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Abstract

In 1995, Erdős and Gyárfás proved that in every 2-colouring of the edges of Kn,
there is a vertex covering by 2

√
n monochromatic paths of the same colour, which is

optimal up to a constant factor. The main goal of this paper is to study the natural
multi-colour generalization of this problem: given two positive integers r, s, what is
the smallest number pcr,s(Kn) such that in every colouring of the edges of Kn with
r colours, there exists a vertex covering of Kn by pcr,s(Kn) monochromatic paths
using altogether at most s different colours?

For fixed integers r > s and as n→∞, we prove that pcr,s(Kn) = Θ(n1/χ), where
χ = max {1, 2 + 2s− r} is the chromatic number of the Kneser graph KG(r, r −
s). More generally, if one replaces Kn by an arbitrary n-vertex graph with fixed
independence number α, then we have pcr,s(G) = O(n1/χ), where this time around

χ is the chromatic number of the Kneser hypergraph KG(α+1)(r, r − s). This result
is tight in the sense that there exist graphs with independence number α for which
pcr,s(G) = Ω(n1/χ). This is in sharp contrast to the case r = s, where it follows
from a result of Sárközy (2012) that pcr,r(G) depends only on r and α, but not on
the number of vertices.

We obtain similar results for the situation where instead of using paths, one
wants to cover a graph with bounded independence number by monochromatic
cycles, or a complete graph by monochromatic d-regular graphs.

Mathematics Subject Classifications: 05C38, 05C55
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1 Introduction

Call a subgraph of an edge-coloured graph monochromatic if all its edges have the same
colour. This paper is concerned with the general problem of covering all the vertices of
an edge-coloured graph by monochromatic pieces. To be more precise, suppose that F
is a fixed family of graphs, containing the ‘pieces’ that we can use for the covering. A
monochromatic F-covering of an edge-coloured graph G is then a collection of monochro-
matic subgraphs of G covering all the vertices, such that every subgraph in the collection
is isomorphic to one of the graphs in F . Typical choices for F include the the collection
Fp of all paths or the collection Fc of all cycles, where it is customary to consider single
vertices and edges as degenerate cycles. Given a graph G, we are interested in finding
monochromatic F -coverings that are as small as possible; for example, we might want to
cover G using as few monochromatic paths or cycles as possible.

This type of problem goes back to a footnote in a 1967 paper of Gerencsér and Gyárfás
[11] in which it is shown that in every colouring of the edges of the complete graph Kn

with two colours, one can find two monochromatic paths that form a partition of (and, in
particular, a covering) all the vertices. Over the last fifty years, such problems have been
studied in many variations, including for more than two colours [10, 14, 24], for various
other choices of F (most notably for the family of cycles [2, 6, 13, 16, 23], but also for
regular graphs [25], bounded-degree graphs [12], trees [1, 7]), and for other choices of G
(complete bipartite and multipartite graphs [7, 14, 17, 26], graphs satisfying a minimum
degree condition [5, 8, 21], random graphs [4, 18, 20], graphs with bounded independence
number [5, 27], . . . ). We note that like the Gerencsér-Gyárfás result mentioned above,
most (but not all) of these results apply to the stronger situation where one wants to
partition the vertices of the graph into disjoint monochromatic pieces (as opposed to just
covering the vertices). For more details we refer to the recent survey of Gyárfás [15].

The specific focus of this paper is on monochromatic F -coverings that altogether do
not use too many different colours. For a collection S of monochromatic edge-coloured
graphs, we denote by col(S) the total number of different colours used by the graphs in S.
Then, given a graph G, a family F , and positive integers r and s, we will write cr,s(G,F)
for the smallest number with the property that every r-colouring of the edges of G admits
a monochromatic F -covering S such that |S| 6 cr,s(G,F) and col(S) 6 s.

For the simplest case where F = Fp is the collection of paths, where there are only
two colours, and where G is the complete graph, Erdős and Gyárfás [9] proved that

√
n 6 c2,1(Kn,Fp) 6 2

√
n.1 (1)

It is open which of the two bounds (if any) is correct; Erdős and Gyárfás conjectured that
the true value is

√
n. In any case, we observe that this result is in stark contrast to the

above-mentioned result of Gerencsér and Gyárfás [11], which implies that

c2,2(Kn,Fp) = 2,

1The quantity cr,s(G,Fp) was denoted pcr,s(G) in the abstract. Henceforth, we will only use the more
flexible notation cr,s(G,Fp).
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which is a constant independent of n. One goal of this project was to see how the result
(1) generalizes to to other values of r and s.

