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Abstract

We introduce a new algebraic construction, monop, that combines monoids (with
respect to the product of species), and operads (monoids with respect to the sub-
stitution of species) in the same algebraic structure. By the use of properties of
cancellative set-monops we construct a family of partially ordered sets whose pro-
totypical examples are the Dowling lattices. They generalize the enriched partition
posets associated to a cancellative operad, and the subset posets associated to a
cancellative monoid. Their Whitney numbers of the first and second kind are the
connecting coefficients of two umbral inverse Sheffer sequences with the family of
powers {xn}∞n=0. Equivalently, the entries of a Riordan matrix and its inverse. This
aticle is the first part of a program in progress to develop a theory of Koszul duality
for monops.

Mathematics Subject Classifications: 05E99; 05A40, 06A07,06A11

Dedicated to the memory of Gian-Carlo Rota, 1932-1999.

1 Introduction

The systematic study of the Sheffer families of polynomials and of its particular instances:
the Appel familes and the families of binomial type, was carried out by G.- C. Rota and his
collaborators in what is called the Umbral Calculus (see [MR70,RKO73,RR78,Rom84]).
A Sheffer sequence is uniquely associated to a pair of exponential formal power series,
(F (x), G(x)), F (x) invertible with respect to the product of series, and G(x) with respect
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to the substitution. The Sheffer sequences come in pairs, one is called the umbral inverse
of the other. If one Sheffer sequence is associated to the pair (F (x), G(x)), its umbral
inverse is associated to the pair ( 1

F (H(x))
, H(x)), where H(x) = F 〈−1〉(x), the substitutional

inverse of F (x). Shapiro et al. introduced in [SGWC81] the Riordan group of matrices,
whose entries in the exponential case, connect two Sheffer families of polynomials. Since
that a great number of enumerative applications have been found by these methods. See
for example the list of Riordan arrays of OEIS.

The initial motivation of the present research was to find a combinatorial explanation
of the inversion process in the group of Riordan matrices. Equivalently, to the Sheffer
sequences of polynomials and their umbral inverses. The key tool for such explanation
is in the first place the concept of Möbius function and Möbius inversion over partially
ordered sets (posets) [Rot64].

For the particular case of families of binomial type, the combinatorics of the process of
inversion is related to families of posets of enriched partitions (assemblies of structures).
One of the families of binomial type obtained by summation over the poset, and its umbral
inverse by Möbius inversion. Particular cases of them were studied in [Rei78], [JRS81]
and [Sag83]. The general explanation was found in [MY91], where the construction of
those posets is based on some special kind of set operads, called c-operads.

A similar approach can be applied to the Appel families. The central combinatorial
object in this case is that of a c-monoid. A c-monoid is a special kind of monoid in
the monoidal category of species with respect to the product (See [Joy81], [Men15]. See
also [AM10] for an extensive treatment of monoids and Hopf monoids in species). Given
a c-monoid, through its product we are able to build a family of partially ordered sets.
For each of these monoids, one Appel family is obtained by summation over those posets,
and its umbral inverse by Möbius inversion.

In this article we introduce a new algebraic structure, that we call monop, because
it is an interesting mix between monoids on species and operads. Our first step was to
construct a monoidal category, the semidirect product (in the sense of Fuller [Ful16]) of
the monoidal categories of species with respect to the product and the positive species
with respect to the substitution. Then, we define a monop to be a pair of species (M,O)
which is a monoid in such category. From the commutative diagrams satisfied for this
kind of monoids we deduce all the main properties of monops, in particular that M is a
monoid, O is an operad and M a right module over O satisfying natural compatibility
properties. A special and particularly interesting class of monops is that of pairs of the
form (O ′,O), an operad and its derivative. Giving the operadic product η : O(O) → O,
by applying the derivative functor we get, by the chain rule

η′ : O ′ · O ′(O)→ O.

By defining the monop product as ρ := η′, we deduce the associativity property for monops
from that of operads. In a similar way we obtain the monop unity and its properties.

We also introduce the c-monops. From a c-monop we give a general construction
of posets that provide combinatorial explanation of the inverses of Riordan matrices by
means of Möbius inversion. Or, equivalently, to Sheffer families and their umbral inverses.
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We present a number of examples of Appel, binomial and general Sheffer families together
with the posets constructed using the present approach. Remarkably, we obtain a new
kind of operads, each of them associated to an arbitrary finite group. We call them
the Dowling operads. By complementing the Dowling operads to monops we recover
the classical Dowling lattice [Dow73]. We also introduce here r-generalizations of the
Dowling lattices for r a positive integer. With similar techniques we can define monops
on rigid species (species over totally ordered sets), with the operations of ordinal product
and substitution. In this way giving combinatorial interpretations to the inversion in the
Riordan group associated to pairs of ordinary series (f(x), g(x)).

Posets associated to Monops have an independent algebraic interest beyond the enu-
merative applications given here. B. Vallette [Val07] proved that, under reasonable con-
ditions, posets associate to a c-operad are Cohen-Macaulay [BGS82, Wac07] if and only
if the c-operad is Koszul [GK94]. In the same vein of Vallet approach, one of us has
proved [Men10] that a c-monoid is Koszul if and only if the family of associated posets
is Cohen-Macaulay. Our next step in this program shall be the development of a Koszul
duality theory for monops. Monoids are closely related to associative algebras. The corre-
sponding analytic functor M̃ [Joy86] evaluated in a vector space is an associative algebra.

The second component of the pair becomes a monad Õ, and M̃ is a right-module over
it. Then, Koszul duality for monops would establish a deep link between Koszul duality
for operads and Koszul duality for associative algebras. And also, interesting connections
with the Cohen-Macaulay property for the associated posets and Koszulness of the corre-
sponding monop, unifying in this way the criteria established in [Val07] and in [Men10].

2 Formal power series

The exponential generating series (or function) of a sequence of numbers fn, n = 0, 1, . . .
is the formal power series

F (x) =
∞∑
n=0

fn
xn

n!

The coefficient fn will be denoted as F [n], F [n] := fn. The series F (x) will be called a
delta series if F [0] = 0 and F [1] 6= 0. For an exponential series F (x) with zero constant
term, F [0] = 0, we denote by γk(F )(x) its divided power

γk(F )(x) :=
F k(x)

k!
.

The substitution of such a formal power series F (x) in another arbitrary formal power
series G(x) is equal to

G(F (x)) :=
∞∑
k=0

G[k]× γk(F )(x). (1)

Definition 1. A pair of exponential formal power series (F (x), G(x)) is called admissible
if G[0] = 0. An admissible pair is called a Riordan pair if F [0] 6= 0 and G(x) is a delta
series.
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Riordan product of admissible pairs is defined as follows

(F1(x), G1(x)) ∗ (F2(x), G2(x)) := (F1(x).F2(G1(x)), G2(G1(x)). (2)

Admissible pairs of series in C[[x]] form a monoid with respect to the product ∗, having
(1, x) as identity. The Riordan pairs form a group, the inverse of (F (x), G(x)) given by

(F (x), G(x))−1 = (F−1(G〈−1〉(x)), G〈−1〉(x)). (3)

Where F−1(x) and G〈−1〉(x) denote the multiplicative and substitutional inverses of F (x)
and G(x) respectively.

Definition 2. To an admissible pair (F (x), G(x)) we associate the infinite lower triangular
matrix having as entries

Cn,k = Hk[n], 0 6 k 6 n. (4)

Hk(x) being the series F (x).γk(G(x)). That matrix is denoted as 〈F (x), G(x)〉. The
Riordan product is transported to matrix product by the bracket operator, We have that
(see [SGWC81]).

〈G1(x), F1(x)〉〈G2(x), F2(x)〉 = 〈G1(x).G2(F2(x)), F2(F1(x)).〉 (5)

The matrix 〈F (x), G(x)〉 is called a Riordan array when (F (x), G(x)) is a Riordan pair.
Riordan arrays with the operation of matrix product form a group that is isomorphic to
the group of Riordan pairs. The inverse of the matrix 〈F (x), G(x)〉 is equal to

〈F (x), G(x)〉−1 = 〈F−1(G〈−1〉(x)), G〈−1〉(x)〉. (6)

The ordinary generating function of the sequence fn is equal to the formal power series

f(x) =
∞∑
n=0

fnx
n.

We denote by f [n] the nth. coefficient of f(x).

Definition 3. For an admissible pair (g(x), f(x)) of ordinary generating functions we
define the associated matrix having as entries the coefficients

Cn,k = hk[n], 0 6 k 6 n (7)

where hk(x) is the series hk(x) = g(x).fk(x).

3 Sheffer sequences of polynomials

Definition 4. Let G(x) be a delta series. Define the polynomial sequence

pn(x) :=
n∑
k=1

γk(G)[n]xk, n > 1 (8)

the electronic journal of combinatorics 25(3) (2018), #P3.25 4



and let p0(x) ≡ 1. This polynomial sequence is known to be of binomial type,

pn(x+ y) =
n∑
k=0

(
n

k

)
pn−k(x)pk(y).

It is called the conjugate sequence to the delta series G(x). It is also called the associated
sequence to the series P (x) = G〈−1〉(x). We have that

P (D)pn(x) = npn−1(x), (9)

where P (D) is the operator defined by

P (D) =
∞∑
n=1

P [n]
Dn

n!
,

D being the derivative operator Dr(x) = r′(x).

Definition 5. We say that a family of polynomials sn(x) is Sheffer if there exists Riordan
pair of formal power series (F (x), G(x)) such that

sn(x) :=
n∑
j=0

(F.γj(G)[n])xj, n > 0. (10)

By the Cauchy product formula we get

F.γj(G)[n] =
n∑
k=0

(
n

k

)
F [k]γj(G)[n− k].

Hence

sn(x) =
n∑
j=0

(
n∑
k=0

(
n

k

)
F [k]γj(G)[n− k])xj. (11)

We will say that {sn(x)}∞n=0 is the conjugate sequence of (F (x), G(x)).

Observe that the coefficients cn,k = F.γk(G)[n] connecting the family of powers xn with
sn(x), n > 0, are the entries of the Riordan matrix associated to the pair (F (x), G(x)),
〈F (x), G(x)〉. Let us consider the Riordan inverse of (F (x), G(x)),

(S(x), P (x)) = (F (x), G(x))−1 = (F−1(G〈−1〉(x)), G〈−1〉(x))). (12)

Let {pn(x)}∞n=0 be the family of binomial type associated to the delta operator P (D). We
have the identity

sn(x) = S−1(D)pn(x) (13)

In effect, by Equations (8) and (11)

S−1(D)pn(x) = F (G〈−1〉(D))pn(x) = F (P (D))pn(x) =
n∑
k=0

F [k]
P (D)k

k!
pn(x) =

n∑
k=0

(
n

k

)
F [k]pn−k(x) =

n∑
j=0

(

n∑
k=0

(
n

k

)
F [k]γj(G)[n− k])xj = sn(x).
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As a consequence of Eq. (13), we get that the Sheffer sequence {sn(x)}∞n=0 satisfies the
binomial identity

sn(x+ y) =
n∑
k=0

(
n

k

)
sk(x)pn−k(y).

