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Abstract

We define an algebraic variety X(d,A) consisting of matrices whose rows and
columns are partial flags. This is a smooth, projective variety, and we describe it as
an iterated bundle of Grassmannian varieties. Moreover, we show that X(d,A) has
a cell decomposition, in which the cells are parametrized by certain matrices of sets
and their dimensions are given by a notion of inversion number. On the other hand,
we consider the Spaltenstein variety of partial flags which are stabilized by a given
nilpotent endomorphism. We partition this variety into locally closed subvarieties
which are affine bundles over certain varieties called YT , parametrized by semistan-
dard tableaux T . We show that the varieties YT are in fact isomorphic to varieties
of the form X(d,A). We deduce that each variety YT has a cell decomposition,
in which the cells are parametrized by certain row-increasing tableaux obtained by
permuting the entries in the columns of T and their dimensions are given by the
inversion number recently defined by P. Drube for such row-increasing tableaux.

Mathematics Subject Classifications: 05A05, 05A19, 14M15

1 Introduction

Given the following data:

• a p × q matrix of nonnegative integers d = (di,j) which is nondecreasing along the
rows and the columns, i.e., di,j 6 di′,j′ whenever i 6 i′, j 6 j′,

• a chain of C-vector spaces A = (A1 ⊂ . . . ⊂ Aq) such that dimAj = dp,j,

∗Supported in part by the ANR project GeoLie (ANR-15-CE40-0012).
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we define X(d,A) as the set of p× q matrices of vectors spaces V = (Vi,j) such that

Vi,j is a di,j-dimensional subspace of Aj for all i, j, (1)

Vi,j ⊂ Vi′,j′ whenever i 6 i′, j 6 j′. (2)

Thus X(d,A) consists of representations of the p× q rectangular quiver

•1,1 → •1,2 → •1,3 · · · → •1,q

↓ ↓ ↓ ↓
•2,1 → •2,2 → •2,3 · · · → •2,q

...
...

...
...

...
↓ ↓ ↓ · · · ↓
•p,1 → •p,2 → •p,3 · · · → •p,q

in the subcategory of vector spaces where we retain only inclusion morphisms. Clearly
X(d,A) is a closed subset of the projective variety∏

i,j

Grassdi,j(Aj)

where Grassk(H) stands for the Grassmannian variety of k-dimensional subspaces of a
vector space H.

We outline some general facts on the variety X(d,A), which are explained in more
detail in the rest of the paper:

1) X(d,A) is an iterated bundle of base type the following collection of Grassmannian
varieties

{Grassdi−1,j−di−1,j−1
(Cdi,j−di−1,j−1) : 2 6 i 6 p, 1 6 j 6 q}

(where di,0 = 0), in particular X(d,A) is smooth, irreducible, and its Poincaré polynomial
is explicitly determined; see Theorem 1.

2) For certain dimension matrices d, X(d,A) is a resolution of a Schubert variety in a
natural way; see Remark 5 (a). In fact, in the case where the chain A is maximal, X(d,A)
is a Bott-Samelson variety of special type; see Remark 5 (b). The definition of X(d,A)
is related to the combinatorial construction of Bott-Samelson varieties given in [10]; see
Remark 5 (c).

3) We define W =W(d) as the set of p× q matrices of sets ω = (ωi,j) such that

ωi,j is a subset of {1, . . . , dp,j} of cardinality di,j for all i, j, (3)

ωi,j ⊂ ωi′,j′ whenever i 6 i′, j 6 j′. (4)

In Section 3, we introduce a notion of inversion number ninv(ω) for the elements ofW , and
we show that the elements of W parametrize a cell decomposition X(d,A) =

⊔
ω∈W C(ω)

such that dimC(ω) = ninv(ω).
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4) Our main original motivation in considering the variety X(d,A) is the study of
Spaltenstein varieties. A Spaltenstein variety Flk,u is a variety of partial flags (for dimen-
sion vector k) which are preserved by a given nilpotent endomorphism u : Cn → Cn (see
Section 4.1). This variety is in general not irreducible. As it is recalled in Section 4.2,
there is a natural partition of Flk,u into locally closed subsets

Flk,u =
⊔

T∈STabk(λ(u))

Flk,u,T

parametrized by semistandard tableaux T whose shape is the Jordan form of u (seen as
a Young diagram). Moreover, the closures Flk,u,T are the irreducible components of Flk,u.
In Proposition 17, we show that for each subvariety Flk,u,T , there is an affine bundle

ϕT : Flk,u,T → YT

where YT is a certain projective variety (realized as the subvariety of Flk,u,T formed by
flags which are homogeneous with respect to a grading adapted to the filtration Cn =⋃q
j=1 keruj). The main results of Section 4 concern the structure of the variety YT . In

Theorem 20 we show that

YT is isomorphic to a variety of the form X(d,A).

In Theorem 27, relying on Section 3, we then show that YT has a cell decomposition

YT =
⊔

τ∈RTab(T )

Y (τ)

parametrized by the set RTab(T ) of all row-increasing tableaux obtained by permuting
entries in the columns of T , moreover the cell decomposition is such that the dimensions
of the cells Y (τ) coincide with the inversion numbers ninv(τ) defined by P. Drube [4] for
such row-increasing tableaux.

Spaltenstein varieties are considered in [12, 13]. Computations of their Poincaré poly-
nomials can also be deduced from [3, 11]. In the present paper, we are able to provide
closed formulas for the Poincaré polynomials of the varieties YT and the Spaltenstein
variety Flk,u (see Corollaries 21, 29, and Remark 30). This generalizes similar results
obtained for Springer fibers in [6]. The results obtained in Section 4 also give a geometric
interpretation of the recent results of [4, 5].

Notation and mathematical background

All the algebraic and geometric constructions are made over C. By |M | we denote the
cardinality of a set M . For a positive integer k, we consider the polynomials [k]x :=
1 + x+ . . .+ xk−1 and [k]x! := [1]x · · · [k]x.

Given an algebraic variety Y , we denote by H i(Y,Q) its cohomology spaces (con-
sidering sheaf cohomology with rational coefficients) and by H i

c(Y,Q) its cohomology
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with compact support. Note that H i(Y,Q) = H i
c(Y,Q) whenever Y is projective. Let

P (Y )(t) :=
∑

i>0 dimH i(Y,Q) ti be the Poincaré polynomial.
In fact, all varieties considered in this paper satisfy the parity vanishing condition

H i(Y,Q) = 0 whenever i is odd. Hence we may renormalize the Poincaré polynomial as
P (Y )(x) =

∑
i>0 dimH2i(Y,Q)xi, setting x = t2.

A sufficient condition for a projective variety Y to have this parity vanishing condition
is the existence of a cell decomposition. By cell decomposition, we mean here a partition
into finitely many locally closed subsets that can be numbered as Y = Y1 t . . . t Yk so
that Y1 t . . . t Y` is closed for all ` and each Y` is isomorphic to an affine space AdimY` .
Then

P (Y )(t) = P (Y )(x) =
k∑
`=1

xdimY` . (5)

For example, the decomposition P(Cn) =
⊔n
`=1(P(C`) \ P(C`−1)) is a cell decomposition,

hence P (P(Cn))(x) = [n]x. More generally, letting B ⊂ GLn(C) be the subgroup of
upper triangular matrices, by the Bruhat decomposition, the partition into B-orbits of
any variety of partial flags of Cn is a cell decomposition. In the case of the Grassmannian
variety Grassk(Cn), the cells are parametrized by the subsets I ⊂ {1, . . . , n} with k
elements: the cell C(I) is the B-orbit of the subspace CI ∈ Grassk(Cn) spanned by the
vectors εi (i ∈ I) of the standard basis of Cn. Moreover

dimC(I) = |{(i, j) : 1 6 j < i 6 n, i ∈ I, j /∈ I}|. (6)

If X, Y, F are projective varieties, Y, F are smooth, irreducible, satisfy the aforemen-
tioned parity vanishing condition, and ϕ : X → Y is a locally trivial fiber bundle with fiber
isomorphic to F , then X is smooth, irreducible, satisfies the parity vanishing condition,
and P (X)(x) = P (Y )(x) · P (F )(x).

The notion of iterated bundle is defined by induction. An iterated bundle of base type
{Y1} is a variety isomorphic to Y1; for k > 2, we say that X is an iterated bundle of base
type {Y1, . . . , Yk} if (up to renumbering the Y`’s), there is a locally trivial fiber bundle
X → Yk whose typical fiber is an iterated bundle of base type {Y1, . . . , Yk−1}. Assume
that X, Y1, . . . , Yk are projective. If Y1, . . . , Yk are smooth, irreducible, satisying the parity
vanishing condition, then so is X, and P (X)(x) =

∏k
`=1 P (Y`)(x).

For instance the variety of complete flags Fl(Cn) is an iterated bundle of base type
{P(C`) : 1 6 ` 6 n} (indeed, the map Fl(Cn) → P(Cn), (V0, . . . , Vn) 7→ V1 is locally
trivial, of fiber isomorphic to Fl(Cn−1)), hence

P (Fl(Cn))(x) = [n]x!.

The map Fl(Cn)→ Grassk(Cn), (V0, . . . , Vn) 7→ Vk is also locally trivial, of fiber Fl(Ck)×
Fl(Cn−k), whence

P (Grassk(Cn))(x) =
[n]x!

[k]x![n− k]x!
.
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2 Structure of the variety X(d,A)

The variety X(d,A) is endowed with a natural action of the group

PA := {g ∈ GL(Aq) : g(Aj) = Aj for all j = 1, . . . , q},

which is a parabolic subgroup of GL(Aq).
Given nonnegative integers a 6 b 6 c, we denote

Grass ( a bc ) := Grassb−a(Cc−a) and [ a bc ]x :=
[c− a]x!

[c− b]x! [b− a]x!
.

Whenever Va ⊂ Vc are vector spaces of dimensions a and c, respectively, the variety
of b-dimensional spaces H such that Va ⊂ H ⊂ Vc is isomorphic to Grassb−a(Vc/Va) ∼=
Grass ( a bc ), and its Poincaré polynomial is [ a bc ]x. Its dimension is

dim Grass ( a bc ) = deg [ a bc ]x = (c− b)(b− a).

