α3〉. Finally, (G0, {α−11 α2, α
−1
1 α3}) and (G1, {α2, α3}) are C+-

groups with triangular B-diagram of type (3, 3, 3).

Proof. First observe that the sets {α2, α3} and {α−11 α2, α
−1
1 α3} are independent, thus G0

and G1 are C+ -groups. Now let us compute the order of the elements that give the
B-diagram. As noted above, the elements α2, α3, α

−1
1 α2 and α−11 α3 have order 3. Now

E := α−12 α3 =

(
e 0
0 e2

)
has also order 3 and belongs to G0 ∩G1.

Consider the following subgroups of PSL(2, q):

H0 =

{(
1 0
c 1

)
| c ∈ GF (q)

}
and H1 =

{(
1 b
0 1

)
| b ∈ GF (q)

}
When q = p, H0 and H1 are cyclic groups of order p. More precisely,

H0 = 〈
(

1 0
1 1

)
〉 and H1 = 〈

(
1 1
0 1

)
〉.

When q = p2, H0 and H1 are elementary abelian groups of order p2. More precisely,

H0 = 〈
(

1 0
1 1

)
,

(
1 0
e 1

)
〉 and H1 = 〈

(
1 1
0 1

)
,

(
1 e
0 1

)
〉,
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since we assumed that 3 does not divide p − 1 and therefore GF (q) = {a + eb : a, b ∈
GF (p)}.

We claim that G0
∼= H0 : 〈E〉 and G1

∼= H1 : 〈E〉. The following equalities prove that
H0 and H1 are subgroups of G0 and G1, respectively.(

1 0
1 1

)
= (α−11 α3)(α

−1
1 α2)

−1(α−11 α3)

(
1 1
0 1

)
= α2α

−1
3 α2(

1 0
e 1

)
= (α−11 α2)

−1(α−11 α3)
2

(
1 e
0 1

)
= α−13 α−12

(2)

On the other hand, as

α−11 α2 =

(
1 0
1 1

)(
e 0
0 e2

)
and α−11 α3 =

(
1 0
e2 1

)(
e2 0
0 e

)
we have that α−11 α2, α

−1
1 α3 ∈ H0 : 〈E〉, while

α2 =

(
1 1
0 1

)(
e 0
0 e2

)
and α3 =

(
1 1
0 1

)(
e2 0
0 e

)
show that α2, α3 ∈ H1 : 〈E〉.

With this we have that the groups G1 and G0 are both isomorphic to Eq : 〈E〉.

Since an element of G0 is equal to

(
ei 0
c e2i

)
for some c ∈ GF (q) and i ∈ {0, 1, 2},

while an element of G1 is equal to

(
ej b
0 e2j

)
for some b ∈ GF (q) and j ∈ {0, 1, 2}, we

have that G0 ∩G1 = 〈E〉.

Lemma 7. (G+, {α1, α2, α3}) is a C+-group with tetrahedral B-diagram as in Figure 1.

Proof. By Lemmas 5 and 6 we have that Gi, i = 0, 1, 2, 3 are C+-groups, G2 ∩G3 = 〈α1〉
and G1∩G0 = 〈α−12 α3〉. We have that G0 is a subgroup of the stabilizer of 0 in G+ and G1

is a subgroup of the stabilizer of ∞ in G+. Figure 2 shows that the only elements of G2

fixing 0 are the identity, α2
3α1 and α2

1α3, hence G0∩G2 = 〈α−11 α3〉. The same figure shows
that the only elements of G2 fixing ∞ are the identity, α3 and α2

3, thus G1 ∩ G2 = 〈α3〉.
Figure 3 shows that the only elements of G3 fixing 0 are the identity, α2

2α1 and α2
1α2, hence

G0 ∩G3 = 〈α−11 α2〉. The same figure shows that the only elements of G3 fixing∞ are the
identity, α2 and α2

2, thus G1 ∩ G3 = 〈α2〉. From this we conclude that (G+, {α1, α2, α3})
is a C+-group. Moreover, as Gi ∩Gj are cyclic groups of order three, for i, j ∈ {0, 1, 2, 3}
with (i 6= j), the B-diagram is a complete graph K4 with edges labelled 3.