1.1 Our results

In this paper, we restrict ourselves to graphs G with independence number at most α > 0.
We suppose that r, s, α are constants and that the size of G tends to infinity. Given r, s, α,
we write

cr,s,α(n,F) = max
|V (G)|=n
α(G)6α

cr,s(G,F).

Thus cr,s,α(n,F) is the minimum integer k such that in every graph G with independence
number at most α and every r-colouring of the edges of G, there exists a monochromatic
F -covering S of G of size at most k that satisfies col(S) 6 s.

To state our results, we must first recall the notion of a Kneser hypergraph. The
Kneser hypergraph KG(α+1)(r, r− s) is the (α+ 1)-uniform hypergraph on the vertex set(

[r]
r−s

)
= {X ⊆ [r] : |X| = r−s} where the vertices X1, . . . , Xα+1 ∈

(
[r]
r−s

)
form a hyperedge

if and only if they are pairwise disjoint as subsets of [r]. A result of Alon, Frankl, and
Lovász [3] states that the chromatic number of this hypergraph is

χ(KG(α+1)(r, r − s)) =

{
1 if 1 6 s < αr/(α + 1)

1 + s− r + d(s+ 1)α−1e if αr/(α + 1) 6 s < r.
(2)

Note that the range 1 6 s < αr/(α + 1) corresponds precisely to the case where
KG(α+1)(r, r− s) has no edges. The case α = 1 (which corresponds here to the case where
G = Kn) was conjectured by Kneser in 1955 and famously established by Lovász [22] in
1978 using topological methods.

Our first result gives a lower bound on cr,s,α(n,F). Note that there are certain trivial
cases where cr,s,α(n,F) is very small simply because the graphs in F have many isolated
vertices. To give an extreme example, if F contains for every n > 0 the graph with n
vertices and no edges, then trivially cr,s,α(n,F) = 1. The easiest way to avoid such issues
is to insist that each graph in F has at most a bounded number of isolated vertices. In
addition to this, we will assume that F is ∆-bounded, that is, that every graph in F has
maximum degree at most ∆. Then we prove the following lower bound:

Theorem 1 (Lower bound). Given any positive integers r, s, α,∆, K such that r > s,
there exists c > 0 such that the following holds. Let F be a ∆-bounded family of graphs
with at most K isolated vertices each. Then for every n ∈ N, we have

cr,s,α(n,F) > cn1/χ,

where χ = χ(KG(α+1)(r, r − s)).

We remark that the conclusion of Theorem 1 fails when r = s; indeed, there are many
situations where cr,r,α(n,F) is known to be constant. For example, Gyárfás, Ruszinkó,
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Sárközy, and Szemerédi [16] proved that cr,r,1(n,Fc) 6 100r log r. Sárközy [27] proved
that cr,r,α(n,Fc) 6 25(αr)2 log(αr). Sárközy, Selkow, and Song [25] proved that if F
contains the graph on a single vertex and all connected d-regular graphs, then cr,r,1(n,F) 6
100r log r + 2rd. For more general families, Grinshpun and Sárközy [12] showed that if
F is ∆-bounded and contains at least one graph on i vertices for every i > 1, then
c2,2,1(n,F) 6 2O(∆ log ∆).

We also prove an upper bound that matches the lower bound given by Theorem 1
in many cases. Note again that it is possible to choose F so that cr,s,α(n,F) is trivially
very large; for example, if F only contains a single fixed graph then it is obvious that
cr,s,α(n,F) = Ω(n). Our way to avoid this kind of problem will be to assume that there is
some ε > 0 such that for every i > 1, F contains at least one graph F with |V (F )| ∈ [εi, i].
In fact, our proof (but perhaps not the result) requires the stronger assumption that at
least one such graph is bipartite. We prove:

Theorem 2 (Upper bound). Given any positive integers r, s, α,∆ such that r > s, and
any ε > 0, there exists C > 0 such that the following holds. Let F be a ∆-bounded family
F of graphs such that for every i > 1, there is a bipartite F ∈ F with εi 6 |V (F )| 6 i.
Then for every n ∈ N, we have

cr,s,α(n,F) 6 Cn1/χ + cr,r,α(n,F),

where χ = χ(KG(α+1)(r, r − s)).

