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Université de Lyon, France

tien-nam.le@ens-lyon.fr

Alantha Newman
Laboratoire G-SCOP

CNRS, Université Grenoble-Alpes
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Abstract

In this paper, we investigate the relation between the (fractional) domination
number of a digraph G and the independence number of its underlying graph,
denoted by α(G). More precisely, we prove that every digraph G on n vertices
has fractional domination number at most 2α(G) and domination number at most
2α(G) · log n. Both bounds are sharp.

Mathematics Subject Classifications: 05C20, 05C69

1 Introduction

Every digraph in this paper is simple, loopless and finite, where a digraph G is simple if
for every two vertices u and v of G, there is at most one arc with endpoints {u, v}. Given a
digraph G, we denote by V (G) and E(G) the vertex set and arc set of G, respectively. The
independence number α(G) of a digraph G is the independence number of the underlying
(undirected) graph of G. A digraph with independence number 1 is called a tournament.
An Eulerian tournament is a tournament that is in addition Eulerian (i.e., the indegree
of each vertex equals its outdegree).

Given a digraph G = (V,E), we say that a vertex of G dominates itself and all of its
out-neighbors. A set of vertices S ⊆ V is called a dominating set if every vertex v ∈ V is
either an element of S or is an out-neighbor of some element of S. The domination number
γ(G) is the cardinality of a minimum (by cardinality) dominating set of G. Domination

the electronic journal of combinatorics 25(3) (2018), #P3.32 1



in tournaments has been well-studied [1], [6], [13], while little is known for domination
in general digraphs. Recently, it was proved [4], [8], [9] that the domination number is
closely related to the dichromatic number when the digraph is a tournament or a dense
digraph. The topic of domination in undirected graphs (where S ⊆ V is a dominating set
if every vertex v ∈ V is either an element of S or is a neighbor of some element of S) has
also been studied extensively, see for example the monograph [10]. It is a well-known fact
that in an undirected graph, any maximal independent set is also a dominating set.

Suppose we are given a digraph G = (V,E), a subset S of V , and a function g : V →
{0, 1} such that g(v) = 1 if v ∈ S and g(v) = 0 otherwise. Then S is a dominating
set of G if and only if

∑
x∈N−(v)∪{v} g(x) > 1 for every v ∈ V , where N−(v) is the

set of in-neighbors of v. Thus, a natural linear relaxation of domination in digraphs
arises as follows. A fractional dominating function of G is a function g : V → [0, 1]
such that

∑
x∈N−(v)∪{v} g(x) > 1 for every v ∈ V . The fractional domination number

γ∗(G) is the smallest value of
∑

v∈V g(v) over all fractional dominating functions g of G.1

The fractional domination number of a tournament was the main tool to prove the long
standing Erdős-Sands-Sauer-Woodrow conjecture in [2].

In this paper, we show that for any digraph, its fractional domination number is at
most twice its independence number, and this bound is sharp.

Theorem 1.1. For every digraph G, we have γ∗(G) 6 2α(G).

In contrast to the fractional domination number, it is not possible to bound the dom-
ination number of a digraph in terms of its independence number. Indeed, it was shown
in [12] that almost surely a random tournament has domination number on the order of
log n, much larger than its independence number of 1. However, the upper bound of log n
on the domination number of a tournament can be extended to general digraphs.

Theorem 1.2. For every digraph G on n vertices, we have γ(G) 6 α(G) · log n.

Sometimes, it is in fact possible to bound the domination number of a digraph purely
in terms of its independence number. We discuss this further in the last section.