Lemma 8. The group G+ is isomorphic to PSL(2, q).

Proof. This follows from the description of the subgroups H0 and H1 in Lemma 6 and
Lemma 4.
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Figure 4: The intersections Gi ∩Gj.

4 A hypertope for PSL(2, q)

As pointed out in [2], not every coset geometry is a hypertope. In this section we shall
see that the coset geometry Γ := Γ(G+, R) := Γ(G+; (Gi)i∈I) where I = {0, 1, 2, 3}, G+ is
isomorphic to PSL(2, q) and the Gi’s are the groups defined in Section 3, is a hypertope.
Since Γ is a coset geometry, then we only have to show that it is thin and residually
connected.

We observe that Γ has a lot of symmetry, and we shall use such symmetry to show
that it is a hypertope. Note that since G+ is a C+-group, then G1∩G2∩G3 is trivial. This
implies that the action of G+ on the flags by right multiplication is free (semi-regular) on
the chambers. Moreover, as Γ is a coset geometry, it is transitive on the flags of rank less
than 3. We shall show that in fact Γ is transitive on the flags of rank 3. To show this,
in the following two lemmas we analyze some incidences among elements of Γ, and some
incidences among elements and flags of Γ.

From the B-diagram of G+, since Gi with i ∈ {2, 3} is isomorphic to A4 and Gi∩Gj
∼=

C3, we know that each element of type i ∈ {2, 3} is incident to exactly four elements of
type j 6= i. Similarly, since Gi with i ∈ {0, 1} is isomorphic to Eq : C3, we have that
each element of type i ∈ {0, 1} is incident to exactly q elements of type j 6= i. Remark
also that, if Gig ∗ Gj then Gig = Gih for some h ∈ Gj. Moreover, if T is a transversal
for Gi ∩ Gj in Gj, then Gig = Gih = Git for some t ∈ T . More precisely we have the
following lemma.

Lemma 9. Let i, j ∈ I with i 6= j and let g ∈ G+. Then

Gig ∗Gj ⇔


Gig ∈ {Gih | h ∈ Hj} if j ∈ {0, 1};
Gig ∈ {Gi, Giαi, Giαiαk, Giαiα

−1
k } if j ∈ {2, 3} and {i, j, k} = {1, 2, 3};

Gig ∈ {G0, G0α1, G0α
−1
1 , G0αk} if j, k ∈ {2, 3} and {i, j, k} = {0, 2, 3}.

Proof. It can be easily checked that all of the cosets in the set on the right side of the
equivalences are incident to the respective Gj.

Suppose that j ∈ {0, 1}. By Lemma 6, Hj is a subgroup of Gj of order q. Thus g ∈ Hj

implies that Gig ∩ Gj 6= ∅. As Gi ∩ Gj has order 3, if Gig ∗ Gj, then |Gig ∩ Gj| = 3. It
remains to prove that the cardinality of {Gig | g ∈ Hj} is q. Suppose that g, h ∈ Hj and
Gig = Gih. Then gh−1 ∈ Gi ∩Hj = (Gi ∩Gj) ∩Hj. In all the cases Gi ∩Gj is generated
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by an element of order 3 which does not belong to Hj, therefore all the intersections
(Gi ∩Gj) ∩Hj are trivial, and so g = h.

For the cases when j ∈ {2, 3}, by Lemma 7 (see also Figure 4 we have the following:

• If i 6= 0, then Gi ∩Gj = 〈αk〉 where {i, j, k} = {1, 2, 3}. Hence

T = {Id, αi, αiαk, αiα−1k }

is a transversal for Gi ∩Gj in Gj and Gig = Git for some t ∈ T .

• If i = 0, then G0 ∩Gj = 〈α−11 αk〉 where {j, k} = {2, 3}. Hence

T = {Id, α1, α
−1
1 , αk}

is a transversal for G0 ∩Gj in Gj and G0g = G0t for some t ∈ T .

Proposition 10. Let i, j, k ∈ I be distinct and let g ∈ G+. Then

Gig ∗ {Gj, Gk} ⇔ Gig = Gih for some h ∈ Gj ∩Gk .

