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Abstract

A set S ⊆ {0, 1}E of binary vectors, with positions indexed by E, is said to be
a powerful code if, for all X ⊆ E, the number of vectors in S that are zero in the
positions indexed by X is a power of 2. By treating binary vectors as characteristic
vectors of subsets of E, we say that a set S ⊆ 2E of subsets of E is a powerful set
if the set of characteristic vectors of sets in S is a powerful code. Powerful sets
(codes) include cocircuit spaces of binary matroids (equivalently, linear codes over
F2), but much more besides. Our motivation is that, to each powerful set, there is
an associated nonnegative-integer-valued rank function (by a construction of Farr),
although it does not in general satisfy all the matroid rank axioms.

In this paper we investigate the combinatorial properties of powerful sets. We
prove fundamental results on special elements (loops, coloops, frames, near-frames,
and stars), their associated types of single-element extensions, various ways of com-
bining powerful sets to get new ones, and constructions of nonlinear powerful sets.
We show that every powerful set is determined by its clutter of minimal nonzero
members. Finally, we show that the number of powerful sets is doubly exponential,
and hence that almost all powerful sets are nonlinear.

Mathematics Subject Classifications: 05B35, 05B99, 94B60, 94B05
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1 Introduction

Let E be a finite set, called the ground set, and let S ⊆ {0, 1}E be a set of binary vectors,
with positions indexed by E. A set X ⊆ E of positions has the power-of-2 property (for
S) if the number of vectors in S that are zero on X (i.e., in the positions indexed by
X) is a power of 2. We say S is a powerful set, or a powerful code, if every X ⊆ E
has the power-of-2 property for S. By treating binary vectors as characteristic vectors of
subsets of E, we also say that a set S ⊆ 2E of subsets of E is a powerful set if the set of
characteristic vectors of sets in S is a powerful set. We move freely between subsets X of
E and their characteristic vectors x. We prefer powerful set terminology, but sometimes
use powerful code terminology when commenting on connections with coding theory.

Unless stated otherwise, we use the ground set E = [n] := {1, 2, . . . , n}. We view S
as a subset of the n-dimensional linear space Fn2 , over the finite field F2 consisting of all
01-vectors of length n.

The order of a powerful set S is the size of its ground set, or equivalently, the length
of its vectors (when S is viewed as a code). The size of S is the cardinality of S. The
power-of-2 property for X = E implies that the zero vector must be in S. With X = ∅,
we conclude that the size of S is also a power of 2. The dimension of S, written dimS,
is the nonnegative integer d such that the size of S is 2d.

Two powerful sets S1 and S2 are said to be isomorphic, written S1
∼= S2, if there is a

bijection between their ground sets which induces a bijection between S1 and S2.
If S is a finite-dimensional linear space over F2, then the vectors of S that are 0 on

X form a subspace of S, thus the number of such vectors is a power of 2. Hence such a
linear space is always a powerful set. From now on, we say a powerful set S is linear if it
is a linear space, otherwise it is nonlinear. Up to isomorphism, there is a unique smallest
nonlinear powerful set, namely

S = {000, 011, 101, 111}.

Later we will see that almost all powerful sets are nonlinear.
For the sake of convenience, we often write a set S ⊆ Fn2 in the form of a matrix whose

rows are the elements of S. For example, we can identify the above smallest nonlinear
powerful set S with the matrix 

0 0 0
0 1 1
1 0 1
1 1 1

 .

We emphasise that, when S is linear, this is not just a generator matrix for S; its rows
list all members of S.

Our remarks above show that powerful sets generalise binary matroids, or equivalently,
binary linear codes. Every binary matroid has a rank function ρ : 2E → N ∪ {0}, defined
on subsets of its ground set E, that satisfies the matroid rank axioms. Our original
motivation for studying powerful sets was that they, too, have a nonnegative-integer-
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valued “rank-like” function. We elaborate on this now, before setting the scene for the
rest of this paper.

Let f : 2E → {0, 1} be the indicator function of a binary code S ⊆ FE2 , defined for any
X ⊆ E by f(X) = 1 or 0 according as the characteristic vector of X does, or does not,
belong to S. The rank transform Q, introduced in [2] (see also the exposition in [4, §3.6]
and a closely related construction due to Kung [5]), associates to any such f the function
Qf defined on subsets of E by

Qf(X) = log2

( ∑
Y⊆E f(Y )∑

Y⊆E\X f(Y )

)
. (1.1)

Observe that, when Qf(X) is defined, it must be nonnegative. (This follows from the fact
that f itself is nonnegative-valued.) When it is defined, we call Qf(X) the rank of X, but
bear in mind that this is a loosening of that term since Qf may not satisfy the matroid
rank axioms. For the special case when S is linear, Qf gives the usual rank function for
the binary matroid. If S is nonlinear, then Qf may take irrational values or be undefined
for some arguments. For Qf(X) to be defined for all X ⊆ E, it is necessary and sufficient
that f(∅) = 1. In particular, Qf(X) is always defined if S is a powerful set, since in that
case ∅ ∈ S so f(∅) = 1. For Qf to be integer valued, it is necessary and sufficient that
S be a powerful set.

If f(∅) = 1 then (using the nonnegativity of f) Qf(∅) = 0, and Qf(X) 6 Qf(Y )
whenever X ⊆ Y . These are among the properties that hold for any matroid rank
function. But Qf need not satisfy other matroid rank properties. It is possible that
Qf(X) > |X| (see §3), and submodularity — ρ(X ∩ Y ) + ρ(X ∪ Y ) 6 ρ(X) + ρ(Y ) for all
X, Y — need not hold for ρ = Qf (consider, e.g., S = {00, 01, 10} [2, Example 2.2], or
see below for a powerful set example).

Not only does f determine Qf , but when f(∅) = 1 the reverse holds too: Qf deter-
mines f . See [2] for details of the inverse rank transform Q†, which satisfies Q†Qf ≡ f
when f(∅) = 1.

