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Abstract

Answering a question of Diestel, we develop a topological notion of gammoids in
infinite graphs which, unlike traditional infinite gammoids, always define a matroid.

As our main tool, we prove for any infinite graph G with vertex-subsets A and
B, if every finite subset of A is linked to B by disjoint paths, then the whole of A
can be linked to the closure of B by disjoint paths or rays in a natural topology on
G and its ends.

This latter theorem implies the topological Menger theorem of Diestel for locally
finite graphs. It also implies a special case of the infinite Menger theorem of Aharoni
and Berger.

Mathematics Subject Classifications: 05C63

1 Introduction

Unlike finite gammoids, traditional infinite gammoids do not necessarily define a matroid.
Diestel [9] asked whether a suitable topological notion of infinite gammoid might mend
this, so that gammoids always give rise to a matroid. We answer this in the positive
by developing such a topological notion of infinite gammoid. Our main tool is a new
topological variant of Menger’s theorem for infinite graphs, which is also interesting in its
own right.

Given a directed graph1 G with a set B ⊆ V (G) of vertices, the set L(G,B) contains
all vertex-subsets I that can be linked by vertex-disjoint directed paths2 to B. If G is
finite, L(G,B) is the set of independent sets of a matroid, called the gammoid of G with
respect to B. If G is infinite, L(G,B) does not always define a matroid [1].

1We allow loops and parallel edges.
2In this paper, paths are always finite.
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In 1968, Perfect [11] looked at the question of when L(G,B) is a matroid. As usual
at that time, she restricted her attention to matroids with every circuit finite, now called
finitary matroids. In [6], Bruhn et al found a more general notion of infinite matroids,
which are closed under duality and need not be finitary. Afzali, Law and Müller [1] studied
infinite gammoids in this more general setting and found conditions under which L(G,B)
is a matroid. In this paper, we introduce a topological notion of gammoids in infinite
graphs that always define a matroid.

These gammoids can be defined formally without any reference to topology, as follows.
A ray R in G dominates B if G contains infinitely many vertex-disjoint directed paths

from R to B, see Figure 1. A vertex v dominates B if there are infinitely many directed
paths from v to B that are vertex-disjoint except in v. A path dominates B if its last
vertex dominates B. A domination linkage from A to B is a family of vertex-disjoint
directed paths or rays (Qa | a ∈ A) where Qa starts in a and either ends in some vertex of
B or else dominates B. A vertex-subset I is in LT (G,B) if there is a domination linkage
from I to B.

Figure 1: The vertices of B are squares, all other vertices are circles. In black, we see a
domination-linkage into B which contains one ray dominating B.

We offer the following solution to Diestel’s question:

Theorem 1. LT (G,B) is a finitary matroid.

When G is undirected3, Theorem 1 has the following topological interpretation. On G
and its ends consider the topology whose basic open sets are the components C of G \X
where X is a finite set of inner points of edges, together with the ends that have rays in C.
The closure of B ⊆ V (G) consists of B, the vertices dominating B, and the ends ω whose
rays R ∈ ω dominate B. Thus I ∈ LT (G,B) if and only if the whole of I can be linked
to the closure of B by vertex-disjoint paths or rays.4 We will not need this topological
interpretation.

3Formally, we consider those directed graphs G obtained from an undirected graph by replacing each
edge by two parallel edges directed both ways.

4Instead of just taking paths and rays, one might want to take all ‘topological arcs’. However, this
would result in a weaker theorem than the one proved here.
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Theorem 1 can be used to prove that under certain conditions the naive, non-topological,
gammoid L(G,B) is a matroid, too:

Corollary 2. Let G be a digraph with a set B of vertices such that there are neither
infinitely many vertex-disjoint rays dominating B nor infinitely many vertices dominating
B. Then L(G,B) is a matroid.

Theorem 2 does not follow from the existence criterion of Afzali, Law and Müller for
non-topological gammoids. Also its converse is not true, see Section 5 for details.

Theorem 1 is a natural example of a phenomeon that happens often in topological
infinite graph theory: the naive extension of the finite theorem that L(G,B) is a matroid
for every digraph G and every vertex-subset B is false. However, there is a natural
topological extension that is true for all graphs and all vertex-subsets (for a nontrivial
reason).

The main tool in our proof of Theorem 1 is a purely graph-theoretic Menger-type
theorem, which seems to be interesting in its own right. It is not difficult to show that if
there is a domination linkage from A to B, then there is a linkage from every finite subset
of A to B. Our theorem says that the converse is also true:

Theorem 3. (i) In any infinite digraph with vertex-subsets A and B, there is a domi-
nation linkage from A to B if and only if every finite subset of A can be linked to B
by vertex-disjoint directed paths.

(ii) In any infinite undirected graph G, a set A of vertices can be linked by disjoint paths
and rays to the closure of another vertex-subset B if and only if every finite subset
can be linked to B by vertex-disjoint paths.

We remark that the proof of Theorem 3 is non-trivial and not merely a compactness
result. Applying compactness, one would get a topological linkage from A to the closure
of B by arbitrary topological arcs, not necessarily paths and rays. Our graph-theoretical
version of Theorem 3 is considerably stronger than this purely topological variant.

In Section 4 we study the relationship between Theorem 3 and existing Menger-type
theorems for infinite graphs: the Aharoni-Berger theorem [3] and the topological Menger
theorem for arbitrary infinite graphs. The latter was proved by Bruhn, Diestel and Stein
[5], extending an earlier result of Diestel [8] for countable graphs. In the special case
of infinite graphs with ‘well-separated’ sets A and B (defined in Section 4), Theorem 3
implies and strengthens the Aharoni-Berger theorem. This in turn allows us to give a
proof of the topological Menger theorem for locally finite graphs which, unlike the earlier
proofs, does not rely on the (countable) Aharoni-Berger theorem (which was proved earlier
by Aharoni [2]).

The paper is organised as follows. After a short preliminary section we prove in Section
3 the directed edge version of Theorem 3. In Section 4 we sketch how this variant implies
Theorem 3, and how Theorem 3 implies the Aharoni-Berger theorem for ‘well-separated’
sets A and B, and the topological Menger theorem for locally finite graphs. In Section 5
we summarise some basics about infinite matroids, and prove Theorem 1 and Theorem 2.
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2 Preliminaries

Throughout, notation and terminology for graphs are that of [7]. In Sections 2 and 3,
we will mainly be concerned with sets of edge-disjoint directed paths. Thus there, we
abbreviate ‘edge-disjoint’ by ‘disjoint’, ‘edge-separator’ by ‘separator’ and ‘directed path’
by ‘path’. Given a digraph G and A,B ⊆ V (G), a linkage from A to B is a set of disjoint
paths from the whole of A to B. We update the definitions of ‘a ray dominates B’, ‘a
vertex dominates B’, ‘a path dominates B’, and of ‘domination linkage’: these are the
definitions made in the Introduction with ‘vertex-disjoint’ replaced by ‘edge-disjoint’. In
a slight abuse of notion, we will suppress the set brackets of {b} and just talk about
‘(domination) linkages from I to b’. The proof of the following theorem takes the whole
of Section 3.

Theorem 4. Let G be a digraph and b ∈ V (G), and I ⊆ V (G)−b. There is a domination
linkage from I to b if and only if every finite subset of I has a linkage into b.