Proof. Obviously the right hand side of the equivalence implies the left one. The proof
of the converse will be divided in cases covering all the possibilities for the set {j, k}.
Assume that Gig ∗ {Gj, Gk}.

Case 1. If {j, k} = {0, 1}, then i ∈ {2, 3} and

Gig ∈ {Gih0 | h0 ∈ H0} ∩ {Gih1 | h1 ∈ H1}

by means of Lemma 9. Looking at the 12 elements of Gi, we see that for h0 =

(
1 0
c 1

)
∈

H0 and h1 =

(
1 b
0 1

)
∈ H1,

h0h
−1
1 =

(
1 −b
c 1− bc

)
∈ Gi ⇔ (b, c) ∈ {(0, 0), (1, 1), (−e1−i,−ei−1)} .

As before, we set E := α−12 α3. We have to prove that Gig = Gih for some h ∈ 〈E〉 =
G0 ∩ G1 (Figure 4). If (b, c) = (0, 0), then Gig = Gih0 = Gih1 = Gi. If (b, c) = (1, 1),
then h1 = α2α

−1
3 α2 by 2. Hence

Gig = Gih0 = Gih1 = Giα2α
−1
3 α2 = GiE

i−1

since G2α2α
−1
3 α2 = G2(α

−1
3 α2)

2 = G2E
−2 = G2E

and G3α2α
−1
3 α2 = G3α

−1
3 α2 = G2E

−1 = G3E
2.

If (b, c) = (−e1−i,−ei−1), then

Gig = Gih0 = Gih1 = Gih1E
i−1E1−i = GiE

1−i
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since h1E
i−1 =

(
e1−i ei−1

0 ei−1

)−1
∈ Gi. Thus Gig = Gih for some h ∈ 〈E〉 = G0 ∩G1.

Case 2. If {j, k} = {0, 2} or {0, 3}, then i 6= 0 and we can assume k = 0, j ∈ {2, 3}.
By means of Lemma 9 there is h0 ∈ H0 such that

Gig = Gih0 ∈ {Gi, Giαi, Giαiαl, Giαiα
−1
l }

where l ∈ I is such that {i, j, k, l} = I. In other words, Gig must belong to the set

S := {Git | t ∈ {Id, αi, αiαl, αiα−1l } , H0 ∩Git 6= ∅} .

Obviously Gi ∈ S. To see that Giαi ∈ S, consider the following elements:

β1 :=

(
1 −1
0 1

)
∈ G1 , β2 := α1α

−1
3 α1 ∈ G2 and β3 := α1α

−1
2 α1 ∈ G3 .

Then βiαi ∈ H0 ∩Giαi for any i ∈ {1, 2, 3}. To show that Giαiαl 6∈ S we remark that

αiαl(0) = αi(1) =


∞ if i = 1 ,
−e if i = 2 ,
−e2 if i = 3 ,

from which it follows H0 ∩ Giαiαl = ∅, since there is no element in Gi sending αi(1) to
0. Finally, considering the following elements

γ1 := Ej−1 ∈ G1 , γ2 := α1α3 ∈ G2 and γ3 := α1α2 ∈ G3 ,

we have that γiαiα
−1
l ∈ H0 for any i ∈ {1, 2, 3}. Hence Giαiα

−1
l ∈ S and so

S = {Gi, Giαi, Giαiα
−1
l } .

It is now straightforward to check that S = {Gih | h ∈ 〈α−11 αl〉}, from which we conclude
that Gig = Gih for some h ∈ 〈α−11 αl〉 = G0 ∩Gj (Figure 4).

Case 3. If {j, k} = {1, 2} or {1, 3} we assume k = 1 and j ∈ {2, 3}. Let l ∈ I such
that {j, l} = {2, 3}. According to Lemma 9 we have the following:

• If i = 0 then Gig = G0g belongs to

{G0t | t ∈ {Id, α1, α
−1
1 , αl}, H1 ∩G0t 6= ∅}

which is equal to {G0, G0α
−1
1 , G0αl}. Namely, E ,E2 and

(
1 0
−1 1

)
are elements

of G0 such that

E2α2, Eα3,

(
1 0
−1 1

)
α−11 ∈ H1 ,

while α1(∞) = 0 gives H1 ∩ G0α1 = ∅. As G0α
−1
1 = G0α

−1
l , we conclude that

G0g = G0h for some h ∈ 〈αl〉 = Gj ∩G1 = Gj ∩Gk (Figure 4).
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• If i 6= 0 then Gig belongs to

