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Abstract

Investigating a problem of B. Mohar, we show that every one-ended Hamiltonian
cubic graph with end degree 3 contains a second Hamilton cycle. We also construct
two examples showing that this result does not extend to give a third Hamilton
cycle, nor that it extends to the two-ended case.
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1 Overview

In this note we investigate whether results about the Hamiltonicity of finite cubic graphs
extend to the infinite setting. The term ‘graph’ in this paper is reserved for simple
graphs; when allowing parallel edges or loops, we explicitly use the term ‘multi-graph’.
Our terminology follows [3].

1.1 Hamiltonicity in finite regular graphs

The starting point of this paper are the following results and conjectures for finite regular
graphs.

Theorem 1 (Smith ’46, see [11]). Every Hamiltonian finite cubic graph has at least two
Hamilton cycles.

Here, a graph is Hamiltonian if it contains a Hamilton cycle. A graph with precisely
one Hamilton cycle is also called uniquely Hamiltonian. Sheehan conjectured that finite
cycles are the only examples of uniquely Hamiltonian regular graphs.
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Conjecture 2 (Sheehan ’75, [8]). Every d-regular Hamiltonian finite graph with d > 3
has at least two Hamilton cycles.

For more details on Sheehan’s conjecture, we refer the reader to [10]. Using a nice
parity argument, the so-called “lollypop technique”, Thomason extended Smith’s result
in a different direction as follows:

Theorem 3 (Thomason ’78, [9]). Every edge in a finite graph with odd degrees only lies
on an even number of Hamilton cycles. Hence, every Hamiltonian such graph has at least
three Hamilton cycles.

In particular, every finite Hamiltonian cubic graph contains at least three Hamilton
cycles.

1.2 Infinite Hamilton circles

For a locally finite graph G, which can be considered as a topological space using the
1-complex topology, we let |G| denote its Freudenthal compactification. Extending the
notion of cycles, one defines circles in |G| as homeomorphic images of the unit circle in
|G|, see [3, §8]. A circle of |G| containing all vertices (and all ends) of G is a Hamilton
circle. A Hamilton cycle is a subgraph of G given by the edge set of a Hamilton circle of
|G|.

In one-ended graphs, Hamilton cycles correspond to spanning double rays. In a two-
ended graph G, a Hamilton cycle consists of two vertex-disjoint double rays R1 and R2

which together span G, such that the two tails of each Ri belong to different ends of
G. For example, the 2-ended double ladder in Figure 1 has a unique Hamilton cycle
comprised of all horizontal edges.

Figure 1: The infinite double ladder and its unique Hamilton cycle.

1.3 Questions on Hamiltonicity in infinite regular graphs

In 2007, Mohar asked to what extent the above results about Hamiltonicity in finite regular
graphs generalise to the infinite setting. While the infinite double ladder in Figure 1
witnesses that Theorem 1 fails to extend verbatim to the infinite case, Mohar suggested
two possible solutions.

First, we might restrict our attention to one-ended graphs, and second, we might say
that the double ladder is not truly regular, as its ends have degree 2. Here, we take the
degree of an end to be the maximum number of edge-disjoint rays leading to that end,
see [1] or Section 2 below for details.
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Question 4 (Mohar ’07, [7]). Does there exist a uniquely Hamiltonian, one-ended, d-
regular graph for d > 3?

Question 5 (Mohar ’07, [7]). Does there exist a uniquely Hamiltonian, d-regular graph
for d > 3 where also all ends have degree d?

K. Heuer [6] has recently constructed a uniquely Hamiltonian cubic graph with con-
tinuum many ends where all ends have degree 3, thus answering Question 5. He left
open the natural question whether simultaneously restricting the number of ends plus the
end-degrees allows us to extend finite theorems to the infinite setting.

1.4 Results

In this note, we establish the following extension of Smith’s Theorem 1 about second
Hamilton cycles to the infinite setting, providing a partial answer to Mohar’s questions.

Theorem 6. Every Hamiltonian one-ended cubic graph with end degree at most 3 has at
least two Hamilton cycles.

Our proof of Theorem 6 combines the stronger of the finite results, namely Thomason’s
Theorem 3, and a sequence of parity arguments. Interestingly, Thomason’s Theorem 3
itself does not extend to the above setting: we construct one-ended cubic graphs with
end-degree 2 or 3 that have precisely two Hamilton cycles, see Examples 14 and 16.