Given that the functions Qf extend rank functions, it is natural to investigate what
happens when they are used in place of rank functions. This was done in [2, 3], where
a theory of Tutte-Whitney polynomials is developed for arbitrary functions f : 2E → C
(called binary functions). There, Qf is used in place of a matroid rank function to gen-
eralise the rank generating function of Whitney [10] to arbitrary binary functions. A
surprising amount of Tutte-Whitney polynomial theory extends to these objects, includ-
ing duality, deletion-contraction relations, and interesting partial evaluations. But the
“polynomials” themselves often have nonintegral exponents. It is therefore natural to fo-
cus on cases where the polynomials are just that, which means that Qf is integer valued.
If, in addition, we ask that f be {0, 1}-valued, so that it is indeed an indicator function
and can be taken to represent a subset of 2E, then we are led to the study of powerful
sets.

If S is a powerful set, we write fS for its indicator function, and ρS for its rank function,
ρS := QfS. Applying (1.1), we have, for any X ⊆ E,

ρS(X) = dimS − log2 |{y ∈ S | yi = 0 ∀i ∈ X}| . (1.2)
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Observe that ρS(E) = dimS and |S| = 2ρS(E). Using the inverse rank transform of [2],
the rank function ρS determines fS and hence S.

We will see in §3, when we meet frames, that in powerful sets it is possible to have
ρS(X) > |X|. Furthermore, in §5 we will meet cases where submodularity does not hold.
These two failures of matroid axioms can be arbitrarily severe, so powerful sets can be
very different to matroids (or polymatroids, which still require submodularity).

The definition of powerful codes is somewhat reminiscent of almost affine codes, in-
troduced in [6], although they are different in nature. A q-ary code S with index set E is
almost affine if for all X ⊆ E the cardinality of the code SE\X := {(ai)i∈E\X | (ai)i∈E ∈ S}
is a power of q. The construction of SE\X from S is called puncturing with respect to X,
or projection onto E\X. We simply discard all coordinates with positions in X, thereby
shortening the vectors to length |E \X|. This contrasts with powerful sets, where we do
not remove any coordinates, but simply require that the coordinates indexed by X are
zero. When q = 2, a binary code containing the zero vector is almost affine if and only
if it is linear [6], so binary almost affine codes give us nothing new, and correspond to
binary matroids. See [6, 9] for further information about almost affine codes and their
connections with matroid theory.

Powerful codes are also reminiscent of ideal secret sharing schemes: see [1, Proposition
1]. This is another manifestation of their superficial resemblance to almost affine codes,
since connected ideal perfect secret sharing schemes are almost affine codes [1, Proposition
1] (see [6, §3.1]), and for the binary case all secret sharing schemes are perfect and ideal.

In this paper we lay the foundations of the theory of powerful sets. We first (in
§2) extend the contraction operation, for binary matroids, to powerful sets. Then, in
§3, we consider five types of special elements: loops, coloops, frames, near-frames, and
stars. Of these, only loops and coloops occur in binary matroids. Each of the five has
an associated type of single-element extension operation, and we also generalise parallel
extensions from binary matroids to powerful sets. In §4, we present a construction for
some nonlinear powerful sets, analogous to generating linear spaces from sets of vectors
but using positionwise maximum instead of positionwise addition in F2 (i.e., positionwise
OR instead of positionwise XOR). In §5 we give three ways of combining powerful sets to
form new powerful sets. Two of these have no real analogue for linear spaces. Then in §6
we show that every powerful set is determined by its clutter of minimal nonzero members,
by giving an algorithm to construct it from that clutter. Finally, we consider enumeration
of powerful sets in §7. We report the numbers of powerful sets (and, in particular, the
numbers of nonlinear powerful sets) of each order 6 6. The trend in this data is that
nonlinear powerful sets quickly dominate, and we confirm this trend mathematically. We
show that the number of loopless frameless nonlinear powerful sets of order n > 5 is doubly
exponential — specifically, at least 22(n−7)/3

— from which it follows that, asymptotically,
almost all powerful sets are nonlinear.

Some notation: if x and y are vectors indexed by [n] and [m] respectively, then their
concatenation xy denotes the vector indexed by [n + m] whose first n elements are x
and whose last m elements are y. If, in addition, b ∈ {0, 1}, then xb denotes the vector
indexed by [n+ 1] whose first n elements are x and whose last element is b.
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2 Reductions

Let S ⊆ 2E and e ∈ E. Put

S/e := {X ⊆ E\{e} | X ∈ S}.

We say that S/e is formed from S by contraction of e. In terms of matrix representation,
we remove column e and also remove all rows that have a 1 in the position indexed by e.

For example, consider the (nonlinear) powerful set S = {000, 011, 110, 111}, with the
usual ground set {1, 2, 3}. Then

S/1 = {00, 11}, with ground set {2, 3};
S/2 = {00}, with ground set {1, 3};
S/3 = {00, 11}, with ground set {1, 2}.

So S/1 ∼= S/3.

Theorem 1. (a) If S is powerful then S/e is powerful.
(b) If S is linear then S/e is linear. (See, e.g., [7, Theorem 9.3.1].)

The converses are not true, since (for example) adding a new all-0 column, indexed
by e, to S/e (using the matrix representation viewpoint), then adding a row that is all-0
across E\{e} but has 1 in position e, does not in general give another powerful set (let
alone a linear one).

The rank of S/e is given by ρS/e(X) = ρS(X ∪ {e})− ρS({e}); see [2, §4].
Another way of reducing a powerful set by a single element is to simply delete the

column indexed by e, without deleting any rows. We call this deletion, since it generalises
deletion in binary matroids, and denote the subset of 2E\{e} so formed by S\e. But, if it
is applied to a nonlinear powerful set, it may leave duplicate rows in the reduced matrix,
giving a powerful multiset but not necessarily a powerful set. The operation of puncturing
with respect to e consists of deletion of e followed by removal of one member of each pair
of identical rows. This ensures that we obtain a set rather than a multiset, and it yields
a linear powerful set if S is linear (see, e.g., [7]), but it does not necessarily produce a
powerful set if S is nonlinear. Note also that the addition of a new column to a powerful
set (i.e., the reverse of puncturing) does not necessarily give a powerful set.