{Git | t ∈ {Id, αi, αiα1, αiα
−1
1 }, H1 ∩Git 6= ∅}

which is equal to {Gi, Giαi, Giαiα1}. Namely, αjαi, αiαj ∈ H1, Giαiα1 = Giα
−1
j α−1i =

Giα
−1
i , while αiα

−1
1 (∞) = αi(1) = −ei−1 gives H1 ∩Giαiα

−1
1 = ∅. We conclude so

that Gig = Gih for some h ∈ 〈αi〉 = Gj ∩G1 = Gj ∩Gk (Figure 4).

Case 4. If {j, k} = {2, 3}, then by Lemma 9 we have the following:

• If i = 0, then Gig = G0g belongs to

{G0, G0α1, G0α
−1
1 , G0α2} ∩ {G0, G0α1, G0α

−1
1 , G0α3}

which is equal to {G0, G0α1, G0α
−1
1 } since α2α

−1
3 6∈ G0.

• If i = 1, then Gig = G1g belongs to

{G1, G1α1, G1α1α2, G1α1α
−1
2 } ∩ {G1, G1α1, G1α1α3, G1α1α

−1
3 } .

Remark that G1α1αk = G1α
−1
k α−11 = G1α

−1
1 by means of the fact that α1αk is an

involution for k = 2, 3. Moreover (α1α
−1
2 )(α1α

−1
3 )−1 6∈ G1 because it does not fix

∞. Hence G1g belongs to {G1, G1α1, G1α
−1
1 }.

We are now ready to show that G+ is transitive on the flags of rank 3.

Proposition 11. Let J = {i, j, k} ⊂ {0, 1, 2, 3} with i, j and k all distinct. The action of
G+ on the flags of type J is transitive.

Proof. Let F = {Gi, Gj, Gk} and F ′ = {Giai, Gjaj, Gkak}. By Proposition 1, G+ is
transitive on the flags of rank 2. Hence, there exists a flag F ′′ and a ∈ G+ such that
F ′ = F ′′a with F ′′ = {Gig,Gj, Gk}. Without loss of generality we may assume that
(i, j, k) ∈ {(0, 2, 3), (1, 2, 3), (0, 1, 3), (0, 1, 2)}. Then by Proposition 10, there exists h ∈
Gig ∩Gj ∩Gk. Hence F ′′ = Fh and therefore F ′ = Fha.

To show that Γ is a thin geometry, we need to show that every residue of rank 1 has
exactly two elements. A residue of rank 1 is the set of elements of Γ that are incident
to a flag of type J ⊂ {0, 1, 2, 3}, with |J | = 3. By Proposition 11, all residues of rank 1
corresponding to flags of a given type J are isomorphic. Hence, it is enough to show that,
for {i, j, k, l} = {0, 1, 2, 3}, the sets {Gjg | Gjg ∗ {Gi, Gk, Gl}} all have cardinality two.

Proposition 12. The coset geometry Γ is a thin geometry.

Proof. Following the above discussion, we need to show that four sets have cardinality
two. To do this, we shall show that:

G0g ∗ {G1, G2, G3} ⇔ G0g ∈ {G0, G0α
−1
1 };

G1g ∗ {G0, G2, G3} ⇔ G1g ∈ {G1, G1α1};
G2g ∗ {G0, G1, G3} ⇔ G2g ∈ {G2, G2α2};
G3g ∗ {G0, G1, G2} ⇔ G3g ∈ {G3, G3α3}.

(3)
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It is straightforward to see that the elements on the sets of the right are incident to
the flags on the left.

We start by assuming that Gig∗{Gj, G2, G3} where {i, j} = {0, 1}. As Gig∗{G2, G3},
by Proposition 10, Gig ∈ {Gi, Giα1, Giα

−1
1 }. As we also have Gig ∗Gj we observe that(

1 0
−1 1

)
α−11 ∈ G0α

−1
1 ∩G1

while G0α1 ∩G1 = ∅ since any element of G0α1 sends ∞ to 0 and so it does not belong
to G1 which is in the stabilizer of∞. As G0g ∗G1 ⇔ G0 ∗G1g

−1, this proves the first two
equivalences in 3.