Improving on Heuer’s example, we also construct in Example 17 a two-ended, uniquely
Hamiltonian, cubic graph where both ends have degree 3. This shows that in general, it
is only in the one-ended case where one could hope for an affirmative result about second
Hamilton circles in cubic graphs.

Finally, we remark that we do not know whether every Hamiltonian one-ended cubic
graph with end-degree 4 has a second Hamilton cycle—this seems to be the next crucial
case in attacking Question 4.

2 Two facts about end degrees

In our proofs below we need two facts about end degrees in locally finite graphs. Given
a graph G = (V,E) and a set of vertices S ⊂ V , we denote by E(S, V \ S) ⊂ E the set
of edges of G with one endvertex in S and the other in the complement of S. We also
abbreviate E(v) = E({v}, V \ {v}).

Following [1], for an end ω of some locally finite graph G we take its degree (to be
precise: its edge-degree) to be the maximum number of edge disjoint rays in G leading to
ω, and its vertex-degree to be the maximum number of vertex-disjoint rays in G leading
to ω.

Lemma 7 ([1, Lemma 10]). Let ω be an end of a locally finite graph G and S ⊂ V (G) a
finite vertex set. Then the maximal number of edge-disjoint rays to ω starting in S equals
the minimum cardinality of an edge cut separating S from ω.
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Lemma 8. In cubic graphs, edge- and vertex-degree of ends coincide.

Proof. In any locally finite graph, the vertex-degree of a given end is at most its edge-
degree. Conversely, any family {Ri : i ∈ I} of edge disjoint rays in a cubic graph have to be
internally vertex-disjoint, as otherwise there would be a vertex of degree > 4. Thus, if R′

i

denotes the ray Ri minus its initial vertex, then {R′
i : i ∈ I} is a family of vertex-disjoint

rays of the same cardinality as our initial family.

3 Affirmative results for second Hamilton cycles

In this section, we present our positive results about the existence of additional Hamilton
cycles in one-ended cubic graph with end-degree 2 or 3.

Theorem 9. Every Hamiltonian one-ended cubic graph with end-degree 2 has at least two
Hamilton cycles.

Proof. Let C be a Hamilton cycle of G. Since the end of G has degree 2, by Lemma 7
there is a finite vertex set S ⊂ V with |E(S, V \ S)| = 2.

Consider the minor Ĝ of G where we contract V \S to a single ‘dummy’ vertex. Then
C � Ĝ witnesses that Ĝ is a finite Hamiltonian graph. Moreover, Ĝ is nearly-cubic, that is
all vertices of Ĝ have degree 3, with the exception of the dummy vertex, which has degree
2. By [4, Theorem 1], every nearly cubic Hamiltonian graph has a second Hamilton cycle.
By combining the two Hamilton cycles of Ĝ with C \ E(Ĝ), we have found two distinct
Hamilton cycles of G.

`x

ex
x

`y

ey
y

v
a

b

cfa
fb

fc

`z

ez

z

Figure 2: The Tutte fragment T .

For the end-degree 3 case, we employ the following auxiliary multi-graph which encodes
how Hamilton cycles choose incident edges of certain vertices of a graph.
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Definition 10 (Hamilton incidence multi-graph). Let v and w be distinct vertices of a
Hamiltonian graph G. The Hamilton incidence multi-graph H = H(G, v, w) of G with
respect to v and w is the bipartite multi-graph with bipartition

V (H) = [E(v)]2 t [E(w)]2

where the multiplicity of an edge pq ∈ E(H) corresponds to the number of Hamilton
cycles D of G with p ∪ q ⊂ D.

As a concrete example of a Hamilton incidence multi-graph (which we shall meet again
in Section 4 below), consider the Tutte fragment T (invented by Tutte in [11]) with leaves
`x, `y and `z as depicted in Figure 2.

Let T ′ = T/{`x = `y = `z} be the graph obtained from T by identifying its three
leaves. Then T ′ is a cubic graph with precisely six Hamilton cycles (see [2, 6, 11]), which
we may visualise as follows:

Figure 3: The six Hamilton cycles of T ′.

The first two Hamilton cycles use the edge pair ex = `xx and ez = `zz, and the
other four Hamilton cycles use the edge pair ey = `yy and ez. In particular, there are no
Hamilton cycles of T ′ using the edge pair {ex, ey}. Writing w for the contracted vertex
{`x = `y = `z} in T ′, and letting v and its incident edges fa, fb and fc be as indicated in
Figure 2, we see that the Hamilton incidence graph H = H(T ′, w, v) as in Definition 10
is given by the multigraph in Figure 4.