Theorem 1. The variety X(d,A) is an iterated bundle of base type the sequence of Grass-
mannian varieties{

Grass
(
di−1,j−1 di−1,j

di,j

)
: (i, j) ∈ {2, . . . , p} × {1, . . . , q}

}
(where di,0 := 0). In particular X(d,A) is smooth, irreducible, of dimension

dimX(d,A) =
∑

26i6p
16j6q

(di,j − di−1,j)(di−1,j − di−1,j−1),

its cohomology spaces Hm(X(d,A),Q) vanish in odd degrees, and its Poincaré polynomial
is given by

P (X(d,A))(x) :=
∑
m>0

dimH2m(X(d,A),Q)xm =
∏

26i6p
16j6q

[
di−1,j−1 di−1,j

di,j

]
x
.

Example 2. For d =

 0 0 1
0 2 3
1 2 4

 we get

P (X(d,A))(x) = [ 0 0
0 ]x [ 0 0

2 ]x [ 0 1
3 ]x [ 0 0

1 ]x [ 0 2
2 ]x [ 2 3

4 ]x
= 1 · 1 · [3]x · 1 · 1 · [2]x = (1 + x)(1 + x+ x2).

Lemma 3. Assume that p > 2.

(a) Assume that dp,j = dp−1,j for all j ∈ {1, . . . , q}. Then, X(d,A) ∼= X(d̂, A), where

d̂ = (d̂i,j) is the (p− 1)× q matrix given by d̂i,j = di,j for all (i, j) ∈ {1, . . . , p− 1}×
{1, . . . , q}.

the electronic journal of combinatorics 25(3) (2018), #P3.41 5



(b) Assume that dp,j0 > dp−1,j0 for some j0 ∈ {1, . . . , q} and choose j0 minimal for this
property. The map

ϕ : X(d,A)→ Grassdp−1,j0
−dp−1,j0−1

(Aj0/Aj0−1), (Vi,j) 7→ Vp−1,j0

is a locally trivial fiber bundle, of fiber ϕ−1(H) ∼= X(d̃, Ã), where

d̃i,j =

{
di,j if (i, j) 6= (p, j0),
dp−1,j0 if (i, j) = (p, j0),

Ãj =

{
Aj if j 6= j0,
H if j = j0.

In fact ϕ is trivial over each B-orbit of Grassdp−1,j0
−dp−1,j0−1

(Aj0/Aj0−1) whenever
B ⊂ GL(Aj0/Aj0−1) is a Borel subgroup.

Proof of Lemma 3. In the situation of Lemma 3 (a), for every V = (Vi,j) ∈ X(d,A) we
have Vp−1,j = Aj. We obtain a canonical isomorphism

X(d,A)→ X(d̂, A), V 7→ V̂

where V̂ := (V̂i,j) denotes the (p − 1) × q matrix of spaces given by V̂i,j = Vi,j for all
(i, j) ∈ {1, . . . , p− 1} × {1, . . . , q}.

In the situation of Lemma 3 (b), we have a canonical isomorphism

ϕ−1(H)→ X(d̃, Ã), (Vi,j) 7→ (Ṽi,j) given by Ṽi,j =

{
Vi,j if (i, j) 6= (p, j0),
H if (i, j) = (p, j0).

It remains to show that ϕ is trivial over the B-orbit of H whenever B is a Borel subgroup
of GL(Aj0/Aj0−1) (this fact guarantees that ϕ is locally trivial, since there is a Borel
subgroup B for which the orbit B ·H is open). By the properties of Schubert cells (see,
e.g., [2]), there is a unipotent subgroup U ⊂ B such that the map

ψ : U → B ·H, u 7→ u(H)

is an isomorphism of algebraic varieties. Moreover there is a natural embedding of
GL(Aj0/Aj0−1) into PA, which yields an action of GL(Aj0/Aj0−1) on X(d,A), such that
the map ϕ is GL(Aj0/Aj0−1)-equivariant. Whence a commutative diagram

ϕ−1(B ·H)

ϕ

��

U × ϕ−1(H)∼
ξ

oo

pr1
��

B ·H U
∼
ψ

oo

where pr1 is the projection on the first factor while the isomorphism ξ is given by ξ(u, V ) =
u · V for all (u, V ) ∈ U × ϕ−1(H) and ξ−1(V ) = (ψ−1 ◦ ϕ(V ), (ψ−1 ◦ ϕ(V ))−1 · V ) for all
V ∈ ϕ−1(B ·H). Therefore the restriction of ϕ to ϕ−1(B ·H) is trivial.

Proof of Theorem 1. The proof is done by induction on the tuple (p, dp,1, . . . , dp,q) (consid-
ering lexicographic order), with immediate initialization for p = 1 (in which case X(d,A)
is reduced to a point). The induction step is yielded by Lemma 3.
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Remark 4. If G is an algebraic group and G′ is a closed subgroup acting on an algebraic
variety Y , then we let G′ act on G×Y by g′ ·(g, y) = (gg′−1, g′y) and denote by G×G′Y :=
(G×Y )/G′ the quotient variety. The latter variety is equipped with aG-action in a natural
way.

Lemma 3 (b) yields the following inductive formula, in terms of a PA-equivariant iso-
morphism of varieties

X(d,A) ∼= PA ×PA,H
X(d̃, Ã),

where H is any dp−1,j0-dimensional space such that Aj0−1 ⊂ H ⊂ Aj0 . As before PA ⊂
GL(Aq) is the parabolic subgroup of elements which fix the partial flag A = (A1 ⊂ . . . ⊂
Aq), while by PA,H we denote the (parabolic) subgroup PA,H = {g ∈ PA : g(H) = H}.

Remark 5. (a) We consider the space Cn (n > 1) and its standard basis (ε1, . . . , εn), and
let A = (A1, . . . , Aq) be a standard partial flag, i.e., Aj = 〈εs : 1 6 s 6 `j〉C, for some
1 6 `1 < `2 < . . . < `q = n. Thus PA is a standard parabolic subgroup.

Given a sequence of positive integers k = (k1 < . . . < kp = n), let Flk(Cn) be the
variety of partial flags F = (F1 ⊂ . . . ⊂ Fp = Cn) with dimFi = ki for all i. A
permutation w ∈ Sn gives rise to the element

Fw := (〈εwr : 1 6 r 6 ki〉C)pi=1.

Let dw = (dwi,j) be the p× q matrix given by

dwi,j := |{w1, w2, . . . , wki} ∩ {1, 2, . . . , `j}|.

The PA-orbit of Fw is given by

PA · Fw = {F = (F1, . . . , Fp) ∈ Flk(Cn) : dimFi ∩ Aj = dwi,j ∀i, j}

and its closure is the Schubert variety

PA · Fw = {F = (F1, . . . , Fp) ∈ Flk(Cn) : dimFi ∩ Aj > dwi,j ∀i, j}.

Then, the map
X(dw, A)→ PA · Fw, V = (Vi,j) 7→ (V1,q, . . . , Vp,q)

is a resolution of singularities of the Schubert variety PA · Fw (this map is proper since
X(dw, A) is projective; it is birational since its restriction over PA ·Fw is an isomorphism;
finally it follows from Theorem 1 that the variety X(dw, A) is smooth).

(b) Now assume that `j = kj = j for all j, hence Fl(Cn) := Flk(Cn) is the variety
of complete flags, A = (A1, . . . , An) = (〈ε1, . . . , εj〉C)nj=1 = Fid is the standard complete
flag, and B := PA is the Borel subgroup of upper triangular matrices. For a permutation
w ∈ Sn, the matrix dw = (dwi,j)16i,j6n is here given by

dwi,j = |{w1, . . . , wi} ∩ {1, . . . , j}| for all i, j ∈ {1, . . . , n}.
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For every j ∈ {1, . . . , n − 1}, let Pj := {g ∈ GL(Cn) : g(Aj′) = Aj′ ∀j′ 6= j} be
the corresponding minimal parabolic subgroup. Write sj = (j, j + 1) ∈ Sn. A reduced
decomposition

w = si1si2 · · · si`
gives rise to the Bott-Samelson variety

Z(i1,...,i`) := Pi1 ×B Pi2 ×B · · · ×B Pi`/B

and to the resolution

Z(i1,...,i`) = Pi1 ×B Pi2 ×B · · · ×B Pi`/B → (Pi1Pi2 · · ·Pi`) · Fid = B · Fw

(see [2]).
A standard way of producing a particular reduced decomposition [w] := (i1, . . . , i`) of

w is as follows:

• [id] := ∅;

• if wn = n, then set [w] := [ŵ] where ŵ := w|{1,...,n−1} ∈ Sn−1;

• if wn < n, then write w = swnw
′ with w′n = wn + 1 and set [w] := (wn, i

′
2, . . . , i

′
`)

where [w′] = (i′2, . . . , i
′
`).

Then, the variety X(dw, A) is (B-equivariently) isomorphic to the Bott-Samelson variety
Z[w] associated to the reduced decomposition [w] just defined. This fact can be shown
directly by induction, by relying on the inductive formula given in Remark 4. It also
follows from part (c) of the present Remark.

(c) Following the terminology of [10], a subset family is a collection D of subsets of
{1, . . . , n}. A flagged representation of D is a sequence of subspaces (VC)C∈D of Cn such
that dimVC = |C| and VC ⊂ VC′ whenever C ⊂ C ′. In fact, we focus on subset families
such that {1, . . . , j} ∈ D for all j ∈ {1, . . . , n}, and on flagged representations (VC) such
that V{1,...,j} = Aj for all j. Given a subset family D, let IBD be the set of all such flagged
representations; it is a projective variety endowed with a natural action of B.

Given a permutation w ∈ Sn, let Dw be the subset family

Dw =
{
{w1, . . . , wi} ∩ {1, . . . , j} : 1 6 i, j 6 n

}
.

Then, there is a natural isomorphism IBDw

∼→ X(dw, A).
If i = (i1, . . . , i`) is a reduced decomposition of w, it is shown in [10, Theorem 7] that

there is a B-equivariant isomorphism Zi
∼= IB

D+
i

, where D+
i is the subset family

D+
i :=

{
si1 · · · sit({1, . . . , it}) : 1 6 t 6 `

}
∪
{
{1, . . . , j} : 1 6 j 6 n

}
.