3 Extensions and special elements

We now look at several ways to extend a powerful set by a single element. A special role
is played by five types of special elements. The proofs are straightforward and most are
omitted.

An element e ∈ E that belongs to no set in S (equivalently, it indexes a zero column
in the matrix representation) is a loop, and has rank 0. The operation of adding a zero
column to T ⊆ Fn2 is called loop extension, and the resulting subset of Fn+1

2 is denoted by
T + ◦. Observe that, if e is a loop of S, then S\e = S/e.
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Theorem 2. If e ∈ E is a loop of S and S/e is powerful then S is powerful.

Suppose that, writing e as the last column and reordering rows if necessary, S ⊆ Fn2
has a matrix of the form (

T 0
T 1

)
,

where T ⊆ Fn−12 , and 0 and 1 are column vectors whose length equals the size of T . Then
e is a coloop of S, and has rank 1. The operation of forming S from T in this way is called
coloop extension. We write S = T + ◦∗.

Theorem 3. If e ∈ E is a coloop of S and S/e is powerful then S is powerful.

Proof. For any X ⊆ E, if e 6∈ X, then the number of vectors of S that are 0 on X is twice
the number of vectors of S/e that are 0 on X, thus being a power of 2.

If e ∈ X, then the number of vectors of S that are 0 on X is the same as the number
of vectors of S/e that are 0 on X\{e}, which is also a power of 2.

Proposition 4. If e ∈ E is a coloop of S and S/e is linear then S is linear.

Proof. For convenience, we write e as the last column in the matrix representation of S.
Let ui and vj be any two vectors of S where u,v ∈ S/e and i, j ∈ {0, 1}. It follows from
the linearity of S/e that w = u + v ∈ S/e. Thus we have w0 ∈ S and w1 ∈ S. Since
i+ j ∈ {0, 1}, we can conclude that

ui+ vj = w(i+ j) ∈ S.

Thus S is linear.

Remark. For a powerful set S, the zero row vector 0 belongs to S, thus 01 ∈ S + ◦∗.
Therefore, a coloop extension of a powerful set must have a vector of weight 1.

Conjecture 5. If T is a powerful set with at least one vector of weight 1, then T is a
coloop extension of some powerful set S.

Remark. The conjecture is true for the linear case, since a singleton member of the
cocircuit space of a binary matroid must be a coloop.

Let S be a powerful set, again with e indexing the last column in its matrix, and now
with matrix of the form (

0 0
T\{0} 1

)
,

where T is a powerful set, 0 is a row vector, and 1 is a column vector. Note that S\e = T .
Then e is a frame of S (using terminology for an analogous concept in [8]), and adjoining
e to T is called framing T by e. A frame e has rank equal to dimS. If dimS > 2 then
X = {e} satisfies ρS(X) > |X|, in contrast to matroid rank functions. (In fact, such
cases give the greatest possible differences ρS(X) − |X| and ratios ρS(S)/|X|, showing
that these can be arbitrarily large for powerful sets.) We write S = T +�.
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Theorem 6. Let S ⊆ FE2 have a frame e ∈ E. Then S\e is powerful if and only if S is
powerful.

A powerful set can also be enlarged by an element that is almost, but not quite, a
frame.

Suppose S ⊆ Fn2 and v ∈ S is a nonzero vector. The set S +�\v is formed by adding
a new coordinate 0 to the zero vector 0 and v, and a new coordinate 1 to the remaining
vectors of S. The new element is called a near-frame and has rank dimS − 1.

Theorem 7. If S is powerful then S +�\v is powerful.

If T ⊆ Fn2 , define T + ? ⊆ Fn+1
2 by

T + ? = {v0 |v ∈ T} ∪ {v1 |v /∈ T}.

We can represent S = T + ? by the following matrix

S =



0

T
...
0
1

T
...
1


.

We call the new element a star. If T is powerful then T + ? has rank n− dimT .

Theorem 8. T ⊆ Fn2 is powerful if and only if T + ? is powerful.

Proof. Let T be the set Fn2\T . For any X ⊆ [n+ 1], if n+ 1 is not in X, then the number
of rows that are 0 on X must be a power of 2. This is because the submatrix consisting
of the first n columns is the linear space Fn2 . If n + 1 ∈ X, we only need to consider the
submatrix

ST =

 0

T
...
0

 .

The rows of ST that are 0 on X\{n + 1} are precisely those that are 0 on X. So the
number of such rows is a power of 2 if and only if T is a powerful set. Therefore S is
powerful if and only if T is powerful.

Conjecture 9. Suppose that S is a subset of Fn2 with 2n−1 elements, where n > 2. If S
is a powerful set, then we can find a coordinate such that deleting this coordinate from
all the elements of S yields the set Fn−12 , i.e., all the new vectors are distinguishable.

Remark. Conjecture 9 holds if S is linear, since in that case we have a binary matroid
of rank n− 1 on n elements, which must have a circuit, and deleting any element e in the
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circuit gives a binary matroid S\e of rank n− 1 on n− 1 elements, whose cocircuit space
is all of Fn−12 . For the nonlinear case, Conjecture 9 holds for n 6 6.

Remark. If we do not require that the size of S is 2n−1, Conjecture 9 fails to hold.
For example, let

S = {00000, 00111, 01011, 01111, 10101, 10111, 11010, 11011}.

It is easy to check that S is a powerful set, but deleting any one coordinate will always
yield two indistinguishable vectors of length 4.

Remark. If a powerful set S satisfies Conjecture 9, it can always be constructed as
T + ? from a smaller powerful set T . Suppose that deleting the last bit of each vector in
S gives all possible vectors of Fn−12 . Collecting those vectors of S whose last bit is 0 and
removing the last bit from each such vector yields the desired smaller powerful set.

If S is a powerful set and e ∈ E, then the parallel extension of S, denoted by Sqe, is
formed by duplicating the column indexed by e in the matrix representation of S.

Theorem 10. Let S ⊆ 2E and e ∈ E. Then S is powerful if and only if its parallel
extension Sqe is powerful.