Now let Gig ∗ {G0, G1, Gj} where {i, j} = {2, 3}. As Gig ∗ G0 and Gig ∗ G1, there
exists an element of Gig fixing 0 and an element fixing ∞. In addition, as Gig ∗ Gj, by
Lemma 9, Gig ∈ {Gi, Giαi, Giαiα1, Giαiα

−1
1 }.

Let i = 2. Looking at Figure 2 and Figure 3, we have that α2α1(0) = −e and
α2α

−1
1 (∞) = −e. As G2 stabilizes {0, 1,∞,−e2}, there is no element in G2α2α1 fixing 0

and there is no element in G2α2α
−1
1 fixing ∞. Thus G2g ∈ {G2, G2α2}, as α−13 α2 ∈ G2α2

fixes both 0 and ∞.
Now consider i = 3. We have that α3α1(0) = −e2 and α3α

−1
1 (∞) = −e2. As G2

stabilizes {0, 1,∞,−e}, there is no element in G3α3α1 fixing 0 and there is no element in
G3α3α

−1
1 fixing ∞. Thus G3g ∈ {G3, G3α3}, as α−12 α3 ∈ G3α3 fixes both 0 and ∞.

Therefore all the equivalences in (3) are satisfied and so Γ is a thin geometry.

In order to show that the geometry Γ is a hypertope, we need to show that it is
residually connected. That is, we need to show that each residue of rank at least two
has a connected incidence graph. We already showed that all the residues of rank 3 are
hypermaps of type (3, 3, 3) (Lemmas 5 and 6). Since we know that all such hypermaps
are residually connected, as observed in [2], that will conclude the proof. More precisely,
we have the following theorem.

Theorem 13. Γ is a hypertope.

Proof. As pointed out before, Γ is a geometry, and by Proposition 12, it is thin. By
Lemmas 5 and 6, its rank 3 redidues Γi are toroidal hypertopes isomorphic to the coset
geometries Γ(Gi, (Gi ∩ Gj)j∈I\{i}). This, together with Proposition 2, implies that Γ is
residually connected. Therefore Γ is a hypertope.

4.1 The residues of rank 3

The residues of rank three of Γ are hypermaps of type (3, 3, 3)(a,b) for some a and b that
depend on the type of the residue. To determine the vector (a, b) of the rank 3 residues
of Γ we now fix an order for the generators of each Gi. Let the first generator of Gi be
the one with minimal label when i 6= 0 and let the first generator of G0 be α−11 α2.

Lemma 14. The residues Γi with i ∈ {2, 3} are regular hypermaps of type (3, 3, 3)(0,2).
When q = p2 the residues Γi with i ∈ {0, 1} are regular hypermaps of type (3, 3, 3)(0,p).
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When q = p the residue Γ0 is the chiral hypermap of type (3, 3, 3)(1,e) while the residue Γ1

is the chiral hypermap of type (3, 3, 3)(e,1), where e is a third root of unity (which is an
integer, as q = p).

Proof. For the following see 1. As (α1α2)
2 = (α1α3)

2 = 1G+ , the residues Γ2 and Γ3 are
regular hypermaps of type (3, 3, 3)(0,2).

Consider first the case q = p2. In this case the order of (α−11 α2)(α
−1
1 α3) is p. Hence

Γ0 and Γ1 are regular hypermaps of type (3, 3, 3)(0,p).

Now let q = p. We have that

(
1 e
0 1

)
=

(
1 1
0 1

)e
which gives the following relation

in G+,
(α2α

−1
3 α2)

e(α2α3) = 1G+ .

Hence Γ1 is a chiral hypermap of type (3, 3, 3)(e,1). We also have that (α−11 α2)(α
−1
1 α3) =(

1 0
1 + e 1

)
and (α−11 α2)(α

−1
1 α3)

−1(α−11 α2) =

(
1 0
1 1

)
. As

(
1 0

1 + e 1

)e
=

(
1 0
−1 1

)
and

(
1 0
−1 1

)
is the inverse of

(
1 0
1 1

)
,

(α−11 α2)(α
−1
1 α3)

−1(α−11 α2)[(α
−1
1 α2)(α

−1
1 α3)]

e = 1G+ .