We delay the proof that Theorem 4 implies Theorem 3 until Section 4.
One direction of Theorem 4 is indeed easy:

Lemma 5. If there is a domination linkage from I to b, then every finite subset S of I
has a linkage into b.

Proof. For s ∈ S, let Ps be the path or ray from the domination linkage starting in s.
Suppose for a contradiction, there is no linkage from S into b. Then by Menger’s theorem,
there is a set F of at most |S| − 1 edges such that after its removal there is no (directed)
path from S to b.

Suppose for a contradiction that there is some Ps not containing an edge of F . Then
Ps cannot end at b. So Ps dominates b, and thus there is some Ps-b-path avoiding F ,
contradicting the fact that F was a separator. Thus each Ps contains an edge of F . As
the Ps are disjoint, |F | > |S|, which is the desired contradiction.

3 Proof of Theorem 4

The proof of Theorem 4 takes the whole of this section.

3.1 Exact graphs

The core of the proof of Theorem 4 is the special case where G is exact (defined below). In
this subsection, we show that the special case of Theorem 4 where G is exact implies the
general theorem. More precisely, we prove that the Theorem 6 below implies Theorem 4.

Given a vertex-subset D, an edge is D-crossing (or crossing for D) if its starting vertex
is in D and the endvertex is outside. We abbreviate V (G) \D by D{. The order of D is
the number of D-crossing edges. The vertex-subset D is exact (for some set I ⊆ V (G)
and b ∈ V (G)) if b /∈ D and the order of D is finite and equal to |D∩ I|. A graph is exact
(for b and I) if for every v ∈ V (G)− b, there is an exact set D containing v.
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Lemma 6. Let G be an exact digraph and b ∈ V (G). Let I ⊆ V (G)− b such that every
finite subset of I has a linkage into b. Then there is a domination linkage from I to b.

First we need some preparation. Let G be a graph and let b ∈ V (G). Let I be the
set of all sets K ⊆ V (G)− b such that every finite subset of K has a linkage into b. The
following is an easy consequence of Zorn’s lemma.

Proposition 7. Let K ∈ I, and X ⊆ V (G) − b containing K, then there is J ∈ I
maximal with K ⊆ J ⊆ X.

Lemma 8. Let G be a directed graph, and let I ⊆ V (G)− b be maximal with the property
that every finite subset of I has a linkage into b. Let v ∈ (V (G) − b) \ I. Then there is
an exact D containing v.

Proof. By the maximality of I, there is a finite subset I ′ of I such that I ′ + v cannot be
linked to b. By Menger’s theorem, there is a vertex-subset D of order at most |I ′| not
containing b but containing I ′+ v. The order must be precisely |I ′| since I ′ can be linked
to b. Thus D is exact, which completes the proof.

Proof that Theorem 6 implies Theorem 4. By Theorem 5, it suffices to prove the ‘if’-
implication. Let G, b, I be as in Theorem 4. We obtain the graph H1 from G by
identifying b with all vertices v such that there are infinitely many disjoint v-b-paths.
Note that in H1 every vertex v 6= b can be separated from b by a finite separator.

It suffices to prove the theorem for H1 since then the set of dominating paths and rays
we get for H1 extends to a set of dominating paths and rays for G by adding a singleton
path for every vertex in I that is identified with b in H1.

We build an exact graph H2 that has H1 as a subgraph. Let v ∈ V (H1) − b. Let
kv be the smallest order of some vertex-subset D containing v and not containing b. By
construction of H1, the number kv is finite.

We obtain H2 from H1 by for each v ∈ V (H1) − b adding kv-many vertices whose
forward neighbourhood is that of v and that do not have any incoming edges. We will
refer to these newly added vertices for the vertex v as the clones of v.

Now we extend I to a maximal set I2 ⊆ V (H2)− b such that every finite subset of I2
has a linkage into b. This is possible by Theorem 7.

Next we show that H2 is exact with respect to I2. Suppose for a contradiction that
there is some v ∈ I2 such that there is no exact D containing v. First we consider the
case that v ∈ V (H1). Since v together with all its clones cannot be linked to b, there is a
clone w of v that is not in I2. Since w 6∈ I2, there must be some exact D′ containing w
by Theorem 8. If v ∈ D′, we are done, otherwise we get a contradiction since there is no
linkage from ((I ∩D′) + v) to b. The case that v 6∈ V (H1) is similar.

Having shown that H2 is exact, we now use the assumption that Theorem 6 is true
for H2 and I2: We get for each v ∈ I some path or ray that dominates b in H2. This
path or ray also dominates in H1 because a clone-vertex cannot be an interior vertex of
any (directed) path or ray. And it also dominates in G, which completes the proof that
Theorem 6 implies Theorem 4.
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3.2 Exact vertex-subsets

In this subsection, we prove some lemmas needed in the proof of Theorem 6.
Until the end of the proof of Theorem 4, we will fix a graph G that is exact with respect

to a fixed vertex b and some set I ⊆ V (G)− b. We further assume that every finite subset
of I has a linkage into b. First we will prove some lemmas about exact vertex-subsets.

Lemma 9. Let D be exact and let P1, . . . Pn be a linkage from I ∩D to b. Then each Pi
contains precisely one D-crossing edge, and each D-crossing edge is contained in one Pi.

Proof. Clearly, each Pi contains a D-crossing edge. Since the Pi are disjoint no two of
them contain the same crossing edge. Since D is exact, there are precisely n D-crossing
edges, and thus there is precisely one on each Pi.

Lemma 10. Let D,D′ ⊆ V (G) such that D′ ⊆ D, and D′ is exact. Let L be a linkage
from (I ∩D) to b. If some P ∈ L starts at a vertex in D \D′, then no vertex of P lies in
D′.

Proof. We recall that the set D′ cannot contain the vertex b by the definition of exact.
Since D′ is exact, each D′-crossing edge lies on some path of L. On the other hand |I∩D′|
of the paths start in D′, and thus contain an D′-crossing edge. So P cannot contain any
D′-crossing edge. If P meets D′, then it would meet D′ in a last vertex, and the edge
pointing away from this vertex would be a D′-crossing edge. Hence P does not meet D′,
which completes the proof.

Lemma 11. Let D and D′ be exact.

(i) Then D ∪D′ is exact.

(ii) Then D ∩D′ is exact.

(iii) Then there does not exist an edge from D \D′ to D′ \D.

Proof. Let L be a linkage from I ∩ (D ∪D′) to b. For X ⊆ D ∪D′, let L(X) denote the
set of those paths in L that have their starting vertex in X. For X ⊆ V (G), let C(X)
denote the set of X-crossing edges. It is immediate that.

|L(D ∩D′)|+ |L(D ∪D′)| = |L(D)|+ |L(D′)| (1)

Since D and D′ are exact, (1) gives the following:

|L(D ∩D′)|+ |L(D ∪D′)| = |C(D)|+ |C(D′)| (2)

Next, we prove the following.

|C(D ∩D′)|+ |C(D ∪D′)| 6 |C(D)|+ |C(D′)| (3)

Each edge in both C(D∩D′) and C(D∪D′) points from D∩D′ to D{∩D′{, and hence
is in both C(D) and C(D′). Each edge in C(D ∩D′) is in either C(D) or C(D′). Similarly,
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each edge in C(D ∪D′) is in either C(D) or C(D′). This proves inequation (3). Note that
if we have equality, we cannot have an edge from D \D′ to D′ \D.