We say that it is Sheffer relative to the binomial family pn(x). It is called the Sheffer
sequence associated to the Riordan pair (S(x), P (x)).

A Sheffer sequence associated to a Riordan pair of the form (S(x), x) is called an
Appel sequence. An Appel sequence is Sheffer relative to the family of powers, {xn}∞n=0.
Observe that, by Eq.(10), a such Appel sequence an(x) conjugate to the pair (F (x), x),
F (x) = S−1(x) is of the form,

an(x) =
n∑
k=0

F (x).
xk

k!
[n]xk =

n∑
k=0

(
n

k

)
F [n− k]xk, (14)

since (F (x)x
k

k!
)[n] =

(
n
k

)
F [n−k]. Similarly, a family of binomial type is Sheffer associated

to Riordan pairs of the form (1, P (x)) (resp. conjugate to pairs of the form (1, F (x)),
F (x) = P 〈−1〉(x).

3.1 Umbral substitution

Let

rn(x) =
n∑
k=0

dn,kx
k

be another Sheffer sequence conjugated to a Riordan pair (H(x), K(x)). Consider the
umbral substitution defined by

sn(r) =
n∑
k=0

cn,kr
k :=

n∑
k=0

cn,krk(x) =
n∑
j=0

(
∑
j6k6n

cn,kdk,j)x
j.

Since the matrix of coefficients of the umbral substitution is the product of the corre-
sponding matrices, by Eq. (5), we have that

Proposition 1. The umbral substitution sn(r) of two Sheffer sequences as above is also
Sheffer, conjugated to the Riordan product

(F (x), G(x)) ∗ (H(x), K(x)) = (F (x)H(G(x)), K(G(x))).

Corollary 1. Let an(x) and pn(x) be the Appel and binomial sequences conjugate re-
spectively to (F (x), x) and (1, G(x)). Then we have

sn(x) = an(p). (15)

Proof. Immediate from Prop. 1 and the identity

(F (x), G(x)) = (F (x), x) ∗ (1, G(x)).
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The Sheffer sequence associated to (F (x), G(x)) is the umbral inverse of {sn(x)}∞n=0,
denoted {ŝn(x)}∞n=0. For every n > 0,

sn(ŝ(x)) :=
n∑
k=1

F (x).γk(G(x))[n]ŝk(x) = xn = ŝn(s(x)) (16)

This is obviously equivalent to the identity (6). It says that the matrix F (x).γk(G(x))[n]
is the inverse of S(x).γk(P (x))[n]. It is summarized in the following table.

Sheffer Appel Binomial Umbral Inverse
Associated to (S(x),P(x)) (S(x),x) (1,P(x)) Conjugate to
Conjugate to (F (x), G(x)) (F (x), x) (1, G(x)) Associated to

Matrix F (x)G
k(x)
k!

[n]
(
n
k

)
F [n− k] Gk(x)

k!
[n] Inverse Matrix

4 Species and rigid species

In a general way, a (symmetric) species is a covariant functor from the category of finite
sets and bijections B to a suitable category. For example, if we set as codomain the
category of finite sets and functions F, we get set species (see [BLL98, Joy81]). If we
instead set as codomain the category of vector spaces and linear maps VecK; we get
linear species (see for example [Joy86, AM10, Men15]). By changing the domain B by
the category of totally ordered sets L and poset isomorphisms, we obtain rigid species
(species of structures without the action of the symmetric groups, non-symmetric species).
Rigid species are endowed with two kinds of operations; shuffle and ordinal.

4.1 Three monoidal categories with species.

The (symmetric) set species, together with the natural transformation between them form
a category. A species P is said to be positive if it assigns no structures to the empty set,
P [∅] = ∅. The category of species will be denoted by Sp and the category of positive
species by Sp+.

Recall that the product of species is defined as follows

(M.N)[V ] =
∑

V1+V2=V

M [V1]×N [V2].

And the substitution of a positive species P into an arbitrary species R by

R(P )[V ] =
∑

π∈Π[V ]

∏
B∈π

P [B]×R[π].

The symbol of sum in set theoretical context will always denote disjoint union. The
elements of the product M.N [V ] are pairs (m,n), m an element of M [V1] and n an element
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of N [V2], for some decomposition of V , V = V1 + V2. The category Sp is monoidal with
respect to the operation of product. It has as identity the species 1 of empty sets,

1[V ] :=

{
{∅} if V = ∅
∅ otherwise,

(17)

we have canonical isomorphisms

1.M ∼= M ∼= M.1.

The category of positive species is monoidal with respect to the operation of substi-
tution. Its identity being the species of singletons,

X[V ] :=

{
V if |V | = 1

∅ otherwise.
(18)

The divided power γk(G(x)) = Gk(x)
k!

of an exponential formal power series G(x) has a
counterpart in species. Recall that for a positive species P ,

γk(P )[V ] =
∑
|π|=k

∏
B∈π

P [B].

The elements of γk(P ) are assemblies of P -structures having exactly k elements,

a = {pB}B∈π, |a| = k, and pB ∈ P [B] for every B ∈ π.

The elements of the substitution R(P ) are pairs of the form: (a, r), a = {pB}B∈π an
assembly of P -structures, and r an element of R[π]. The divided power can be seen as
the substitution of P into the species Ek, of sets of cardinal k,

Ek[V ] =

{
{V } if |V | = k

∅ otherwise,

γk(P ) = Ek(P ).

Definition 6. Let us consider now the product category Sp × Sp+. A pair of species
(M,O) in Sp × Sp+ will be called admissible. Morphisms are pairs of natural transfor-
mations of the form

(φ, ψ) : (M1,O1)→ (M2,O2),

φ : M1 → M2, and ψ : O1 → O2. It is a monoidal category with respect to the Riordan
product, defined as follows:

(M1,O1) ∗ (M2,O2) = (M1.M2(O1),O2(O1)) (19)

having as identity the pair (1, X),

(1, X) ∗ (M,O) = (1.M(X),O(X)) ∼= (M,O) ∼= (M.1, X(O)) = (M,O) ∗ (1, X). (20)

It will be called from now on the Riordan category.
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The monoidal categories Sp and Sp+ are respectively imbedded into the Riordan
category by mapping,

M 7→ (M,X) (21)

O 7→ (1,O). (22)

Remark 1. The Riordan category is just the semidirect product Sp o Sp+ (in the sense
of [Ful16]) associated to the action

Sp+ → [Sp,Sp]

O 7→ (M 7→M(O)).

The exponential generating functions of (M,O) is defined to be

(M,O)(x) = (M(x),O(x)). (23)

The generating function of the Riordan product (M1,O1) ∗ (M2,O2) is obviously the
Riordan product of the respective generating functions

(M1,O1) ∗ (M2,O2)(x) = (M1(x).M2(O1(x)),O2(O1(x))).

The matrix associated to an admissible pair (M(x),O(x)) is invertible if and only if
(M(x),O(x)) is a Riordan pair. Since

Cn,k = |M.γk(O)[n]| (24)

it enumerates pairs of the form (m, a), m ∈M [V1] and a an assembly of O-structures over
V2 having exactly k elements, V1 + V2 = [n].

Example 1. Let us consider E, the species of sets, E[V ] = {V }. Let E+ be its associated
positive species. The pair (E,E+) has as generating function the Riordan pair

(E,E+)(x) = (ex, ex − 1). (25)

The matrix associated to the pair (ex, ex − 1), Cn,k = |E.γk(E+)[n]|, counts the number
of partial partitions of [n] having k blocks. The matrix Cn,k = |Π.γk(E+)[n]| associated
to the pair (Π, E+)

(Π, E+)(x) = (ee
x−1, ex − 1) (26)

counts pairs of partitions (π1, π2), π1 ∈ Π[V1], π2 ∈ Π[V2], V1 +V2 = [n], π2 having exactly
k blocks.

Similar monoidal categories are defined on rigid species. Let R, S : L → F two rigid
species. For l, a linear order on a set V , recall that the shuffle product and substitution
are defined respectively by

(R.S)[l] =
∑

V1+V2=V

R[lV1 ]× S[lV2 ] (27)

R(S)[l] =
∑

π∈Π[V ]

∏
B∈π

S[lB]×R[π] (for S positive). (28)
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where for V1 ⊆ V , lV1 denotes the restriction of the total order l to V1. Note that l induces
a total order on any partition of V . We say that B < B′, for B,B′ ∈ π if the minimun
element of lB is smaller in l than the corresponding minimun element of lB′ . Applications
of monops in the context of rigid species with ordinal product and substitution will be
consider in a separated paper.

4.2 Cancellative monoids, cancellative operads, and posets.

A monoid in the monoidal category Sp, the species with the operation of product, is
called (by language abuse) a monoid. An operad is a monoid in the category Sp+ of
positive species with respect to the substitution. More specifically. A monoid is a triplet
(M, ν, e) such that the product ν : M ·M → M is associative, and e : 1 → M , choses
the identity, an element of M [∅]. We also denote it by e, by abuse of language. We have
then the associativity and identity properties

ν (ν (m1,m2),m3) = ν (m1, ν (m2,m3))

ν (m, e) = m = ν (e,m).

for every triplet of elements (m1,m2,m3) of M [V1] ×M [V2] ×M [V3] ⊆ (M ·M ·M)[V ],
and the pairs (e,m) and (m, e) respectively in M [∅]×M [V ] and M [V ]×M [∅]. A monoid
(M, ν, e) (in Sp) is called a c-monoid if

1. It is connected, |M [∅]| = 1

2. The product ν satisfies the left cancellation law

ν (m1,m2) = ν (m1,m
′
2)⇒ m2 = m′2.

And operad, as a monoid in Sp consists of a triplet (O, η, ν), where the product η :
O(O)→ O is associative, and for each unitary set {v}, e : X → O chooses the identity in
O[{v}], denoted by ev. The product η sends pairs of the form ({ωB}B∈π, ωπ) into a bigger
structure, ωV = η({ωB}B∈π, ωπ). Intuitively this product can be thought of as if η would
assemble the pieces in a = {ωB}B∈π according to the external structure ωπ. Associativity
reads as follows,

η(η̄(a1, a2), ωπ) = η(a1, η(â2, ωπ)),

where â2 is isomorphic to a2. By simplicity we will usually identify â2 with a2.
The identity property reads as follows

η({ev}v∈V , ωV ) = ωV = η({ωV }, e{V }).