Hence Γ0 is a chiral hypermap of type (3, 3, 3)(1,e).

5 The symmetries of Γ

As pointed out in the introduction, the hypertopes we have constructed in this paper
are highly symmetric. Recall that we have two families: a family of hypertopes Γ(p) =
Γ(G+, R) with G+ = PSL(2, p) for any prime number p satisfying p ≡ 1 mod 3, and a
family of hypertopes Γ(p2) = Γ(G+, R) with G+ = PSL(2, p2) for any prime p satisfying
p ≡ 2 mod 3, where R = {α1, α2, α3} for both families. In this section we shall show
that all hypertopes Γ(p) are chiral, while all hypertopes Γ(p2) are regular. Furthermore,
we study the correlations of the hypertopes and find that all the chiral hypertopes Γ(p)

have both proper and improper correlations. For any Γ in one of these two families we
have the following lemma.

Lemma 15. G+ acts with two orbits on chambers of Γ with adjacent chambers in different
orbits.

Proof. This is a consequence of Propositions 11 and 12.

Lemma 16. Any hypertope Γ(p) is chiral while any hypertope Γ(p2) is regular.

Proof. By Lemma 14, one residue of Γ(p) is chiral. Hence Γ(p) is itself chiral, indeed by
Theorem 3 the residues of a regular hypertope must all be regular. For Γ(p2) we have
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that G+ = PSL(2, p2). Then, the Frobenius automorphism of GF (p2) gives rise to the
involutory automorphism

ϕ : G+ → G+,

(
a b
c d

)
7→
(
ap bp

cp dp

)
which fixes α1 and interchanges α2 and α3 (since p ≡ 2 mod 3 and therefore ep = e2 in
that case). Let ψ be the automorphism of G+ given by conjugation with

A :=

(
−1 1
0 1

)
∈ GL(2, p2).

Then ψϕ is an automorphism of G+ inverting α1, α2 and α3. Hence, by Theorem 3 Γ(p2)

is a regular hypertope.

For the chiral hypertopes Γ(p) we will now exhibit proper and improper correlations.
In order to give a proper correlation of Γ(p), we remark the following general fact. Given a
coset geometry Γ := Γ(G, (Gi)i∈I), any ϕ ∈ Aut(G) satisfying {ϕ(Gi) | i ∈ I} = {Gi | i ∈
I} gives rise to an automorphism of Γ mapping Gig to ϕ(Gig) = ϕ(Gi)ϕ(g). In particular,
we have the following lemma.

Lemma 17. The automorphism η of G+ = PSL(2, p) defined by conjugation with the
involution

B :=

(
0 1
1 0

)
∈ GL(2, p)

gives rise to a proper duality of Γ(p).

Proof. As η is an involution satisfying

η(α1) = α−11 , η(α2) = α−11 α3 , η(α3) = α−11 α2 ,

it interchanges G0 with G1 and G2 with G3.

To give an improper correlation of Γ(p), we extend the assignment

µ : G0 7→ G0α
−1
1 , G1 7→ G1 , G2 7→ G3 , G3 7→ G2

to a bijection of the set of elements of Γ(p) by setting

µ(Gig) := µ(Gi)g
A , where A :=

(
−1 1
0 1

)
∈ GL(2, p) .

Note that A is an involution and that αA1 = α−11 , αA2 = α−13 , αA3 = α−12 . Therefore
µ(G0)

A = α1G0 and µ(Gi)
A = Gi for any i ∈ {1, 2, 3}. Then, for any j ∈ I we have

µ(Gjg) = µ(Gjh)⇔ µ(Gj)g
A = µ(Gj)h

A ⇔ µ(Gj)
Ag = µ(Gj)

Ah⇔ Gjg = Gjh ,

showing that µ is well-defined and a bijection. To prove that µ is a correlation we need
the following lemma.
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Lemma 18. {Gig
Aα1 | g ∈ H0} = {Gih | h ∈ H0} for any i ∈ {1, 2, 3}.