If i = [w], then it is easy to show (by induction) that both subset families Dw and D+
[w]

coincide, whence B-equivariant isomorphisms X(dw, A) ∼= IBDw
∼= Z[w].
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3 Discrete data and inversion number

In this section we set n := dp,q(= dimAq) and fix a basis (ε1, . . . , εn) of the space Aq such
that Aj = 〈εa : a ∈ {1, . . . , dp,j}〉C for all j ∈ {1, . . . , q}.

Definition 6. Let ω ∈ W(d), i.e., ω = (ωi,j) is a p × q matrix of subsets of {1, . . . , n}
which fulfills (3) and (4). Thus, for every j ∈ {1, . . . , q}, the j-th column of ω yields a
filtration

ω1,j ⊂ ω2,j ⊂ . . . ⊂ ωp,j = {1, . . . , dp,j}. (7)

(a) Let a, b ∈ {1, . . . , n} such that a 6= b. For j ∈ {1, . . . , q}, we write a <j b if one of the
following two conditions is fulfilled:

• a appears before b in the filtration (7), i.e., there is i ∈ {1, . . . , p} such that a ∈ ωi,j
and b /∈ ωi,j; or

• b does not appear in the filtration (7) and is greater than a, i.e., b /∈ ωp,j (that is,
b > dp,j) and b > a.

We write a ∼j b if the following condition is fulfilled:

• a, b appear simultaneously in the filtration (7), i.e., a, b ∈ {1, . . . , dp,j} and min{i =
1, . . . , p : a ∈ ωi,j} = min{i = 1, . . . , p : b ∈ ωi,j}.

For j = 0, we write a <0 b whenever a < b; hence 1 <0 2 <0 . . . <0 n.

(b) Let j ∈ {1, . . . , q}. Let Invj(ω) be the set of couples (a, b) ∈ {1, . . . , n}2 satisfying,
for some j′ ∈ {0, . . . , j − 1},

a < b and


a <j b, b <j′ a, and a ∼j′′ b whenever j′ < j′′ < j
or
b <j a, a <j′ b, and a ∼j′′ b whenever j′ < j′′ < j.

Note that Invj(ω) ⊂ {1, . . . , dp,j}2.

(c) Finally set ninv(ω) := |Inv1(ω)|+ |Inv2(ω)|+ . . .+ |Invq(ω)|.

Example 7. For ω =

 ∅ {1} {1, 3}
{2} {1, 2, 3} {1, 2, 3}
{1, 2} {1, 2, 3} {1, 2, 3}

 we get

1 <0 2 <0 3, 2 <1 1 <1 3, 1 <2 2 ∼2 3, 1 ∼3 3 <3 2,

hence Inv1(ω) = {(1, 2)}, Inv2(ω) = {(1, 2)}, Inv3(ω) = {(2, 3)}, and so ninv(ω) = 3.

Definition 8. For ω = (ωi,j) ∈ W(d), we define

Vω := (〈εa : a ∈ ωi,j〉C)i,j,

which is an element of the variety X(d,A). Clearly, Vω = Vω′ iff ω = ω′.
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Recall that PA ⊂ GL(Aq) is the parabolic subgroup of elements which preserve the
partial flag A = (A1, . . . , Aq). Hence

SA := {g ∈ GL(Aq) : g(εa) ∈ C∗εa for all a = 1, . . . , n}

is a maximal torus of PA.

Theorem 9.

(a) The elements Vω, for ω ∈ W(d), are exactly the SA-fixed points of the variety
X(d,A).

(b) There is a cell decomposition X(d,A) =
⊔
ω∈W(d) C(ω) such that

(i) Vω ∈ C(ω) for all ω ∈ W(d);

(ii) C(ω) is isomorphic to the affine space Aninv(ω) of dimension ninv(ω).

The proof relies on a discrete version of Lemma 3 (b).

Lemma 10. Assume that p > 2. Assume that there is j0 ∈ {1, . . . , q} (chosen minimal)
such that dp,j0 > dp−1,j0.

• Let d̃ = (d̃i,j) be the p× q matrix as in Lemma 3 (b).

• Let W0 denote the set of subsets ω0 such that {1, . . . , dp,j0−1} ⊂ ω0 ⊂ {1, . . . , dp,j0}
and |ω0| = dp−1,j0, and let us consider the map

φ :W(d)→W0, ω = (ωi,j) 7→ ωp−1,j0 .

• Fix ω0 ∈ W0, and let σ : {1, . . . , n} → {1, . . . , n} be the bijection such that
σ(a) = a unless dp,j0−1 < a 6 dp,j0 ,
σ is increasing on ω0 and on ωc0 := {1, . . . , dp,j0} \ ω0,
σ(ω0) = {1, . . . , dp−1,j0} and σ(ωc0) = {dp−1,j0 + 1, . . . , dp,j0}.

Then, the map

φ−1(ω0)→W(d̃), ω 7→ ω̃ := (ω̃i,j) with

{
ω̃i,j = σ(ωi,j) if (i, j) 6= (p, j0),

ω̃p,j0 = σ(ω0)(= {1, . . . , d̃p,j0})

is a bijection such that, for every ω ∈ φ−1(ω0),

ninv(ω) = ninv(ω̃) + |J0|, (8)

where J0 := {(a, b) : dp,j0−1 < a < b 6 dp,j0 , b ∈ ω0, a /∈ ω0}.
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Proof of Lemma 10. The definitions of φ,W(d̃), and σ easily ensure that the map ω 7→ ω̃
is well defined and bijective. It remains to show (8).

Let <̃j, resp. ∼̃j, be the analogues of <j, resp. ∼j, relative to ω̃. Given a, b ∈
{1, . . . , n} and j ∈ {0, . . . , q}, we say that the relative position of (a, b) in the j-th column
of ω is <, ∼, or > depending on whether a <j b, a ∼j b, or b <j a. For j ∈ {1, . . . , q}, we
say that the relative position of (a, b) before the j-th column of ω is < or > depending
on whether a <j′ b or b <j′ a where j′ < j is maximal such that a 6∼j′ b.

Set I = {(a, b) ∈ {1, . . . , n}2 : a < b} and let σ : I → I be the bijection defined by

σ(a, b) =

{
(σ(a), σ(b)) if σ(a) < σ(b),
(σ(b), σ(a)) otherwise.

By definition of ninv(ω) and ninv(ω̃), for proving (8), it suffices to check that for every
couple (a, b) ∈ I we have

if (a, b) /∈ J0 or j 6= j0: (a, b) ∈ Invj(ω)⇔ σ(a, b) ∈ Invj(ω̃); (9)

if (a, b) ∈ J0 and j = j0: (a, b) ∈ Invj0(ω) and σ(a, b) /∈ Invj0(ω̃). (10)

To this end, we need to compare the relative positions of (a, b) and (σ(a), σ(b)) in each
column of ω and ω̃, respectively.

We make two observations. The first one follows from the construction of ω̃:

a ∈ ωi,j ⇔ σ(a) ∈ ω̃i,j unless j = j0 and a ∈ ωc0,
in which case a ∈ ωp,j0 but σ(a) /∈ ω̃p,j0 . (11)

The second one follows from the construction of σ:

a < b⇒ σ(a) < σ(b) unless (a, b) ∈ J0,

in which case we have a < b but σ(a) > σ(b). (12)

Since the relative position of a couple (a, b) in the j-th column of ω depends only on the
belonging of a, b in the subsets ωi,j and on the fact that a < b or b < a, for every couple
(a, b) ∈ I \ J0, we deduce from (12) and (11) that σ(a, b) = (σ(a), σ(b)) and

the relative position of (a, b) in the j-th column of ω coincides
with the relative position of (σ(a), σ(b)) in the j-th column of ω̃

(13)

for all j ∈ {0, . . . , q} when a, b /∈ ωc0, resp., for all j ∈ {0, . . . , q} \ {j0} when a ∈ ωc0 or
b ∈ ωc0. Moreover:

• For (a, b) ∈ I such that b ∈ ωc0(= {1, . . . , dp,j0} \ ω0) and a /∈ ωc0, we have on one
hand a ∈ ωp−1,j0(= ω0) and b /∈ ωp−1,j0 , hence a <j0 b, and we get on the other hand
σ(a) ∈ ω̃p−1,j0(= σ(ωp−1,j0)) and σ(b) /∈ ω̃p−1,j0 , hence σ(a)<̃j0σ(b).

• For (a, b) ∈ I such that b > dp,j0 , we have on one hand b > max{dp,j0 , a}, hence
a <j0 b, while we get on the other hand σ(b) > σ(a) (by (12)) and σ(b) = b > dp,j0 >

d̃p,j0 (by definition of σ), hence σ(a)<̃j0σ(b).
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Thus in these two cases, (13) holds also for j = j0. At this stage, because of (13), we
obtain that every couple (a, b) ∈ I such that (a, b) /∈ J0 and (a, b) /∈ J ′0 := {(a′, b′) ∈ I :
a′, b′ ∈ ωc0} fulfills the equivalence in (9).

Next we consider a couple (a, b) ∈ J ′0. Thus a, b ∈ ωc0 = ωp,j0 \ ωp−1,j0 , and this yields
a ∼j0 b. For every j < j0, we have b > a > dp−1,j0 > dp,j hence a <j b. On the other hand

by (11)–(12) we have σ(b) > σ(a) and σ(b) /∈ ω̃p,j0 , i.e., σ(b) > d̃p,j0 > d̃p,j for all j 6 j0,
whence σ(a)<̃jσ(b) for all j ∈ {0, . . . , j0}. Altogether we conclude that (a, b) /∈ Invj(ω)
and σ(a, b) /∈ Invj(ω̃) for all j ∈ {1, . . . , j0}, and that the relative positions of (a, b) and
σ(a, b) before the (j0 + 1)-th column of ω and ω̃, respectively, are both equal to <. These
facts, combined with (13), guarantee that every couple (a, b) ∈ J ′0 fulfills the equivalence
in (9).

