Linear Bound for Majority Colourings of Digraphs

Fiachra Knox* Robert Sdmal'
Department of Mathematics Computer Science Institute
Simon Fraser University Charles University
Burnaby, B.C., Canada Prague, Czech Republic
fknox@sfu.ca samal@iuuk.mff.cuni.cz

Submitted: Jan 21, 2017; Accepted: Jul 2, 2018; Published: Aug 24, 2018
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Given n € [0,1], a colouring C of V(G) is an n-majority colouring if at most
nd " (v) out-neighbours of v have colour C(v), for any v € V(G). We show that
every digraph G equipped with an assignment of lists L, each of size at least k, has
a 2/k-majority L-colouring. For even k this is best possible, while for odd k the
constant 2/k cannot be replaced by any number less than 2/(k+1). This generalizes
a result of Anholcer, Bosek and Grytczuk, who proved the cases k = 3 and k = 4
and claim a weaker result for general k.

Mathematics Subject Classifications: 05C20,05C15

1 Introduction

Given a digraph G, we write V(G) and E(G) for the vertex and edge set of a digraph G,
respectively. For v € V(G), we denote by d*(v) the out-degree of v. Given n € [0,1], a
(not necessarily proper) colouring C' of V(G) is an n-majority colouring if at most nd™ (v)
out-neighbours of v have colour C(v), for any v € V(G). A 1/2-majority colouring is
referred to simply as a majority colouring. This concept was introduced in connection to
neural networks by van der Zypen [5], who asked whether every digraph has a majority
colouring with a bounded number of colours. This question was answered by Kreutzer,
Oum, Seymour, van der Zypen and Wood [4], who showed that 4 colours always suffice
and ask, whether 3 colours do.

We consider the list-colouring version of this problem. For a set S, we denote by
P(S) the power set of S. Given a digraph G and an assignment L : V(G) — P(N)
of lists to vertices of G, an L-colouring C' : V(G) — N of G is a colouring of V(G)
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such that C(v) € L(v) for every v € V(G). If G has an n-majority L-colouring for any
such assignment L whose lists are all of size at least k, we say that G is n-majority k-
choosable. Anholcer, Bosek and Grytczuk [1] showed that every digraph G is 1/2-majority
4-choosable. As noted by David Wood (personal communication), their method can be
extended to show that every digraph is 1/k-majority k*-choosable for every k > 2. Our
Theorem 1 improves on this result.

Theorem 1. For any integer k > 2, every digraph G is 2/k-majority k-choosable.

Theorem 1 was proved independently by Girdo, Kittipassorn and Popielarz [2]. The
case k = 2 is trivial. Previously, Anholcer, Bosek and Grytczuk [1] showed that Theorem 1
holds in the cases k = 3 and k = 4 and conjectured that 2/k can be replaced by 1/2 when
k = 3. Theorem 1 is best possible when k is even, as shown by the example of a k/2-regular
tournament on k1 vertices (that is, all vertices have both in-degree and out-degree equal
to k/2). If we make all lists equal, then some vertex must have an out-neighbour of the
same colour, and this out-neighbour represents 2/k of its out-neighbourhood. When k
is odd, a similar example shows that we cannot replace 2/k by any number less than
2/(kE+1).

2 Proof of Theorem 1

We denote by vw an edge from a vertex v of a digraph to another vertex w. The proof of
Theorem 1 relies on the following lemma.

Lemma 2. Let k > 2 be an integer and let G be a digraph on a vertex set V(G) = SUT,
such that G[S] is strongly connected, G[T| is edgeless and there are no edges from T to
S. Let Cr be any colouring of T and let L : S — P(N) be an assignment of lists, each
of size at least k, to vertices in S. Then there ezists an extension C' of Cp to V(G)
with C(v) € L(v) for each v € S, such that no vertexr v € S has more than 2d*(v)/k
out-neighbours with the same colour as v.

Proof. For any colouring C' of V(G), we define the function fo: S — R by

_ {we NT() | Cw) = Cv)}]
d*(v)

fe(v)

for each vertex v € S; i.e., fo(v) is the proportion of out-neighbours of v which have the
same colour as v under C'. Given v € S, we write d(v) = [NT(v) N S].

Let A be the non-negative real S x S matrix with entries A,, = 1/d&(v) if vw is an
edge of G and A,, = 0 otherwise. We have Aj = j (where j is the vector of all 1’s). On
the other hand if Ay = cy for any vector y, then choose v € S such that |y,| is maximal;
now |cyp| = | es Avwlu| < D pes AvwlYol = |yo] and so [c| < 1. Thus, the spectral
radius of A is 1.

By applying the Perron—Frobenius Theorem (see, e.g., [3, Theorem 8.8.1]) to AT,
noting that G[S] is strongly connected, we obtain an eigenvector x of AT with positive
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entries and eigenvalue 1. We remark that by normalizing x we could obtain a stationary
distribution of the uniform random walk on G|[S].

Consider an extension C' of Cp with C(v) € L(v) for each v € Ssuch that ) oz, fc(v)
is minimized. We claim that C' satisfies the requirements of the lemma. For brevity we
write f for fo. It suffices to show that f(v) < 2/k for every v € S. Observe that

Saf) =Y df&;)‘ (1)

vES vweE(G)

C(v)=C(w)
Fix a vertex v € S. We define ¢ : L(v) — R by

g(1) = d+
wEN+(v) weNT(v)
C(w)=t C(u)=t
for i € L(v). Observe that if v were recoloured with colour ¢, then (1) would change
by ¢(i) — g(C(V(G))). By the minimality of C' and the definition of g we have that
g(i) = g(C(v)) = z,f(v). Since ATx = x,

= Y

ueN~(v) S( uEN—

d+

and hence
2w, = Y gli) = kayf(v).
ieL(v)
Since x,, > 0, we have f(v) < 2/k. It follows immediately that C' satisfies the requirements
of the lemma. 0

Proof of Theorem 1. Let L : V(G) — P(N) be an assignment of lists, each of size at least
k, to vertices of G. We partition V(G) into strongly connected components Sy, Ss, ..., S,
where there are no edges from S; to S; for any ¢ < j. We write 4; for (J;; S; (takmg
Ag = 0); let Cy be the unique colouring of Ag. For each i = 0,1,2,...,r — 1 in turn, we
apply Lemma 2 to the digraph obtained from G[A; 1] by deleting the arcs in G[A;], with
S =S5,11 and T = A;. This gives us an extension of C; to an L-colouring C; ;1 of A,y such
that no v € S;;; (and hence no v € A;,1) has more than 2d*(v)/k out-neighbours of the
same colour. At the end of this process we obtain C,, which is the desired 2/k-majority
L-colouring of V(G). O

3 Future Work

The main related open problem is the question, whether every digraph has a majority
3-coloring. We refer the reader to [4] for further questions and related results. We note
that Anholcer, Bosek and Grytczuk [1] prove their result for & = 4 in a more general
setting (with weights on the colors). As mentioned earlier, this approach can be extended
to prove the existence of 1/k-majority k?-choosability of every digraph. We don’t know
whether O(k)-choosability is true in their more general setting.
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