See [Men15] for details and pictures. All this properties can be expressed by the commu-
tativity of the diagrams of monoids in a monoidal category, see Section 7.
An operad (O, η, e) is called a c-operad if

1. It is connected, |O[1]| = 1
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Figure 1: The complement isomorphism between two monoidal structures on G

2. The product η satisfies the left cancellation law. For (a, ω), (a, ω′) ∈ O(O)[V ], we
have

η(a, ω) = η(a, ω′)⇒ ω = ω′.

Example 2. The species of simple (undirected) graphs G is a c-monoid (in the category
Sp).

ν1 : G .G → G

(g1, g2) 7→ g1 + g2.

The plus sing meaning the disjoint union of the two graphs. There is another monoidal
structure over G , the product ν2 sending a pair of graphs to the graph obtained by
connecting with edges all the vertices in g1 with those in g2. The two monoidal structures
are isomorphic by the correspondence c : g 7→ gc, sending a graph to its complement,
obtained by taking the complementary set of edges (with respect to the complete graph).
The natural transformation c is a monoid involutive isomorphism, c2 = IG . The following
diagram commutes (see also Fig. 1)

G .G

c.c
��

ν2 // G

c
��

G .G
ν1 // G

(29)

The corresponding positive species G+ is a c-operad with η({gB}B∈π, gπ) = gV , with
gV as the graph obtained by keeping all the edges of the internal graphs plus some more
edges created using the information of the external graph gπ. For each external edge
{B1, B2} of gπ, add all the edges of the form {b1, b2} with b1 ∈ B1 and b2 ∈ B2. The
species of connected graphs Gc is a suboperad of G .

For a c-monoid (M, ν, e) we define a family of partially ordered sets

PM [V ] = (]V1⊆VM [V1],6ν) = (M.E[V ],6ν), V ∈ B
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the relation 6ν defined by

m1 6ν m2, if ν (m1,m
′
2) = m2

for some m′2. The poset PM [V ] has a zero, the unique element of M [∅]. The Möbius
cardinal of PM [V ], |PM [V ]|µ is defined to be

|PM [V ]|µ =
∑

m∈M [V ]

µ(0̂,m),

where µ is the Möbius function of PM [V ]. In a similar way, for a c-operad (O, η, e) we
define a family of posets

PO [V ] = (E+(O)[V ],6ν).

The elements of E+(O) are assemblies of O-structures. The order relation 6ν defined by

a1 6 a2 if there exists â2 such that η(a1, â2) = a2,

where â2 is an assembly with labels over the partition π1 associated to a1, and having π̂2

as associated partition, â2 = {ŵD}D∈π̂2 . The product η defined as follows

η(a1, â2) = {η({ωC}C∈D, ŵD)}D∈π̂2 .

The poset PO [V ] has a zero, the assembly of singletons {ev}v∈V , ev the unique element of
O[{v}]. For M a c-monoid and O a c-operad, we define the Möbius generating functions
of the respective family of posets

MöbPM(x) =
∞∑
n=0

|PM [n]|µ
xn

n!

MöbPO [n] =
∞∑
n=1

|PO [n]|µ
xn

n!
.

We have that

MöbPM(x) = M−1(x) (30)

MöbPO(x) = M 〈−1〉(x). (31)

See [MY91,Men15]. Moreover, we have.

Proposition 2. If we define the Appel and binomial families conjugated respectively to
M(x) and O(x)

ân(x) =
∑

(mV1
,V2)∈PM [n]

x|V2| =
n∑
k=1

(
n

k

)
|M [k]|xn−k (32)

p̂n(x) =
∑

a∈PO [n]

x|a| =
n∑
k=1

|γk(O)[n]|xk, (33)
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then, we have that their corresponding umbral inverses are obtained by Möbius inversion
over the respective posets

an(x) =
∑

(mV1
,V2)∈PM [n]

µ(0̂, (mV1 , V2))x|V2| (34)

pn(x) =
∑

a∈PO [n]

µ(0̂, a)x|a| =
n∑
k=1

|γk(O)[n]|µxk. (35)

Proof. A proof of a more general proposition is given in Section 6, Theorem 3.

4.3 Examples of c-Monoids and Appel polynomials

Example 3. Pascal matrix, shifted powers. For the monoid E, PE[n] is the Boolean
algebra of subsets of [n]. The conjugate Appel is the shifted power sequence∑

A⊆[n]

x|A| =
n∑
k=0

(
n

k

)
xk = (x+ 1)n.

The umbral inverse obtained by Möbius inversion over PE[n] gives us their Appel umbral
inverse ∑

A⊆[n]

µ(∅, [n]− A)x|A| =
n∑
k=0

(
n

k

)
(−1)n−kxk = (x− 1)n.

Consider the power Er, the ballot monoid. The elements of Er[V ] are weak r compositions
of V , i.e., r-uples of pairwise disjoint sets (V1, V2, . . . , Vr) (some of them possibly empty)
whose union is V . It is a c-monoid by adding r-uples component to component:

((V1, V2, . . . , Vr), (V
′

1 , V
′

2 , . . . , V
′
r ))

ν7→ (V1 + V ′1 , V2 + V ′2 , . . . , Vr + V ′r ).

The ballot poset PEr [n] gives us the combinatorial interpretation of the umbral inversion
between the Appel families (x+ r)n and (x− r)n.

Example 4. Euler numbers The species of sets of even cardinal, Eev, is a submonoid of
E. Its generating function is equal to the hyperbolic cosine,

Eev(x) =
ex + e−x

2
= cosh(x).

It gives us PEev [n], the poset of subsets of [n] having even cardinal. Since

sech(x) = Eev(x)−1 = 1 +
∞∑
k=1

(−1)nE∗n
x2n

2n!
,

(E∗n being Euler or secant numbers, that count the number of zig permutations, OEIS
A000364). We have that

|PEev [n]|µ =

{
(−1)

n
2E∗n/2 = µ(0̂, [n]) n even

0 n odd.
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The corresponding conjugate Appel polynomials are (OEIS A119467)

ân(x) =
∑

A⊆[n],|A| even
xn−|A| =

bn
2
c∑

k=0

(
n

2k

)
xn−2k =

(x+ 1)n + (x− 1)n

2
.

and its umbral inverses (OEIS A119879)

an(x) =

bn
2
c∑

k=0

(
n

2k

)
(−1)kE∗kx

n−2k.

We have the identity (in umbral notation),

(a + 1)n + (a− 1)n = 2xn.

And, making En = |PEev [n]|µ = an(0),

(E + 1)n + (E− 1)n = 2δn,0.

The classical Euler polynomials En(x) are connected with an(x) by the formulas

an(x) =
n∑
k=0

(
n

k

)
2kEk(

x

2
)

En(x) =
1

2n

n∑
k=0

(
n

k

)
(−1)kan−k(2x)

The first identity follows by manipulating their generating functions, the second by bino-
mial inversion.

Example 5. Free commutative monoid generated by a positive species. Let M be a
positive species, the free commutative monoid generated by M is E(M), the species of
assemblies of M -structures. It is a c-monoid with the operation (a1, a2)

ν7→ a1 +a2, taking
the union of pairs of assemblies. The order in PE(M)[n] is given by the subset relation on
partial assemblies: (a1, V1) 6 (a2, V2) if a1 ⊆ a2. Its Möbius function is

µ((a1, V1), (a2, V2)) = (−1)|a2−a1|. (36)

The corresponding Appel polynomials are

ân(x) =
∑

(a,V )∈PE(M)[n]

x|V | (37)

an(x) =
∑

(a,V )∈PE(M)[n]

(−1)|a|x|V | (38)

Subsequent Examples 6, 7, and 8 are particular cases of this general construction.
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Example 6. Hermite Polinomials. Consider the free commutative monoid generated by
E2, the species of sets of cardinal 2. It is the species of pairings. Equivalently, the species
of partitions whose blocks all have cardinal 2, E(E2),

E(E2)(x) = e
x2

2 .

The elements of the poset PE(E2)[n] are partial partitions of [n] having blocks of length
two (partial pairings), endowed with the relation π1 6 π2 if every block of π1 is a block of

π2. The signless Hermite polynomials Ĥn(x), are obtained as a sum over the elements of
PE(E2)[n]. Their umbral inverses, the Hermite polynomials Hn(x) are obtained by Möbius
inversion, see Fig. 2. In the figure, partial pairing are identified with a total partition
having blocks of either size one or two. For example, following this convention, the
partial partition of pairings 25|57 in {1, 2, 3, 4, 5, 6, 7}) is represented as a total partition
25|57|1|3|6 (also represented as the pair (25|57, {1, 3, 6})). In the following equations, π
will represent a partial partition consisting only of pairings.

Ĥn(x) =
∑

π∈PE(E2)[n]

xn−2|π| =
∑

06k6bn
2
c

(
n

2k

)
(2k)!

k!2k
xn−2k

=
∑

06k6bn
2
c

(
n

2k

)
(2k − 1)!!xn−2k

Hn(x) =
∑

π∈PE(E2)[n]

µ(0̂, π)xn−|π| =
∑

π∈PE(E2)[n]

(−1)|π|xn−2|π|

=
∑

06k6bn
2
c

(
n

2k

)
(−1)k(2k − 1)!!xn−2k.

This elementary Möbius inversion is closely related to Rota-Wallstrom combinatorial
approach to stochastic integrals for the case of a totally random Gaussian measure.
See [RTW97], and [PT11].

Example 7. Bell-Appel polynomials. The free commutative monoid generated by E+, is
equal to the species of partitions Π = E(E+). The Bell-Appel polynomials conjugate to
Π(x) = ee

x−1 are

Bn(x) =
n∑
k=0

(
n

k

)
Bkx

n−k.

The Möbius function of PΠ[n] is equal to µ(0̂, π) = (−1)|π|. Then, the umbral inverse

B̂n(x) is equal to

B̂n(x) = xn +
n∑
k=1

(
n

k

)
(
k∑
j=1

(−1)jS(k, j))xn−k.

the electronic journal of combinatorics 25(3) (2018), #P3.25 15



Figure 2: The poset PE(E2)[3], and the Hermite polynomial H4(x).

Example 8. Consider the species of graphs G . Since we have the identity G = E(Gc),
Gc being the species of connected graphs, the monoidal structure defined by ν1 in Ex.
2 is that of the free commutative monoid generated by Gc. The corresponding Appel
polynomials (conjugate to G (x)) are

ĝn(x) =
n∑
k=0

(
n

k

)
2(k2)xn−k.