{ex, ey}

{ex, ez}

{ey, ez}

{fa, fb}

{fa, fc}

{fb, fc}

Figure 4: The Hamilton incidence multi-graph H(T ′, w, v).

Note that all vertices of our example H(T ′, w, v) have even degree. In the following
two lemmas, we show that this parity condition holds in general.

Lemma 11. Let v and w be distinct vertices of a finite cubic graph G. Then the sum of
the degrees of any pair of vertices in the Hamilton incidence multi-graph H(G, v, w) from
the same side of its vertex bipartition is always even.
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Proof. Indeed, if say p 6= q ∈ [E(v)]2, we have p ∩ q = {e} for some edge e ∈ E(v), as G
is cubic. So the sum of degrees d(p) + d(q) equals the number of Hamilton cycles in G
using the edge e, which is even by Theorem 3.

Lemma 12. If v and w are distinct vertices of a finite cubic graph G, then all vertex
degrees in H(G, v, w) are of the same parity.

Proof. Suppose one vertex in [E(v)]2 has odd (even) degree. Since |[E(v)]2| = 3, we can
apply Lemma 11 twice to conclude that all degrees on the [E(v)]2 side of our bipartite
graph H = H(G, v, w) are odd (even). Hence,∑

p∈[E(v)]2

dH(p) = |E(H)| =
∑

p∈[E(w)]2

dH(p)

is odd (even). Applying Lemma 11 twice again, we see that also all degrees on the [E(w)]2

side of our bipartite graph H must be odd (even). Thus, all vertex degrees in H(G, v, w)
are of the same parity.

Theorem 13. Every Hamiltonian one-ended cubic graph with end-degree 3 has at least
two Hamilton cycles.

Proof. Let C be a Hamilton cycle (i.e. a spanning double ray) of G. By assumption on
the degree of our end together with Lemma 7, there is a sequence of pairwise disjoint edge
cuts Fn = E(Sn, V \ Sn) with Sn finite, |Fn| = 3, Sn ( Sn+1, and

⋃
n∈N Sn = V (G).

Let Fn = {en, fn, gn}. As every double ray in a one-ended locally finite graph intersects
each finite cut in a positive, even number of edges, we may suppose that en, fn ∈ E(C)
and gn /∈ E(C) for all n ∈ N. Let Gn be the minor of G where we identify V \ Sn to
a single dummy vertex xn, and let Gn,n+1 be the minor of G where we identify Sn and
V \ Sn+1 to dummy vertices vn and wn respectively.

While a priori, Gn and Gn,n+1 are multi-graphs (with possibly parallel edges at dummy
vertices), we may assume they are simple: By Lemma 8, there are three vertex-disjoint
rays R1, R2 and R3 leading to the single end ω. Choose N ∈ N such that E(Ri)∩Fn 6= ∅
for all n > N and all i. Since the Ri are vertex-disjoint, it follows that all xn, vn and wn

have three distinct neighbours for all n > N .
So by moving to a suitable subsequence, we may assume that all our minors Gn and

Gn,n+1 are simple cubic graphs. Moreover, in all cases, the corresponding restriction of C
witnesses that these minors are in fact Hamiltonian.

Now, if some Gn has two distinct Hamilton cycles both using the edge set {en, fn},
then, following the same strategy as in Theorem 9, we may combine both with C � (V \ Sn)
to obtain two distinct Hamilton cycles of G. Hence, we may assume for the remainder of
the proof that for all n ∈ N, the restriction C � Gn is the only Hamilton cycle of Gn that
uses {en, fn}. In particular, we are in the case where the assumptions of the following
claim are satisfied for all n ∈ N:

Claim. If Gn and Gn+1 have unique Hamilton cycles using the edge set {en, fn} and
{en+1, fn+1} respectively, then every Hamilton cycle of Gn extends to a Hamilton cycle of
Gn+1.
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To see why the claim implies the theorem, note that by Theorem 3, the edge e0
is contained in an even number of Hamilton cycles of G0, and hence there must be a
second Hamilton cycle A0 of G0 which uses the edge set say {e0, g0}. Applying the claim
recursively, we obtain a sequence of Hamilton cycles An of Gn such that An+1 extends
An for all n ∈ N. Then A =

⋃
n∈NAn a Hamilton cycle of G, which is distinct from C

witnessed by g0 ∈ E(A) \ E(C).
It remains to prove the claim. Assume that Gn and Gn+1 have unique Hamilton cycles

using the edge sets {en, fn} and {en+1, fn+1} respectively, and consider the Hamilton
incidence graph Hn = H(Gn,n+1, vn, wn) of Gn,n+1 with respect to its two dummy vertices.