This upper bound coincides asymptotically with the lower bound given by Theorem 1
whenever we know that cr,r,α(n,F) = O(n1/χ). As mentioned above, in many situations it
is even known that cr,r,α(n,F) = O(1). We can thus obtain asymptotically tight results in
several different cases. From the above-mentioned result of Sárközy [27] we immediately
obtain:

Corollary 3 (Paths and cycles). Let r, s, α be fixed positive integers such that r > s. Let
χ = χ(KG(α+1)(r, r − s)). Let Fp be the family of all paths and Fc be the family of all
cycles. Then

Ω(n1/χ) 6 cr,s,α(n,Fp) 6 cr,s,α(n,Fc) 6 O(n1/χ).

In particular, setting α = 1 and using (2) gives

cr,s(Kn,Fp) = Θ(n1/max {1,2+2s−r})

thus generalizing the Erdős-Gyárfás result (1) to more colours (and the same holds for Fc
instead of Fp).

Similarly, using the result of Sárközy, Selkow, and Song [25], we get the following
result for covering complete graphs by regular graphs:

Corollary 4 (d-regular graphs). Let r, s, d be fixed positive integers such that r > s.
Let χ = χ(KG(2)(r, r − s)) = max {1, 2 + 2s− r}. Let Fd be the family containing all
connected d-regular graphs and also the graph with a single vertex and no edges. Then

cr,s(Kn,Fd) = Θ(n1/χ).
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Note that the bounds in Corollaries 3 and 4 are only tight up to a large multiplicative
factor depending on r, s, and α (resp. d). It would be interesting to determine these
factors more precisely. As mentioned earlier, even the case where r = 2 and s = α = 1 is
still open.

It is perhaps interesting to note that the proof of Theorem 2 does not actually use the
Alon-Frankl-Lovász result (2), but rather works directly with the definition of χ as the
chromatic number of KG(α+1)(r, r− s). On the other hand, our proof of Theorem 1 really
uses the value of χ given by (2), or, more precisely, it uses the lower bound on χ implied
by (2), which is by far the more difficult direction.

1.2 Notation

We write [k] = {1, . . . , k}. We write
(
A
`

)
for the set of all `-element subsets of the set

A. If G is a graph and Vi, Vj are disjoint subsets of the vertices of G, then we denote
by G[Vi, Vj] the bipartite subgraph induced by the two parts Vi and Vj, and we write
eG(Vi, Vj) for the number of edges of G[Vi, Vj].

Since we are aiming for asymptotic statements, we routinely omit rounding brackets
whenever they are not essential.

2 Proof of Theorem 1

Suppose that we are given positive integers r, s, α,∆, K such that r > s. Let χ denote
the chromatic number of KG(α+1)(r, r − s). We need to show that there is a constant
c = c(r, s, α,∆, K) > 0 such that

cr,s,α(n,F) > cn1/χ

for all n ∈ N and all ∆-bounded families F of graphs with at most K isolated vertices
each. In other words, we need to construct an r-coloured graph G with independence
number at most α such that every monochromatic F -covering S of G with col(S) 6 s has
size at least cn1/χ.

The construction will use Johnson graphs. The Johnson graph J(a, b) is the graph
with the vertex set

(
[a]
b

)
where two vertices X and Y are joined by an edge if they have

a non-empty intersection (so it is the complement of the Kneser graph KG(2)(a, b)). Is is
easy to see that the independence number of J(a, b) is at most ba/bc: every collection of
ba/bc+1 sets in

(
[a]
b

)
covers in total (ba/bc+1)b > a elements, counted with multiplicities,

so that at least two of the sets must intersect.
To prove Theorem 1, we use different constructions depending on the parameters. We

distinguish between three cases.

Case 1. Suppose first that 1 6 s < αr/(α + 1), i.e., that χ = 1 by (2). Let G be a
blow-up of J(r, r − s) where every vertex is replaced by a clique on n/

(
r
r−s

)
vertices and

where every edge is replaced by a complete bipartite graph between the corresponding
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cliques. For a vertex X of J(r, r − s), we write VX for the vertices of G in the clique
corresponding to X.