The Möbius function of PG [n] is given by µ(0̂, G) = (−1)k(G), where k(G) is the number
of connected components of G (The empty graph is assumed to have zero connected
components). Their umbral inverses are the polynomials

gn(x) =
n∑
k=1

(
n

k

)
(
k∑
j=1

(−1)j|γj(Gc)[k]|)xn−k,

γj(Gc) being the species of graphs having exactly j connected components.

Example 9. The species of lists L (totally ordered sets) is a c-monoid with product
ν : L.L → L, the concatenation of lists. The poset PL[n] has as maximal elements the
lists on [n]. We have that l1 6 l2 if l1 is an initial segment of l2. The Möbius function is
as follows,

µ(0̂, l) =


1 if l is the empty list

−1 if l is a singleton

0 otherwise.

The conjugate polynomials of L(x) = 1
1−x are

ân(x) =
∑
l∈PL[n]

xn−|l| =
n∑
k=0

(
n

k

)
k!xn−k =

n∑
k=0

(n)kx
n−k =

∞∑
k=0

Dkxn.
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Their umbral inverses are

an(x) =
∑
l∈PL[n]

µ(0̂, l)xn−|l| = xn − nxn−1.

4.4 Examples of c-operads and binomial families

Example 10. The operad of lists and binomial Laguerre polynomials.The species of non-
empty lists L+ is an operad (the associative operad) with η the concatenation of lists
following the order given by an external list, lπ = B1B2 . . . Bk

η({lB}B∈π, lπ) = lB1lB2 . . . lBk .

The elements of PL+ [n] are linear partitions (partition with a total order on each block).
The coefficients counting such linear partitions having k blocks are the Lah numbers(

n− 1

k − 1

)
n!

k!
.

Hence, the polynomials obtained by summation on PL+ [n] are the unsigned Laguerre
polynomials (of binomial type)

pn(x) =
∑

π∈PL+
[n]

x|π| =
n∑
k=1

(
n− 1

k − 1

)
n!

k!
xk = Ln(−x). (39)

Since µ(0̂, π) = (−1)n−|π|, by Möbius inversion we get that

p̂n(x) =
n∑
k=1

(−1)n−k
(
n− 1

k − 1

)
n!

k!
xk = (−1)nLn(x). (40)

Example 11. Touchard polynomials. The operad E+ gives rise to the poset E+(E+)[n] =
Π+[n] of non-empty partitions ordered by refinement. The Touchard polynomials Tn(x)
conjugate to E+(x) = ex − 1 are

Tn(x) =
n∑
k=1

|γk(E+)[n]|xk =
n∑
k=1

S(n, k)xk.

Where S(n, k) are the Stirling numbers of the second kind. By Möbius inversion we obtain
their umbral inverses

(x)n =
n∑
k=1

|γk(E+)[n]|µxk =
n∑
k=1

s(n, k)xk,

where s(n, k) is the Stirling number of the first kind and (x)n = x(x−1)(x−2) . . . (x−n+1)
the falling factorial.
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Example 12. The species of sets having odd cardinal, Eodd inherit the operad structure
from E+. Hence, it is a c-operad. The poset Πodd[n] = PEodd [n] is formed by the partitions
of [n] where each block have odd length, ordered by refinement. Since

Eodd(x) =
ex − e−x

2
= sinh(x),

the substitutional inverse of Eodd(x) is the arcsin series,

arcsin(x) = ln(x+
√

1 + x2) =
∞∑
n=0

(−1)n(2n− 1)!!2
x2n+1

(2n+ 1)!
.

The associated polynomials codify the Möbius function of the poset Πodd[n]

stn(x) = x

n−1∏
k=1

(x+ n− 2k) =
∑

π∈Πodd[n]

µ(0̂, π)x|π|.

It may be easily checked that eD− e−D
2

stn(x) = stn(x+1)−stn(x−1)
2

= nstn−1(x). They are
related to the Steffensen polynomials, [RR78], Ex. 6.1., by

stn(x) = 2nstn(
x

2
)

Example 13. The operad of cycles. Consider the rigid species of cyclic permutations C,

C[{v1, v2, . . . , vn}] = {f |f : V → V a cyclic permutation} (41)

A cyclic permutation can be identified with a linear order l having v1 as first element,
l1 = v1. Its generating function is C(x) = ln( 1

1−x). It is a shuffle c-operad with product
η({lB}B∈π, lπ) = lB1lBi2 . . . lBik , the concatenation of the internal linear orders following
the external order, lπ = B1Bi2 . . . Bik . Since B1 is the first element of the totally ordered
set π = B1 < B2 < · · · < Bk, the minimun element of B1 is v1, and the product gives
again a cyclic permutation.

The elements of the poset PC [n] are permutations (assemblies of cyclic permutations),
hence the conjugate sequence of C(x) = ln( 1

1−x) is the increasing factorial,

(x)n = x(x+ 1) . . . (x+ n− 1) =
n∑
k=1

|s(n, k)|xk,

s(n, k) being the Stirling numbers of the first kind. A cycle c = (c1c2 . . . cj) of a permu-
tation σ is said to be monotone if c1 < c2 < · · · < cj. If σ is a permutation with k cycles,
the Möbius function was proved to be (see [JRS81])

µ(0̂, σ) =

{
(−1)n−k if all the cycles of σ are monotone,

0 otherwise.
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Hence, their umbral inverses are
n∑
k=1

(−1)n−kS(n, k)xk = (−1)nTn(−x)

Tn(x) being Touchard polynomials.

Example 14. The Abel sequence An(x; a) = x(x+ a)n−1 associated a xe−ax. For a = 1,
it is conjugate to the generating series A (x) of rooted trees. The species of rooted trees
has a c-operad structure (see [MY91]). In [Rei78] the poset PA [n] was constructed, and
its Möbius function was computed in [Sag83].

Example 15. The Bessel polynomials of Krall and Frink yn(x). If we make Kn(x) =
xnyn−1( 1

x
) it is the associate sequence of x − x2

2
. Hence, the conjugate to B(x), B being

the species of commutative parethesizations, or commutative binary trees, satisfying the
implicit equation

B = X + E2(B).

It is the free operad generated by E2, a c-operad with the substitution of commutative
parethesizations (or the grafting of commutative binary trees). Computing the inverse of
P (x) = x − x2

2
we obtain that B(x) = 1 −

√
1− 2x2. The polynomials Kn(x) have the

following combinatorial interpretation,

Kn(x) =
n∑
k=1

Bn,kx
k,

where Bn,k is the number of forests having k commutative binary trees with n labeled
leaves. The Möbius function of such forests is

µ(0̂, a) =

{
0 if a has a tree with more than two leaves

(−1)k k=number of binary trees with two leaves.

Their umbral inverse is the family K̂n(x),

K̂n(x) =

bn
2
c∑

k=1

(
n

2k

)
(2k − 1)!!(−1)kxn−k.

Example 16. The generating function Gc(x) = ln(1 +
∑∞

k=1 2(n2) xn
n!

), of the c-operad Gc
of connected graphs (Ex. 2) has as conjugate the binomial family

Ĝn(x) =
n∑
k=1

|γk(Gc)[n]|xk.

They are the generating function of graphs according to the number of their connected
components. An explicit expression for their umbral inverses

Gn(x) =
n∑
k=1

|γk(Gc)[n]|µxk,

is not known.
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4.4.1 The Dowling operad

Let G be a finite group of order m. Denote by EuG
+ the rigid species of G-colored ordered

sets with an extra condition. The minimun element of the set is colored with the identity
1 of G. More explicitly, EuG

+ [∅] = ∅, and for a nonempty totally ordered set V =
{v1, v2, . . . , vn},

EuG
+ [V ] = {f |f : V → G, f(v1) = 1} (42)

This kind of coloration will be called unital. It has as generating function

EuG
+ (x) =

∞∑
n=0

mn−1x
n

n!
=

1

m

∞∑
n=0

(mx)n

n!
=
emx − 1

m
. (43)

This species has a structure of c-operad, η : EuG
+ (EuG

+ ) → EuG
+ , given as follows. The

structures of EuG
+ (EuG

+ ) are pairs of the form ({fB}B∈π, gπ) where each fB is a unital
coloration on B, and gπ is a unital coloration on π (recall that π is a totally ordered
set, B1 < B2 < · · · < Bk, ordered according with their minimun element). The product
hV = η({fB}B∈π, hπ) is obtained by multiplying by the right the “internal” colors on each
block B ∈ π given by fB, times the “external” one given by h(B). Let b ∈ V , and B the
unique block of π where it belongs. Then define hV (b) by

hV (b) = fB(b) · hπ(B), (44)

where “·” is the product of the group. A unital coloration can be represented as a
monomial with exponents on G. The elements of EuG

+ (EuG
+ )[V ] are then identified with

factored monomials. This notation provides a better insight on the structure of the operad.

(V, f) ≡
∏
v∈V

vf(v) (45)

({fB}B∈π, hπ) ≡
∏
B∈π

(∏
b∈B

bfB(b)

)hπ(B)

(46)

η :
∏
B∈π

(∏
b∈B

bfB(b)

)hπ(B)

7→
∏
B∈π

∏
b∈B

bfB(b)·hπ(B) (47)

For example, for the multiplicative group of non-zero integers module 5, G = Z∗5, and
V = {a, b, c, d, e, f, g, h} we have:

η : (a1b2d2)1(c1g3f 4)2(e1h3)3 7→ a1b2d2c2g1f 3e3h4. (48)

In Dowling’s original setting of lattices associated to a finite group, he made use of equiva-
lence classes of colorations over partial partitions of a set. If we had followed his approach
this would have led us to the definition of an equivalence relation between G-colorations,
f, h : V → G, f ∼ h if there exists a g ∈ G such that f = g · h. Observe that in each
equivalence class of colorations there is only one which is unital. This is the reason why
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we define the Dowling operad by means of unital colorations. It is the natural way of
avoiding complications with equivalence classes, by choosing one simple representative.