In order to prove (i) and (ii), it suffices to show that |L(D ∪D′)| = |C(D ∪D′)| and
that |L(D∩D′)| = |C(D∩D′)|. Since L(D∪D′) and L(D∩D′) are sets of disjoint paths,
that each contain at least one crossing edge, it must be that |L(D ∪D′)| 6 |C(D ∪D′)|
and that |L(D ∩D′)| 6 |C(D ∩D′)|.

By equations (3) and (2), we get that

|C(D ∩D′)|+ |C(D ∪D′)| 6 |L(D ∩D′)|+ |L(D ∪D′)| (4)

Combining this with the two inequalities before, we must have that |L(D ∪ D′)| =
|C(D ∪D′)| and |L(D ∩D′)| = |C(D ∩D′)|, which proves (i) and (ii).

Now we must have equality in (3). So there cannot be an edge from D \D′ to D′ \D,
which proves (iii). This completes the proof.

Lemma 12. Let F be a finite set of vertices. Then there is an exact D with F − b ⊆ D.

Proof. For each v ∈ F − b, there is an exact Dv containing v by exactness of G. Then⋃
v∈F−bDv is exact, which can easily be proved by induction over |F − b|, using (i) of

Theorem 11 in the induction step.

Let D be exact and let L be a linkage from D ∩ I to b. Then D′ is called a forwarder
of D with respect to L if D′ is exact and

⋃
L − b ⊆ D′ and D ⊆ D′.

Lemma 13. Each exact D has a forwarder with respect to each linkage L from some
subset of D ∩ I to b.

Proof. Apply Theorem 12 to the set of all vertices in
⋃
L to get a D′ with all those

vertices in D′ + b. The desired forwarder is then D ∪D′.

The hull D̂ of a vertex-subset D consists of those vertices that are separated by the
D-crossing edges from b. Note that D ⊆ D̂ and that D̂{ consists of those vertices v such
that there is a v-b-path all of whose internal vertices are outside D. Since every vertex
on such a path is in D̂{, the hull of any hull D̂ is D̂ itself.

We say that two vertex-subsets D and D′ are equivalent if they have the same hull.
This clearly defines an equivalence relation, which we will call ∼. As a set and its hull
have the same crossing edges, we observe that two sets D and D′ are equivalent if and
only if D and D′ have the same crossing edges.

Proposition 14. Let F , F ′, F̃ and F̃ ′ be exact with F̃ ∼ F and F̃ ′ ∼ F ′. Then F ∪F ′ ∼
F̃ ∪ F̃ ′.

Proof. Clearly, the set of (F ∪ F ′)-crossing edges is equal to the set of (F̃ ∪ F̃ ′)-crossing
edges, which gives the desired result.

Lemma 15. For any exact set D, we have I ∩ D̂ = I ∩D.
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Proof. Since D̂ ⊇ D, clearly I∩D̂ ⊇ I∩D. In order to prove the other inclusion, suppose
for a contradiction that there is some v ∈ I ∩ (D̂ \D). Since (I ∩D) + v is finite, there
is some linkage L from ((I ∩ D) + v) to b. Let P be the path from that linkage that
starts in v. By Theorem 10, the path P avoids D. So P witnesses that v /∈ D̂. This is a
contradiction, thus I ∩ D̂ = I ∩D.

Corollary 16. For any exact D, the hull D̂ is exact.

3.3 Good functions

We define what a good function is and prove that the existence of a good function in
every exact graph implies Theorem 6.

First, we fix some notation. The domain of a function or a partial function f is denoted
by dom(f). Let E be the set of exact vertex-subsets D, and let L̄ be the set of linkages
from finite subsets of I to b. For a vertex-subset D, the set N(D) consists of D together
with all endvertices of D-crossing edges.

For v ∈ I and some linkage L containing a path starting at v, let Qv(L) denote the
path in L starting from v. For every exact D, the edges of Qv(L) contained in G[N(D)]
are the edges of some initial path of Qv(L). We call this initial path Pv(D;L). We follow
the convention that Pv(D;L) is empty if v 6∈ D.

A function f : E → L̄ is good if it satisfies the following:

(i) f(F ) is a linkage from I ∩ F to b.

(ii) If v ∈ I and F, F ′ ∈ dom(f) with F ′ ⊆ F , then Pv(F
′; f(F ′)) = Pv(F

′; f(F )).

(iii) If
⋃
Pv(F ; f(F )) is a ray, then it dominates b. Here the union ranges over all exact

F .

Before proving that there is a good function, we first show how to deduce Theorem 4
from that. Let us abbreviate Pv(D; f(D)) by Pv(D; f). If it is clear by the context which
function f we mean, we even just write Pv(D).

Lemma 17. Let f : E → L̄ be a partial function satisfying (i) and (ii). Further assume
that for any two exact F and F ′ with F ′ ⊆ F and F ∈ dom(f), also F ′ ∈ dom(f). Let
v ∈ I, and let D,D′ ∈ dom(f) be exact with v ∈ D ∩ D′. Then Pv(D) ⊆ Pv(D

′), or
Pv(D

′) ⊆ Pv(D).

Proof. D ∩D′ is exact by Theorem 11 and in the domain of f . Since f satisfies (ii), we
get that Pv(D ∩ D′) is a subpath of both Pv(D) and Pv(D

′). Let e be the last edge of

Pv(D ∩D′), and x be its endpoint in D{ ∪D′{.
Now we distinguish three cases. If x ∈ D{ ∩ D′{, the edge e is crossing for both D

and D′, and thus is the last edge of both Pv(D) and Pv(D
′). So Pv(D) = Pv(D

′), so the
lemma is true in this case.

If x ∈ D{ ∩D′, then e is the last edge of Pv(D). So Pv(D) = Pv(D ∩D′) ⊆ Pv(D
′), so

the lemma is true in this case.
The case x ∈ D′{ ∩D follows from symmetry. This completes the proof.
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For the remainder of this subsection, let us fix a good function f . The last Lemma
motivates the following definition. For v ∈ I, let Pv be the union of all the paths Pv(D)
over all exact D containing v. By the last Lemma Pv is either a path or a ray.

Lemma 18. If Pv and Pw share an edge, then v = w.

Proof. Let e be an edge in both Pv and Pw. Let Dv be exact with e ∈ Pv(Dv). Similarly,
let Dw be exact with e ∈ Pw(Dw).

By (i) of Theorem 11, we get that Dv ∪ Dw is exact. Since f is good, we have that
Pv(Dv∪Dw) includes Pv(Dv), and that Pw(Dv∪Dw) includes Pw(Dw). Since Pv(Dv∪Dw)
and Pw(Dv ∪ Dw) share the edge e, we must have that v = w, which completes the
proof.

Lemma 19. If Pv is a path, then it ends at b.

Proof. Suppose for a contradiction that Pv does not end at b. Then Pv does not contain
b.

Then by Theorem 12, there is an exact D with Pv ⊆ D. Then Pv(D) contains some
D-crossing edge whose endvertex does not lie on Pv, which gives a contradiction to the
construction of Pv.