From binary matroid theory, we have

Proposition 11. Let S be a powerful set, then Sqe is linear if and only if S is linear.

4 Position-wise max construction

Given any S ⊆ Fn2 , elementary linear algebra gives us the linear powerful set 〈S〉 consisting
of all binary linear combinations of vectors in S. In this section we give another way to
generate larger sets from S, using a positionwise operation, which in this case will often
give us nonlinear powerful sets.

A permutation matrix is a square binary matrix that has exactly one entry of 1 in
each row and each column, and 0s elsewhere.

Given any S ⊆ Fn2 , we consider its matrix representation. If the matrix representation
of S contains a submatrix which is a permutation matrix of order |S|, then we say that
S is permutative.

Remark. It is clear that a permutative set cannot contain the zero vector.
Define the disjunction u ∨ v of two vectors u = (ui)

n
i=1 and v = (vi)

n
i=1 in Fn2 by

u ∨ v = (max{ui, vi})ni=1.
Suppose S = {u1,u2, . . . ,um} ⊆ Fn2 , define the disjunctive closure of S to be the set

〈S〉∨ = {a1u1 ∨ a2u2 ∨ · · · ∨ amum | ai ∈ F2, 1 6 i 6 m},

where aiui = ui if ai = 1, and 0 otherwise. Note that the zero vector always belongs to
〈S〉∨.

Theorem 12. If m 6 n and S = {u1,u2, . . . ,um} ⊆ Fn2 is a permutative set, then 〈S〉∨
is a powerful set of size 2m.
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Proof. Since we are not concerned with order on S or its ground set, we can assume that,
in the matrix representation

S =


u1

u2
...

um

 ,

the first m columns form the identity matrix Im.
We first prove that any vector in 〈S〉∨ has a unique expression as a1u1 ∨ a2u2 ∨ · · · ∨

amum, which shows that the size of 〈S〉∨ is 2m. Given a vector v = v1v2 · · · vn ∈ 〈S〉∨, we
claim that

v = v1u1 ∨ v2u2 ∨ · · · ∨ vmum.

That is to say, v is completely determined by its first m components. For 1 6 i 6 m, ui
is the only vector in S whose ith component is 1. So if vi = 1, the coefficient of ui must
be 1 otherwise the ith component of v will be 0. Similarly, if vi = 0, the coefficient of ui
is 0.

Next we show that 〈S〉∨ is a powerful set. Given X ⊂ [n], let u1,X ,u2,X , . . . ,ur,X ∈ S
be all vectors that are 0 on X. Then we claim that

〈S〉∨,X := {a1u1,X ∨ a2u2,X ∨ · · · ∨ arur,X | ai ∈ F2, 1 6 i 6 r}

contains all the vectors of 〈S〉∨ that are 0 on X. It is clear that any vector w ∈ 〈S〉∨,X is
0 on X. On the other hand, if w ∈ 〈S〉∨ is 0 on X, then in the unique expression

w = w1u1 ∨ w2u2 ∨ · · · ∨ wmum,

the coefficient of every ui which is nonzero in some position in X must be zero, otherwise
w has a nonzero entry in some position in X. Hence, the claim holds. In addition, any
two vectors of 〈S〉∨,X are different, thus the size of 〈S〉∨,X is 2r, a power of 2. If X = [n],
the zero vector is the only vector in 〈S〉∨ with all zero coordinates. Therefore, 〈S〉∨ is a
powerful set.

Example 13. Let S = {00011, 01100, 10101} ⊆ F5
2. Then the 1st, 2nd and 4th columns

of

S =

 0 0 0 1 1
0 1 1 0 0
1 0 1 0 1


comprise a permutation matrix of order 3, thus S is permutative. We have

〈S〉∨ = {00000, 00011, 01100, 10101, 01111, 10111, 11101, 11111}.

It is straightforward to check that 〈S〉∨ is a powerful set.

If S is not permutative, then 〈S〉∨ is not necessarily powerful. For example, let
S = {0111, 1011, 1101}, whose matrix representation has no unit vector columns so S
is certainly not permutative. Then 〈S〉∨ = {0000, 0111, 1011, 1101, 1111}, which has size
5, so is not powerful.
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5 Combining two powerful sets

Basic set operations do not necessarily preserve the powerful property. The comple-
ment of a powerful set is never powerful (since it does not contain the zero vector), and
the union and intersection of powerful sets are not necessarily powerful. (For example,
take the linear powerful set {000, 011, 101, 110} and our smallest nonlinear powerful set
{000, 011, 101, 111}.)

We now present three ways to combine two powerful sets which give another powerful
set (always, or under mild conditions). Only the first corresponds to a binary matroid
operation.

Let Q ⊆ Fm2 and R ⊆ Fn2 . The direct sum of Q and R is defined by

Q⊕R = {uv |u ∈ Q,v ∈ R}.

Theorem 14. Q⊕R is powerful if and only if Q and R are powerful.

Proof. If X ⊆ [m] and Y ⊆ {m+1, . . . ,m+n}, then the number of vectors of Q⊕R that
are zero on X ∪ Y is the number of vectors of Q that are zero on X times the number
of vectors of R that are zero on Y . The result follows, paying particular attention to the
case X = ∅ and the case Y = ∅.

Elementary linear algebra gives

Proposition 15. The direct sum Q⊕R is linear if and only if Q and R are both linear.

The direct sum generalises the direct sum of binary matroids and is a special case of
the product of disjoint binary functions [2, p. 276].

We now come to our second way of combining powerful sets.
Write 0k and 1k for the row vector of k 0s and k 1s, respectively.
Let Q ⊆ Fm2 and R ⊆ Fn2 be powerful sets. Define the set Q#R ⊆ Fm+n

2 as follows

Q#R = {0m+n} ∪ {u1n |u ∈ Q\{0m}} ∪ {1mv |v ∈ R\{0n}} ∪ {1m+n}.

The construction of Q#R can be depicted as
0m 0n

Q\{0m} 1(|Q|−1)×n

1(|R|−1)×m R\{0n}
1m 1n

 ,

where 1a×b is the all-one matrix with a rows and b columns.