Step 1. We have dHn({en+1, fn+1}) = 1.

This is where we use the assumption that Gn and Gn+1 have unique Hamilton cycles
using the edge sets {en, fn} and {en+1, fn+1} respectively. Indeed, note first that C �
Gn,n+1 witnesses that dHn({en+1, fn+1}) > 1. Next, since there is a unique Hamilton
cycle A of Gn that uses {en, fn}, Theorem 3 implies that Gn must have two further
Hamilton cycles B and C using the edge sets {en, gn} and {fn, gn} respectively. Thus, if
dHn({en+1, fn+1}) > 2, i.e. if there are two distinct Hamilton cycles of Gn,n+1 using the
edge set {en+1, fn+1}, then we can combine them suitably with either A, B or C to obtain
two distinct Hamilton cycles of Gn+1 both using the edge set {en+1, fn+1}, a contradiction.

Step 2. Every vertex of Hn has odd degree.

Since Step 1 implies in particular that dHn({en+1, fn+1}) is odd, Step 2 is immediate
from Lemma 12.

Step 3. Every Hamilton cycle of Gn extends to a Hamilton cycle of Gn+1.

Suppose we have a Hamilton cycle A of Gn using the edge set p ∈ [Fn]2. By Step 2, we
know that in particular dHn(p) > 1, which means there is a Hamilton cycle B of Gn,n+1

using the edge set p. Then A∪B is a Hamilton cycle of Gn+1 extending A. This completes
the proof of the final step of the claim, and so the theorem follows.

4 Examples witnessing optimality

In the previous section, we have seen that Smith’s Theorem 1 extends to the one-ended
cubic case where the end has degree at most 3. In this section, we show that Theorem 1
does not extend to the two-ended case, and that Thomason’s Theorem 3 does not extend
to the infinite case at all.

4.1 Ends with degree two

Example 14. There is a one-ended cubic graph with end degree 2 that has precisely two
Hamilton cycles. In particular, there are edges which do not lie on an even number of
Hamilton circles.

Construction. Consider the cubic, one-way infinite ladder as in Figure 5. Clearly, it has
precisely one end, which has degree 2. Moreover, it is not hard to check that this graph
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e1

e2

f1

f2

Figure 5: The infinite cubic ladder.

has precisely two Hamilton cycles. In particular, there are edges which do not lie on an
even number of Hamilton circles. In our example, these are the edges e1, e2, f1 and f2.

For completeness, we record again:

Example 15. The double ladder is a uniquely Hamiltonian, two-ended cubic graph with
both ends of degree 2.

4.2 Ends with degree three

Example 16. There is a one-ended cubic graph with end degree 3 that has precisely two
Hamilton cycles. In particular, there are edges which do not lie on an even number of
Hamilton circles.

Construction. Let {Tn : n ∈ N} be a family of disjoint graphs such that T0 ∼= T ′ and
Tn ∼= T for all n > 1. Here, T is the Tutte fragment from Figure 2, and T ′ is its cubic
quotient. We use the same of vertices in T and T ′ as above, and by vn, an, bn, cn ∈ Tn etc.
we refer to the respective copies of the vertices v, a, b, c ∈ T .

We now construct a sequence {Gn : n ∈ N} of finite cubic graphs as follows: Put
G0 = T0, and define

G1 = (G0 − v0 t T1)/ ∼ where a0 ∼ `x1 , b0 ∼ `y1 , c0 ∼ `z1 .

We think of this operation as replacing the vertex v0 and its incident edges by a new copy
of T , where the leaves of the new T are suitably identified with the old neighbours of v0.
Similarly, assuming Gn has already been defined, let

Gn+1 = (Gn − vn t Tn+1)/ ∼ where an ∼ `xn+1 , bn ∼ `yn+1 , cn ∼ `zn+1 .

In other words, in every step, we replace the most recent copy of the vertex v by a new
copy of T .

Note that Gn− vn ⊂ Gn+1− vn+1 for all n, so we may denote by G be the direct limit
of these graphs. (Alternatively, |G| can be viewed as the inverse limit of the Gn under
natural minor relation Gn � Gn+1, cf. [3, §8.8], and so G as a 1-complex is given by the
space |G| minus its unique end).