Finally we consider a couple (a, b) ∈ J0. Thus σ(a, b) = (σ(b), σ(a)) in view of (12).
This yields b ∈ ωp−1,j0(= ω0) and a /∈ ωp−1,j0 , hence b <j0 a, while for every j < j0 we
have b > a > dp,j0−1 > dp,j hence a <j b. On the other hand, by (11) we get σ(b) ∈ ω̃p−1,j0

and σ(a) /∈ ω̃p−1,j0 , hence σ(b)<̃j0σ(a), and for every j < j0 we get σ(a) > σ(b) and

σ(a) > dp,j0−1 > d̃p,j hence σ(b)<̃jσ(a). Altogether this implies that (a, b) /∈ Invj(ω)
whenever j < j0 and (a, b) ∈ Invj0(ω) on one hand, σ(a, b) /∈ Invj(ω̃) whenever j 6 j0

on the other hand; in addition the relative positions of the couples (a, b) and (σ(a), σ(b))
before the (j0 + 1)-th column of ω and ω̃, respectively, are both equal to >. For j > j0
we have a, b ∈ ωp,j0 ⊂ ωp,j. On the basis of (11) we deduce that the relative positions of
(a, b) and (σ(a), σ(b)) in the j-th column of ω and ω̃, respectively, coincide. Hence, for
j > j0, we have (a, b) ∈ Invj(ω) if and only if (σ(b), σ(a)) ∈ Invj(ω̃). Therefore the couple
(a, b) fulfills the equivalences in (9) and (10). The proof of the lemma is complete.

Proof of Theorem 9. (a) Clearly Vω is fixed by SA. Conversely, an element V = (Vi,j) ∈
X(d,A) is fixed by SA if and only if each subspace Vi,j is SA-stable, which means that
Vi,j is a sum of SA-eigenspaces, i.e., is of the form Vi,j = 〈εa : a ∈ ωi,j〉C for some subset
ωi,j ⊂ {1, . . . , n}. This subset must be of cardinality dimVi,j = di,j and the inclusion
Vi,j ⊂ Vi′,j′ yields ωi,j ⊂ ωi′,j′ whenever i 6 i′, j 6 j′; in addition, the equality Vp,j = Aj
yields ωp,j = {1, . . . , dp,j} for all j. Hence ω := (ωi,j) is an element of W(d) and we have
V = Vω.

(b) The proof is done by induction on the tuple (p, dp,1, . . . , dp,q) (considering lexico-
graphic order) with immediate initialization if p = 1. So assume that p > 2 and let us
distinguish two cases, as in the statement of Lemma 3.

Case 1: dp,j = dp−1,j for all j ∈ {1, . . . , q}.
We denote by d̂ (resp., V̂ ) (resp., ω̂) the matrix formed by the first p − 1 rows of d

(resp., of V ∈ X(d,A)) (resp., of ω ∈ W(d)). The map θ : X(d,A)→ X(d̂, A), V 7→ V̂ is
an isomorphism of algebraic varieties (see Lemma 3), similarly the map W(d) → W(d̂),
ω 7→ ω̂ is a bijection, and we have θ(Vω) = Vω̂ for all ω ∈ W(d). Moreover, since
ωp−1,j = ωp,j, we must have min{i = 1, . . . , p− 1 : a ∈ ω̂i,j} = min{i = 1, . . . , p : a ∈ ωi,j}
for all j ∈ {1, . . . , q}, all a ∈ ω̂p−1,j = ωp,j, which ensures that ninv(ω) = ninv(ω̂). The
statement follows from these observations and the induction hypothesis.

Case 2: dp,j0 > dp,j0−1 for some j0 ∈ {1, . . . , q}, chosen minimal.
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Let Y be the variety of dp−1,j0-dimensional subspaces H such that Aj0−1 ⊂ H ⊂ Aj0
and let us consider the map

ϕ : X(d,A)→ Y, V = (Vi,j) 7→ Vp−1,j0

as in Lemma 3. For ω0 ∈ W0, with W0 as in Lemma 10, let

Hω0 := 〈εa : a ∈ ω0〉C ∈ Y.

Denoting by B ⊂ GL(Aq) the subgroup of automorphisms which are upper triangular in
the basis (ε1, . . . , εn), we have a cell decomposition

Y =
⊔

ω0∈W0

B ·Hω0 (14)

such that dimB ·Hω0 = |J0| where J0 is the set given in Lemma 10 (see (6)). Note that
(14) yields a partition X(d,A) =

⊔
ω0∈W0

ϕ−1(B ·Hω0). Note also that Vω ∈ ϕ−1(Hω0) ⊂
ϕ−1(B ·Hω0) whenever ω ∈ φ−1(ω0), with φ as in Lemma 10. Hence, for showing Theorem
9 (b), given any ω0 ∈ W0, it suffices to construct a cell decomposition

ϕ−1(B ·Hω0) =
⊔

ω∈φ−1(ω0)

C(ω)

which satisfies conditions (i) and (ii) of the statement.

Letting d̃ = (d̃i,j) and Ã = (Ãj) be as in Lemma 3 (b) (for H = Hω0), we get by
Lemma 3 (and its proof) a trivialization of ϕ over B ·Hω0

ξ : ϕ−1(Hω0)× (B ·Hω0)
∼→ ϕ−1(B ·Hω0)

(such that ξ( · , Hω0) = idϕ−1(Hω0 )) and an isomorphism

ζ : ϕ−1(Hω0)
∼→ X(d̃, Ã), (Vi,j) 7→ (Ṽi,j) with

{
Ṽi,j = Vi,j if (i, j) 6= (p, j0),

Ṽp,j0 = Hω0 .

Letting ε̃a := εσ−1(a) (for a = 1, . . . , n), with σ as in Lemma 10, we get a basis (ε̃1, . . . , ε̃n)

of Aq such that Ãj = 〈ε̃a : 1 6 a 6 d̃p,j〉C for all j = 1, . . . , q. By induction hypothesis,
we have a cell decomposition

X(d̃, Ã) =
⊔

ω∈W(d̃)

C̃(ω)

such that dim C̃(ω) = ninv(ω) and Ṽω := (〈ε̃a : a ∈ ωi,j〉C)i,j ∈ C̃(ω) for all ω ∈ W(d̃).

Considering the bijection φ−1(ω0)
∼→W(d̃), ω 7→ ω̃ defined in Lemma 10, we derive a cell

decomposition of ϕ−1(B ·Hω0) parametrized by the set φ−1(ω0), given by

ϕ−1(B ·Hω0) =
⊔

ω∈φ−1(ω0)

ξ( ζ−1(C̃(ω̃))× (B ·Hω0)).

The cell C(ω) := ξ( ζ−1(C̃(ω̃))× (B ·Hω0))
∼= C̃(ω̃)× (B ·Hω0) satisfies
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(i)′ Vω ∈ C(ω); indeed we easily have Vω = ζ−1(Ṽω̃) = ξ(ζ−1(Ṽω̃), Hω0).

(ii)′ dimC(ω) = dim C̃(ω̃) + dimB ·Hω0 = ninv(ω̃) + |J0|.

Invoking Lemma 10, we deduce that this cell decomposition satisfies conditions (i) and
(ii) of Theorem 9 (b). This completes the proof of the theorem.

From (5) and Theorems 1, 9, it follows:

Corollary 11.
∑

ω∈W(d)

xninv(ω) =
∏

26i6p
16j6q

[
di−1,j−1 di−1,j

di,j

]
x

(with di,0 := 0).

Example 12. (a) In the special case where q = 1, the chain of subspaces A = (A1)
consists of a single space, say A1 = Cn, while the dimension matrix d = (di,1)pi=1 consists
of a single column. Then the variety X(d,A) coincides with the variety of partial flags
F = (F1 ⊂ . . . ⊂ Fp = Cn) such that dimFi = di,1, and Theorem 9 retrieves the properties
of the decomposition of this partial flag variety into Schubert cells. Specifically, the map

w ∈ Sn 7→ ω(w) := ({w1, . . . , wdi,1})
p
i=1 ∈ W(d)

yields a bijection between the setW(d) and the quotient Sn/Sd of the symmetric group by
the parabolic subgroup Sd := {w ∈ Sn : w({1, . . . , di,1}) = {1, . . . , di,1} ∀i = 1, . . . , p}.
In addition the inversion number ninv(ω(w)) coincides with the Coxeter length of the
representative of minimal length of the coset wSd.

(b) Next let us consider the special case where p = 2, which means that the dimension
matrix d consists of two rows; let k := (d1,1 6 . . . 6 d1,q) be the entries in the first row;
let ` := (d2,1 6 . . . 6 d2,q = n) be the entries in the second row, i.e., the dimensions
of the subspaces forming the (fixed) sequence A = (A1 ⊂ . . . ⊂ Aq = Cn). In this case
X(d,A) can be identified with the subvariety Y ⊂ Flk(Cn) consisting of partial flags
F = (F1 ⊂ . . . ⊂ Fq ⊂ Cn) such that Fj ⊂ Aj for all j = 1, . . . , q. Note that Y is
PA-stable, smooth, and irreducible (by Theorem 1), hence it is the closure of a PA-orbit,
i.e., a (smooth) Schubert variety of Flk(Cn). Theorem 9 retrieves the properties of the
decomposition of this Schubert variety into Schubert cells. Specifically, the map

{w ∈ Sn : w({1, . . . , d1,j}) ⊂ {1, . . . , d2,j} ∀j = 1, . . . , q}/Sk → W(d)

wSk 7→ ω = (ωi,j)

(with Sk := {w ∈ Sn : w({1, . . . , d1,j}) = {1, . . . , d1,j} ∀j = 1, . . . , q}) given by

ω1,j := {w1, . . . , wd1,j}, ω2,j := {1, . . . , d2,j} for all j = 1, . . . , q

is a bijection such that, for ω ∈ W(d), the number ninv(ω) coincides with the length of
the minimal representative of the corresponding coset wSk.
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4 Application to Spaltenstein varieties

In this section we fix the following data:

• k = (0 = k0 < k1 < . . . < kp = n) is an increasing sequence of integers. As before,
we denote by Flk(Cn) the variety of partial flags F = (0 = F0 ⊂ F1 ⊂ . . . ⊂ Fp = Cn)
such that dimFi = ki for all i = 1, . . . , p.

• u : Cn → Cn is a nilpotent endomorphism.

4.1 The Spaltenstein variety Flk,u

The Spaltenstein variety Flk,u is the subvariety of Flk(Cn) defined by

Flk,u = {F = (F0, . . . , Fp) : u(Fi) ⊂ Fi−1 ∀i = 1, . . . , p}.

