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Abstract

The Turán hypergraph problem asks to find the maximum number of r-edges
in a r-uniform hypergraph on n vertices that does not contain a clique of size
a. When r = 2, i.e., for graphs, the answer is well-known and can be found in
Turán’s theorem. However, when r > 3, the problem remains open. We model
the problem as an integer program and call the underlying polytope the Turán
polytope. We draw parallels between the latter and the stable set polytope: we
show that generalized and transformed versions of the web and wheel inequalities
are also facet-defining for the Turán polytope. We also show that clique inequalities
and what we call doubling inequalities are facet-defining when r = 2. These facets
lead to a simple new polyhedral proof of Turán’s theorem.

Mathematics Subject Classifications: 05C35, 05C65, 52B11, 90C10

1 Introduction

Mantel’s theorem [Man07], one of the earliest theorems in combinatorics, states that the
maximum number of edges in a graph on n vertices without any triangles is bn2

4
c, and

that the maximum is attained only on complete bipartite graphs with parts of size bn
2
c

and dn
2
e.

Turán [Tur41] later generalized this theorem by showing that the maximum number
of edges in a graph on n vertices without any clique of size a is at most (1− 1

a−1)n
2

2
, and

that this maximum is attained solely on complete (a−1)-partite graphs with parts of size
as equal as possible.

Since then, many different proofs of this theorem have been found using different
techniques. We present a new polyhedral proof in Section 2 by modeling the Turán
problem as an integer program. We prove in Theorem 6 that the maximum number of

the electronic journal of combinatorics 25(3) (2018), #P3.43 1



edges in an a-clique free graph on n vertices is exactly⌊
n

n− 2

⌊
n− 1

n− 3

⌊
n− 2

n− 4

⌊
· · ·
⌊
a+ 2

a

⌊
a+ 1

a− 1
·
((

a

2

)
− 1

)⌋⌋
· · ·
⌋⌋⌋⌋

.

Turán’s theorem was later generalized in different ways. We turn ourselves to a gener-
alization that Turán himself introduced: the generalization to hypergraphs. The goal is to
find the maximum number of r-hyperedges in a r-uniform hypergraph (i.e., a hypergraph
for which every edge is composed of r vertices) on n vertices that does not contain any
r-uniform hyperclique of size a (i.e., a r-uniform hypergraph on a vertices where every set
of r vertices forms an edge).

This problem remains unsolved to this day. Even in the case when a = 4 and r = 3, the
problem is still open. Turán conjectured that in this case, the maximum number of edges
is (5

9
+O( 1

n
))
(
n
3

)
. The best known bound, (0.561666+O( 1

n
))
(
n
3

)
, is due to Razborov [Raz10]

who used flag algebra calculus. Moreover, Razborov also proved that if one additionally
forbids graphs on four vertices that span exactly one 3-edge as induced subgraphs, then
the maximum hyperedge density is indeed 5

9
as n→∞.

Our integer program can easily be extended to the Turán hypergraph problem. We
study some inequalities valid for the underlying polytope and show that they are facet-
inducing under the right conditions. The inequalities we consider have a nice combinato-
rial flavor and draw a parallel between the Turán polytope and the stable set polytope.
Interestingly enough, we observe that the facets we study do not get dominated as n
increases, thus suggesting that the Turán polytope is very complex.

1.1 Some Notation

By [n], we denote the set {1, 2, . . . , n}. In general, for a graph G = (V,E) with |V | = n,
we assume that V = [n]. For a graph G, V (G) and E(G) represent respectively the vertex
set and edge set of G. All of the graphs we consider are undirected, and we use (v1, . . . , vr)
to denote an (undirected) edge formed by vertices v1 through vr. For G = (V,E), δ(v)
for some vertex v ∈ V corresponds to the set of edges in E that are incident to v and
d(v) := |δ(v)| is the degree of v. Furthermore, for S ⊆ V , we let E[S] be the set of edges
induced by S in G. We say a graph is H-free or Turán if it does not contain an induced
subgraph isomorphic to H. We let Kr

n represent the complete r-uniform hypergraph on
n vertices, and we let Kn := K2

n.

1.2 Previous Work

The literature is simply too big to be included here. A whole paper could be written on
the work done on Turán-type problems for hypergraphs, and a whole book on Turán-type
problems in general. In fact, a whole paper has been written on Turán-type problems for
hypergraphs: the excellent survey [Kee11] by Peter Keevash. I am sitting on the edge
of my seat waiting for someone to write a book on Turán-type problems in general. In
the meantime, one can consult Extremal Graph Theory [Bol04] by Bollobás for results
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published before the mid-eighties. Together, these two bodies of work cover most of what
is known.

2 Polyhedral Proof of Turán’s Theorem

In this section, we give a polyhedral proof of Turán’s Theorem.

Theorem 1 (Turán, 1941). The maximum number of edges in an a-clique-free graph on
n vertices is at most (1− 1

a−1)n
2

2
.