Note that G has the same independence number as J(r, r − s), which is at most
br/(r − s)c. The assumption αr/(α + 1) > s implies that

r

r − s
<

r

r − αr/(α + 1)
= α + 1

and so the independence number of G is at most α, as required.
We now colour the edges of G with colours from [r] as follows. Let uv be an edge of G.

Then there exist vertices X and Y of J(r, r− s) such that u ∈ VX and v ∈ VY . Moreover,
we either have X = Y , or {X, Y } is an edge in J(r, r− s), and in both cases, X ∩ Y 6= ∅.
We then colour uv with any colour belonging to the set X ∩ Y ⊆ [r].

Finally, suppose that S is a monochromatic F -covering of G such that col(S) 6 s.
Then there is some X ⊆ [r] of size r − s that is disjoint from the set of colors used by
the graphs in S. By our choice of colouring, all edges touching VX have a colour in X, so
the vertices in VX can only be covered using isolated vertices. Since every graph in S has
at most K isolated vertices, this means that |S| > |VX |/K > n/(K

(
r
r−s

)
), completing the

proof in this case (since χ = 1).

Case 2. Suppose now that s > αr/(α+ 1) and assume additionally that s < χα. Then
by (2), we have χ = 1 + s− r + d(s+ 1)α−1e 6 r, where the last inequality follows from
s+ 1 6 r. Since additionally s+ 1 6 χα, we can fix integers 1 6 k1, . . . , kχ 6 α such that
k := k1 + · · ·+ kχ ∈ {s+ 1, . . . , r}.

We now construct an n-vertex graph G as follows. We start with a blow-up of the
complete graph Kχ where the i-th vertex is replaced by a set Vi of ni/χ vertices, except
for the χ-th vertex, which is replaced by a set set Vχ of

|Vχ| = n− n1/χ − n2/χ − · · · − n(χ−1)/χ > n− o(n)

vertices. Each edge ij of Kχ is replaced by a complete bipartite graph between the
corresponding sets Vi and Vj. We further partition each set Vi equitably into ki parts
Vi,1, . . . , Vi,ki , and insert all edges where both endpoints are contained in the same set Vi,j.
Thus for each i, the graph G[Vi] is the disjoint union of ki cliques of size |Vi|/ki. This
defines the graph G. It is easy to see that G has independence number

max{ki : 1 6 i 6 χ} 6 α.

Next, we colour the edges of G as follows. First, we fix an arbitrary bijection

φ : {(i, j) : 1 6 i 6 χ and 1 6 j 6 ki} → [k].

Such a bijection exists because k1 + · · ·+ kχ = k. Then we distinguish two cases. If uv is
an edge of G with both endpoints in the same set Vi,j, then uv receives the colour φ(i, j).
On the other hand, if uv goes between the sets Vi,j and Vi′,j′ where i < i′, then we uv
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receives the colour φ(i, j). Note that by construction, there are no edges going between
to sets Vi,j and Vi,j′ for j 6= j′. Since k 6 r, this is a colouring with at most r colours.

Now suppose that S is a monochromatic F -covering of G such that col(S) 6 s. Since
s < k, there is then some pair (i, j) with 1 6 i 6 χ and 1 6 j 6 ki such that φ(i, j) is not
the colour of any graph in S. Now observe that the only edges incident to Vi,j that do
not use the colour φ(i, j) are those that have an endpoint in V1∪ · · · ∪Vi−1. In particular,
every graph in S, having maximum degree at most ∆ and at most K isolated vertices,
can cover at most ∆(|V1|+ · · ·+ |Vi−1|) +K vertices of Vi,j. Now |Vi,j| > ni/χ/r implies

∆(|V1|+ · · ·+ |Vi−1|) +K = ∆(n1/χ + · · ·+ n(i−1)/χ) +K

6 (1 + o(1)) · (∆ +K) · n(i−1)/χ

6 (1 + o(1)) · r(∆ +K) · n−1/χ|Vi,j|,

and so to cover Vi,j completely, S must contain at least (1−o(1))n1/χ/(r(∆ +K)) graphs,
completing the proof in this case.