Thus Flk,u is a closed subvariety of Flk(Cn), hence a projective variety – provided that it
is nonempty.

Let λ(u) = (λ1 > . . . > λr) be the partition of n formed by the sizes of the Jordan
blocks of u. This partition can be represented by a Young diagram (also denoted λ(u))
of rows of lengths λ1, . . . , λr. By λ(u)∗ = (λ∗1 > . . . > λ∗λ1) we denote the dual partition
of n, i.e., the lengths of the columns of λ(u).

The dimension vector k yields a composition of n denoted µ(k) := (k1 − k0, . . . , kp −
kp−1). By µ(k)+ we denote the partition of n obtained by putting the sequence µ(k) in
nonincreasing order.

We emphasize the following properties of the Spaltenstein variety Flk,u.

Proposition 13 ([12, 13]).

(a) Flk,u is nonempty if and only if µ(k)+ � λ(u)∗, where � stands for the dominance
order.

(b) In this case, Flk,u is equidimensional of dimension
∑λ1

j=1

(λ∗j
2

)
−
∑p

i=1

(
ki−ki−1

2

)
.

(c) Moreover, there is a bijection between the set of irreducible components of Flk,u and
the set STabk(λ(u)) of semistandard tableaux of shape λ(u) and weight µ(k).

Recall that a semistandard tableau of shape λ(u) and weight µ(k) = (µ1, . . . , µp) (with
µi = ki − ki−1) is a numbering of the boxes of the Young diagram λ(u) by the integers
1, 2, . . . , p, comprising µi boxes of number i for all i, such that the entries in each row are
increasing from left to right and the entries in each column are nondecreasing from top to
bottom. The set STabk(λ(u)) of such semistandard tableaux is nonempty precisely when
the condition µ(k)+ � λ(u)∗ is fulfilled.

Example 14. For k = (0, 2, 5, 8) and λ(u) = (3, 2, 2, 1), we get µ(k) = (2, 3, 3), µ(k)+ =
(3, 3, 2) � (4, 3, 1) = λ(u)∗, dim Flk,u = (6 + 3 + 0)− (1 + 3 + 3) = 2, and STabk(λ(u)) ={ 1 2 3

1 2
2 3
3

,

1 2 3
1 3
2 3
2

}
. Thus Flk,u is the union of two irreducible components of dimension 2.
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In the next subsection, we recall from [12, 13] an explicit parametrization of the
components of Flk,u by the semistandard tableaux of the set STabk(λ(u)).

4.2 The subvarieties Flk,u,T and YT := (Flk,u,T )S associated to semistandard
tableaux

Given F = (F0, . . . , Fp) ∈ Flk,u, for each i, we get by restriction a nilpotent endomorphism
u|Fi

: Fi → (Fi−1 ⊂)Fi, whose Jordan form can be encoded by a partition/a Young
diagram λ(u|Fi

) ` ki. This yields a chain of Young diagrams

∅ = λ(u|F0) ⊂ λ(u|F1) ⊂ . . . ⊂ λ(u|Fp) = λ(u).

Let T be the tableau of shape λ(u) obtained by putting the number i in the boxes of
λ(u|Fi

) \ λ(u|Fi−1
) for all i = 1, . . . , p. The condition u(Fi) ⊂ Fi−1 implies that each row

of λ(u|Fi
)\λ(u|Fi−1

) contains at most one box, which guarantees that T is a semistandard
tableau, in fact an element of STabk(λ(u)).

For every semistandard tableau T ∈ STabk(λ(u)), we define

Flk,u,T = {F = (F0, . . . , Fp) ∈ Flk,u : λ(u|Fi
) = shape of T |6i ∀i = 1, . . . , p}

where T |6i stands for the subtableau of T of entries 6 i. The above discussion shows that
the Spaltenstein variety Flk,u is the disjoint union of the subsets Flk,u,T so-obtained. In
fact, we have the following result:

Proposition 15 ([12, 13]).

(a) For every T ∈ STabk(λ(u)), the subset Flk,u,T ⊂ Flk,u is nonempty, locally closed,

smooth, irreducible, of dimension equal to
∑λ1

j=1

(λ∗j
2

)
−
∑p

i=1

(
ki−ki−1

2

)
.

(b) Therefore, the closures Flk,u,T , for T ∈ STabk(λ(u)), are exactly the irreducible
components of Flk,u.

Note that parts (b) and (c) of Proposition 13 are consequences of this result. Proposi-
tion 15 (a) can be proved by induction on n. The fact that the subsets Flk,u,T are locally
closed (and smooth) can also be shown as follows. The iterated kernels of u form an
increasing sequence

keru ⊂ keru2 ⊂ . . . ⊂ keruλ1 = Cn,

i.e., a partial flag. The stabilizer Q := {g ∈ GLn(C) : g(keruj) = keruj ∀j} of this flag is
a parabolic subgroup of GLn(C). By definition the number of boxes in the first j columns
of the Young diagram λ(u|Fi

) is equal to dim ker(u|Fi
)j = dimFi ∩ keruj. Therefore, we

have
Flk,u,T = Flk,u ∩ {F ∈ Flk(Cn) : dimFi ∩ keruj = c6j(T |6i) ∀i, j} (15)

where c6j(T |6i) stands here for the number of entries 6 i in the first j columns of T .
This description shows that the subsets Flk,u,T (for T ∈ STabk(λ(u))) coincide with the
intersections between Flk,u and the Q-orbits of Flk(Cn). Since every Q-orbit of Flk(Cn) is
locally closed, this guarantees that the subsets Flk,u,T are locally closed in Flk,u.
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Remark 16. The subspace nQ := {y ∈ End(Cn) : y(keruj) ⊂ keruj−1 ∀j > 1} is the
nilradical associated to the parabolic subgroup Q. The nilpotent endomorphism u is a
Richardson element of Q, in the sense that the orbit Q · u := {gug−1 : g ∈ Q} is Zariski
open in nQ (see [8, §3]).

Any partial flag F = (F0, . . . , Fp) ∈ Flk,u,T gives rise to a parabolic nilradical n(F ) :=
{y ∈ End(Cn) : y(Fi) ⊂ Fi−1 ∀i = 1, . . . , p}. Note that

Flk,u,T = Flk,u ∩ (Q · F ) = {g(F ) : g ∈ π−1((Q · u) ∩ n(F ))}

where π : Q → Q · u, g 7→ g−1ug. Then the smoothness of Flk,u,T (stated in Proposition
15) also follows from the fact that (Q · u) ∩ n(F ) is a smooth variety (since it is open in
the space nQ ∩ n(F )) while g 7→ g(F ) and π are smooth maps.

The variety YT

For deducing more facts on the structure of the subvariety Flk,u,T , we need more notation.
Since λ(u) = (λ1, . . . , λr) is the Jordan form of u, there is a basis (εi,j : 1 6 i 6 r, 1 6
j 6 λi) of the space Cn such that

u(εi,j) =

{
εi,j−1 if j > 2
0 if j = 1.

For j ∈ {1, . . . , λ1}, we set

Kj = 〈εi,j : 1 6 i 6 r, λi > j〉C.

Thus we get a grading
Cn = K1 ⊕ . . .⊕Kλ1 , (16)

moreover the subspaces Kj satisfy

keruj = K1 ⊕ . . .⊕Kj = keruj−1 ⊕Kj and u(Kj) ⊂ Kj−1

for all j ∈ {1, . . . , λ1} (with K0 := 0).
Let S = {h(t) : t ∈ C∗} ⊂ GLn(C) be the rank-one subtorus such that

h(t)v = t−2jv for all v ∈ Kj, for all j = 1, . . . , λ1.

Thus h(t)uh(t)−1 = t2u for all t ∈ C∗, hence each element of S normalizes u, and so
stabilizes the kernels keruj. This implies that S acts on the Spaltenstein variety Flk,u and
preserves the subvariety Flk,u,T for every semistandard tableau T ∈ STabk(λ(u)). We can
therefore define

YT := (Flk,u,T )S = {F ∈ Flk,u,T : h(t)F = F ∀t ∈ C∗}.

In other words, YT is the subset of flags F = (F0, . . . , Fp) ∈ Flk,u,T whose subspaces Fi
are homogeneous with respect to the grading of (16) in the sense that

Fi = Fi ∩K1 ⊕ . . .⊕ Fi ∩Kλ1 for all i = 1, . . . , p.

The notation YT is not ambiguous since, up to isomorphism, the variety YT only depends
on the semistandard tableau T .
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Proposition 17. YT is a smooth, projective, and irreducible variety. Moreover, the map
ϕT : Flk,u,T → YT , F 7→ lim

t→0
h(t)F is an algebraic affine bundle.

Proof. Our aim is to apply [7, Proposition 2]. The torus S = {h(t) : t ∈ C∗} acts by
conjugation on the Lie algebra gln(C) = End(Cn), and this action induces a grading

gln(C) =
⊕
i∈Z

g(i) where g(i) = {y ∈ gln(C) : h(t)yh(t)−1 = tiy ∀t ∈ C∗}.

Note that:

• u ∈ g(2);

• the Lie subalgebra g(> 0) :=
⊕

i>0 g(i) consists of the endomorphisms y : Cn → Cn

which preserve the kernels keruj (j = 1, . . . , λ1), in particular every endomorphism
which commutes with u belongs to g(> 0).

These observations mean that the grading gln(C) =
⊕

i∈Z g(i) is good for u in the sense
of [7, Proposition 2]. Moreover the second observation means that the parabolic subgroup
Q ⊂ GLn(C) formed by the elements which preserve the kernels keruj is corresponding
to the cocharacter t 7→ h(t) in the sense of [7, Section 2.1.3]. As shown above, Flk,u,T is
the intersection between the Spaltenstein variety Flk,u and a Q-orbit of the partial flag
variety Flk(Cn). We are now in position to apply [7, Proposition 2], which shows that
YT is smooth, projective, and that the map ϕT is an algebraic affine bundle over each
connected component of YT . Therefore the proof of the proposition is complete once we
know that YT is also an irreducible variety. This fact is shown in Section 4.3 below (it
follows from Theorem 1 and the claim made in the title of Section 4.3 below).