Since G satisfies the left cancellation law, and |EG
+ [1]| = 1, we have that EuG

+ is a
c-operad:

η({fB}B∈π, hπ) = η({fB}B∈π, h′π)⇒ hπ = h′π,

we can define a posets PEuG+
[V ] = (E(EuG

+ )[V ],6). The elements of the poset are assem-
blies of unital colorations, i.e., unital factored monomials. We say that a1 6 a2 if there
exists a factored monomial a′2 over the factoras of a1 such that η̄(a1, a

′
2) = a2. For example

for G = Z∗5, and naming A = a1b2, B = c1d3, C = e1f 2g, and D = hc2 and consider the
factored monoid

[A1B3][C1D2]

We have the product

η̄((a1b2)(c1d3)(e1f 2g)(h1c2), [A1B3][C1D2]) = η((a1b2)1(c1d3)3)η((e1f 2g)1(h1c2)2)

= (a1b2c3d4)(e1f 2gh2c4)

Then, we have
(a1b2)(c1d3)(e1f 2g)(h1c2) 6 (a1b2c3d4)(e1f 2gh2c4)

The poset PEuG+
[n] has a unique minimal element 0̂, the assembly of trivial colorations over

singletons, and mn−1 maximal elements (the number of unital G ions). The exponential
generating function of the Möbius evaluation of PEuG+

[V ],

MöbPEuG+
[n] =

∑
f∈EuG+ [n]

µ(0̂, f),

is the substitutional inverse of the generating function

EuG
+ (x) =

emx − 1

m
,

MöbPEuG+
(x) =

∞∑
n=1

MöbPEuG+
[n]
xn

n!
= ln(1 +mx)

1
m =

∞∑
n=1

(−m)n−1(n− 1)!
xn

n!
. (49)

The binomial family conjugate to EuG
+ (x) = emx−1

m
is the [m]-Touchard (see [MR17]),

T [m]
n (x) =

∑
a∈P

EuG+
[n]

x|a| =
n∑
k=1

S[m](n, k)xk.

Their umbral inverses being

T̂ [m]
n (x) =

∑
a∈P

EuG+
[n]

µ(0̂, a)x|a| =
n∑
k=0

s[m](n, k)xk = x(x−m)(x− 2m) . . . (x− (n− 1)m).
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5 Monops

At this stage, having studied two particular cases, what is missing is a a general construc-
tion of families of posets in order to give a combinatorial interpretation to the umbral
inversion for Sheffer families. Or equivalently, to the inverses of Riordan arrays. To this
end we define monoids in the Riordan category Sp o Sp+. They will be called monops,
because they are an interesting mix between a monoidal structure in the first component
of the pair, with an operad structure in the second one.

Definition 7. A monop is a monoid in the Riordan category SpoSp+. More specifically,
an admissible pair of species (M,O) is called a monop if it is accompanied with a product
(ρ, η), and identity morphisms (e, e),

(ρ, η) : (M,O) ∗ (M,O)→ (M,O) (product) (50)

(e, e) : (1, X)→ (M,O) (identity) (51)

satisfying the identity and associativity properties of a monoid in the context of the
Riordan category Sp o Sp+.

We then have four natural transformations

ρ : M ·M(O)→M, η : O(O)→ O

e : 1→M, e : X → O.

That suggest, without looking at the commuting diagrams implicit in the definition of
(M,O), an operad structure on O, a monoid structure on M , and some extra conditions.
We begin with two definitions in order to formulate those extra conditions.

Definition 8. Right module over an operad.
Let O be an operad and M a species. We say the M is a right module over O if we have
an action τ : M(O)→M of O over M that is pseudo associative and where the assembly
of identities of O fixes every structure of M

τ(η̄(a1, a2),mπ) = τ(a1, τ(a1,mπ)), (52)

τ({ev}v∈V ,mV ) = mV . (53)

For a detailed study of modules over operads and applications see [Fre09].

Definition 9. Compatibility condition.
Let (M, ν, e) be a monoid which is simultaneously a right module over O. We say that ν
and τ are compatible if for every pair

((aV1 ,mπ1), (aV2 ,mπ2)) ∈M(O)[V1]×M(O)[V2] ⊆M(O) ·M(O)[V ],

we have
ν(τ(aV1 ,mπ1), τ(aV2 ,mπ2)) = τ(aV1 t aV2 , ν(mπ1 ,mπ2)). (54)
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Theorem 1. Fundamental theorem of monops. Let (M, ν, e) be a monoid, and (O, η, e)
an operad, M being a right O-module, τ : M(O) → M . If τ and ν are compatible then
the pair (M,O), (M,O) = ((M,O), (ρ, η), (e, e)), with

ρ := ν ◦ (M.τ)

is a monop. Conversely, if (M,O) = ((M,O), (ρ, η), (e, e)) is a monop, then (O, η, e) is
an operad, (M, ν, e), ν = ρ ◦ (M.M(e)) is a monoid with a structure of right O-module
τ = ρ ◦ (e ·M(O)) and ν and τ are compatible.

We postpone the proof of the Fundamental Theorem to Section 7.

5.1 Examples

Example 17. The pair (E,E+) is a monop. The Boolean monoid E is a right module over
the operad E+. There is a unique homomorphism τV : E(E+)[V ] → E[V ], τ(π, {π}) =⊎
B∈π B = V . It is easy to check that the module and monoid structure are compatible.

Example 18. The pair (L,L+) is a monop. The module structure

τV : L(L+)[V ]→ L[V ]

is defined as follows. If V = ∅, τ∅ is trivially defined. Otherwise we define τ a concate-
nation of linear orders as for the operad L+. The concatenation product ν : L.L → L is
clearly compatible with τ .

Example 19. Let Gc be the species of connected graphs. It is a c-operad with respect to
the restriction of the product η defined in Ex. 2. The species of graphs is a c-monoid with
respect to the product ν1 of Ex. 2. It is also a right Gc-module by restricting appropriately
the product η of Ex. 2, to obtain τ : G (Gc)→ G . It is easy to check that both structures
are compatible. Hence the pair (G ,Gc) is a c-monop. As a motivating example of the
general procedure we will develop in Section 6, we are going to define a partial order
over G . E(Gc)[V ]. An element of G . E(Gc)[V ] = G .G is a pair (a1, a2) = (g1, {gB}B∈π)
of graphs (an arbitrary graph and an assembly of connected graphs). The first element
of the pair is called the monoidal section, and the assembly a the operadic section. We
represent the pair (g1, {gB}B∈π) by placing a double bar between the monoidal zone g1

and the operadic one, and simple bars between the elements of the operadic zone {gB}B∈π
(se Fig. 3). We say that

(g1, {gB}B∈π) 6 (g2, {gC}C∈σ)

if the assembly {gB}B∈π can be split in two subassemblies

{gB}B∈π = {gB}B∈π(1) + {gB}B∈π(2) ,

such that

1. g2 = ν1(g1, τ({gB}B∈π(1) , gπ(1))), for some gπ(1) in G [π(1)]
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Figure 3: Definition of the partial order on G .E(Gc)[V ] by means of the monop structure
on (G ,Gc).

2. {gC}C∈σ = η({gB}B∈π(2) , gπ(2)) for some gπ(2) ∈ G [π(2)]. Equivalently, {gB}B∈π(2) is
less than or equal to {gC}C∈σ, in the partial order defined by the operad (Gc, η).

In other words, a part of the assembly in the operadic zone of the pair is ‘abducted’ to the
monoidal zone, and then transformed, by means of τ , in an element of the monoid. Finally
it is multiplied, by means of ν1, with the element that initially was in the monoidal zone.
The other part of the assembly in the operadic zone, remains in it and then substituted
by a bigger assembly (in the partial order defined by the operad).

We will give a general construction of posets of this kind obtained from c-monops.
Each of them gives us a Sheffer family and their umbral inverses via Möbius inversion.

5.2 A family of monops: an operad and its derivative

For an operad O, the Riordan pair (O ′,O) is a monop,

(ρ, η) : (O ′,O) ∗ (O ′,O) = (O ′.O ′(O),O(O))→ (O ′,O),

where ρ is the derivative of the morphism η : O(O)→ O, ρ := η′. In effect, by the chain
rule we have that

η′ : O ′.O ′(O)→ O ′, (55)

and
e′ : 1→ O ′. (56)

The pair (O ′,O) with the morphisms defined above is a monop (see Theorem 4 in Section
7 ).
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Example 20. The structure of monop (E,E+) in Ex. 17 can be defined by the derivative
procedure, since E = E ′+.

Example 21. The pair (L′,L+), L′ = L2, is a monop.

6 Posets associated to c-monops

Definition 10. A monop (M,O) is said to be a c-monop if O is a c-operad and M is a
c-monoid and left cancellative as a right O-module.

For c-monop we will define a partially ordered set P(M,O)[V ]. Recall that the subjacent
set of the partially ordered set PM [V ] associated to a c-monoid M is equal to M.E[V ], and
that of PO [V ], associated to a operad O is E+(O)[V ]. By analogy we take the Riordan
product with the monop (E,E+)

(M,O) ∗ (E,E+) = (M.E(O), E+(O)) (57)

We already saw that E+(O)[V ] is the set subjacent to the poset PO [V ]. The interest-
ing posets associated to a monop are obtained by appropriately defining an order over
M.E(O)[V ]. Recall that the elements of (M.E(O))[V ] are pairs of the form (m, a), where
(m, a) ∈M [V1]×E(O)[V2], for some decomposition of V as a disjoint union V = V1 +V2.
Before defining it we require the following definition of product.

Definition 11. Let (m1, a1) be an element of (M.E(O))[V ]. Let π be the partition sub-
jacent to the assembly a. Let (m′2, a

′
2) be an element of M [π1]×E(O)[π2] ⊆M.E(O)[π],

π = π1 + π2 a splitting of π. Observe that either π1 or π2 may be empty. We define the
product

ρ̄((m1, a1), (m′2, a
′
2)) := (ν(m1, τ(a

(1)
1 ,m′2)), η̄(a

(2)
1 , a′2))

= (ρ(m1, (a
(1)
1 ,m′2)), η̄(a

(2)
1 , a′2)), (58)

where a
(i)
1 is the subassembly of a1 having πi as subjacent partition, i = 1, 2.

Observe that from the identity axioms for operads, monoids, and right O- modules we
have that

ρ̄((m, a), (e, {eB}B∈π)) = (a,m) = ρ̄((e, {ev}v∈V ), (m, a)), (59)

π being the partition subjacent to a.

Theorem 2. The product ρ̄ is associative, left cancellative, and the identity does not
have proper divisors. Let (m1, a1), (m2, a2) and (m3, a3) be a triplet of nested elements
of M.E(O),

1. (m1, a1) ∈M [V1]× E(O)[V2] ⊆M.E(O)[V ], V = V1 + V2.

2. (m2, a2) ∈ M [π1] × E(O)[π2], π = π1 + π2 a splitting of π, the partition subjacent
to the assembly a1.
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3. (m3, a3) ∈ M [ς1] × E(O)[ς2], ς = ς1 + ς2 a splitting of ς, the partition subjacent to
the assembly a2.