1.1 Notation

Let G = (V,E) be a digraph; for every v ∈ V , we denote by N+
G (v), N−(v) the set

of out-neighbors and in-neighbors of v, respectively. Let N+
G [v] = N+

G (v) ∪ {v} and
N−G [v] = N−G (v) ∪ {v}. Given a subset S of V , we write N+

G (S) =
⋃
v∈S N

+
G (v), and

similarly for N−G (S), N+
G [S], and N−G [S]. Given two vertices u, v, if uv, vu /∈ E, we say

that u and v are independent. We denote by N o
G(v) the set of vertices that are independent

with v (i.e., N o
G(v) = V \ (N+

G [v] ∪ N−G [v])). When it is clear from the context, we may
omit the subscript G. Given a subset X of V , we denote by G[X] the induced subgraph of
G on X. Given a digraph G = (V,E) and a function g on V , we write g(X) :=

∑
v∈X g(v)

1We remark that when constructing a dominating function g(·) to upper bound γ∗(G) by the value
g(V ), it is sufficient to show that g(v) > 0 and

∑
x∈N−(v)∪{v} g(x) > 1 for every v ∈ V . If g(v) > 1 for

some v ∈ V , then the function g(·) is not minimal (i.e., g(v) can be decreased).
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for short. We sometimes use n to denote |V (G)|. Finally, we mention a trivial but useful
observation regarding the independence number of a digraph.

Observation 1.3. If G is a digraph with independence number α and v is an arbitrary
vertex in G, then G[N o(v)] has independence number at most α− 1.

2 Fractional domination in digraphs

In this section, we present two proofs of Theorem 1.1. The first proof uses the duality of
linear programming, while the second proof is by induction. We first present some useful
lemmas.

Lemma 2.1. Given a digraph G = (V,E) and a function p : V → [0, 1], there is a vertex
v ∈ V such that p(N−(v)) 6 p(N+(v)).

Proof. Suppose that the lemma is false. Then for the function p, we have p(N−(v)) >
p(N+(v)) for every v ∈ V (i.e.,

∑
x∈N−(v) p(x) >

∑
y∈N+(v) p(y) for every v). Hence

∑
v∈V

p(v)

( ∑
x∈N−(v)

p(x)

)
>
∑
v∈V

p(v)

( ∑
y∈N+(v)

p(y)

)
=⇒

∑
xv∈E

p(v)p(x) >
∑
vy∈E

p(v)p(y),

a contradiction.

Lemma 2.2. Given a digraph G = (V,E) and a function p : V → [0, 1] with p(V ) > 0,
there is a stable set S ⊆ V such that p(N+[S]) > p(V )/2.

Proof. We prove the lemma by induction on |V |. The lemma clearly holds for |V | = 1.
For |V | > 1, fix some function p : V → [0, 1] and apply Lemma 2.1 to obtain a vertex v
such that p(N−(v)) 6 p(N+(v)). If N o(v) = ∅, then

2p(N+[v]) = 2p(N+(v)) + p(v)

> p(N+(v)) + p(N−(v)) + p(v)

= p(V ),

which proves the lemma.
If N o(v) 6= ∅, we apply induction on G[N o(v)] to obtain a stable set S ′ such that

p(N+
G[No(v)][S

′]) > p(N o(v))/2. Let S = S ′ ∪ {v}. We have the following remarks.

• N+
G[No(v)][S

′] = N+[S ′] ∩N o(v), and

• N+[v] and N+[S ′] ∩N o(v) are disjoint.
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Thus, for the stable set S, we have

p(N+[S]) > p(N+[v]) + p
(
N+[S ′] ∩N o(v)

)
= p(v) + p(N+(v)) + p(N+

G[No(v)][S
′])

> p(v) +
(
p(N+(v)) + p(N−(v)

)
/2 + p(N o(v))/2

= p(V )/2.

This proves the lemma.

In the first proof of Theorem 1.1, we will use the following linear program. Let S be
the set of all maximal stable sets in G, and let A be the matrix with |V | rows and |S|
columns, where for every v ∈ V, S ∈ S,

A(v, S) =

{
1 if v ∈ N+[S],
0 otherwise.

(1)

Let us consider the following linear program

(P)
Minimize 1T z
Subject to Az > 1 and z > 0,

and its dual

(D)
Maximize 1Tw
Subject to ATw 6 1 and w > 0.