The following lemma tells us that to prove Theorem 4, it remains to show that every
exact graph has a good function.

Lemma 20. Let G be an exact digraph that has a good function. Let b ∈ V (G). Let
I ⊆ V (G) − b such that every finite subset of I has a linkage into b. Then there is a
domination linkage from I to b.

Proof. Each Pv dominates b: If Pv is a path, this is shown in Theorem 19. If Pv is a ray,
this follows from the fact that f is good. By Theorem 18 all the Pv are disjoint, which
completes the proof.

3.4 Intermezzo: The countable case

The purpose of this subsection is to prove that there is a good function under the assump-
tion that G is countable. This case is easier than the general case and some of the ideas
can already be seen in this special case. However, in the general case we do not rely on the
countable case. At the end of this subsection, we explain why this proof does not extend
to the general case. Nonetheless we think that this helps to get a better understanding
of the general case.

Lemma 21. Let G be an exact graph with V = {v0 = b, v1, v2, . . .} countable. Then there
is a sequence of exact hulls Dn and linkages Ln from I ∩Dn to b satisfying the following.

1. Dn ⊆ Dn+1;

2. {v1, . . . , vn} ⊆ Dn;
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3. Pv(Dn;Ln) = Pv(Dn;Ln+1) for any v ∈ I;

4. Dn+1 is a forwarder of Dn with respect to Ln.

Proof. Assume that for all i 6 n, we already constructed exact hulls Di and linkages Li
satisfying 1-4. Next, we define Dn+1. By Theorem 12, there is an exact Fn containing
vn+1. By Theorem 11, Dn ∪Fn is exact. Let D′n+1 be a forwarder of Dn ∪Fn with respect
to the linkage Ln, which exists by Theorem 13. Let Dn+1 be the hull of D′n+1, which is
exact by Theorem 16.

It remains to construct Ln+1 so as to make (3) true. Let L be some linkage from
I ∩Dn+1 to b. By Theorem 9, for each Dn-crossing edge e there is precisely one Pe ∈ Ln
that contains e, and precisely one Qe ∈ L that contains e. Let Re = PeeQeb. Since
Pee ⊆ Dn + e and eQeb ⊆ D{n + e, the Re are disjoint. For Ln+1 we pick the set of
the Re together with all Q ∈ L that do not contain any Dn-crossing edge. Clearly Ln+1

is a linkage from I ∩ Dn+1 to b. And (3) is true by construction, which completes the
proof.

Lemma 22. Every countable exact graph G has a good function f .

Proof. Let Dn and Ln as in Theorem 21. We let f(Dn) = Ln. Next, we define f at all
other exact D. Since there are only finitely many D-crossing edges, there is a number m
such that all these crossing edges are in N(Dm). Then D ⊆ Dm as for each v /∈ Dm there
is a v-b-path included avoiding Dm. Now we let f(D) consist of those paths in f(Dm)
that start in D. We remark that this definition does not depend on the choice of m.

Having defined f , it remains to check that it is good: clearly it satisfies (i) and
(ii), so it just remains to verify (iii). So assume that for some v ∈ I, the union R =⋃
F∈E Pv(F ; f(F )) is a ray. Then R =

⋃
n∈N Pv(Dn;Ln). Let env be the unique Dn-crossing

edge on Qv(Ln). Since Dn+1 is a forwarder of Dn, the path Rn
v = envQv(Ln) is contained

in Dn + b and avoids Dn+1. Thus the paths Rn
v are disjoint and witness that R dominates

b. So f is good, which completes the proof.

Remark 23. Our proof above heavily relies on the fact that we can find a nested set of
exact vertex-subsets Dn indexed with the natural numbers that exhaust the graph (compare
(2) in Theorem 21). However if we can find such a nested set, then I must be countable
since each Dn contains only finitely many vertices of I. Thus this proof does not extend
to the general case.

3.5 Infinite sequences of exact vertex-subsets

We encourage the reader to read Subsection 3.6 before this subsection.
The purpose of this subsection is to prove Theorem 25 which is applied in Subsection

3.6. In the later Subsection 3.6 we construct a good function in every exact graph. This
good function will be constructed recursively as a limit of ‘partial good functions’ defined
on exact subsets. Theorem 25 guarantees a maximal exact subset in a certain collection
of exact subsets. Very very roughly, this maximal element will ensure that we can pick
these partial good functions in a compatible way in a certain step in the proof.
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Lemma 24. There does not exist a sequence (Dn|n ∈ N) with Dn ( Dn+1 of exact hulls
that all have bounded order.

Proof. Suppose for a contradiction that there is a such sequence (Dn|n ∈ N). By taking
a subsequence if necessary, we may assume that all Dn have the same order. Since any
two Dn are exact and have the same order, we must have I ∩ D1 = I ∩ Dn for every n.
Let L be some linkage from (D1∩ I) to b. Any P ∈ L contains a unique Dn-crossing edge
for every n by Theorem 9. Since Dn ⊆ Dn+1, there is a large number nP such that for all
n > nP it is the same crossing edge. Let m be the maximum of the numbers nP over all
P ∈ L. Then for all n > m, the Dn have the same crossing edges and thus are equivalent.
This is a contradiction, completing the proof.

Lemma 25. Let D be exact and let X be a nonempty set of exact sets D′ ⊆ D that is
closed under ∼ and taking unions. Then there is some D′′ ∈ X including all D′ ∈ X .

Proof. Suppose for a contradiction that there is no such D′′ ∈ X . We will construct an
infinite sequence (Dn|n ∈ N) as in Theorem 24.

Let D1 ∈ X be arbitrary. Since X is ∼-closed, we may assume that D1 is its hull. Now
assume that Dn is already constructed. By assumption, there is D′n ∈ X with D′n 6⊆ Dn.
Let D′′n = Dn ∪ D′n. Let Dn+1 be the hull of D′′n. Then Dn+1 ∈ X , and Dn ( Dn+1.
This completes the construction of the infinite sequence (Dn|n ∈ N), which contradicts
Theorem 24 and hence completes the proof.

3.6 Existence of good functions

The purpose of this subsection is to prove that every exact graph has a good function,
which implies Theorem 4 by Theorem 20. We will define when a partial function is good.
In order to construct a good function f defined on the whole of E we will construct an
ordinal indexed family of good partial functions fα such that if α > β, then the domain
of fα includes that of fβ and agrees with fβ on the domain of fβ. Eventually some fα will
be defined on the whole of E and will be the desired good function.

A partial function f : E → L̄ is good if it satisfies the following:

(i) f(F ) is a linkage from I ∩ F to b.

(ii) If w ∈ I and F, F ′ ∈ dom(f) with F ′ ⊆ F , then Pw(F ′; f(F ′)) = Pw(F ′; f(F )).

(iii) If
⋃
Pw(F ; f(F )) is a ray, then it dominates b. Here the union ranges over all

F ∈ dom(f).

(iv) Let F and F ′ be exact with F ′ ⊆ F . If F is in the domain of f , then so is F ′.

(v) If F and F ′ are in the domain of f , then so is F ∪ F ′.

(vi) dom(f) is closed under ∼.

Note that if F, F ′ ∈ dom(f), then so is F ∩ F ′ by (iv). Note that each good partial
function defined on the whole of E is a good function.
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Lemma 26. Let f be a partial function with domain X that satisfies (i)-(v). Then there
is a good partial function f̂ whose domain is the ∼-closure X̂ of X such that f̂�X = f .