Example 16. If Q = {00 · · · 0, 11 · · · 1} ⊆ Fm2 and R = {00 · · · 0, 11 · · · 1} ⊆ Fn2 , then

Q#R = {00 · · · 0, 11 · · · 1} ⊆ Fm+n
2 ,

which is also a powerful set.
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The result of combining powerful sets using # is in general not powerful. But there
are many cases where it is, and furthermore it can be used to construct nonlinear powerful
sets.

Theorem 17. Let Q ⊆ Fm2 and R ⊆ Fn2 . Then Q#R is a powerful set if and only if Q
and R are both powerful and one of the following holds:

(a) one of Q,R consists only of a zero vector and possibly an all-one vector, while the
other includes an all-one vector; or

(b) |Q| = |R|, and neither Q nor R contains an all-one vector.

Furthermore, if Q#R is powerful, then Q#R is nonlinear unless Q and R each consist
just of a zero vector and possibly an all-one vector.

Proof. If X ⊆ [m] is nonempty, then the vectors of Q#R that are 0 on X are precisely
the vectors of Q\{0m} that are 0 on X, each extended by 1s at the end, together with
0m+n. The number of these vectors is a power of 2 for all choices of X ⊆ [m] if and only
if Q is a powerful set.

Similarly, if Y ⊆ {m+ 1, . . . ,m+n} is nonempty, then the number of vectors of Q#R
that are 0 on Y is a power of 2 for all choices of Y if and only if R is a powerful set.

If X ⊆ [m] and Y ⊆ {m+ 1, . . . ,m+n}, with each of X and Y being nonempty, then
the only vector that is 0 on X ∪ Y is 0m+n, so the number is 20 = 1.

Finally, the total number of vectors in Q#R (corresponding to the empty subset of
positions) is

1 + (|Q| − 1) + (|R| − 1) + 1 = |Q|+ |R|,
provided 1m 6∈ Q and 1n 6∈ R. Under this condition, if Q and R are powerful, then
|Q| = |R| if and only if |Q|+ |R| is a power of 2 if and only if Q#R is a powerful set.

Now suppose that Q and R are powerful, and either 1m ∈ Q or 1n ∈ R. If just one
of these holds then |Q#R| = |Q| + |R| − 1, which is not a power of 2 unless exactly one
of |Q|, |R| is 1. (They cannot both be 1, since one of Q,R contains an all-one vector
as well.) In that case, the other is some power of 2 other than 1. Suppose without
loss of generality that Q contains an all-one vector while R contains only a zero vector.
Then Q#R is equivalent to adding n frames to Q. If both 1m ∈ Q and 1n ∈ R then
|Q#R| = |Q|+ |R|−2. If this is a power of 2, then one of Q,R — suppose R, without loss
of generality — consists only of a zero vector and an all-one vector. Again, we find that
Q#R is equivalent to adding n frames to Q. In any case, Q#R is powerful, by Theorem
6.

We now consider nonlinearity.
If Q and R each consist just of a zero vector and possibly an all-one vector, then Q#R

consists just of the all-0 vector and the all-1 vector, so is trivially linear.
Suppose then that (without loss of generality) Q contains a vector u that is nonzero

and not all-ones. We know that u1n is in Q#R. It is clear that the last n coordinates
of u1n + 1m+n are all 0. Since u 6= 1m (as 1m 6∈ Q), u1n + 1m+n 6= 0m+n. But 0m+n

is the unique vector in Q#R whose last n coordinates are all 0, which implies that
u1n + 1m+n 6∈ Q#R. Therefore, Q#R is not a linear space.
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It is interesting to consider the relationship between the rank functions ρQ, ρR, ρQ#R

of Q,R,Q#R respectively, when |Q| = |R| and Q#R is powerful. Note first that
dim(Q#R) = dimQ + 1 = dimR + 1. As for any powerful set, the empty set has
rank 0. Now suppose X, Y 6= ∅, X ⊆ [m] and Y ⊆ {m + 1, . . . ,m + n}. Then
ρQ#R(X) = ρQ(X) + 1, since

ρQ#R(X) = dim(Q#R)− log2 |{y ∈ Q#R | yi = 0 ∀i ∈ X}| (by (1.2))

= dim(Q) + 1− log2 |{y ∈ Q | yi = 0 ∀i ∈ X}|
(using dim(Q#R) = dimQ+ 1 and X ⊆ [m])

= ρQ(X) + 1.

Similarly, ρQ#R(Y ) = ρR(Y ) + 1. Moreover, ρQ#R(X ∪ Y ) = dim(Q#R) = dimQ + 1 =
dimR + 1, since every nonzero vector in Q#R is nonzero either on all of [m] or on all of
{m+1, . . . ,m+n}. In the light of this last observation, we call Q#R the mutual framing of
Q and R. That same observation leads to violations of submodularity. Choose Q and R to
have dimension > 4 and elements a, b respectively of rank 1, i.e., ρQ({a}) = ρR({b}) = 1.
(For example, we could choose Q and R to be linear, of sufficiently large and identical
dimensions, of nonzero rank, and having no all-one vector. Then let a, b be any non-loop
elements.) Put X = {a} and Y = {b}. Since they are contained in disjoint ground sets,
X ∩ Y = ∅. We have

ρQ#R(X ∩ Y ) + ρQ#R(X ∪ Y ) = ρQ#R(∅) + dimQ+ 1

= 0 + dimQ+ 1

= dimQ+ 1

> 4,

while
ρQ#R(X) + ρQ#R(Y ) = ρQ(X) + 1 + ρR(Y ) + 1 = 4.

Choosing suitable powerful sets of arbitrarily large dimension gives arbitrarily large vio-
lations of submodularity, in the sense of arbitrarily large differences and ratios between
ρQ#R(X ∩ Y ) + ρQ#R(X ∪ Y ) and ρQ#R(X) + ρQ#R(Y ).

For Q ⊆ Fn2 and R ⊆ Fn2 , define

Q •R := {v00 : v ∈ Q ∩R} ∪ {v01 : v ∈ Q\R} ∪ {v10 : v ∈ R\Q} ∪ {v11 : v 6∈ Q ∪R}.