Lemma 2.3. The value of an optimal solution for (P) is at most 2.

Proof. We prove that an optimal solution to (P) is at most 2, by proving that the opti-
mal solution to (D) is at most 2. Then we apply the Strong Duality Theorem (see [3],
Theorem 17.2 for example) to complete the proof.

Suppose for a contradiction that the optimal solution of (D) is greater than 2. Then
there is a function w such that 1Tw > 2 and ATw 6 1. Then for every S ∈ S,∑

v∈V A(v, S)w(v) 6 1, and so by (1),

w(N+[S]) =
∑

v∈N+[S]

w(v) 6 1.

However, by Lemma 2.2, there is S ∈ S such that w(N+[S]) > w(V )/2 = (1Tw)/2 > 1.
This proves the lemma.

We now restate Theorem 1.1.

Theorem 2.4. For any digraph G = (V,E), we can construct a fractional dominating
function g : V → [0, 1] such that g(V ) 6 2α(G).
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First proof of Theorem 2.4. Invoking Lemma 2.3, there is a z such that Az > 1 and
1T z 6 2. Note that z is a vector of length |S| and w is a vector of length |V |. Let
g(v) :=

∑
S:v∈S z(S) for every v ∈ V . Let α = α(G).

Note that for every S ∈ S, |S| 6 α since S is stable. We have

g(V ) =
∑
v∈V

∑
S:v∈S

z(S) =
∑
S∈S

∑
v∈S

z(S) =
∑
S∈S

|S|z(S) 6 α
∑
S∈S

z(S) = α(1T z) 6 2α.

Fix v, since Az > 1, we have
∑

S∈S A(v, S)z(S) > 1. In other words,∑
S∈S:v∈N+[S]

z(S) > 1.

Besides,

g(N−[v]) =
∑

x:v∈N+[x]

g(x) =
∑

x:v∈N+[x]

∑
S:x∈S

z(S) >
∑

S∈S:v∈N+[S]

z(S).

Thus, g(N−[v]) > 1 for every v ∈ V (i.e., g(v) is a fractional dominating function of G).
This proves the theorem.

In the second proof of Theorem 2.4, we will use the following consequence of Farkas’
Lemma (we refer the reader to [11] for the proof of Lemma 2.5; see also Theorem 1 in
[5]).

Lemma 2.5. For any digraph G = (V,E), there exists a function p : V → [0, 1] such that
p(V ) = 1 and p(N−(v)) > p(N+(v)) for every vertex v.

Second Proof of Theorem 2.4. We prove the theorem by induction on α(G). If α(G) = 1,
then G is a tournament. Let p be a function satisfying Lemma 2.5. Let g(v) = 2p(v) for
every v ∈ V . Then g(V ) = 2 and for every v, we have

g(N−[v]) = 2p(N−[v]) > 2p(v) + p(N−(v)) + p(N+(v)) > p(V ) = 1.

Thus, g is a fractional domination function of G. We conclude that γ∗(G) 6 g(V ) = 2 =
2α(G) for the case α(G) = 1.

If α(G) > 1, let p be a function satisfying Lemma 2.5. By Observation 1.3, we have
α(G[N o(v)]) 6 α(G)−1 for every v ∈ V , and so γ∗(G[N o(v)]) 6 2(α(G)−1) by induction.
In the rest of the proof, we write Gv := G[N o(v)] for short. For each vertex v, let gv be
a minimum fractional dominating function of Gv. Set g(x) = 2p(x) +

∑
y∈No(x) gy(x)p(y)

for every vertex x. We show that g is a fractional dominating function of G. Note that
x ∈ N o(y) if and only if y ∈ N o(x), and for every v, y with v ∈ Gy,∑

x∈N−
Gy

[v]

gy(x) = gy(N
−
Gy

[v]) > 1
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since gy is a fractional dominating function of Gy. Fix v, we have (we omit the subscript
G if applicable)

g(N−[v]) =
∑

x∈N−[v]

g(x) =
∑

x∈N−[v]