Proof. Let g =

(
1 0
c 1

)
∈ H0. Then

gAα1 =

(
−c 1
−c− 1 1

)
=

(
1 1
0 1

)(
1 0

−c− 1 1

)
∈ {G1h | h ∈ H0}

= α1

(
1 0
−c 1

)
∈ {G2h | h ∈ H0} ∩ {G3h | h ∈ H0} .

Hence Gig
Aα1 ∈ {Gih | h ∈ H0}.

Lemma 19. The bijection µ is an improper duality of Γ(p).

Proof. By definition µ sends the chamber {G0, G1, G2, G3} to {G0α
−1
1 , G1, G2, G3}, the

adjacent chamber. Hence we have only to prove that µ is a correlation. It is enough to
prove that for any g ∈ G+ and any i, j ∈ I with i > j

µ(Gig) ∗ µ(Gj)⇔ Gig ∗Gj .

According to the definition of µ and Lemma 9, we have

µ(Gig) ∗ µ(Gj) ⇔ µ(Gi)g
A ∗ µ(Gj)

⇔


µ(Gi)g

Aα1 ∈ {µ(Gi)h | h ∈ H0} if j = 0 ,
µ(Gi)g

A ∈ {µ(Gi)h | h ∈ H1} if j = 1 ,
G3g

A ∈ {G3, G3α3, G3α3α1, G3α3α
−1
1 } if j = 2 (⇒ i = 3).

⇔


Gigα

−1
1 ∈ {Gih

A | h ∈ H0} if j = 0 ,
Gig ∈ {Gih

A | h ∈ H1} if j = 1 ,
G3g ∈ {G3, G3α

−1
3 , G3α

−1
3 α−11 , G3α

−1
3 α1} if j = 2 .

⇔


Gig ∈ {Gih

Aα1 | h ∈ H0} if j = 0 ,
Gig ∈ {Gih

A | h ∈ H1} if j = 1 ,
G3g ∈ {G3, G3α

−1
3 , G3α

−1
3 α−11 , G3α

−1
3 α1} if j = 2 .

Using Lemma 18 (j = 0), checking that A normalizes H1 (j = 1) and verifying that

{G3, G3α
−1
3 , G3α

−1
3 α−11 , G3α

−1
3 α1} = {G3, G3α3α1, G3α3, G3α3α

−1
1 } (j = 2) ,

we conclude that µ(Gig) ∗ µ(Gj) ⇔ Gig ∗ Gj for any i, j ∈ I with i > j using again
Lemma 9.

As it has been shown in Lemmas 17 and 19, the chiral hypertopes Γ(p) have both proper
and improper correlations simultaneously. We therefore have the following theorem.

Theorem 20. There exist chiral hypertopes of rank 4 having both proper and improper
correlations simultaneously.
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We finish this section with the following two remarks.

1. All residues of rank 3 of the regular hypertope Γ(4) are regular hypermaps of type
(3, 3, 3)(0,2) (Lemma 14). Consequently a correspondence fixing a generator of G+

and interchanging the other two, can be extended to an automorphism of G+. Thus
Γ(4) has all possible kinds of correlations. In other words, Aut(Γ(4)) ∼= S5 × S4

∼=
PSL(2, 4)× S4.

2. We observe that the tetrahedral groups G+ arise naturally as subgroups of index 4
in the symmetry group [6, 3, 6] = 〈r0, r1, r2, r3〉 of the hyperbolic tessellation {6, 3, 6}
given in [6, Section 11] (generated by r1, r2, (r1)

r0 and (r2)
r3).

6 A geometric construction of Γ

We now give a geometric description of the rank 4 hypertopes Γ = (X, ∗, t, I) constructed
in the previous sections. The set I = {0, 1, 2, 3} of types gives a partition of the set of
elements of Γ into four sets X0, X1, X2 and X3, where x ∈ Xj if and only if t(x) = j. The
elements of X0, X1, X2 and X3 can be described from a certain action in the projective
line PG(1, q), where q = p if Γ = Γ(p) and q = p2 if Γ = Γ(p2). In what follows we define
each of the Xi and the incidence between them.