Case 3. Finally, assume s > αr/(α + 1) and s > χα. The construction in this case is
a combination of the constructions used in the two previous cases. We will construct a
graph G on n vertices as follows. As in Case 2, we start with a blow-up of the complete
graph Kχ where the i-th vertex is replaced by a set Vi of |Vi| = ni/χ vertices, except for
the last vertex, which is replaced by a set Vχ of

|Vχ| = n− n1/χ − n2/χ − · · · − n(χ−1)/χ > n− o(n)

vertices. Each edge ij of Kχ is replaced by a complete bipartite graph between the
corresponding sets Vi and Vj. This defines the edges going between different sets Vi and
Vj.

Next, we specify what each graph G[Vi] looks like. For G[V1], we use a similar con-
struction as in Case 1. Let t := r − α(χ− 1) and note that since s > χα > α(χ− 1), we
have t > r − s. We let G[V1] be a blow-up of the Johnson graph J(t, r − s) where every
vertex is replaced by a clique on |V1|/

(
t

r−s

)
vertices, and where every edge is replaced

by a complete bipartite graph between the corresponding cliques. For later reference,
we define V1,X ⊆ V1 to be the vertex set of the clique corresponding to the vertex X of
J(t, r − s). For 1 < i 6 χ, we let G[Vi] be the union of α vertex-disjoint cliques of size
|Vi|/α, somewhat similarly as in Case 2. We will write Vi,1, . . . , Vi,α ⊆ Vi for the vertex
sets of these cliques. This completes the definition of G.

We first check that G really has independence number at most α. It is immediate
from the construction that α(G) = max {α(G[Vi]) : 1 6 i 6 χ}. Moreover, it is easy to
see that for i > 1, we have α(G[Vi]) = α. So it remains only to consider i = 1. Observe
that G[V1] has the same independence number as J(t, r− s), which is at most bt/(r− s)c.
It is thus sufficient to prove that t/(r − s) < α + 1, which is easily seen to be true using
the definition of χ. Indeed, since t = r − α(χ − 1), the inequality t < (α + 1)(r − s) is
equivalent to

s < α(r − s+ χ− 1),
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which is true because r − s + χ − 1 = d(s + 1)/αe using (2) and the assumption s >
αr/(α + 1). Hence we have α(G) 6 α, as required.

We now define a colouring of the edges of G with r colours, where we distinguish
several cases. First, suppose that uv is an edge with u, v ∈ V1. Then there exist vertices
X, Y of J(t, r− s) such that u ∈ V1,X and v ∈ V1,Y ; moreover, for these X, Y it holds that
X ∩ Y 6= ∅ (they are either identical or represent an edge in J(t, r − s)). We then colour
uv with any colour in X ∩ Y . Second, assume that uv has exactly one endpoint (say, u)
in V1 and the other in Vi for some i > 1. Then there is some vertex X of J(t, r − s) such
that u ∈ V1,X , and we colour uv with any colour in X. Lastly, to colour the remaining
edges, fix any bijection

φ : {(i, j) : 1 < i 6 χ and 1 6 j 6 α} → [r] \ [t].

Such a bijection exists because r − t = α(χ− 1). If uv is an edge with both endpoints in
the same set Vi for i > 1, say u, v ∈ Vi,j, then we colour uv with the colour φ(i, j) (note
that there are no edges between Vi,j and Vi,j′ for j 6= j′). If uv is an edge going between
u ∈ Vi,j and v ∈ Vi′,j′ where i < i′, then we colour uv with the colour φ(i, j). Thus we
have coloured all the edges.

We make two observations at this point:

(i) Every edge incident to V1,X is coloured with a colour from X, for every vertex X of
J(t, r − s);

(ii) For every 1 < i 6 χ and 1 6 j 6 α, the only edges incident to Vi,j that do not use
the colour φ(i, j) are those that are incident to a set Vi′ where i′ < i. In particular,
every monochromatic copy of a graph F ∈ F that uses a colour different from φ(i, j)
can cover at most

∆(|V1|+ · · ·+ |Vi−1|) +K 6 ∆(n1/χ + · · ·+ n(i−1)/χ) +K

6 (1 + o(1)) · (∆ +K) · n(i−1)/χ

6 (1 + o(1)) · α(∆ +K) · n−1/χ|Vi,j|

vertices of Vi,j, where we use that F has maximum degree at most ∆ and at most
K isolated vertices.