Since T ′ is 3-edge connected, it follows that G is a one-ended cubic graph with end-
degree 3. Writing Sn = V (Gn) \ {vn}, we see that the end-degree of G is witnessed by
the 3-edge cuts

Fn = E(Sn, V (G) \ Sn).
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{ex0 , ey0}

{ex0 , ez0}

{ey0
, ez0}

{fa0 , fb0} ∼ {ex1 , ey1}

{fa0 , fc0} ∼
∼ {ex1 , ez1}

{fb0 , fc0} ∼ {ey1 , ez1}

{fa1 , fb1} ∼ {ex2 , ey2}

{fa1 , fc1} ∼
∼ {ex2 , ez2}

{fb1 , fc1} ∼ {ey2 , ez2}

{fa2 , fb2} ∼ {ex3 , ey3}

{fa2 , fc2} ∼
∼ {ex3 , ez3}

{fb2 , fc2} ∼ {ey3 , ez3}

Figure 6: The incidence multi-graph for Hamilton cycles of G.

Moreover, if we define, as in the proof of Theorem 13, the graphs Gn,n+1 to be the minors
of G where we identify Sn and V (G) \ Sn+1 to dummy vertices αn and βn respectively,
then our construction of G guarantees the existence of isomorphisms

ϕn : T ′ → Gn,n+1 such that ϕn(w) = αn and ϕn(v) = βn

such that, due to our choice of the quotient patterns ∼,

(†) ϕn(fa) = ϕn+1(ex), ϕn(fb) = ϕn+1(ey) and ϕn(fc) = ϕn+1(ez)

for all n ∈ N.
Next, recall that every Hamilton cycle C of G restricts, for any n ∈ N, to a Hamilton

cycle of Gn,n+1, and therefore looks locally like one of the six Hamilton cycles of Figure 3.
Pasting together the individual Hamilton incidence graphs of Gn,n+1 (cf. Figure 4) using
the identities provided in (†) gives the picture of Figure 6. And since for every Hamilton
cycle C of G we have

E(C � Gn,n+1) ∩ E(βn) = E(C � Gn+1,n+2) ∩ E(αn+1)

we see that Hamilton cycles of G are in 1-1 correspondence with those rays in the multi-
graph in Figure 6 that pick a single edge from each level.

{fb, fc}

{fa, fc}

{fa, fb}

{ey, ez} ∼ {ex0
, ey0
}

{ex, ez} ∼
∼ {ex0

, ez0}

{ex, ey} ∼ {ey0 , ez0}

Figure 7: The incidence multi-graph for Hamilton cycles of H.

To complete the construction of Example 16, we now consider the graph

H = (T tG− w0)/ ∼ where `x ∼ z0, `y ∼ y0, `z ∼ x0.
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Figure 7 shows the analogue of Figure 6 for our new graph H.
By the same reasoning as above, Hamilton cycles of H are in 1-1 correspondence with

those rays in the multi-graph in Figure 7 that pick a single edge from each level. But this
means that H has precisely two Hamilton cycles: Only the two left-most red edges can be
extended to a ray through the Hamilton incidence multi-graph using a single edge from
each level, and both these extensions are unique.

Example 17. There is a uniquely Hamiltonian, two-ended cubic graph with both ends
of degree 3.

Construction. For the construction, take a disjoint copy G′ of G from the graph as con-
structed in the previous construction (cf. Figure 6). By w′

0, x
′
0, y

′
0, z

′
0 ∈ G′ etc. we refer to

the respective copies of the vertices w0, x0, y0, z0 ∈ G. Now consider the graph

H ′ = (G′ − w′
0 tG− w0) with three added edges x′0z0, y

′
0y0, and z′0x0.

Then H ′ is a 2-ended cubic graph with both ends of degree 3. Figure 8 shows the analogue
of Figure 7 for our new graph H ′.

{ey′
0
, ez′

0
} ∼ {ex0 , ey0}

{ex′
0
, ez′

0
} ∼

∼ {ex0 , ez0}

{ex′
0
, ey′

0
} ∼ {ey0

, ez0}

Figure 8: The incidence graph for Hamilton cycles of H ′.

By the same reasoning as before, Hamilton cycles of H ′ correspond in a 1-1 fashion to
those double rays in the multi-graph in Figure 8 that pick a single edge from each level.
But then it is obvious that H ′ has a unique Hamilton cycle, which corresponds to the
double ray formed by the middle horizontal edges.
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