We can represent S = Q •R by the matrix

S =


Q ∩R 00

Q\R 01

R\Q 10

Q ∪R 11

 ,

where Q ∪R is the complement of Q ∪R in Fn2 .
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Theorem 18. Q •R is also powerful if and only if Q, R and Q ∩R are all powerful.

Proof. Consider any X ⊆ [n + 2]. We analyse whether it has the power-of-2 property in
the following four cases.

Case 1. If n+ 1 6∈ X and n+ 2 6∈ X, then the number of rows which are 0 on X is a
power of 2 since the first n columns of S form the linear space Fn2 .

Case 2. If n+ 1 ∈ X and n+ 2 ∈ X, then the rows of S that are 0 on X are precisely
those of Q∩R that are 0 are X \ {n+ 1, n+ 2}, each extended by two 0s at the end. The
number of these rows is a power of 2 for all such X if and only if Q∩R is a powerful set.

Case 3. If n+ 1 ∈ X and n+ 2 6∈ X, we only need to consider the submatrix(
Q ∩R 0

Q\R 0

)
.

Since Q = (Q ∩R) ∪ (Q\R), it follows that Q is a powerful set if and only if the number
of rows that are 0 on X is a power of 2 for all such X.

Case 4. If n+ 1 6∈ X and n+ 2 ∈ X, the argument is similar to Case 3.

Example 19. Let n = 3, and Q = {000, 001, 010, 011} and R = {000, 011, 101, 111}. It
is easy to see that Q and R are powerful sets and Q ∩ R = {000, 011} is also a powerful
set. According to the construction in Theorem 18, we have

Q •R = {00000, 01100, 00101, 01001, 10110, 11110, 10011, 11011}.

It is straightforward to verify that Q •R is a powerful set.

Using the cases of the above proof to analyse rank, we find that, for any X ⊆ [n],

ρQ•R(X) = |X|,
ρQ•R(X ∪ {n+ 1}) = n− dimQ+ ρQ(X),

ρQ•R(X ∪ {n+ 2}) = n− dimR + ρR(X),

ρQ•R(X ∪ {n+ 1, n+ 2}) = n− dim(Q ∩R) + ρQ∩R(X).

Remark. Theorem 18 can be extended further, using all possible three-bit extensions
of vectors, with three powerful sets P,Q,R with the appropriate intersections also having
the power-of-2 property. Then it could be extended to an arbitrary number k of extra
bits, with the same number of powerful sets with the required properties being combined.

6 Generation

Recall that a clutter (also called a Sperner family) is an antichain in 2E under the subset
order.

If S ⊆ 2E then Smin denotes the set of its minimal nonempty members, which is a
clutter.
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Theorem 20. Every powerful set is determined by its minimal nonempty members.

Proof. Consider the following algorithm, which takes a clutter S0 ⊆ 2E as input. We will
show that either it detects that there is no powerful set S such that Smin = S0, and rejects
S0, or it computes an indicator function f : 2E → {0, 1} for a set S = suppf which is the
unique powerful set such that Smin = S0 (where suppf := {X ⊆ 2E | f(X) 6= 0}).

1. Input: S0

2. f(∅) := 1
3. For each k = 1, . . . , n

{
4. For each X ⊆ E such that |X| = k

{
5. If X ∈ S0, then put f(X) := 1
6. else if

∑
Y⊂X f(Y ) = 1 // There is no Y ⊆ X such that Y ∈ S0.

7. f(X) := 0 // This uses X 6∈ S0.

8. else if
∑

Y⊂X f(Y ) = 2 // There is a unique Y ⊂ X such that Y ∈ S0.

9. f(X) := 0 // To ensure
∑

Y⊆X f(Y ) is a power of 2.

10. else // If we reach here, we know
∑

Y⊂X f(Y ) > 3.
11. if

∑
Y⊂X f(Y ) = 2i − 1 for some i > 2

12. f(X) := 1 // To ensure
∑

Y⊆X f(Y ) is a power of 2.

13. else // If we reach here, we know
∑

Y⊂X f(Y ) > 4.
14. if

∑
Y⊂X f(Y ) = 2i for some i > 2

15. f(X) := 0 // To ensure
∑

Y⊆X f(Y ) is a power of 2.

16. else //
∑

Y⊂X f(Y ) 6∈ {2i − 1, 2i | i ∈ N ∪ {0}}
17. Reject S0. It cannot be Smin for any powerful set S.

}
}

18. Output f .
19. Accept S0.

Suppose there exists a powerful set S such that Smin = S0.
We show by induction on k that the above algorithm assigns, to all sets X ⊆ E of size

k, the value f(X) = 1 if X ∈ S and f(X) = 0 otherwise.
Inductive basis: for k = 0, we have X = ∅, and the algorithm correctly assigns

f(∅) = 1 (in line 2) since ∅ ∈ S.
Now let k > 1 and suppose the claim is true for all sizes < k, and let X be any set of

size k.
If X ∈ S0, then the first condition of the cascaded if statement (line 5) is satisfied,

and the algorithm correctly sets f(X) = 1.
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Now suppose X 6∈ S0.
The order in which the algorithm visits the sets in 2E ensures that it will visit all the

proper subsets Y of X before visiting X itself. When it reaches X, it will have already
assigned values f(Y ) to all Y ⊂ X.

By the inductive hypothesis,
∑

Y⊂X f(Y ) gives the number of proper subsets of X
that belong to S.

So this sum equals 1 if and only if no proper subset of X is in S except for ∅. In this
case, no proper subset of X can be in S0 either, by definition of S and S0. So X 6∈ S,
else X ∈ S0. Now, in this case the algorithm takes the second option of the cascaded
if statement (line 6) and assigns f(X) = 0 (in line 7), which is correct (in that f is the
indicator function of S on this set X).

It remains to consider cases where
∑

Y⊂X f(Y ) > 2, i.e., some nonempty proper subset
of X belongs to S.