To complete the proof, suppose that S is a monochromatic F -covering of G such that
col(S) 6 s. Denoting by Col(S) the set of all colours used by graphs in S, we distinguish
two possible cases.

The first case is when Col(S) contains at most t − (r − s) colours from [t]. In this
case, there is some set X of r − s colours in [t] that do not belong to Col(S). But then,
as all edges incident to V1,X use a colour from X (see (i)), the only way in which S can
cover the vertices in V1,X is by using isolated vertices. Since each graph in S has at most
K isolated vertices, this implies |S| > |V1,X |/K > n1/χ/K, completing the proof in this
case.
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In the other case, Col(S) contains at least t − (r − s) + 1 colours from [t]. Since
col(S) 6 s, this means that at most s − t + (r − s) − 1 = r − t − 1 colours from Col(S)
can be contained in [r] \ [t]. In particular, there is a colour a ∈ [r] \ [t] that is not used
by any of the graphs in S. Let (i, j) = φ−1(a) and consider the set Vi,j. Then by (ii),
every graph in S can cover at most (1 + o(1)) · α(∆ + K) · n−1/χ|Vi,j| vertices of Vi,j, so
|S| > (1− o(1)) · n1/χ/(α(∆ +K)). This completes the proof of Theorem 1.

3 Proof of Theorem 2

Let r, s, α be positive integers with r > s. Let K := KG(α+1)(r, r−s) and χ := χ(K). Let G
be a graph on n vertices with independence number at most α, and suppose that the edges
of G are coloured with r colours, which we assume to come from the set [r] = {1, . . . , r}.
Then the vertices of K correspond naturally to sets of r− s colours. Let ∆, ε > 0 and let
F be a ∆-bounded family of graphs with such that for every i > 1, F contains at least
one bipartite graph with at least εi and at most i vertices. In particular, F contains the
graph on a single vertex and with no edges. We will show that there is a monochromatic
F -covering S of G such that

|S| 6 Cn1/χ + cr,r(G,F) and col(S) 6 s,

where C = C(r, s, α, ε) > 0 is a suitable constant.
We first note that if s < αr/(α + 1), then by (2), we have χ = 1. In this case, we

can simply cover G by n single vertices, and we are done. Therefore, we will assume from
now on that s > αr/(α + 1).

We start by introducing some notation. If S is a monochromatic F -covering of G and
X ∈ V (K) is a set of r − s colours, then we write VS,X ⊆ V (G) for the set of all vertices
of G that are covered in S exclusively by graphs having a colour in X, that is,

VS,X := {v ∈ V (G) : every H ∈ S such that v ∈ V (H) has a colour in X}.

Note that S ⊆ S′ implies VS′,X ⊆ VS,X for all X ∈ V (K): adding more graphs to S can
never increase one of the sets VS,X . Our goal will be to construct a small monochromatic
F -covering S such that VS,X = ∅ for some X ∈ V (K). Note that in this case, G is
completely covered by the graphs in S that have colours not in X, so by removing all
graphs with a colour in X from S, we can obtain a monochromatic F -covering S′ ⊆ S
with col(S′) 6 s.

With this goal in mind, we define a quantity to track the sizes of the sets |VS,X |:

δ(S) :=
∑

X∈V (K)

log |VS,X |,

where we can set δ(S) = −∞ if |VS,X | = 0 holds for some X ∈ V (K). Note that since
|VS,X | 6 n, we always have the bound δ(S) 6

(
r
r−s

)
log n. Our central claim is:
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Claim 5. There is a constant β > 0 such that the following holds. If S is a monochromatic
F-covering of G such that |VS,X | > n1/χ for all X ∈ V (K), then G contains a (nonempty)
collection H = {H1, . . . , Ht} of monochromatic copies of graphs in F such that

δ(S)− δ(S ∪H) > βtn−1/χ log n. (3)

We postpone the proof of this claim and first show how it can serve to imply the
theorem. We construct a monochromatic F -covering step by step, starting with some
monochromatic F -covering S0 of size cr,r(G,F) (which exists by definition). Then as long
as |VSi,X | > n1/χ for all X ∈ V (K), we construct Si+1 from Si by setting Si+1 = Si ∪ H
for a collection H as given by Claim 5. Note that since δ(S0) 6