We have

1. Associativity

ρ̄(ρ̄((m1, a1), (m2, a2)), (m3, a3)) = ρ̄((m1, a1), ρ̄((m2, a2), (m3, a3))). (60)

2. Left cancellation law

ρ̄((m1, a1), (m2, a2)) = ρ̄((m1, a1), (m′2, a
′
2))⇒ (m2, a2) = (m′2, a

′
2). (61)

3. The identity does not have proper divisors

ρ̄((m1, a1), (m2, a2)) = (e, {ev}v∈V )⇒ m1 = m2 = e, a1 = a2 = {ev}v∈V . (62)

Proof. Le us prove associativity. We first introduce some notation. Let a = {ωB|B ∈ σ}
be an assembly with subjacent partition σ, and let σ1 be a subset of σ. We denote by
(a)σ1 the subset of a,

(a)σ1 = {ωB|B ∈ σ1}.

For another partition ϕ, ϕ > σ, and ϕ1 ⊆ ϕ, a⊆ϕ1 is defined to be the subset of a,

a⊆ϕ1 = {ωB|B ⊆ C, C ∈ ϕ1}.

Computing ρ̄((m1, a1), (m2, a2)) we get

ρ̄((m1, a1), (m2, a2)) = (ν(m1, τ(a
(1)
1 ,m2)), η̄(a

(2)
1 , a2)),

where a
(i)
1 = (ai)πi , i = 1, 2. The assembly η̄(a

(2)
1 , a2) decomposes as a disjoint union

η̄(a
(2)
1 , a2) = η̄(a

(2,1)
1 , a

(1)
2 ) t η̄(a

(2,2)
1 , a

(2)
2 ),

where a
(2,i)
1 = (a

(2)
1 )⊆ςi and a

(i)
2 = (a2)ςi , i = 1, 2. Hence,

ρ̄(ρ̄((m1, a1), (m2, a2)), (m3, a3)) =

(ν (ν (m1, τ(a
(1)
1 ,m2)), τ(η̄(a

(2,1)
1 , a

(1)
2 ),m3)), η̄(η̄(a

(2,2)
1 , a

(2)
2 ), a3)) (63)

Since M is a right O-module, we have τ(η̄(a
(2,1)
1 , a

(1)
2 ),m3) = τ(a

(2,1)
1 , τ(a

(1)
2 ,m3)). By

associativity of ν and η̄, we get from Eq. (63)

ρ̄(ρ̄((m1, a1), (m2, a2)), (m3, a3)) =

(ν (m1, ν (τ(a
(1)
1 ,m2)), τ(a

(2,1)
1 , τ(a

(1)
2 ,m3)), η̄(a

(2,2)
1 , η̄(a

(2)
2 , a3))) (64)
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From the compatibility between η and τ ,

ν (τ(a
(1)
1 ,m2), τ(a

(2,1)
1 , τ(a

(1)
2 ,m3))) = τ (ν (a

(1)
1 t a

(2,1)
1 , ν (m2, τ(a

(1)
2 ,m3)))).

Hence

ρ̄(ρ̄((m1, a1), (m2, a2)), (m3, a3)) =

(ν (m1, τ (ν (a
(1)
1 t a

(2,1)
1 , ν (m2, τ(a

(1)
2 ,m3)), η̄(a

(2,2)
1 , η̄(a

(2)
2 , a3))) (65)

The right hand side of Eq. (60) is equal to

ρ̄((m1, a1),ρ̄((m2, a2), (m3, a3))) =

(ν (m1, τ (ν ((a1)σ1 , ν (m2, τ(a
(1)
2 ,m3)), η̄((a1)σ2 , η̄(a

(2)
2 , a3))). (66)

Since the partition σ1 is the set of labels of ν (m2, τ(a
(1)
2 ,m3)), which is equal to

π1 t {B|B ∈ π, B ⊆ C ∈ ς1},

we have (a1)σ1 = (a1)π1 t (a1)⊆ς1 = a
(1)
1 t a

(2,1)
1 . In the same way we get that σ2 = ς2, and

that (a1)σ2 = a
(2,2)
1 .

The left cancellation law follows easily from the left cancellation law for η̄, ν and τ .
The non existence of proper divisors of the identity is also easy and left to the reader.

The partial order is defined as follows.

Definition 12. Let (m1, a1), (m2, a2) be two elements in M.E(O)[V ]. Let π be the
partition subjacent to a1. We say that (m1, a1) 6 (m2, a2) if there exists another pair
(m′2, a

′
2) ∈M [π1]× E(O)[π2], π = π1 + π2, such that:

ρ̄((m1, a1), (m′2, a
′
2)) = (m2, a2). (67)

Equivalently

m2 = ν(m1, τ(a
(1)
1 ,m′2))

a2 = η̄(a
(2)
1 , a′2). (68)

Proposition 3. The relation (m1, a1) 6 (m2, a2) in Definition 12 is a partial order.

Proof. By Eq. (59) reflexivity follows. Transitivity follows from associativity of ρ̄ in
Theorem 2. Antisymmetry follows from the left cancellation law and the non-divisibility
of the identity (Eq. (62)).

Proposition 4. The family of posets {P(M,O)[V ]|V a finite set} satisfies the following
properties:

1. Let e be the unique element of M [∅], and let a0 = {ev}v∈V be the unique assembly
formed by singleton structures of O. Then P(M,O)[V ] has a minimum element (e, a0).
Its elements of the form (m,∅), m ∈M [V ] are maximal.
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2. If f : V → U is a bijection, then P(M,O)[f ] : P(M,O)[V ] → P(M,O)[U ] is an order
isomorphism.

3. For (m1, a1) an element of P(M,O)[V ], the order coideal

C(m1,a1) = {(m2, a2) ∈ P(M,O)[V ]|(m2, a2) > (m1, a1)},

is isomorphic to P(M,O)[π], π being the partition subjacent to a1.

4. Every interval [(m1, a1), (m2, a2)] of P(M,O)[V ] is isomorphic to the interval [0̂, (m′2, a
′
2)]

of P(M,O)[π], (m′2, a
′
2) being the unique element of M.E(O)[π] such that

ρ̄((m1, a1), (m′2, a
′
2)) = (m2, a2).

5. The interval [0̂, (m, a)] of P(M,O)[V ], (m, a) = (m, {ωB}B∈π) ∈ M [V1] × E(O)[V2] is
isomorphic to the product

[0̂, (m,∅)]V1 ×
∏
B∈π

[0̂, {ωB}]B

Proof. Property 1 follows directly from Eq. (59) and Property 2 from the equivariance
of ρ̄. To prove Property 3, choose an arbitrary element (m′2, a

′
2) in P(M,O)[π] and define

φ((m′2, a
′
2)) := ρ̄((m1, a1), (m′2, a

′
2)). By the definition of the partial order, associativity,

and the left cancellation law φ is an isomorphism. Property 4 is obtained in the same way
by restricting φ to the interval [0̂, (m′2, a

′
2)]. To prove Property 5, first observe that the

product
∏

B∈π[0̂, {ωB}]B is isomorphic to the interval [0̂, a], a = {ωB}B∈π. Hence, we have

to prove that the interval [0̂, (m, a)] is isomorphic to the product [0̂, (m,∅)]V1 × [0̂, a]V2 .
For an arbitrary element, ((m1, a1), a2) ∈ [0̂, (m,∅)]V1 × [0̂, a]V2 , (m1, a1) 6 (m,∅), and
a2 6 a. It means that m = ν(m1, τ(a1,m2)), and that )η̄(a2, a

′) = a for some m2 and
some a′. Define ψ((m1, a1), a2)) := (m1, a1 t a2) ∈ [0̂, (m, a)]. It is easy to prove that ψ is
an isomorphism.

Let A be a subset of a poset P(M,O)[n]. We define the Möbius cardinal of A as the sum

|A|µ =
∑

(m,a)∈A

µ(0̂, (m, a)).

Theorem 3. Let (M,O) be a c-monop. Then, the Riordan matrices Cn,k = |M ·γk(O)[n]|
and Ĉn,k = |M ·γk(O)[n]|µ, are one inverse of the other. Equivalently, they are associated
respectively to the Riordan pairs (M(x),O(x)) and (M(x),O(x))−1.

Proof. Le us consider the poset P(M,O)[n]. By properties of the Möbius function we have∑
0̂6(m1,a1)6(m2,a2)

µ((m1, a1), (m2, a2)) = δn,j
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where (m2, a2) is any element of P(M,O)[n] such that |a2| = j 6 n. Adding over all such
elements in P(M,O)[n], we get

δn,j =
∑

(m2,a2)∈M ·γj(O)[n]

∑
0̂6(m1,a1)6(m2,a2)

µ((m1, a1), (m2, a2)) =

∑
(m2,a2)∈M ·γj(O)[n]

∑
j6k6n

∑
0̂6(m1,a1)6(m2,a2), |a1|=k

µ((m1, a1), (m2, a2)) =

∑
j6k6n

∑
(m1,a1)∈M ·γk(O)[n]

∑
(m2,a2)∈M ·γj(O)[n]

∑
(m2,a2)>(m1,a1)

µ((m1, a1), (m2, a2)) =

∑
j6k6n

∑
(m1,a1)∈M ·γk(O)[n]

∑
(m′2,a

′
2)∈M ·γj(O)[k]

µ(0̂, (m′2, a
′
2)) =

∑
j6k6n

|M · γk(O)[n]||M · γj(O)[k]|µ.

The last equation follows from Proposition 4 (properties 3 and 4), and the fact that if
ρ̄((m1, a1), (m′2, a

′
2)) = (m2, a2), then |a′2| = |a2|.

Remark 2. Left divisibility on connected monoids in species, without the assumtion of
the left cancellation law, is enough to define a partially ordered set (see [AM10], Section
8.7.6). However this property is essential for three reasons

1. Without the left cancellation law the partial order definition based on left divisi-
bility can not be translated to other monoidal categories devoid of a grading and
of a natural notion of connectedness. For example, in the category of ordinary set
monoids it is not possible to define a partially ordered set by left divisibility only.

2. The left cancellation law allows interesting properties on the resulting poset, for
example Property 3 in Proposition 4 above. Property 3 is responsible for the nice
Möbius generating function inverse in Theorem 3. Analogous poset coideal proper-
ties and Möbius inversion generating function formulas are consequences of the left
cancellation law in other contexts. For example, in the context of ordinary monoids,
the classical inverse relation between the Dirchlet series of the Möbius function and
the Riemann zeta function, associated to the monoid of positive integers.

3. In all the known monoidal categories in Species, a monoid satisfying the left cancel-
lation law and the non-divisibility of the identity is connected. Perhaps the converse
is also true, but we have not found a proof, nor a counterexample.