Proof. For each F ∈ X̂, there is some F̃ ∈ X such that F ∼ F̃ . We let f̂(F ) = f(F̃ ).
By Theorem 15, f̂ satisfies (i). Clearly f̂ satisfies (iii) and (vi). Since f satisfies (v), f̂
satisfies (v) by Theorem 14.

To see that f̂ satisfies (ii), let w ∈ I and F, F ′ ∈ dom(f̂) with F ′ ⊆ F . Then
Pw(F ′; f̂(F ′)) = Pw(F ′; f̂(F )) as Pw(F̃ ′; f(F̃ ′)) = Pw(F̃ ′; f(F̃ )).

To see that f̂ satisfies (iv), let F and F ′ be exact with F ′ ⊆ F and F ∈ X̂. Then
F ′ ∩ F̃ is exact, and since f satisfies (iv), it must be in X. Since F ′ ∩ F̃ and F ′ have the
same crossing edges, they are equivalent. So F ′ ∈ X̂. So f̂ satisfies (iv). This completes
the proof.

For S ⊆ E , let S(iv) ⊆ E denote the smallest set including S that satisfies (iv).
Similarly, let S(v) ⊆ E denote the smallest set including S that satisfies (v).

Lemma 27. [S(iv)](v) = [S(v)](iv) for any set S.
In particular, [S(iv)](v) is the smallest set included in E containing S and satisfying (iv)
and (v).

Proof. First let D ∈ [S(iv)](v). Then there are F1, F2 ∈ S(iv) such that D = F1 ∪ F2.
Then there are F ′1, F

′
2 ∈ S such that F1 ⊆ F ′1 and F2 ⊆ F ′2. Then F ′1 ∪ F ′2 ∈ S(v)

by (i) of Theorem 11. Since F1 ∪ F2 ⊆ F ′1 ∪ F ′2, we deduce that D ∈ [S(v)](iv). So
[S(iv)](v) ⊆ [S(v)](iv).

Now let D ∈ [S(v)](iv). Then there is D′ ∈ S(v) with D ⊆ D′. Then there are
F1, F2 ∈ S such that D′ = F1∪F2. Then Fi∩D ∈ S(iv) for i = 1, 2 by (ii) of Theorem 11.
Since D ⊆ F1 ∪ F2, we deduce that D ∈ [S(iv)](v). This completes the proof.

Let X ⊆ E , and D be exact. Then X[D] denotes the smallest set including X + D
that satisfies (iv) and (v).

3.6.1 Extending good partial functions

The aim of this subsubsection is to prove the following lemma that helps us building a
good function in that it allows us to extend a good partial function a little bit.

Lemma 28. Let f be a good partial function, and let D be exact. Then there is a good
partial function g whose domain consists of the ∼-closure of dom(f)[D], and that agrees
with f at each point in dom(f).

If D ∈ dom(f), then we just take g = f . So we may assume that D 6∈ dom(f). Before
we define g, we define auxiliary functions g1, g2 and g3 with domains X1, X2 and X3,
respectively, such that dom(f) ⊆ X1 ⊆ X2 ⊆ X3 ⊆ dom(g), and g will be defined such
that g�X1

= g1, g�X2
= g2, and g�X3

= g3. We let X1 = dom(f) +D.
For all D′ ∈ dom(f), we let g1(D

′) = f(D′). Next we define g1(D). Since I ∩ D
is finite, there is some linkage from I ∩ D into b. Let P1, P2, . . . Pn be such a linkage.
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By Theorem 25, there is some D′′ ∈ dom(f) with D′′ ⊆ D such that D′ ⊆ D′′ for all
D′ ∈ dom(f) with D′ ⊆ D. Since D′′ is exact, each D′′-crossing edge lies on one of the Pi
by Theorem 9.

If no D′′-crossing edge lies on Pi, then we put Pi into g1(D). If some D′′-crossing edge,
say ei, lies on Pi, we take the path Qi from the linkage f(D′′) that contains ei, and put
the path QieiPi into g1(D). This completes the definition of g1(D), and so of g1.

Fact 29. g1 satisfies (ii).

Proof. Let F, F ′ ∈ X1 with F ′ ⊆ F . If F is not D, then Pw(F ′; f(F ′)) = Pw(F ′; f(F ))
since f satisfies (ii) and (iv).

So we may assume that F = D. Then F ′ ⊆ D′′ ⊆ D. So

Pw(F ′; f(F ′)) = Pw(F ′; f(D′′)) = Pw(F ′; f(D)),

which completes the proof.

We now define X2 and g2. We let X2 = X1(iv). For each F ∈ X2 there is some F ′ ∈ X1

such that F ⊆ F ′. We let g2(F ) to consists of those paths from g1(F
′) that start in F . By

construction, g2 satisfies (i) and (iv). By Theorem 11(iii), Pw(F, g2(F )) = Pw(F, g1(F
′))

for all w ∈ I. Thus g2 satisfies (ii) as g1 does.
Having defined g2, we now define g3. We let X3 be X2(v), which is equal to dom(f)[D].

We let Pw = Pw(F ; g2) ∪ Pw(F ′; g2). By Theorem 17, it must be that Pw = Pw(F ; g2) or
Pw = Pw(F ′; g2). Since g2 satisfies (ii), no vertex of Pw(F ; g2) that is not on Pw(F ′; g2)
can be in F ∩ F ′. By (iii) of Theorem 11, it must be that every vertex of Pw(F ; g2) that
is not on Pw(F ′; g2) is in F \ F ′. Hence the Pw are disjoint.

By (iii) of Theorem 11, each Pw contains some (F ∪ F ′)-crossing edge ew. Let L be
some linkage from I ∩ (F ∪ F ′) to b. Let Qw be the path in L that contains ew. We
define g3(F ∪ F ′) to consist of the paths PwewQw. Clearly, g3(F ∪ F ′) is a linkage from
I ∩ (F ∪ F ′) to b.

By Theorem 27, g3 satisfies not only (v) but also (iv).

Fact 30. g3 satisfies (ii).

Proof. Let w ∈ I and F, F ′ ∈ dom(f) with F ′ ⊆ F . Our aim is to prove that

Pw(F ′; g3(F
′)) = Pw(F ′; g3(F )).

In the definition of g3 at F , we have picked F1 and F2 in X2 such that F = F1 ∪ F2

in order to define g3(F ). Similarly, we have picked F ′1 and F ′2 in X2 such that with
F ′ = F ′1 ∪ F ′2 to define g3(F

′). It suffices to show that Pw(Xij; g3(F
′)) = Pw(Xij; g3(F ))

where Xij = F ′j ∩ Fi and (i, j) ∈ {1, 2} × {1, 2}.
By the definition of g3, we get the following two equations.

Pw(F ′; g3(F
′)) = Pw(F ′1; g2) ∪ Pw(F ′2; g2) (5)

Pw(F ′; g3(F )) = Pw(F ′ ∩ F1; g2(F1)) ∪ Pw(F ′ ∩ F2; g2(F2)) (6)

Since g2 satisfies (ii), these two equations give the desired result when restricted to Xij.
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Fact 31. g3 satisfies (iii).