(
r
r−s

)
log n, and since

δ(S) 6 0 implies that |VS,X | 6 1 6 n1/χ for some X ∈ V (K), it follows from (3) that
this process must end after adding at most

(
r
r−s

)
n1/χ/β graphs to S0. In other words,

we end up with a monochromatic F -covering S∗ of size |S∗| 6 cr,r(G,F) +
(
r
r−s

)
n1/χ/β

such that |VS∗,X | 6 n1/χ holds for at least one X ∈ V (K). From this we obtain another
monochromatic F -covering S by adding to S∗ at most n1/χ single-vertex graphs covering
the vertices in VS∗,X . Note that then VS,X = ∅ and |S| 6 cr,r(G,F)+

(
r
r−s

)
n1/χ/β+n1/χ. As

mentioned above, we can then find a monochromatic F -covering S′ ⊆ S with col(S′) 6 s,
completing the proof of the theorem.

3.1 Proof of Claim 5

It remains to give the proof of Claim 5. The proof will use the following lemma, whose
proof we omit (it is a standard application of Szemerédi’s regularity lemma, see for ex-
ample [19, Theorem 2.1]).

Lemma 6. For every ε > 0 and ∆ > 0 there is a constant δ > 0 such that the following
holds for all sufficiently large n. If G = (A,B,E) is a bipartite graph with |A| = |B| = n
and |E| > εn2, then it contains as a subgraph every bipartite graph with maximum degree
at most ∆ and at most δn vertices.

In the following, let S be a monochromatic F -covering of G such that |VS,X | > n1/χ

for all X ∈ V (K). We first show:

Claim 7. There exists a hyperedge E = {X1, . . . , Xα+1} of K such that

n−1/χ 6
|VS,Xi |
|VS,Xj |

6 n1/χ for all i, j ∈ [α + 1]. (4)

Proof. Fix any c > 1 and let b ∈ (n1/χ, cn1/χ) be such that b 6 |VS,X | holds for all
X ∈ V (K). This is possible because we assume that |VS,X | > n1/χ for all X ∈ V (K).
Then, because b 6 |VS,X | 6 n, the map X 7→ blogb |VS,X |c assigns each vertex of K a
number between 1 and blogb nc 6 χ − 1. Hence, by definition of the chromatic number,
there is a hyperedge E = {X1, . . . , Xα+1} in which all vertices receive the same number.
Then for all i, j ∈ [α + 1], we have

−1 < logb |VS,Xi | − logb |VS,Xj | < 1,
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so n−1/χ/c < |VS,Xi |/|VS,Xj | < cn1/χ. Since c can be arbitrarily close to 1, and as K is
finite, this implies the claim.

Let now E = {X1, . . . , Xα+1} be a hyperedge of K satisfying (4). We will assume the
elements of E are ordered so that

|VS,X1| > |VS,X2| > · · · > |VS,Xα+1|.

Definition 8 (Removable set). Let us say that a subset W ⊆ VS,Xi is removable if G
contains a monochromatic copy H of some graph in F such that (i) the colour of H is in
[r] \Xi and (ii) W ⊆ V (H).

The idea behind this definition is that if W ⊆ VS,Xi is removable, then by adding the
graph H to S, we can decrease the size of |VS,Xi | by at least |W |: indeed, recalling the
definition of VS,Xi , we see that VS∪{H},Xi ⊆ VS,Xi \W .

Claim 9. There is a constant C > 0 and some i ∈ [α + 1] such that the following holds:
There exist t 6 C|VS,Xi |/|VS,Xα+1| disjoint removable sets W1, . . . ,Wt ⊆ VS,Xi covering all
except for at most |VS,Xα+1|/2 vertices in |VS,Xi |.

Proof. Observe first that it is enough to show the following statement: for every choice of
subsets V1, . . . , Vα+1 where Vi ⊆ VS,Xi and where each Vi has size |VS,Xα+1|/2, there is some
i ∈ [α+ 1] and a subset W ⊆ Vi of size at least |VS,Xα+1|/C that is removable. Indeed, we
can then repeatedly apply this statement until we have covered all but |VS,Xα+1|/2 vertices
in at least one set VS,Xi , and it is clear that this requires at most C|VS,Xi |/|VS,Xα+1 | subsets
of VS,Xi . So we will now prove this other statement instead.