6.1 Examples

Example 22. Actuarial polynomials. Actuarial polynomials a[β](x) are associated to

((1− x)−β, ln(1− x)).

For β = r, a positive integer, we get that the Sheffer conjugate to (Er(x), E+(x)) =
(erx, ex−1), are associated to ((1−x)−r, ln(1+x)). Hence, since the Touchard polynomials
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Figure 4: The poset P(E2,E+)[2], actuarial polynomial a
[2]
2 (x), and its umbral inverse

â
[2]
2 (x).

Tn(x) are associated to ln(1 + x), from Eq. (13) the actuarial polynomials evaluated in
−x is equal to

(1 +D)rTn(x) =
r∑

k=1

(
r

k

)
T (k)(x).

The pair (Er, E+) is a c-monop, Er being the ballot monoid in Ex. 3, and E+ the
commutative operad of Example 11. The action of τ : Er(E+)→ E+ given by

τ(π, (π1, π2, . . . , πr)) = (∪B∈π1B,∪B∈π2B, . . . ,∪B∈πrB),

(π1, π2, . . . , πr) being an r-composition of π.
The elements of the partially ordered set P(Er,E+)[V ] are pairs (W, π), where W =

(W1,W2, . . . ,Wr) is a r-composition of some subset V1 of V , and π is a partition of
its complement in V . The partial order P(Er,E+)[V ] is better described by the covering
relation. We say that (W, π) ≺ (W′, π′) if either,

1. There exist a block B of π and some 1 6 i 6 r, such that

W′ = (W1,W2, . . . ,Wi +B, . . . ,Wr),

and
π′ = π − {B}.

2. The partition π′ covers π in the refinement order, and W′ = W.

See Fig.4
Their umbral inverses are the falling factorials

(x− r)(x− r − 1) . . . (x− r − n+ 1) =
∑

W||π∈P(E2,E+)[n]

µ(0̂,W||π)x|π|.
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Example 23. Laguerre polynomials L
[α]
n (x). The Laguerre polynomials are Sheffer asso-

ciated to ( 1
(1−x)α+1 ,

x
x−1

),

L[α](x) =
n∑
k=0

(
n+ α

n− k

)
n!

k!
(−x)k.

For r = α + 1, a nonnegative integer,

L[r−1]
n (x) =

n∑
k=0

(
n+ r − 1

n− k

)
n!

k!
(−x)k =

n∑
k=0

(
n+ r − 1

k + r − 1

)
n!

k!
(−x)k.

Let us consider the pair (Lr,L+). Lr is the r-power of the monoid of lists, Ex. 9, and
L+ the operad of non-empty lists (the associative operad Ex. 10). It is a c-monop, Lr a
monoid with product ν the concatenation of r-uples of linear orders. It is also a compatible
right L+-module with the action

τ({lB}B∈π, (lπ1 , lπ2 , . . . , lπr)) = (l1, l2, . . . , lr),

where li is given by

li =

{
η({lB}B∈πi , lπi) if πi 6= ∅
e otherwise.

η being the product of the operad L+, and e the empty order, e ∈ L[∅]. The elements of
the poset P(Lr,L+)[n] are pairs of the form (l, π) ∈ Lr.E(L+)[n], where l = (l1, l2, . . . , lr) is
an r-uple of linear orders and π is a linear partition. The numbers of such pairs satisfying
|π| = k is easily proved to be (

n+ r − 1

k + r − 1

)
n!

k!
.

Hence, the Sheffer polynomials obtained by summation over P(Lr,L+)[n] are

ŝn(x) =
∑

l,π)∈P(Lr,L+)[n]

x|π| =
n∑
k=1

(
n+ r − 1

k + r − 1

)
n!

k!
xk = L[r−1]

n (−x).

The Möbius function is equal to

µ(0̂, (l, π)) = (−1)n−|π|,

By Möbius inversion, their umbral inverse family is equal to

sn(x) =
∑

(l,π)∈P(Lr,L+)[n]

(−1)n−|π|x|π| = (−1)n
n∑
k=0

(
n+ r − 1

k + r − 1

)
n!

k!
(−x)k = (−1)nL[r−1]

n (x).
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Example 24. Poisson-Charlier polynomials. Consider the species of partitions Π. It is
simultaneously the free commutative monoid generated by E+, Ex. 7, and the free right
E+-module generated by E; Π = E(E+) (see Ex. 7). As a free right E+ module, the
product is equal to τ = E(η),

τ : E(E+(E+))→ E(E+).

The monoid structure of Π is easily seen to be compatible with this module structure.
Hence (Π, E+) is a monop, more specifically, a c-monop. Its generating function and that
of its inverse are the Riordan pairs

(Π(x), E+(x)) = (ee
x−1, ex − 1)

(Π(x), E+(x))−1 = (e−x, ln(1 + x)).

The poset P(Π,E+)[n] has as subjacent set Π.E(E+)[n] = Π.Π[n]. The elements of
Π.Π[V ] are pairs of partitions (π1, π2), πi ∈ Π[Vi], i = 1, 2, V1 + V2 = [n].
Let (π1, π2) and (π3, π4) be two pairs of partitions in Π.Π[n]. We will say that (π1, π2) 6
(π3, π4) if we can split π2 in two partitions, π2 = π

(1)
2 + π

(2)
2 , such that

1. π3 = π1 ] π′1, π′1 being some partition on V1 greater than or equal to π
(1)
2 in the

refinement order.

2. The partition π4 is greater than or equal to π
(2)
2 in the refinement order.

See Fig. 5 for the poset (Π.Π)[{1, 2, 3}]. A pair (π1, π2) is represented by placing a double
bar between the partitions. The partial order is better described by the covering relation.
We will say that (π1, π2) is covered by (π3, π4) if either:

1. There exists a block B in π2 such that π3 = π2 ] {B} and π4 = π2 − {B}.

2. The partition π4 covers π2 in the refinement order of partitions. That is, π4 is
obtained by joining exactly two blocks of π2.

This family of posets gives us the combinatorics of the Poisson-Charlier polynomials
and their umbral inverses. By summation over P(Π,E+)[n] we get the Shifted Touchard
polynomials

Tn(x+ 1)
∑

π1||π2∈P(Π,E+)[n]

x|π2|

By Möbius inversion we get the Poisson-Charlier polynomials corresponding to the pa-
rameter a = 1,

cn(x; 1) =
∑

π1||π2∈Π.π[n]

µ(0̂, π1||π2)xπ2 .

The general Poisson-Charlier polynomials cn(x; a) are the umbral inverses of the Sheffer
family Tn(ax+ a),

Tn(ax+ a) =
∑

π1||π2∈Π.Π[n]

a|π1|+|π2|x|π2|. (69)
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Figure 5: Poset associated to the monop (Π, E+), and Poisson-Charlier polynomials.

The polynomials cn(x; a) have the following combinatorial interpretation in terms of
the parameter a and the Möbius function of P(Π,E+)[n] (see Fig. 5).

cn(x; a) =
1

an

∑
π1||π2∈ΠΠ[n]

µ(0̂, π1||π2)a|π1|x|π2|. (70)

Example 25. The hyperbolic monop. The pair (Eev, Eodd) is a c-monop. Its generating
function is (cosh(x), sinh(x)) and inverse ( 1√

1+x2 , ln(x+
√

1 + x2)). In a forthcoming paper
we will describe in detail the properties of the corresponding poset and associated Sheffer
polynomials.

Example 26. Consider the shuffle monop of lists and cyclic permutations (L, C), C ′ = L.
Its generating function

(L, C)(x) = (
1

1− x
, ln(

1

1− x
))

has as inverse
(e−x, 1− e−x) (71)

The elements of P(L,C)[n] are pairs of the form (l, σ) ∈ L ·E(C)[n], l a linear order and σ
a permutation. Since the binomial family associated to 1− e−x is the increasing factorial,
Ex. 13, the Sheffer sequence associated to the Riordan pair in Eq. (71), by Eq. (13), is
equal to

eDx(x+ 1)(x+ 2) . . . (x+ n− 1) = (x+ 1)(x+ 2) . . . (x+ n) =
∑

(l,σ)∈P(L,C)[n]

x|σ|,

where |σ| denotes the number of cycles in σ. Their umbral inverses codify the Möbius
function of P(L,C)[n],
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(1−D)(−1)nTn(−x) = (−1)n(Tn(−x) + T ′n(−x)) = (−1)n+1Tn+1(−x)

x

=
n∑
k=1

S(n+ 1, k)(−1)n+1−kxk−1

=
n∑
k=0

S(n+ 1, k + 1)(−1)n−kxk.

Hence:
|L.γk(C)[n]|µ = S(n+ 1, k + 1)(−1)n−k.

Example 27. The ballot monoid Er of Ex. 3 together with the Dowling operad (Sub-
section 4.4.1 ) form a monop (Er, EuG

+ ), that we call the r-Dowling monop. The monoid
Er has also a structure of right c-EuG

+ module.

τ : Er(EuG
+ ) → Er

τ({fB}B∈π, (π1, π2, . . . , πr)) = (∪B∈π1B,∪B∈π2B, . . . ,∪B∈πrB) (72)

where (π1, π2, . . . , πr) is an r-composition of π, (π1, π2, . . . , πr) ∈ Er[π]. The reader may
check that ν and τ are compatible. For r = 1 the pair (E,EuG

+ ) will be called the Dowling
monop. In the next subsection we will give details of the construction of the Dowling and
the r-Dowling posets. Observe that this example corresponds to the Riordan category in
the context of L -species with shuffle product and substitution, their underlying sets are
totally ordered.

6.2 The Dowling monop, Dowling lattices and the r-Dowling posets

The Dowling latticeQn(G) is constructed using a monop (E,EuG
+ ). It has as underlying set

(E.E(EuG
+ ))[{v1, v2, . . . , vn}], its elements are pairs of the form (V1, a), where a = {fB}B∈π

is an assembly of unital colorations on V2, V = V1 + V2. The partial order is defined as
follows.

Definition 13. We will say that (V1, a1) 6Qn(G) (V3, a2) if the assembly a1 splits in two

subassemblies a1 = a
(1)
1 + a

(2)
2 with respective underlying partitions π(1) and π(2), such

that

1. V3 = V1 +
⋃
B∈π(1) B

2. a(2) 6G a2, where 6G is the partial order defined by the Dowling operad EuG
+ .

The order so defined is isomorphic to the classical Dowling lattice [Dow73]. We are
going to generalize this construction to a poset Qn,r(G) depending on a second parameter
r and whose Whitney numbers of the first and second kind coincide with those defined
in [MR17].
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The r-Dowling poset Qm,r[V ] is constructed using the r-Dowling monop of above. Its
subjacent set is (ErE(EuG

+ ))[V ], whose elements are pairs of the form ((V1, V2, . . . Vr), a),
where a = {fB}B∈π is an assembly of unital colorations on Vr+1, V = V1 +V2 + · · ·+Vr +
Vr+1. The partial order is defined as follows.