Proof. For each w ∈ I, we compare the sets
⋃
Pw(F ; f(F )) where first the union ranges

over all F ∈ dom(f) and second it ranges over all F ∈ dom(g3). The second set is a
superset of the first and all its additional elements are in Pw(D, g3), which is finite. In
particular, if the second set is a ray, then so is the first set by Theorem 17. In this case,
the first set dominates b since f satisfies (iii), so the second set also dominates b. This
completes the proof.

Having defined g3, we let g = ĝ3 as in Theorem 26. Since g3 satisfies (i) -(v), g is good by
Theorem 26. This completes the proof of Theorem 28.

3.6.2 Construction of a good function

In this subsubsection, we construct a good function in every exact graph, which is the last
step in the proof of Theorem 4. Each ordinal α has a unique representation α = β + n
where β is the largest limit ordinal smaller than α, and n is a natural number. We say
that α is odd if n is odd. Otherwise it is even.

Lemma 32. Let G be an exact graph. Then there is a good function f defined on the
whole of E.

Proof. In order to construct f we will construct an ordinal indexed family of good partial
functions fα such that if α > β, then the domain of fα includes that of fβ and agrees
with fβ on the domain of fβ. Eventually some fα will be defined on the whole of E and
will be the desired good function.

Assume that fβ is already defined for all β < α. First we consider the case that
α = β + 1 is a successor ordinal. If fβ is defined on the whole of E , we stop. Otherwise,
we will find some exact Fα. Then we let fα be the partial function g given to us from
Theorem 28 applied to fβ and Fα.

How we find Fα depends on whether α is an odd or an even successor ordinal. If α is
odd, then we pick some D ∈ E \ dom(fβ), and let Fα = D.

If α is even, say α = δ + 2n, where δ is the largest limit ordinal less than α, then for
Fα we pick the forwarder of Fδ+n with respect to the linkage f(Fδ+n), which exists by
Theorem 13.

Having considered the case where α is a successor ordinal, we now consider the case
where α is a limit ordinal. For the domain of fα we take the union of the domains of all
fβ with β < α, and we let fα(D) = fβ(D) for some β where this is defined. It is clear that
fα satisfies (i),(ii),(iv),(v),(vi), so it remains to show that f satisfies (iii). So let w ∈ I
such that R =

⋃
Pw(D; fα) is a ray. Here the union ranges over all D in the domain of

fα.
Let O be the set of ordinals β < α such that there is some D ∈ dom(fβ) with w ∈ D.

O is nonempty, so it must contain a smallest ordinal ε. Note that ε is a successor ordinal.
Let ε− be such that ε = ε− + 1.
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We will prove that w ∈ Fε. Suppose not for a contradiction, then w 6∈ D for all
D ∈ dom(fε−) + Fε. So w 6∈ D for all D ∈ [dom(fε−) + Fε](iv), and hence also w 6∈ D for
all D ∈ dom(fε−)[Fε] by Theorem 27. By Theorem 16 and since w ∈ I, also w 6∈ D for
all D in the ∼-closure of dom(fε−)[Fε]. This contradicts the choice of ε. Hence w ∈ Fε.
Let x be the unique Fε-crossing edge contained in Pw(Fε; fα).

We have a representation ε = δ+ k where δ is the largest limit ordinal less than ε. By
construction, the Fε(l) with ε(l) = δ + 2l · k are nested with each other. To prove that R
dominates b, it will suffice just to investigate the Fε(l).

The paths Pw(l) = Qw(fα(Fε(l))) are contained in Fε(l+1) + b. By Theorem 9, there is a
unique Fε(l)-crossing edge al on Pw(l). The paths alPw(l) meet Fε(l) only in their starting
vertex. Thus the paths alPw(l) are disjoint. Since al is on Pw(Fε(l); fα), it is on R. Hence
the paths alPw(l) witness that R dominates b. So fα is good.

There must be some successor step α = β + 1 at which we stop. Then fβ is a good
function defined on the whole of E . This completes the proof.

Proof of Theorem 4. Recall that the easy implication is already proved in Theorem 5. For
the other implication, combine Theorem 32 with Theorem 20 to get a proof of Theorem 6.
Then remember that Theorem 6 implies Theorem 4.

4 Graph-theoretic applications of Theorem 4

In this section, we show how Theorem 4 implies Theorem 3 and how Theorem 3 implies
the Aharoni-Berger theorem for ‘well-separated’ sets A and B, and the topological Menger
theorem for locally finite graphs.

4.1 Variants of Theorem 4

In this subsection, we explain how Theorem 4 implies Theorem 3. Theorem 4 is equivalent
to the following.

Theorem 33. There is a domination linkage from A to B if and only if every finite subset
of A can be linked to B.

Menger’s theorem comes in four different versions: the directed edge version, the
undirected edge version, the directed vertex version and the undirected vertex version.
Depending on the version, we have different notions of path, separator and disjointness.
Taking these different notions instead, we know in each of these 4 versions what it means
that a ray dominates B, a vertex dominates B, a path dominates B, and what a domi-
nation linkage is, and what a linkage is.

The purpose of this subsection is to explain how Theorem 33 implies its undirected-
edge-version, directed-vertex-version and undirected-vertex-version. These versions are
like Theorem 33 but with the appropriate notions of domination linkage and linkage. The
proof is done in the same way how one shows that the directed-edge-version of Menger’s
theorem for finite graphs implies all the other versions.
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Starting with the sketch, one first shows that the directed-edge-version implies the
directed-vertex-version for every graph G. For this one considers the auxiliary digraph H
of G with V (H) = V (G)×{in, out}. The edges of H are of two types: For each v ∈ V (G),
we add an edge pointing from (v, in) to (v, out). For each edge of H pointing from v to
w, we add an edge pointing from (v, out) to (w, in). Then the directed-vertex-version for
G is equivalent to the directed-edge-version for H.

Next one shows that the directed-vertex-version implies the undirected-vertex-version
for every graph G. For this, one considers the directed graph H obtained from G by
replacing each edge by two edges in parallel pointing in different directions. Then the
undirected-vertex-version for G is equivalent to the directed-vertex-version for H.

Finally, one shows that the undirected-vertex-version implies the undirected-edge-
version for every graph G. For this, one considers the line graph H of G. Then the
undirected-edge-version for G is equivalent to the undirected-vertex-version for H.

It is clear that the directed vertex version of Theorem 33 is just Theorem 3(i). We call
domination linkages in the undirected vertex version vertex-domination linkages. Sim-
ilarly, we define vertex-linkages. The undirected vertex version of Theorem 33 is the
following.

Corollary 34. Let G be a graph and A,B ⊆ V (G). There is a vertex-domination linkage
from A to B if and only if every finite subset of A has a vertex-linkage into B.

Theorem 34 is a reformulation of Theorem 3(ii).

4.2 Well-separatedness

In this subsection, we prove Theorem 35 below, which is used to deduce the Aharoni-
Berger theorem for ‘well-separated’ sets A and B, and the topological Menger theorem
for locally finite graphs.

A pair (A,B) of vertex-subsets is well-separated if every vertex or end can be separated
from one of A or B by removing finitely many vertices.

Corollary 35. (undirected vertex version) Let (A,B) be a well-separated pair of vertex-
subsets. Then there is a vertex-linkage from the whole of A to B if and only if every finite
subset of A has a vertex-linkage to B.