Remark 18. The reasoning made in [9, Section 11.16] shows that, if C ⊂ YT is a locally
closed subset isomorphic to an affine space, then so is its inverse image ϕ−1

T (C) ⊂ Flk,u,T ⊂
Flk,u (and the codimension of ϕ−1

T (C) in Flk,u coincides with the codimension of C in YT ).
In Section 4.4, we show that the variety YT has a cell decomposition for all semistandard
tableau T ∈ STabk(λ(u)). By collecting the inverse images of these cells by the various
maps ϕT , we therefore obtain a cell decomposition of the whole Spaltenstein variety Flk,u.

4.3 The variety YT is isomorphic to a variety of the form X(d,A)

As in Section 4.2, we consider a nilpotent endomorphism u : Cn → Cn of Jordan form
λ(u) = (λ1, . . . , λr) ` n. Thus q := λ1 is the nilpotency order of u, i.e., uq = 0, uq−1 6= 0.
As in Section 4.2, we consider a grading

Cn = K1 ⊕ . . .⊕Kq

such that keruj = K1 ⊕ . . .⊕Kj and u(Kj) ⊂ Kj−1 for all j ∈ {1, . . . , q} (with K0 := 0).
We fix a semistandard tableau T ∈ STabk(λ(u)) and focus on the variety YT = (Flk,u,T )S
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of partial flags F = (F0, . . . , Fp) which both belong to the subvariety Flk,u,T ⊂ Flk,u and
are homogeneous with respect to the grading Cn =

⊕q
j=1 Kj, i.e.,

Fi = Fi ∩K1 ⊕ . . .⊕ Fi ∩Kq for all i = 1, . . . , p. (17)

The tableau T has q columns and its entries belong to {1, . . . , p}. For i ∈ {1, . . . , p}
and j ∈ {1, . . . , q}, we denote by cj(T |6i) (resp., c6j(T |6i)) the number of boxes in the
j-th column (resp., in the first j columns) of the subtableau T |6i; i.e., the number of
entries 6 i in the j-th column (resp., in the first j columns) of T .

Lemma 19. Let F = (F0, . . . , Fp) ∈ Flk(Cn) be a partial flag homogeneous with respect
to the grading (i.e., such that (17) holds). The following conditions are equivalent:

(i) F belongs to the variety YT ;

(ii) We have

dimKj ∩ Fi = cj(T |6i) and u(Kj ∩ Fi) ⊂ Kj−1 ∩ Fi−1

for all j = 1, . . . , q, all i = 1, . . . , p.

Proof. Assume that (i) holds. Hence F belongs to Flk,u,T . In particular F belongs to
Flk,u, which implies that u(Fi) ⊂ Fi−1 for all i ∈ {1, . . . , p}. Since u(Kj) ⊂ Kj−1, we
deduce that u(Kj ∩Fi) ⊂ Kj−1 ∩Fi−1. In addition by (15) and the homogeneity of F , we
have

dimFi ∩Kj = dimFi ∩ keruj − dimFi ∩ keruj−1 = cj(T |6i).
This shows (ii). Conversely assume that (ii) holds. Since F is already assumed to be
homogeneous, we just need to show that F belongs to Flk,u,T . Again the homogeneity of
F , combined with the assumption in (ii), implies that

dimFi ∩ keruj =

j∑
j′=1

dimFi ∩Kj′ =

j∑
j′=1

cj′(T |6i) = c6j(T |6i)

and

u(Fi) = u
( q⊕
j=1

Fi ∩Kj

)
⊂

q∑
j=1

u(Fi ∩Kj) ⊂
q∑
j=1

Fi−1 ∩Kj−1 ⊂ Fi−1.

By (15), we conclude that F ∈ Flk,u,T .

Notation. When A = (ai,j) is a p× q matrix (whose coefficients ai,j are numbers, linear
spaces, or sets), we define its shifting A] as the (p+ q− 1)× q matrix whose j-th column
has the following content:

(a1,j , . . . , a1,j︸ ︷︷ ︸
j terms

, a2,j , . . . , ap−1,j , ap,j , . . . , ap,j︸ ︷︷ ︸
q + 1− j terms

).

For instance,

 1 4 7
2 5 8
3 6 9

] =


1 4 7
2 4 7
3 5 7
3 6 8
3 6 9

.
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Theorem 20. We consider a semistandard tableau T ∈ STabk(λ(u)).

• Let dT = (di,j) be the p× q matrix of nonnegative integers given by

di,j = cq+1−j(T |6i) (= the number of entries 6 i in the (q + 1 − j)-th
column of T ).

• Let A = (uq−1(keruq) ⊂ . . . ⊂ u(keru2) ⊂ keru).

Then, there is an isomorphism of varieties ΦT : YT → X(d]T , A) given by

F = (F0, . . . , Fp) 7→ V ]

where V = (Vi,j) is the p× q matrix of linear spaces such that

Vi,j = uq−j(Fi ∩ keruq+1−j) for all i = 1, . . . , p, all j = 1, . . . , q.

Combining Theorems 1 and 20, we obtain in particular a closed formula for the
Poincaré polynomial of the variety YT :

Corollary 21. Let dT = (di,j) be the p × q matrix of Theorem 20. Set by convention
di,0 := 0. Then:

(a) dimYT =
∑

26i6p
16j6q

(di,j − di−1,j)(di−1,j − di,j−1);

(b) P (YT )(x) :=
∑
m>0

dimH2m(YT ,Q)xm =
∏

26i6p
16j6q

[
di,j−1 di−1,j

di,j

]
x
.

Example 22. For T1 =
1 2 3
1 2
2 3
3

and T2 =
1 2 3
1 3
2 3
2

(the two tableaux of Example 14), we get

d]T1 =

 0 0 2
0 2 3
1 3 4

] =


0 0 2
0 0 2
1 2 2
1 3 3
1 3 4

, d]T2 =

 0 0 2
0 1 4
1 3 4

] =


0 0 2
0 0 2
1 1 2
1 3 4
1 3 4

,

and Corollary 21 yields dimYT1 = 1, dimYT2 = 2,

P (YT1)(x) = [ 1 2
3 ]x = 1 + x, and P (YT2)(x) = [ 1 2

4 ]x = 1 + x+ x2.

Proof of Theorem 20. We first check that the variety X(d]T , A) is well defined. The
tableau T being semistandard, every box of entry 6 i contained in the j-th column
of T (j > 2) is on the right of a box of entry 6 i− 1 (contained in the (j− 1)-th column).
Thus we must have

cj(T |6i) 6 cj−1(T6i−1) for all i = 1, . . . , p, all j = 2, . . . , q.
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In view of the definition of the matrix dT = (di,j), this yields

di,j 6 di−1,j+1 for all i = 1, . . . , p, all j = 1, . . . , q − 1 (18)

(with d0,j := 0). Moreover, it is clear that cj(T |6i) 6 cj(T |6i+1), hence

di,j 6 di+1,j for all i = 1, . . . , p− 1, all j = 1, . . . , q. (19)

Relations (18) and (19) ensure that the shifted matrix d]T has nondecreasing rows and
columns. In addition the j-th subspace Aj := uq−j(keruq+1−j) of the sequence A has
dimension

dimAj = dim keruq+1−j − dim keruq−j = cq+1−j(T |6p) = dp,j

which coincides with the last coefficient of the j-th column of d]T . These observations
ensure that the variety X(d]T , A) is well defined.

Let ûj−1 : Kj → Aq−j+1 = uj−1(keruj) denote the restriction of uj−1. We note that
ûj−1 is a linear isomorphism. Whenever M ⊂ Cn is a subspace homogeneous with respect
to the grading Cn =

⊕q
j=1Kj, we note that uj−1(M ∩ keruj) = ûj−1(M ∩ Kj). Both

observations are used throughout the rest of the proof.
Next, we check that the map ΦT is well defined. So let F = (F0, . . . , Fp) ∈ YT and let

V = (Vi,j) be as in the statement. By Lemma 19, we have

Vi,j = uq−j(Fi ∩ keruq+1−j) = uq−j(Fi ∩Kq+1−j)

⊂ uq−j−1(Fi−1 ∩Kq−j) = uq−(j+1)(Fi−1 ∩ keruq+1−(j+1)) = Vi−1,j+1

for all i = 2, . . . , p, all j = 1, . . . , q − 1. Next, it is clear that

Vi,j = uq−j(Fi ∩ keruq+1−j) ⊂ uq−j(Fi+1 ∩ keruq+1−j) = Vi+1,j ⊂ Vp,j = Aj

whenever i = 1, . . . , p− 1, j = 1, . . . , q. Finally, invoking again Lemma 19, we get

dimVi,j = dimuq−j(Fi ∩ keruq+1−j) = dimFi ∩Kq+1−j = cq+1−j(T |6i) = di,j

for all i, j. These observations guarantee that the shifted matrix of spaces V ] belongs to
the variety X(d]T , A).

The well-defined map ΦT : YT → X(d]T , A) so-obtained is clearly algebraic. Assume
that we know that ΦT is bijective. Then, since YT and X(d]T , A) are projective varieties,
it is also bicontinuous. Since X(d]T , A) is irreducible (by Theorem 1), we deduce that YT
is irreducible (which, by the way, completes the proof of Proposition 17). Since YT and
X(d]T , A) are smooth varieties, by Zariski’s main theorem (see, e.g., [1, §AG.18.2]), ΦT is
in fact an isomorphism. Thus, the proof of the theorem is complete once we check that
ΦT is bijective.

Let us check that ΦT is injective. So let F = (Fi)
p
i=0, F

′ = (F ′i )
p
i=0 ∈ YT such that

ΦT (F ) = ΦT (F ′). In view of the definition of ΦT , this implies that uj−1(Fi ∩ keruj) =
uj−1(F ′i ∩ keruj) for all i, j, i.e., ûj−1(Fi ∩ Kj) = ûj−1(F ′i ∩ Kj) with the notation ûj−1
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introduced above. Since ûj−1 is injective, we derive Fi∩Kj = F ′i ∩Kj for all i, j. Whence
Fi = F ′i for all i (since F, F ′ satisfy (17)).