The sum equals 2 if and only if there is exactly one nonempty proper subset of X in
S. In this case, there are exactly two proper subsets of X in S, which is already a power
of 2, so for S to be powerful, we must have X 6∈ S. Here the algorithm takes the third
option of the cascaded if statement (line 8), and correctly puts f(X) = 0 (in line 9).

It remains to consider cases where
∑

Y⊂X f(Y ) > 3, i.e., the number of proper subsets
of X belonging to S is at least 3.

If this quantity is one less than a power of 2, then in order for S to be powerful, we
must have X ∈ S, and the algorithm takes the fourth option of the cascaded if statement
(lines 10–11) and correctly sets f(X) = 1 (in line 12).

If this quantity equals a power of 2, then in order for S to be powerful, we must have
X 6∈ S, and the algorithm takes the fifth option of the cascaded if statement (lines 13–14)
and correctly sets f(X) = 0 (in line 15).

Since we have assumed that S is powerful, we know that the number of proper subsets
of X that belong to S must be either a power of 2 or one less than a power of 2. So the
above cases cover all possibilities, and the last option of the cascaded if statement (line
16) is never reached. Therefore, we know that the algorithm always assigns the correct
value f(X) to X so that f is the indicator function of S on this set X.

Hence the claim is true, by induction.
Therefore, once the algorithm finishes, every X ⊆ E will have been assigned a value

f(X), and f will be the indicator function of S.
Since the algorithm is deterministic, it finds (the indicator function of) the unique

powerful set S such that Smin = S0.
If there is no powerful set S such that Smin = S0, then the algorithm stops at a smallest

set X ⊆ E such that the sum
∑

Y⊂X f(Y ) > 5 and is neither a power of 2 nor one less
than a power of 2. It is impossible for any extension of f that includes X in its domain
to be the indicator function of a powerful set. In this case, the algorithm takes the last
option of the cascaded if statement (line 16). It does not assign a value to f(X), and it
correctly rejects S0 (in line 17).

Since a powerful set is determined by its rank function (as noted in §1), and determines
its clutter of minimal nonempty members, it follows that this clutter is determined by the
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powerful set’s rank function. Conversely, the clutter determines the powerful set (by the
previous theorem) and hence determines its rank function.

The clutter of minimal nonempty members of a powerful set plays a role analogous to
the clutter of cocircuits of a binary matroid. Its members may be thought of as analogues,
for powerful sets, of cutsets in graphs.

Some natural questions arise.

1. Can we characterise those clutters that consist of the minimal nonempty members
of some powerful set?

2. What fraction of clutters come from powerful sets in this way?

7 Enumeration

Let p(n) be the number of isomorphism classes of powerful sets of order n, and p̃(n)
be the number of isomorphism classes of nonlinear powerful sets of order n. By direct
computation, with assistance from Peng Yang and Tingrui Yuan of UESTC, we have
determined p(n) and p̃(n) for n 6 6.

n 1 2 3 4 5 6

p(n) 2 4 9 25 102 900

p̃(n) 0 0 1 9 70 832

These numbers suggest that the number of powerful sets of order n grows very rapidly
as n increases, and that the proportion that are linear shrinks rapidly.

We now show that the number of isomorphism classes of nonlinear powerful sets of
order n is doubly exponential in n, and in fact this remains true if we restrict to size 2n−2.
It follows that almost all powerful sets are nonlinear.

To do this, we will use another way of combining powerful sets, based on operations
previously introduced.

Let S1, S2 ⊆ Fn2 be powerful sets. Define S1 � S2 ⊆ Fn+3
2 by

S1 � S2 = (S1 + ◦) • (S2 +�).

This construction can be depicted as follows

S1 � S2 =



00 · · · 0 0 00

0 01

S1\{0n}
...

...
0 01
1 10

S2\{0n}
...

...
1 10

11

the rest of Fn+1
2

...
11



.
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Theorem 21. If S1, S2 ⊆ Fn2 are powerful sets, then S1 �S2 ⊆ Fn+3
2 is also a powerful set.

Proof. Since Si (for i = 1, 2) is powerful, it follows from Theorem 2 and Theorem 6
respectively that both S1 +◦ and S2 +� are powerful sets. It is clear that (S1 +◦)∩ (S2 +
�) = {0}, which is also a powerful set. Now the desired result follows from Theorem
18.

Proposition 22. For any nontrivial powerful sets S1, S2 ⊆ 2E, the set S1 � S2 is loopless
and frameless.

Proof. It is clear from the construction that no loops or frames are created, regardless of
S1 and S2.

Theorem 23. Let S be a set of nonisomorphic loopless frameless powerful sets of order
n and size 2n−2. Then

S�2 := {S1 � S2 | S1, S2 ∈ S}

is a set of nonisomorphic loopless frameless powerful sets of order n+ 3 and size 2n+1. If
n > 3, then every member of S�2 is nonlinear.

Proof. Let S1, S2 ∈ S. By Theorem 21, S1 � S2 is powerful. By Proposition 22, S1 � S2 is
loopless and frameless.

We now show that all the members of S�2 are nonisomorphic. Suppose, by way of
contradiction, that there exist S1, S2, S

′
1, S

′
2 ∈ S, with either S1 6∼= S ′1 or S2 6∼= S ′2, such

that S1 � S2
∼= S ′1 � S ′2. Let ϕ be an isomorphism from S1 � S2 to S ′1 � S ′2. Now, ϕ cannot

map any element of [n + 1] to any element of {n + 2, n + 3}, since the column n + 1 + i
has weight 2n+1 − |Si| = 2n+1 − 2n−2 > 2n (for i = 1, 2), while every column indexed by
an e ∈ [n+ 1] has weight 2n.

Let i ∈ {1, 2}. Since Si, S
′
i are loopless and frameless, Si\{0} and S ′i\{0} each have

no column that is all-0 or all-1, so they each have no column that looks like their portion
of column n+ 1, n+ 2 or n+ 3. Therefore ϕ(n+ 1) = n+ 1. We also see that ϕ cannot
interchange n+ 2 and n+ 3, since the rows where column n+ 2 is 0 are precisely the rows
where column n + 1 is 0, and the rows where column n + 3 is 0 are precisely the rows
where column n+ 1 is 1. So ϕ(n+ 2) = n+ 2 and ϕ(n+ 3) = n+ 3.