Our next aim is to deduce Theorem 35 from Theorem 34. First we need some lemmas.
For this, we fix a graph G and a well-separated pair (A,B) of vertex-subsets. Let (Pa|a ∈
A) be a vertex-domination linkage from A to B. Let ω be an end that cannot be separated
from B by removing finitely many vertices. Let Aω be the set of those a ∈ A such that
Pa is a ray and belongs to ω.

Lemma 36. There is a vertex-linkage (Qa|a ∈ Aω) from Aω to B such that Qa and Px
are vertex-disjoint for all a ∈ Aω and all x ∈ A \ Aω.

Proof. Given a finite vertex-subset S, we denote by C(S, ω) the component of the graph
G \ S that contains the end ω.
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As the pair (A,B) is well-separated, there is a finite vertex-subset S that separates
the end ω from the set A. Let Z be the set of those vertices a in A such that their path
Pa meets the component C(S, ω) ∪ S. As each path Pa with a ∈ Z has to meet the finite
set S, the set Z must be finite.

As the set Aω of vertices with rays to the end ω is a subset of Z, the set Aω also
must be finite. Furthermore there is a finite vertex-subset T such that the component
C(T, ω) meets precisely those paths Pa whose vertex a is in the set Aω. For each vertex
a in the set Aω, let ta be the first vertex on the ray Pa such that the subray taPa is
contained in the component C(T, ω), which exists as the ray Pa is eventually contained in
the component C(T, ω). The set of rays (taPa|a ∈ Aω) forms a vertex-domination linkage
from (ta|a ∈ Aω) to the set B in the graph G′, where G′ is obtained from the graph
G[C(T, ω)] by deleting all edges on the paths Pata with a ∈ Aω. By the easy implication
of Theorem 34 applied to G′, we get a vertex-linkage (Ka|a ∈ Aω) from (ta|a ∈ Aω) to B.
Each walk PataKa includes a path Qa from a to B. From this construction, it is clear that
the paths Qa form a vertex-linkage from Aω to B and that Qa and Px are vertex-disjoint
for all a ∈ Aω and all x ∈ A \ Aω.

Lemma 37. There is a vertex-domination linkage (Ra|a ∈ A) from A to B such that each
Ra is a path.

Proof. We will construct (Ra|a ∈ A) by transfinite recursion. First we well-order the
set Ω of ends: Ω = {ωα|α ∈ κ} for κ = |Ω|. At each step β we have a current set of
vertex-disjoint A-B-paths Qβ. The set Aβ of start vertices of paths in Qβ consists of those
a ∈ A such that Pa is a ray and belongs to some end ωα with α < β. We will also ensure
that Rβ = Qβ ∪ {Pa|a 6∈ Aβ} is a vertex-domination linkage from A to B.

If β is a limit ordinal, we just set Qβ =
⋃
α<βQα. It is immediate that Qβ has the

desired property assuming that the Qα with α < β have the property. If β = α + 1 is a
successor ordinal, we apply Theorem 36 to the vertex-domination linkage Rα. Then we
let Qα+1 = Qα ∪ {Qa|a ∈ Aωα+1}. It is clear from that lemma that Qα+1 has the desired
property.

This completes the recursive construction. It is clear that Rκ = Qκ ∪ {Pa|a 6∈ Aκ} is
the desired vertex-domination linkage.

Proof that Theorem 34 implies Theorem 35. Let (A,B) be well-separated such that from
every finite subset of A there is a vertex-linkage to B. By Theorem 34, there is a vertex-
domination linkage (Pa|a ∈ A) from the whole of A to B. By Theorem 37, we may assume
that each Pa is a path. However, (Pa|a ∈ A) may still contain a path Pu that does not end
in B. Then Pu has to contain a vertex ω that cannot be separated from B by removing
finitely many vertices. An argument as in the proof of Theorem 36, shows that there is
a path Qu from u to some vertex in B such that (Pa|a ∈ A − u) together with Qu is a
vertex-domination linkage from A to B. Similar as in the proof of Theorem 37, we can
now apply transfinite induction to replace each Pu one by one by such a path Qu. The
final vertex-domination linkage is then a vertex-linkage, which completes the proof.
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4.3 Existing Menger-type theorems

In this subsection, we show how Theorem 35 implies the Aharoni-Berger theorem for ‘well-
separated’ sets A and B, and the topological Menger theorem for locally finite graphs.

The Aharoni-Berger theorem [3] says that for every graph G with vertex-subsets A and
B, there is a set of vertex-disjoint A-B-paths together with an A-B-separator consisting
of precisely one vertex from each of these paths.

At first glance, it might seem that the Aharoni-Berger theorem does not tell under
which conditions there is a linkage from A to B - but actually it does. To explain
this, we need a definition. A wave is a set of vertex-disjoint paths from a subset of A
to some A-B-separator C. It is not difficult to show that the Aharoni-Berger theorem is
equivalent to the following: The whole of A can be linked to B if and only if for every wave
there is a linkage from A to its separator set C. Thus Theorem 35 implies the Aharoni-
Berger theorem for well-separated sets A and B. We remark that neither Theorem 35 nor
Theorem 4 follows from the Aharoni-Berger theorem.

Using this implication, we get the first proof of the topological Menger-Theorem of
Diestel [8] for locally finite graphs that does not rely on the Aharoni-Berger theorem.
Indeed, the argument of Diestel only relies on the Aharoni-Berger theorem for vertex-
subsets A and B that have disjoint closure in |G|, which is equivalent to being well-
separated if G is locally finite.

5 Infinite gammoids

In this section, we use Theorem 3 to prove Theorem 1 and Theorem 2. Throughout,
notation and terminology for matroids are that of [10, 6]. M always denotes a matroid
and E(M) and I(M) denote its ground set and its sets of independent sets, respectively.

Recall that the set I(M) is required to satisfy the following independence axioms [6]:

(I1) ∅ ∈ I(M).

(I2) I(M) is closed under taking subsets.

(I3) Whenever I, I ′ ∈ I(M) with I ′ maximal and I not maximal, there exists an x ∈ I ′\I
such that I + x ∈ I(M).

(IM) Whenever I ⊆ X ⊆ E and I ∈ I(M), the set {I ′ ∈ I(M) | I ⊆ I ′ ⊆ X} has a
maximal element.

An I-circuit is a set minimal with the property that it is not in I. The following is
true in any matroid.

(+) For any two finite I-circuits o1 and o2 and any x ∈ o1 ∩ o2, there is some I-circuit
included in (o1 ∪ o2)− x.

Given I ⊆ P(E), its finitarization Ifin consists of those sets J all of whose finite
subsets are in I. Usually, it is made a requirement that I is the set of independent sets of
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a matroid [4]. Then Ifin is the set of independent sets of a finitary matroid, called M fin

[4]. We will need the following slight strengthening of this fact.

Lemma 38. If I satisfies (I1), (I2) and (+), then Ifin is the set of independent sets of
a finitary matroid.