It remains to show that ΦT is surjective. Let V ′ = (V ′i,j) ∈ X(d]T , A). So V ′ is a
(p+ q− 1)× q matrix of subspaces. The subspaces in the j-th column of V ′ form a chain

V ′1,j ⊂ . . . ⊂ V ′j,j ⊂ V ′j+1,j ⊂ . . . ⊂ V ′j+p−2,j ⊂ V ′j+p−1,j ⊂ . . . ⊂ V ′p+q−1,j(= Aj)

and their respective dimensions are the corresponding coefficients of the matrix d]T , i.e.,

d1,j = . . . = d1,j 6 d2,j 6 . . . 6 dp−1,j 6 dp,j = . . . = dp,j(= dimAj)

whence V ′1,j = . . . = V ′j,j =: V1,j and Vp,j := V ′j+p,j = . . . = V ′p+q−1,j(= Aj). For 1 < i < p,
let Vi,j := V ′j+i−1,j. Altogether, we obtain a p × q matrix V = (Vi,j) such that V ′ = V ].
Moreover, the subspaces Vi,j satisfy

V1,j ⊂ . . . ⊂ Vp,j = Aj = uq−j(keruq+1−j) for all j = 1, . . . , q, (20)

dimVi,j = di,j = cq+1−j(T |6i) for all i, j, (21)

and (since V ′ has increasing rows with respect to inclusion)

Vi,j ⊂ Vi−1,j+1 for all i = 2, . . . , p, all j = 1, . . . , q − 1. (22)

For i ∈ {1, . . . , p}, we set

Fi =

q⊕
j=1

(ûj−1)−1(Vi,q+1−j)

where ûj−1 : Kj → Aq+1−j is the linear isomorphism obtained by restriction of uj−1. By
construction, the subspace Fi is homogeneous with respect to Cn =

⊕q
j=1Kj and, by

(21),
Fi ∩Kj = (ûj−1)−1(Vi,q+1−j) has dimension di,q+1−j = cj(T |6i). (23)

In particular dimFi is the number of boxes in the subtableau T |6i, hence dimFi = ki. By
(20), we have F1 ⊂ . . . ⊂ Fp. Hence F := (F0 = 0, F1, . . . , Fp) belongs to Flk(Cn) and is
homogeneous. On the basis of (22), we have

u(Kj ∩ Fi) = u((ûj−1)−1(Vi,q+1−j)) = u({v ∈ Kj : uj−1(v) ∈ Vi,q+1−j})
⊂ u({v ∈ Kj : uj−1(v) ∈ Vi−1,q+2−j})
⊂ {v′ ∈ Kj−1 : uj−2(v′) ∈ Vi−1,q+2−j}
= (ûj−2)−1(Vi−1,q+2−j)

= Kj−1 ∩ Fi−1 for all i = 2, . . . , p, all j = 2, . . . , q.

We further note that u(K1 ∩ Fi) = 0 (since K1 ⊂ keru) and Kj ∩ F1 = 0 if j > 2 (by
(23) and the fact that the entry 1 appears only in the first column of the semistandard
tableau T ). Whence, finally,

u(Kj ∩ Fi) ⊂ Kj−1 ∩ Fi−1 for all i = 1, . . . , p, all j = 1, . . . , q. (24)
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By (23) and (24), F satisfies the conditions of Lemma 19 (ii). Therefore Lemma 19
guarantees that F ∈ YT . Finally, by the first equality in (23), we have

Vi,j = uq−j(Fi ∩Kq+1−j) = uq−j(Fi ∩ keruq+1−j)

for all i, j. Hence V ′ = V ] = ΦT (F ). The surjectivity of ΦT is established, the proof is
complete.

4.4 Cell decomposition of YT

Recall that k = (k0 = 0 6 k1 6 . . . 6 kp = n). By λ(u) = (λ1 > . . . > λr) ` n we denote
the Jordan form of the nilpotent endomorphism u ∈ End(Cn), seen as a Young diagram.

Definition 23.

(a) Let RTabk(λ(u)) be the set of tableaux τ of shape λ(u) and entries 1, . . . , p, such
that τ contains ki − ki−1 entries equal to i for all i, and the entries in each row of
τ are (strictly) increasing from left to right. Note that STabk(λ(u)) is a subset of
RTabk(λ(u)).

(b) Given a tableau τ ∈ RTabk(λ(u)), define its rectification Rect(τ) to be the tableau
of shape λ(u) obtained from τ by reordering the entries of each column in non-
decreasing order from top to bottom. In fact, the tableau Rect(τ) so-obtained is
semistandard, hence belongs to STabk(λ(u)) (see [4]). Given a semistandard tableau
T ∈ STabk(λ(u)), we define

RTab(T ) = {τ ∈ RTabk(λ(u)) : Rect(τ) = T}.

(c) In [4], P. Drube introduces a notion of inversion number ninv(τ) which measures
how far a row-increasing tableau τ ∈ RTabk(λ(u)) is from being semistandard. We
summarize this definition here: an inversion pair of τ consists of two entries a <
b in the same column of τ such that one of the following conditions holds – by
(a1, a2, . . . , a`), resp., (b1, b2, . . . , bm), we denote the (possibly empty) list of entries
directly to the right of a, resp. b, in τ , read from left to right:

• a is below b (in particular ` 6 m) and aj = bj for all j = 1, . . . , `; or

• there is j0 6 min{`,m} such that aj = bj for 1 6 j < j0 and aj0 > bj0 .

Then ninv(τ) denotes the total number of inversion pairs of τ . We have ninv(τ) = 0 if
and only if τ is semistandard ([4]).

Example 24. Let k = (0, 2, 3, 5, 7, 8, 10) and λ(u) = (4, 4, 2). For τ =
1 4 5 6
2 3 4 6
1 3

∈

RTabk(λ(u)), we get Rect(τ) =
1 3 4 6
1 3 5 6
2 4

∈ STabk(λ(u)). The inversion pairs of τ are the

couples (11, 2)1, (12, 2)1, (32, 4)2, (4, 5)3, thus ninv(τ) = 4. In that list of inversion pairs
(following the convention used in [4, 5]), the superscript indicates the column which the
pair belongs to, while the notation ai means the i-th entry of value a in the corresponding
column.
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Recall that we have fixed a Jordan basis (ε`,j) of u parametrized by the couples (`, j)
with 1 6 ` 6 r and 1 6 j 6 λ` (those couples correspond to the various positions of the
boxes of the Young diagram λ(u)). The basis is such that

u(ε`,j) = ε`,j−1 if j > 2 and u(ε`,1) = 0.

Definition 25. For a row-increasing tableau τ ∈ RTabk(λ(u)), we define a partial flag
Fτ = (F0, F1, . . . , Fp) by letting

Fi = 〈ε`,j : the (`, j) entry of τ is 6 i〉C for all i,

where by (`, j) entry we mean the entry situated in the `-th row, j-th column. Clearly,
Fτ = Fτ ′ iff τ = τ ′.

Lemma 26.

(a) The partial flag Fτ belongs to the variety YT for T = Rect(τ).

(b) Let g : Cn → Cn be a linear isomorphism which is diagonal in the basis (ε`,j), with
n pairwise distinct eigenvalues, and such that gug−1 ∈ C∗u. Such a g exists. Then
g acts on YT in a natural way and

(YT )g := {F ∈ YT : g(F ) = F} = {Fτ : τ ∈ RTab(T )}.

Proof. (a) By construction, dimFi is equal to the number of entries 6 i in τ . Since τ
belongs to the set RTabk(λ(u)), this number is equal to ki. Hence F ∈ Flk(Cn). By
construction, each subspace Fi is spanned by vectors which belong to

⋃q
j=1Kj, hence the

flag F is homogeneous. Moreover for all i, j we have

Fi ∩Kj = 〈ε`,j : the `-th box of the j-th column of τ is 6 i〉C. (25)

On the one hand this implies that

dimFi ∩Kj = (number of entries 6 i in the j-th column of τ) = cj(T |6i)

since the j-th columns of τ and T = Rect(τ) have the same content. On the other hand,
for j > 2, using that the rows of τ are increasing, we get

u(Fi ∩Kj) = 〈ε`,j−1 : the `-th box of the j-th column of τ is 6 i〉C
⊂ 〈ε`,j−1 : the `-th box of the (j − 1)-th column of τ is 6 i− 1〉C
= Fi−1 ∩Kj−1

while for j = 1 the inclusion u(Fi ∩K1) ⊂ u(K1) = 0 = Fi−1 ∩K0 holds. By Lemma 19,
these observations imply that Fτ belongs to YT .
(b) The linear map

g0 : Cn → Cn, ε`,j 7→ 2`−jrε`,j for 1 6 ` 6 r, 1 6 j 6 λ`
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is an example of map g which fulfills the conditions; it satisfies g0ug
−1
0 = 2ru. The fact that

g normalizes u and preserves each subspaceKj guarantees that its natural action on partial
flags stabilizes the variety YT (see Lemma 19). The inclusion {Fτ : τ ∈ RTab(T )} ⊂ (YT )g

is clear. Conversely, if F = (F0, . . . , Fp) ∈ YT is g-fixed, then each subspace Fi is spanned
by a family of eigenvectors (ε`,j : (`, j) ∈ Ii) for some subset Ii of cardinality ki. Let σ
be the tableau of shape λ(u) obtained by putting the number i in the (`, j) box of λ(u)
whenever (`, j) ∈ Ii\Ii−1. Since u(Fi) ⊂ Fi−1, the implication (`, j) ∈ Ii ⇒ (`, j−1) ∈ Ii−1

holds whenever i > 1, j > 2. This guarantees that the rows of σ are increasing, therefore
the tableau σ belongs to RTabk(λ(u)), and F = Fσ is the partial flag corresponding to
this tableau in the sense of Definition 25. Finally, part (a) guarantees that Rect(σ) = T ,
i.e., σ ∈ RTab(T ). The proof is complete.

The main result of this section states as follows.

Theorem 27. We consider a semistandard tableau T ∈ STabk(λ(u)) and the corre-
sponding variety YT . There is a cell decomposition YT =

⊔
Y (τ) parametrized by the

row-increasing tableaux τ ∈ RTab(T ) (of rectification T ), which satisfies the following
conditions:

(a) Fτ ∈ Y (τ);

(b) dimY (τ) = ninv(τ).