Let G+ be the group PSL(2, q) acting on the projective line PG(1, q) = GF (q)∪{∞}
as follows.

PG(1, q)×G+ → PG(1, q), (z, g) 7→ zg := g−1(z),

where g−1(z) = Az if g−1 = ±A with A ∈ SL(2, q), as in Section 2.4.
Consider a transversal U for the stabilizer G+

∞ of ∞. The index of G+
∞ in G+ is q+ 1,

since G+
∞ is the semi-direct product of the elementary abelian p-group H1 of order q (given

in Lemma 6) with the cyclic group D of diagonal matrices in G+, which has order q−1
d

with d = gcd(2, q−1). As q+ 1 = |PG(1, q)|, we can identify any u ∈ U with the element
z :=∞u of PG(1, q) and write u = uz.

By Lemma 6 the group G1 = H1 : (G0 ∩G1) is a subgroup of G+
∞ = H1 : D. Consider

a transversal T for G1 in G+
∞. Let X0 and X1 be two disjoint copies of T ×PG(1, q). For

x0 = (t, z) ∈ X0 and x1 = (s, w) ∈ X1 we say that

x0 ∗ x1 whenever t = s and z 6= w. (4)

It is straightforward to see that an element x0 ∈ X0 is incident with exactly q elements
of X1 and vice-versa.

Let X2 and X3 be the orbits of the sets {1, e, e2,∞} and {1, e, e2, 0} under the action
of G+, respectively. Remarking that all possible cross ratio of four distinct points in
{1, e, e2,∞} or in {1, e, e2, 0} take only two values, we conclude that both sets have a

stabilizer isomorphic to A4. Hence |X2| = |X3| = (q+1)q(q−1)
12d

.
Given x2 ∈ X2 and x3 ∈ X3, we shall say that

x2 ∗ x3 whenever |x2 ∩ x3| = 3. (5)
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Then, each element x2 ∈ X2 is incident with exactly 4 elements of X3 and vice-versa.
Before defining the incidences between any other two elements, we shall first define

the incidence between {1, e, e2,∞} ∈ X2 and an element (t, z) of X0 or X1. We say that

{1, e, e2,∞} ∗ (t, z) if and only if t = 1G+ and z ∈ {1, e, e2,∞}. (6)

Having 6 in mind, the transversal U can be choosen in such a way that uz ∈ G+
{1,e,e2,∞}

for z ∈ {1, e, e2,∞}. This is possible and motivated by the following. If the coset G1tuz
intersects G+

{1,e,e2,∞}, then z ∈ {1, e, e2,∞} and therefore uz ∈ G+
{1,e,e2,∞} by our choice of

U . It follows then that G1t intersects G+
{1,e,e2,∞}. As G1t is in G+

∞ and G+
∞ ∩G+

{1,e,e2,∞} <
G1, we have that G1t ∩ G1 6= ∅, that is t = 1G+ . Now we can say that an element
{1, e, e2,∞}g in X2 will be incident to those (t, z) (in X0 or X1) such that G+

{1,e,e2,∞} ∩
G1tuzg

−1 6= ∅. Note that, if g ∈ G+
{1,e,e2,∞}, then {1, e, e2,∞}g = {1, e, e2,∞} will be

incident to those (t, z) such that G+
{1,e,e2,∞} is incident with G1tuzg

−1 = G1tuzg−1 (by the

choice of U). As we saw, these are the pairs (t, z) with t = 1G+ and z ∈ {1, e, e2,∞}.
Thus incidence is well-defined.

Finally, an element {1, e, e2, 0}g ∈ X3 will be incident with an element (t, z) in X0 or
X1 if the corresponding element {1, e, e2,∞}g ∈ X2 is incident with (t, z).

By definition, Γ = (X, ∗, t, I) is an incidence system, where X = ∪3
j=0Xj, I =

{0, 1, 2, 3}, t : X → I is such that t(x) = j whenever x ∈ Xj and the incidence ∗ is
given by (4), (5), (6) and the last paragraph above. Furthermore, it is straightforward to
see that every flag is in a chamber, implying that Γ is in fact an incidence geometry. By
construction, Γ is isomorphic to the hypertope given in section 4.
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