(
2p(x) +

∑
y∈No(x)

gy(x)p(y)

)
= 2

∑
x∈N−[v]

p(x) +
∑

x∈N−[v]

∑
y∈No(x)

gy(x)p(y)

= 2p(N−[v]) +
∑
y∈V

p(y)
∑

x∈N−[v]∩No(y)

gy(x)

> 2p(N−[v]) +
∑

y∈No(v)

p(y)
∑

x∈N−[v]∩No(y)

gy(x)

= 2p(N−[v]) +
∑

y∈No(v)

p(y)
∑

x∈N−
Gy

[v]

gy(x)

> 2p(N−[v]) +
∑

y∈No(v)

p(y) · 1

= 2p(N−[v]) + p(N o(v))

> 2p(v) + p(N−(v)) + p(N+(v)) + p(N o(v))

> p(V ),

= 1.

We conclude that g is a fractional dominating function of G.
Note that gv is a minimum fractional dominating function of gv, and so gv(N

o(v)) =
γ∗(Gv) 6 2α(Gv) 6 2(α(G)− 1). Hence

g(V ) =
∑
v∈V

g(v) = 2
∑
v∈V

p(v) +
∑
v∈V

∑
y∈No(v)

gy(v)p(y)

= 2 +
∑
y∈V

p(y)
∑

v∈No(y)

gy(v)

6 2 +
∑
y∈V

p(y)(2α(G)− 2)

= 2α(G).

Thus, γ∗(G) 6
∑

v∈V g(v) 6 2α(G). This completes the proof.

We can show that the bound in Theorem 2.4 is sharp.

Proposition 2.6. Given an arbitrarily small positive real number ε, for any positive
integer k, there exists a digraph G such that α(G) = k and γ∗(G) > 2k − ε.

Proof. Let r = d1/εe + 1. For k = 1, let G be an Eulerian tournament with V (G) =
{v1, . . . , v2r−1} and N+(vi) = {vj : 1 6 j − i mod (2r − 1) 6 r − 1}. Let g be a
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minimum fractional dominating function of G. Suppose that g(vr) = mini g(vi). Note
that

∑
i g(vi) = γ∗(G) 6 2, and r is chosen sufficiently large so that g(vr) < 2/(2r−1) < ε.

We have

γ∗(G) =
∑
i

g(vi),

=
∑
16i6r

g(vi) +
∑

r6i62r−1

g(vi)− g(vr)

=
∑

vi∈N−[vr]

g(vi) +
∑

vi∈N−[v2r−1]

g(vi)− g(vr)

> 2− ε.

For k > 1, let r = dk/εe+ 1. Let G be a disjoint union of k tournaments G1, . . . , Gk,
each is constructed as in the case k = 1. Since the k tournaments are disjoint, γ∗(G) =∑

i γ
∗(Gi) > k(2− ε/k) = 2k − ε.

We can also show that almost surely a random tournament has a fractional domination
number close to the upper bound of 2. First, we need the following proposition.

Proposition 2.7. Let G = (V,E) be a digraph of maximum out-degree d, then γ∗(G) >
n/(d+ 1).

Proof. Suppose that the statement was false, then there is a function g : V → [0, 1] such
that g(V ) < n/(d+ 1) and g(N−[x]) > 1 for every x. Then

n 6
∑
x∈V

g(N−[x]) = g(V ) +
∑
x∈V

g(N−(x))

= g(V ) +
∑
ux∈E

g(u)

= g(V ) +
∑
u∈V

g(u)|N+(u)|

6 g(V ) + d · g(V )

= (d+ 1)g(V ) < n,

a contradiction.

We also need Chernoff’s inequality (see for example [14]).