This result is a consequence of Theorems 9, 20 above and Proposition 28 below. Before
stating the proposition, we review some notation. We fix a semistandard tableau T ∈
STabk(λ(u)). We consider the p × q matrix dT = (di,j) and the chain of subspaces
A = (A1, . . . , Aq) := (uq−1(keruq) ⊂ . . . ⊂ u(keru2) ⊂ keru) introduced in Theorem 20.
The vectors εa := εa,1 (1 6 a 6 r) form a basis of Aq = keru. Moreover

Aj = 〈εa : 1 6 a 6 dp,j〉C for all j = 1, . . . , q,

since Aj = uq−j(Kq+1−j) and the vectors εa,q+1−j (a = 1, . . . , dp,j) generate Kq+1−j. Fi-

nally, recall the set W(d]T ) considered in Section 3. Every ω ∈ W(d]T ) is a (p+ q− 1)× q
matrix of sets and gives rise to an element Vω ∈ X(d]T , A) (see Definition 8). Recall the
inversion number ninv(ω) defined in Definition 6.

Proposition 28. For a row-increasing tableau τ ∈ RTab(T ), let ω(τ) = (ωi,j) be the p×q
matrix of sets given by

ωi,j = {` : the `-th entry of the (q + 1− j)-th column of τ is 6 i}.

Then the map
ΞT : RTab(T )→W(d]T ), τ 7→ ω(τ)]

is a well-defined bijection. Moreover, this bijection satisfies

ΦT (Fτ ) = VΞT (τ) and ninv(τ) = ninv(ΞT (τ)) for all τ ∈ RTab(T ),

where ΦT : YT → X(d]T , A) is the isomorphism of Theorem 20.
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Proof. Let ω(τ) = (ωi,j) be as in the statement. Thus |ωi,j| is equal to the number of
entries 6 i in the (q + 1 − j)-th column of τ , so |ωi,j| = di,j. The inclusion ωi,j ⊂ ωi+1,j

is immediate for all i, j, moreover ωi,j ⊂ ωp,j = {1, . . . , dp,j}. Finally, since the tableau
τ is row increasing, we also have the inclusion ωi,j ⊂ ωi−1,j+1 for all i = 2, . . . , p, all
j = 1, . . . , q− 1. Altogether these observations show that the shifted matrix of sets ω(τ)]

belongs to the set W(d]T ). Hence the map ΞT is well defined.
Let us check the equality ΦT (Fτ ) = VΞT (τ). Clearly VΞT (τ) = V ] where V = (Vi,j) is

the p × q matrix of spaces given by Vi,j = 〈εa : a ∈ ωi,j〉C (with ω(τ) = (ωi,j) as above).
On the other hand, by (25), the flag Fτ = (F0, . . . , Fp) satisfies

uq−j(Fi ∩Kq+1−j) = uq−j(〈εa,q+1−j : a ∈ ωi,j〉C) = 〈εa,1 : a ∈ ωi,j〉C,

so uq−j(Fi ∩Kq+1−j) = Vi,j for all i, j. Whence the equality.
Let us show that the map ΞT is bijective. If ΞT (τ) = ΞT (τ ′) then Fτ = Fτ ′ (by the

equality just shown) and so τ = τ ′; hence the map is injective. Let g : Cn → Cn be
as in Lemma 26 (b) and let g := g|keru : keru → keru, thus g ∈ SA where SA is as in
Theorem 9. Clearly the isomorphism ΦT : YT → X(d]T , A) is g-equivariant in the sense
that ΦT (gF ) = gΦT (F ) for all F ∈ YT . This fact, combined with Theorem 9 (a) and
Lemma 26 (b), yields

|RTab(T )| = |(YT )g| = |(X(d]T , A))g| > |(X(d]T , A))SA| = |W(d]T )|.

Therefore, ΞT : RTab(T )→W(d]T ) is bijective.
It remains to show that ninv(τ) = ninv(ΞT (τ)). Let j ∈ {1, . . . , q}. Recall that dp,j

coincides with the number of boxes in the (q+1−j)-th column of τ . For a ∈ {1, . . . , dp,j},
let ia denote the (a, q + 1− j) entry of τ . The j-th column of the matrix ΞT (τ) = ω(τ)]

consists of the chain of subsets

ω1,j = . . . = ω1,j ⊂ ω2,j ⊂ . . . ⊂ ωp−1,j ⊂ ωp,j = . . . = ωp,j = {1, . . . , dp,j}

and we have ia = min{i = 1, . . . , p : a ∈ ωi,j}. For a, b ∈ {1, . . . , dp,j}, we deduce the
equivalences a <j b⇔ ia < ib and a ∼j b⇔ ia = ib. Let 1 6 a < b 6 dp,j and let us show
the equivalence:

(a, b) ∈ Invj(ω(τ)])⇔ (ia, ib) or (ib, ia) is an inversion pair for τ (26)

(depending on whether ia < ib or ib < ia); the desired formula ninv(τ) = ninv(ΞT (τ)) is
clearly guaranteed once we show (26). Let ((ia)1, . . . , (ia)`) (resp. ((ib)1, . . . , (ib)m) be the
list of entries directly to the right of ia (resp. ib) in τ . Since ib is below ia in τ , we have
m 6 `. As above,

(ia)s = min{i : a ∈ ωi,j−s}, (ib)s = min{i : b ∈ ωi,j−s} for all s = 1, . . . ,m

and m is the minimal number such that b > dp,j−(m+1) (using the convention dp,0 = 0), so

b > max{dp,j−(m+1), a}, whence a <j−(m+1) b. (27)

the electronic journal of combinatorics 25(3) (2018), #P3.41 26



Case 1: Assume that ia < ib, i.e., a <j b.
In this case, the couple (ia, ib) is an inversion of τ if and only if there is s0 ∈ {1, . . . ,m}

such that (ia)s = (ib)s whenever 1 6 s < s0 and (ia)s0 > (ib)s0 . Equivalently (taking also
(27) into account), there is s0 ∈ {1, . . . , j} such that a ∼j−s b whenever 1 6 s < s0 and
a >j−s0 b, which means that (a, b) ∈ Invj(ω(τ)]).

Case 2: Assume that ia > ib, i.e., a >j b.
Here, the couple (ib, ia) is an inversion of τ if and only if one of the following conditions

holds

• (ia)s = (ib)s whenever 1 6 s 6 m; or

• there is s0 ∈ {1, . . . ,m} such that (ia)s = (ib)s whenever 1 6 s < s0 and (ia)s0 <
(ib)s0 .

In view of (27), this is equivalent to the single condition:

• there is s0 ∈ {1, . . . , j} such that a ∼j−s b whenever 1 6 s < s0 and a <j−s0 b,

which means that (a, b) ∈ Invj(ω(τ)]).

In both cases we have shown (26). The proof is complete.

Theorem 27 (combined with (5)) and Corollary 21 yield the following corollary, which
is in fact a reformulation of [5, Theorem 2.4]:

Corollary 29.
∑

τ∈RTab(T )

xninv(τ) =
∏

26i6p
16j6q

[
di,j−1 di−1,j

di,j

]
x
, where dT = (di,j) is the p×q matrix

of Theorem 20 (with di,0 := 0).

Remark 30. (a) In view of Theorem 27 (and (5)), the generating function for inversion
number on row-increasing tableaux χT (x) :=

∑
τ∈RTab(T ) x

ninv(τ) is therefore realized as
the Poincaré polynomial of the smooth, irreducible, projective variety YT . The fact that
χT (x) is unimodal and palindromic (pointed out in [5, Corollaries 2.8–2.9]) can then be
viewed as a consequence of the Lefschetz theorem.

(b) By Theorem 27, the maximal inversion number of an element τ ∈ RTab(T ) is
dimYT , and it is attained for a unique tableau τ0 (see also [5, Corollary 2.7]). The
equality

dimH2m(YT ,Q) = dimH2(dimYT−m)(YT ,Q) for all m = 0, . . . , dimYT

(which is due to the Lefschetz theorem, or to the fact that χT (x) is palindromic) implies
that there is an involution RTab(T )→ RTab(T ), τ 7→ τ ∗ such that

ninv(τ ∗) = dimYT − ninv(τ) for all τ ∈ RTab(T ).

In particular this involution must verify (τ0)∗ = T . For arbitrary τ , we have no explicit
formula for τ ∗.
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(c) Part (b) of the remark yields a “dual” cell decomposition

YT =
⊔

τ∈RTab(T )

Y ′(τ) such that dimY ′(τ) = dimYT − ninv(τ).

In view of Remark 18, this yields a cell decomposition of each subvariety Flk,u,T ⊂ Flk,u,
and finally of the whole Spaltenstein variety Flk,u:

Flk,u,T =
⊔

τ∈RTab(T )

Ỹ ′(τ), Flk,u =
⊔

τ∈RTabk(λ(u))

Ỹ ′(τ),

with dim Ỹ ′(τ) = dim Flk,u − ninv(τ),

such that Ỹ ′(τ) := (ϕT )−1(Y ′(τ)) whenever τ ∈ RTab(T ), where ϕT : Flk,u,T → YT is the
affine bundle of Proposition 17. We deduce the following equality of Poincaré polynomials

m0∑
m=0

dimH2(m0−m)(Flk,u,Q)xm =
∑

τ∈RTabk(λ(u))

xninv(τ) =
∑

T∈STabk(λ(u))

P (YT )(x),

where m0 := dim Flk,u. Since the Spaltenstein variety Flk,u is connected, we know that
dimH0(Flk,u,Q) = 1, hence m0 is the maximal inversion number for the elements of
RTabk(λ(u)) and it is attained for a unique tableau τmax. This tableau and its rectifi-
cation Tmax := Rect(τmax) are explicitly described in [4, §2.1]. For this tableau we have
dimYTmax = ninv(τmax) = dim Flk,u = dim Flk,u,Tmax , which means that the affine bundle
ϕTmax : Flk,u,Tmax → YTmax must be an isomorphism. This implies that Flk,u,Tmax is a pro-
jective (hence closed) subvariety of Flk,u. Hence it is actually an irreducible component of

Flk,u which is smooth and isomorphic to the variety X(d]Tmax
, A) of Theorem 20.

In particular, every Spaltenstein variety contains at least one smooth irreducible com-
ponent, which is isomorphic to a variety of the form X(d,A).
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