We have shown that ϕ maps [n] to itself. Also, for each i = 1, 2, the mapping it
induces on codewords of S1 � S2 sends rows corresponding to Si to rows corresponding to
S ′i (else the last three bits of the codewords do not match up). Since (by assumption) ϕ
is an isomorphism from S1 � S2 to S ′1 � S ′2, it must induce an isomorphism from S1 to S ′1
and from S2 to S ′2. Therefore S1

∼= S ′1 and S2
∼= S ′2. This contradicts our assumption that

S1 6∼= S ′1 or S2 6∼= S ′2. (In fact, just one Si ∼= S ′i is sufficient to get this contradiction.)
Therefore, all the members of S�2 are nonisomorphic.
Since n > 3, each Si has at least three nonzero members. Let x and y be two nonzero

members of S1. The corresponding vectors in S1 � S2 have the same final three bits (by
construction), so their sum has last three bits all 0. If S1 � S2 is linear, then this means
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that their sum is the (n+ 3)-bit zero vector, since the only vector in S1 �S2 with last two
bits 0 is the zero vector. This implies that x + y = 0. This can only happen if x = y,
which contradicts the fact that they are distinct nonzero members of S1. Hence S1 � S2

cannot be linear.

Lemma 24. The number q(n) of isomorphism classes of loopless frameless nonlinear
powerful sets of order n > 5 and size 2n−2 satisfies log2 log2 q(n) > (n− 7)/3.

Proof. We use induction on n.
For the base case, observe that there are at least two nonisomorphic loopless frameless

nonlinear powerful sets of order 5 and size 23. We saw one in Example 13, and another
in the Remark following Conjecture 9. It is therefore straightforward to construct two
nonisomorphic loopless frameless nonlinear powerful sets of any order k and size 2k−2 (for
example, using coloop extensions of the two of order 5 we have just mentioned). Therefore,
for k ∈ {5, 6, 7}, we have q(k) > 2, so log2 log2 q(k) > 0 > (k − 7)/3.

Now let n > 8, and suppose that log2 log2 q(k) > (k − 7)/3 for all k such that 5 6
k < n. Let S be a set containing one representative of each isomorphism class of loopless
frameless nonlinear powerful sets of order n−3 and size 2(n−3)−2 = 2n−5. By the inductive
hypothesis, |S| = q(n − 3) > 22(n−10)/3

. By Theorem 23, S�2 contains only loopless
frameless nonlinear powerful sets of order n and size 2n−2, and they are all nonisomorphic.
We therefore have

q(n) > |S�2| = |S|2 = q(n− 3)2 > (22(n−10)/3

)2 = 22(n−7)/3

.

The result follows by induction.

For an upper bound on q(n), we can start with the number 22n of all sets of subsets of
[n]. We saw in §6 that a powerful set is determined by its clutter of minimal nonempty
members, so q(n) is at most the number of inequivalent clutters of order n. The number
of clutters on [n] is at least the number of sets of bn/2c-subsets of [n], since any collection
of distinct sets all of the same size is a clutter. So the number of clutters is at least
2( n
bn/2c). Since each isomorphism class of clutters has at most n! members, the number of

isomorphism classes of clutters is at least 2( n
bn/2c)/n!. This eventually exceeds 2c

n
for any

fixed c < 2. It follows that the number of inequivalent clutters does not give us a better
upper bound of the form 2c

n
than the näıve 22n .

The number of isomorphism classes of binary matroids on n elements is well known
to satisfy the easy upper bound 2n

2
. It follows that, asymptotically, almost all powerful

sets are nonlinear.

8 Discussion

We have laid some of the foundations of the theory of powerful sets, but there is much
still to be done.

One line of research is to consider aspects of binary matroid theory and determine how
far they extend to powerful sets. Most of our work has been of this character, including
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our Conjectures 5 and 9. In §6 we proposed the problem of characterising those clutters
that are the set of minimal nonempty members of a powerful set, which is analogous
to characterising sets of cocircuits of binary matroids. Research could also be done on
Tutte-Whitney polynomials of powerful sets, to determine what special properties they
have beyond the general results of [2, 3].

Another line of research is to examine the coding-theoretic properties of nonlinear
powerful sets (viewed as powerful codes). These are sufficiently general objects that many
do not have useful coding properties, but it is reasonable to expect that some classes of
them may be useful.

One could examine the relationship between linear codes over Z4 and the binary codes
obtained from them using the Gray map, 0 7→ 00, 1 7→ 01, 2 7→ 11, 3 7→ 10 (as suggested
to us by Peter Cameron). This construction does not necessarily give a powerful set, as
the following example shows. On the left is a linear code over Z4 and on the right is the
corresponding binary code.

000 7→ 000000
013 7→ 000110
022 7→ 001111
031 7→ 001001
101 7→ 010001
110 7→ 010100
123 7→ 011110
132 7→ 011011
202 7→ 110011
211 7→ 110101
220 7→ 111100
233 7→ 111010
303 7→ 100010
312 7→ 100111
321 7→ 101101
330 7→ 101000

For the binary code, the number of vectors that are 0 on X = {1, 3, 5} is 3, not a power of
2. (Note the underlined bits.) So the binary code is not powerful. It remains to determine
which Z4-linear codes give nonlinear powerful codes, and what properties they have.

Finally, we suggest the challenge of finding significantly stronger bounds on the number
(up to isomorphism) of powerful sets of order n, and determination of

lim
n→∞

(log2 p(n))1/n.
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[5] J. P. S. Kung. The Rédei function of a relation. J. Combin. Theory Ser. A, 29:287–
296, 1980.

[6] J. Simonis and A. Ashikhmin. Almost affine codes. Des. Codes Cryptogr., 14:179–197,
1998.

[7] D. J. A. Welsh. Matroid Theory. Academic Press, London, 1976.

[8] D. J. A. Welsh and G. P. Whittle. Arrangements, channel assignments, and associated
polynomials. Adv. in Appl. Math., 23:375–406, 1999.
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