Fix sets V1, . . . , Vα+1 as above. For brevity, write η := |VS,Xα+1|/2 = |V1| = · · · =
|Vα+1|. From the fact that G has independence number at most α it follows that there
exist distinct i, j ∈ [α+ 1] such that eG(Vi, Vj) > η2/(α+ 1)2. This can be seen by simple
double counting: for every choice of α + 1 vertices vi ∈ Vi for i ∈ [α + 1], there must be
two vertices that are connected by an edge. Going over all ways to choose such vertices,
we thus obtain ηα+1 edges, where every edge is obtained at most ηα−1 times; so there
must be η2 edges going between the sets V1, . . . , Vα+1. In particular, for some i 6= j, we
have eG(Vi, Vj) > η2/(α + 1)2.

Suppose now that eG(Vi, Vj) > η2/(α + 1)2. Let k ∈ [r] denote the majority colour of
the edges in G[Vi, Vj] and write Gk[Vi, Vj] for the subgraph consisting only of the edges
having colour k. Then it is clear that Gk[Vi, Vj] has at least η2/(r(α + 1)2) edges.

Recall that we assume that F is ∆-bounded and that there is some ε > 0 such that
for every n′ > 1, the family F contains at least one bipartite subgraph F ∈ F with
εn′ 6 |V (F )| 6 n′.

Applying Lemma 6 to Gk[Vi, Vj] (which is possible for large n since |Vi| = |Vj| =
η > n1/χ/2), we obtain that Gk[Vi, Vj] contains as a subgraph every ∆-bounded bipartite
graph on at most 2(∆ + 1)η/(Cε) vertices, for some sufficiently large constant C > 0. In
particular, Gk[Vi, Vj] contains a copy of a graph F ∈ F with at least 2(∆+1)η/C vertices.
In fact, since F has maximum degree at most ∆, it can be embedded in such a way that is
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uses at least 2η/C vertices of Vi and at least 2η/C vertices of Vj (for every ∆ non-isolated
vertices in Vi we must embed at least one vertex in Vj, whereas the isolated vertices can be
embedded arbitrarily). Denote this copy by H and note that as a subgraph of Gk[Vi, Vj] it
is clearly monochromatic in colour k. Since the sets Xi and Xj are disjoint (they are part
of a hyperedge in K), they cannot both contain k, and so at least one of the sets V (H)∩Vi
or V (H) ∩ Vj is removable, and both these sets have size 2η/C = |VS,Xα+1|/C.

Let W1, . . . ,Wt ⊆ VS,Xi be disjoint removable sets as given by Claim 9 and let H =
{H1, . . . , Ht} be the corresponding collection of subgraphs, so that Hj is a monochromatic
copy of a graph in F that covers Wj and uses a colour outside Xi. By Claim 9 and
the definition of removable, we have |VS∪H,Xi | 6 |VS,Xα+1|/2 < |VS,Xi |. This implies
immediately that the collection H is nonempty. It also implies that

δ(S ∪H) =
∑

j∈[α+1]

log |VS∪H,Xj |

6
∑

j∈[α+1]\{i}

log |VS,Xj |+ log |VS∪H,Xi |

6 δ(S)− log |VS,Xi |+ log(|VS,Xα+1|/2)

= δ(S)− log(2|VS,Xi |/|VS,Xα+1|),

and so
δ(S)− δ(S ∪H) > log(2|VS,Xi|/|VS,Xα+1|).

At the same time, using 1 6 t 6 C|VS,Xi |/|VS,Xα+1| and |VS,Xi |/|VS,Xα+1| 6 n1/χ, we get

log(2|VS,Xi |/|VS,Xα+1|)
t

>
log(2|VS,Xi |/|VS,Xα+1 |)
C|VS,Xi |/|VS,Xα+1|

>
log(2n1/χ)

Cn1/χ
>
n−1/χ log n

Cχ
,

so

δ(S)− δ(S ∪H) >
tn−1/χ log n

Cχ
,

completing the proof of Claim 5.
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[9] P. Erdős and A. Gyárfás. Vertex covering with monochromatic paths. Math. Pan-
nonica, 6/1:7–10, 1995.
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[14] A. Gyárfás. Covering complete graphs by monochromatic paths. In Irregularities of
partitions, number 8 in Algorithms and Combinatorics, pages 89–91. Springer, 1989.
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