Proposition 2.8 (Chernoff’s Inequality). Let X be a binomial random variable consisting
of n Bernoulli trials, each with probability of success p. Then, for all 0 < ε < 1,

Pr[|X − np| > εnp] 6 2e−ε
2np/3.

Proposition 2.9. For any ε > 0, P[γ∗(Tn) > 2 − ε] = 1 − o(1) (i.e., γ∗(Tn) > 2 − ε
almost surely).
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Proof. By Chernoff’s bound, the probability that a given vertex has out-degree more than
n/2 + 10

√
n log n is O(n−C) for some constant C > 1. Thus, the probability that there

is a vertex with out-degree more than n/2 + 10
√
n log n is, by the union bound, at most

n · O(n−C) = o(1). Thus, almost surely all the vertices of Tn have out-degree at most
n/2 + 10

√
n log n. It follows that almost surely γ∗(Tn) > n

n/2+10
√
n logn

.

3 Dominating sets in digraphs

In the previous section, we showed that the fractional domination number of a digraph can
be bounded from above by twice its independence number. In general, we cannot bound
the (integral) domination number of a digraph in terms of its independence number, as
mentioned towards the end of the introduction section. Nevertheless, these two quantities
can be related.

It is well known that a tournament has a dominating set of size at most log n [13].
Analogously, we can show that a digraph G = (V,E) has a dominating set of size at
most α(G) · log n. For S ⊆ V , let χ(S) denote the chromatic number of the underlying
(undirected) graph of digraph G[S].

Lemma 3.1. Every digraph G = (V,E) with n = |V | has a dominating set D ⊆ V such
that χ(D) 6 log n.

Proof. We can assign each vertex a value p(v) = 1 and apply Lemma 2.2 to find a stable
set S such that p(N+[S]) > p(V )/2. We add the stable set S to the dominating set and
recurse on the induced subgraph G[V \N+[S]]. Performing this routine log n times results
in the bound.

Since each stable set S has cardinality at most α(G), Lemma 3.1 implies the following
Theorem.

Theorem 3.2. Every digraph G = (V,E) with n = |V | has a dominating set of size at
most α(G) · log n.

When is it possible to bound the domination number of a digraph purely in terms of
its independence number? For example, Theorem 3.2 implies that this can be done when
the independence number of a digraph is sufficiently large.

Theorem 3.3. For every digraph G = (V,E) with n = |V |, if α(G) > log n, then
γ(G) 6 (α(G))2.

Another case in which the domination number of a digraph can be bounded in terms
of its independence number is when the digraph is directed-triangle-free. For example,
a directed-triangle-free digraph has independence number bounded by α(G) · α(G)! (see
Theorem 3 in [7]). Moreover, when α(G) = 2, this bound can be improved to γ(G) 6 3
(see Theorem 4 in [7]).

In [8], we conjectured that the dichromatic number of a directed-triangle-free digraph
can be bounded as a polynomial function of α(G). Let ~χ(G) denote the dichromatic
number of a digraph. Then for any digraph G, γ(G) and ~χ(G) can be related as follows.
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Observation 3.4. For any digraph G, we have γ(G) 6 α(G) · ~χ(G).

This follows from the fact that in a legal coloring, each color class forms an induced
acyclic digraph and every acyclic digraph has a kernel (i.e., an independent dominating
set). Thus, if the aforementioned conjecture holds, then the following must also hold.

Conjecture 3.5. There is an integer ` such that if G is a directed-triangle-free digraph
with α(D) = α, then γ(G) 6 α`.

Moreover, as pointed out in [7], the best possible upper bound on the domination
number of directed-triangle-free digraph G in terms of its independence number is γ(G) 6
3
2
α(G), as demonstrated by a disjoint union of cyclically oriented pentagons.
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[6] A. Gyárfás and D. Pálvölgyi, Domination in transitive colorings of tournaments,
Journal of Combinatorial Theory, Series B, 107, (2014), 1–11.
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