Definition 14. We will say that ((V1, V2, . . . Vr), a1) 6Qm,r ((W1,W2, . . .Wr), a2) if the

assembly a1 splits in two subassemblies a1 = a
(1)
1 + a

(2)
2 with subjacent partitions π(1) and

π(2) respectively, and there exists an r-coloration of π(1), (π
(1)
1 , π

(1)
2 , . . . π

(1)
r ) such that

1. (W1,W2, . . .Wr) = (V1, V2, . . . Vr) + (
⋃
B∈π(1)

1
B,
⋃
B∈π(1)

2
B, . . . ,

⋃
B∈π(1)

r
B)

2. a
(2)
1 6G a2, where 6G is the partial order defined by the Dowling operad EuG

+ .

7 Commutative diagrams and fundamental theorem

Even though we deal here only with set monops, the concept could be extended to species
having as codomain other categories such as linear species, or linear dg-species. With
this in mind, in this section we present the theory of monops by using only commuta-
tive diagrams, and prove the Fundamental Theorem (Theorem 1) without references to
the combinatorial objects and constructions inherent only to set monops. In this way
the theorems presented here remain valid in other contexts beyond set theoretical and
combinatorial constructions.

7.1 Commutative diagrams for monoids, operads, and monops.

A monoid is a species M plus a product and ν : M ·M →M , and a morphism e : 1→M ,
such that the following diagrams commute

M.1
∼=

$$

M.e //M.M

ν
��

1.M
∼=

zz

e.Moo

M

(73)

M.(M.M)

α̃
��

M.ν //M.M
ν

""
(M.M).M ν.M //M.M ν //M

(74)

Similarly, as it has been said before, an operad O is a species plus a product η :
O(O) → O, η : O(O) → O and identiy e : X → O, such that the following diagram for
the identiy and associativity commute,

O(X)
∼=

$$

O(e) // O(O)

η

��

X(O)
∼=

zz

e(O)oo

O

(75)
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O(O(O))

α

��

O(η) // O(O)
η

!!
(O(O))(O)

η(O) // O(O)
η // O

(76)

The identity and associativity axioms for (M,O) as a monoid in the Riordan category
say that the following diagrams commute

(M,O) ∗ (1, X)
(MO)∗(e,e) //

∼=
**

(M,O) ∗ (M,O)

(ρ,η)

��

(1, X) ∗ (M,O)
(e,e)∗(M,O)oo

∼=
tt

(M,O)

(77)

((M,O) ∗ (M,O)) ∗ (M,O)

α

��

(ρ,η)∗(M,O) // (M,O) ∗ (M,O)
(ρ,η)

))
(M,O) ∗ ((M,O) ∗ (M,O))

(M,O)∗(ρ,η) // (M,O) ∗ (M,O)
(ρ,η) // (M,O).

(78)
The commutativity of the diagram (77) in the second component gives us the operadic
identity axiom for O (Eq. (75)). In the first component, it gives us the commutativity of
the diagram

M · 1(O)
M ·e(O) //

∼=
))

M ·M(O)

ρ

��

1 ·M(X)
e·M(e)oo

∼=
uu

M

(79)

We are going to concentrate in the associativity for the product ∗. We now check on
how the associative morphism α = (α1, α2) works

α : ((M1,O1) ∗ (M2,O2)) ∗ (M3,O3) → (M1,O1) ∗ ((M2,O2) ∗ (M3,O3))

α1 : (M1.M2(O1)).M3(O2(O1)) → M1.((M2.M3(O2)) ◦ (O1))

α2 : O3(O2(O1)) → (O3(O2)) ◦ (O1))

The component α2 is the associativity morphism in the category of positive species
with respect to the substitution. The component α1 is obtained by associativity with
respect to the product of species, and then apply right hand side distibutivity of the
substitution with respect to the product:

α1 : (M1.M2(O1)).M3(O2(O1))→M1.((M2(O1).M3(O2(O1)))→M1.((M2.M3(O2))◦(O1)).

The product morphism (ρ, η)∗(M,O) is equal to (ρ.M(η),O(η)) and (M,O)∗(ρ, η) =
(M.ρ(O), η(O)), M and O standing for the respective identity morphisms. Hence, asso-
ciativity in the second component is the associativity diagram for operads of Eq. 76).
Then, (O, η, e) is an operad, and an equivalent definition of a monop is as follows.
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Definition 15. An admissible pair (M,O) is called a monop if

1. O has an operad structure (O, η, e), η : O(O)→ O.

2. The identity diagram in Eq. (79) commutes.

3. For the product ρ : M.M(O)→M , the following diagram commutes (associativity
for ρ)

(M.M(O)).M(O(O))

α1

��

ρ.M(η)//M.M(O)
ρ

$$
M.((M.M(O))(O))

M.ρ(O) //M.M(O)
ρ //M.

(80)

The product ρ : M.M(O)→M induces a monoid structure ν : M.M →M and a O-right
module structure τ : M(O)→M over M , defined by the composition of morphisms

M.M(X)

∼=
��

M.M(e)//M.M(O)

ρ

��

1.M(O)

∼=
��

e.M(O)//M.M(O)

ρ

��
M.M ν //M M(O) τ //M

(81)

The identity digram, Eq. (79), gives simultaneously the identity axiom for M as a monoid
and as right O-module. Associativity of ν and τ are deduced by specializing diagram
(80). Making the restriction O|X , e : X � O in the whole diagram, and using the
natural identification N(X) ∼= N , we obtain associativity for ν. Restricting M.M(O) to
1 ∼= 1 · 1(O) � M.M(O) in the upper left corner of the digram we obtain associativity
for τ . Conversely, if ν and τ give to M a structure of respectively monoid and right
O-module, then (M,O) is a monop provided that

ρ := ν ◦M.τ, ρ(m1, (a,m2)) = ν(m1, τ(a,m2)). (82)

satisfies associativity (80).
Associativity for monops gives also the following important additional information.

Restricting M to 1 in the first factor of the upper left corner, 1.M(O)� M.M(O), and
again O to X in the second factor of the upper left corner, M(X(O))�M(O(O)), and
expressing ρ as in Eq. (82) we obtain the following commutative digram

M(O) ·M(O)

β

��

τ.τ //M.M
ν

""
(M.M)(O)

ν(O) //M(O) τ //M.

. (83)

It gives a kind of compatibility between the module and monoid structure of M ,

ν ◦ τ.τ = τ ◦ ν(O) ◦ β.

That means that the action τ of O on M commutes with the product ν on M . We will
say then that ν and τ are compatible.

the electronic journal of combinatorics 25(3) (2018), #P3.25 37



Proof. We have already proved the converse part. For the direct part, we have only to
prove the commutativity of (80). We expand it by using the definition of ρ, ρ = ν ◦(M.τ).

(M.M(O)).M(O(O))

α1

��

(M.τ).M(η)// (M.M).M(O)
ν.M(O) //M.M(O) M.τ //M.M

ν

$$
M.((M.M(O))(O))

M.((M.τ)(O))//M.((M.M)(O))
M.ν(O) //M.M(O) M.τ //M.M

ν //M.

In order to prove its commutativity, consider the following enhanced diagram

(M.M(O)).M(O(O))

α
(1)
1

��

(M.τ).M(η) // (M.M).M(O)

(I)

(M.M).τ ))

ν.M(O) // M.M(O)

(II)

M.τ // M.M

ν

��

(M.M).M

(III)

ψ

��

ν.M

77

M.(M(O).M(O(O)))

α
(2)
1

��

λ // M.(M(O).M(O))

(IV)

M.(τ.τ) // M(M.M)

M.ν

''
M.((M.M(O))(O))

M.((M.τ)(O))// M.((M.M)(O))
M.ν(O) // M.M(O)

M.τ // M.M
ν // M,

where λ = M.(M(O).M(η)). Pentagon (III) is the associative diagram for the monoid M ,

and hence commutes. Since α1 = α
(2)
1 ◦α

(1)
1 , we will be done after proving commutativity

of pentagon (I), triangle (II) and diagram (IV). To prove commutativity of (I) we have
that

M.(τ.τ) ◦ λ ◦ α(1)
1 = M.(τ.τ) ◦M.(M(O).M(η)) ◦ α(1)

1

= M.(τ.(τ ◦M(η))) ◦ α(1)
1

= ψ ◦ (M.τ).(τ ◦M(η))

= ψ ◦ (M.M).τ ◦ (M.τ).M(η).

In a similar way we prove commutativity of (II). To prove that of (IV) add to it the Mβ
arrow to obtain

M.(M(O).M(O(O)))

α
(2)
1
��

λ // M.(M(O).M(O))

(V)M.β
��

M.(τ.τ) //M(M.M)
M.ν

''
M.((M.M(O))(O))

M.((M.τ)(O))//M.((M.M)(O))
M.ν(O) //M.M(O) M.τ //M.M.

Observe that (V) is the compatibility diagram Eq. (83) multiplied in all its entries by
M , and hence commutes. Pseudo-associativity of η and τ (M as a right O-module) says
that:

τ ◦M(η) = τ ◦ τ(O) ◦ φ. (84)
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Focusing in the actions of morphisms on M(O(O)), since the restriction of α
(2)
1 to it is

equal to φ, from Eq. (84) we get

M.(τ.τ) ◦ λ = M.(τ.τ) ◦M.β−1 ◦M.((M.τ)(O)).

By the commutativity of (V) we obtain

M.ν ◦M.(τ.τ) ◦ λ = M.ν ◦M.(τ.τ) ◦Mβ−1 ◦M.((M.M(O))(O)) ◦ α(2)
1

= M.τ ◦M.ν(O) ◦M.((M.M(O))(O)) ◦ α(2)
1 .

Theorem 4. Let (O, η, e) be an operad. Then (O ′,O, (ρ, η), (e, e)), with ρ = η′ and e = e′

is a monop.

Proof. Computing derivatives in the associative diagram of η, Eq. (76), and by using the
chain rule, we obtain that the following diagram commutes

(O ′.O ′(O)).O ′(O(O))

α1

��

ρ.O′(η)// O ′.O ′(O)
ρ

$$
O ′.((O ′.O ′(O))(O))

O′.ρ(O)// O ′.O ′(O)
ρ // O ′.

(85)

Which is the same diagram of Eq. (80) after making M = O ′. In a similar way we get
the commutativity for identity diagram for a monop.
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