Proof. Clearly Ifin satisfies (I1) and (I2), and it satisfies (IM) by Zorn’s Lemma. Thus
it remains to check (I3). So let I, I ′ ∈ Ifin with I ′ maximal and I not maximal. So there
is some y /∈ I with I + y ∈ I. We may assume that y /∈ I ′ since otherwise we are done.
Thus there is some finite I-circuit o with y ∈ o ⊆ I ′+ y. Suppose for a contradiction that
for each x ∈ o \ (I + y), there is some finite I-circuit ox with x ∈ ox ⊆ I + x. Applying
(+) successively to o and the ox, we obtain a finite I-circuit o′ included in I + y, which
contradicts the assumption that I + y ∈ Ifin. Thus there is some x ∈ o \ (I + y) such
that I + x ∈ Ifin, which completes the proof.

We will also need the following slight variation of (I3).

(*) For all I, J ∈ I and all y ∈ I \ J with J + y /∈ I there exists x ∈ J \ I such that
(J + y)− x ∈ I.

A matroid N is nearly finitary if for every base B of N there is a base B′ of N fin such
that B ⊆ B′ and |B′ \ B| is finite. It is not difficult to show that N is nearly finitary if
and only if for every base B′ of N fin there is a base B of N such that B ⊆ B′ and |B′ \B|
is finite. The proof of Lemma 4.15 in [4] actually proves the following stronger statement.

Lemma 39. Let M = (E,J ) be a matroid with ground set E. Let I ⊆ J satisfying (I1),
(I2) (I3), (∗) such that for any J ∈ J there is some I ∈ I such that |J \ I| is finite.
Then N = (I, E) is a matroid.

In the special case where M is finitary, N is nearly finitary.
Next, we will summarise the results from [1] that are relevant to this paper.

Lemma 40 (Afzali, Law, Müller [1, Lemma 2.2]). For any digraph G and B ⊆ V (G),
the system L(G,B) satisfies (I3).

Lemma 41 (Afzali, Law, Müller [1, Lemma 2.7]). For any digraph G and B ⊆ V (G),
the system L(G,B) satisfies (∗).

Let BAC = {b0, b1, . . .}. Let VAC = BAC ∪ V 1 ∪ V 2, where V i = {vi0, vi1, . . .}. The
digraph GAC has vertex-subset VAC and three types of edges: For j ∈ N it has an edge
from v1j to bj. For each j ∈ N, it has two edges, both start at v2j , and end at v1j and v1j+1.
The pair (GAC , BAC) is called an alternating comb (AC). A subdivision of AC is drawn in
Figure 2. Formally, a subdivision of AC is a pair (HAC , BAC) where HAC is obtained from
GAC by replacing each directed edge xy by a directed path from x to y that is internally
disjoint from all other such paths. Here edges from V2 to V1 are not allowed to be replaced
by a trivial path5 but the edges v1j bj are allowed to be replaced by a trivial path. A pair
(G,B) has a subdivision of AC if there is a subgraph HAC of G and BAC ⊆ B ∩ V (HAC)
such that (HAC , BAC) is isomorphic to a subdivision of AC.

5A trivial path consists of a single vertex only.
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Theorem 42 (Afzali, Law, Müller [1, Theorem 2.6]). Let G be a digraph and B ⊆ V (G)
such that (G,B) has no a subdivision of AC. Then L(G,B) is a matroid.

For the remainder of this section, let G denote a digraph and B ⊆ V (G). In the
following, we will explore for which digraphs G and sets B the system LT (G,B) is the
set of independent sets of a matroid, and how LT (G,B) relates to L(G,B). If G is finite
L(G,B) is a matroid and thus satisfies (+). The latter easily extends to infinite graphs
G.

Lemma 43. L(G,B) satisfies (+).

Sketch of the proof. Given two finite L(G,B)-circuits o1 and o2 intersecting in some vertex
x, there are separations (Ai, Bi) with oi ⊆ Ai and B ⊆ Bi of order at most |oi| − 1. Then
with a lemma like Theorem 11, one shows that either (A1∪A2, B1∩B2) or (A1∩A2, B1∪B2)
separates some L(G,B)-circuit o ⊆ (o1 ∪ o2)− x from B.

Using Theorem 3, we can prove the following slight extension of Theorem 1.

Corollary 44. LT (G,B) = L(G,B)fin for any digraph G and B ⊆ V (G).
Moreover, LT (G,B) is a finitary matroid.

Proof. By Theorem 3, LT (G,B) consists of those sets I all of whose finite subsets can
be linked to B by vertex-disjoint directed paths, and thus LT (G,B) = L(G,B)fin. As
L(G,B) satisfies (I1), (I2) and (+), LT (G,B) is a finitary matroid by Theorem 38.

Next we prove the following slight strengthening of Theorem 2 from the Introduction.
Below we will refer to the definition of dominating as defined in the Introduction.

Corollary 45. Let G be a digraph with a set B of vertices such that there are neither
infinitely many vertex-disjoint rays dominating B nor infinitely many vertices dominating
B. Then L(G,B) is a nearly finitary matroid.

Proof. L(G,B) clearly satisfies (I1) and (I2), and it satisfies (I3) and (∗) by Theorem 40
and Theorem 41. Let J ∈ LT (G,B). By Theorem 3, we get for each v ∈ J a ray or path
Pv starting at v such that all these Pv are vertex-disjoint. Moreover each such Pv either
ends in B or is a ray dominating B or its last vertex dominates B. Let I be the set of
those v such that Pv ends in B. By assumption J \ I is finite. So by Theorem 44, we can
apply Theorem 39 with J = LT (G,B) to deduce that L(G,B) satisfies (IM), and thus is
a nearly-finitary matroid.

Towards the converse implication of Theorem 45 we observe the following.

Observation 46. Let G be a digraph with a set B of vertices such that no vertex in B
dominates B and such that L(G,B) is a nearly finitary matroid.

Then there are neither infinitely many vertex-disjoint rays dominating B disjoint from
B nor infinitely many vertices dominating B.
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Proof. As L(G,B) is a nearly finitary, the set B together with just finitely many vertices
is a base. Hence there can only be finitely many vertices outside B dominating B and
only finitely many rays dominating B disjoint from B.

A natural question that comes up is to ask how Theorem 42 and Theorem 45 relate to
each other. In [1], Afzali, Law and Müller construct a pair (G,B) without AC such that
L(G,B) is not nearly finitary. They also do it in a way to make L(G,B) 3-connected.
Thus Theorem 45 does not imply Theorem 42.

To see that Theorem 42 does not imply Theorem 45, let G be the 3 by Z grid, formally:
V (G) = {1, 2, 3} × Z, see Figure 2. In G, there is a directed edge from (x, y) to (x′, y′)

B

v10

v20

v11

Figure 2: The graph G is depicted in gray. The vertices of B are squares. (G,B) has a
subdivision of AC. One is indicated in this figure: The vertices of V 1 and V 2 are black
crosses and the subdivided edges are drawn dotted.

if and only if either x = x′ and y′ = y + 1 or y = y′ and x′ = x + 1. Let: B = {3} × Z.
Then it is easy to see that no vertex of G dominates B and there are not infinitely many
vertex-disjoint rays dominating B. However (G,B) has a subdivision of AC, which is
indicated in Figure 2. Thus, there arises the question if there is a nontrivial common
generalization of Theorem 45 and Theorem 42.

During this whole section, we have only considered the directed-vertex-version. Of
course, similar results are true if we consider the undirected-vertex-version, the directed-
edge-version or the undirected-edge-version instead.
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