2.1 Model

Definition 2. Let G be a r-uniform hypergraph, and let T (G, a, r) be the convex hull of
the characteristic vectors of all hyperedge sets F ⊆ E(Kr

n) that contain no hyperclique
of size a. Let Qi

H be the set of all r-uniform hypercliques of size i, Qi, in some r-uniform
hypergraph H. Then

T (G, a, r) = conv

x ∈ {0, 1}(n
r)|

∑
e∈E(Qa)

xe 6

(
a

r

)
− 1 ∀Qa ∈ Qa

G


 .

We call T (G, a, r) the Turán polytope of G. We denote max{
∑

e∈E(G) xe|x ∈ T (G, a, r)} by

ex(G, a, r). We let T (n, a, r) := T (Kr
n, a, r) and ex(n, a, r) := ex(Kr

n, a, r). Furthermore,
we let

Q(G, a, r) =
{
x ∈ R(n

r)|
∑

e∈E(Qi) xe 6 ex(i, a, r) ∀Qi ∈ Qi
G,∀a 6 i 6 n− 1

0 6 xe 6 1 ∀e ∈ E(G)
}

be the clique-relaxation of the Turán polytope of G. Again we let Q(n, a, r) := Q(Kr
n, a, r).

We call
∑

e∈E(Qi) xe 6 ex(i, a, r) clique inequalities, xe > 0 non-negativity inequalities,
and xe 6 1 edge inequalities.

2.2 Proof

To prove Turán’s theorem, we need to show that ex(n, a, 2) 6 (1 − 1
a−1)n

2

2
. To calculate

ex(n, a, 2), we must consider two types of inequalities valid for T (n, a, 2).

Definition 3. Let ti+1
a = b i+1

i−1t
i
ac for i > a, and let taa =

(
a
2

)
− 1.

Lemma 4. The inequality
∑

e∈E[S] xe 6 t
|S|
a , where E[S] consists of the edges of Kn

induced by the vertex set S, is valid on T (n, a, 2) for all S ⊆ [n] such that a 6 |S| 6 n.
Furthermore, ex(n, a, 2) 6

⌊
n
n−2ex(n− 1, a, 2)

⌋
.
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Proof. We proceed by induction on the size of |S|. The base case |S| = a, corresponding
to
∑

e∈E[S] xe 6 taa =
(
a
2

)
− 1, is clear since the integer program for T (n, a, 2) contains

these inequalities. Now assume that we have already shown the hypothesis for any S such
that a 6 |S| 6 j. Consider any set S ∈ [n] such that |S| = j + 1. Add up the inequalities
corresponding to all j + 1 sets T of size |S| − 1 contained in S. Notice that each edge in
E[S] is in j − 1 of these inequalities, thus yielding that∑

e∈E[S]

(j − 1)xe 6 (j + 1)tja,

is a valid inequality for T (n, a, 2) since it was produced as a conic combination of valid
inequalities. Since we know that

∑
e∈E[S] xe is an integer for any x ∈ T (n, a, 2),

∑
e∈E[S]

xe 6

⌊
j + 1

j − 1
tja

⌋

is also a valid inequality for T (n, a, 2). Note that this argument also implies the upper-
bound

ex(n, a, 2) 6

⌊
n

n− 2
ex(n− 1, a, 2)

⌋
. (1)

Note that the Chvátal-Gomory cutting plane procedure applied to the linear re-
laxation Q(n, a, 2) would produce the inequality

∑
e∈E[S] xe 6 t

|S|
a at the latest in the

(|S|−a)th round. Moreover, observe that, by letting S = [n], we obtain that the inequal-
ity
∑

e∈E[S] xe =
∑

e∈E(Kn)
xe 6 tna is valid for T (n, a, 2). By definition, this yields the

upper bound

ex(n, a, 2) 6 tna =

⌊
n

n− 2

⌊
n− 1

n− 3

⌊
n− 2

n− 4

⌊
· · ·
⌊
a+ 2

a

⌊
a+ 1

a− 1
·
((

a

2

)
− 1

)⌋⌋
· · ·
⌋⌋⌋⌋

.

To show that ex(n, a, 2) > tna also, we show that another type of inequality is valid for
T (n, a, 2).

Lemma 5. The inequality
∑

e∈δ(v) 2xe +
∑

e∈E(Kn)\δ(v) xe 6 ex(n+ 1, a, 2) for any vertex

v ∈ [n] is valid on T (n, a, 2). Furthermore, so is
∑

e∈E(Kn)
xe 6

⌊
n
n+2

ex(n+ 1, a, 2)
⌋
.

Proof. Take any a-clique-free graph G with n vertices. Fix a vertex v and consider
the graph G′ = ([n + 1], E ′) where E ′ = E ∪ {(i, n + 1)|(i, v) ∈ E} (see Figure 2.2).
Note that G′ is also a-clique-free since any a vertices that contains at most one of n
and n + 1 cannot form a clique, otherwise G would also have contained a clique, and
no clique can contain both n and n + 1 since they don’t form an edge. The inequality∑

e∈δ(v) 2xe +
∑

e∈E(Kn)\δ(v) xe 6 ex(n + 1, a, 2) is derived straight from that fact, and is

thus valid on T (n, a, 2).
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Figure 1: Copying vertex 1 of a 4-clique-free graph.

Now, add up the n inequalities corresponding to each v ∈ [n]. Note that each edge
has coefficient of one in n− 2 inequalities, and coefficient of two in two inequalities. We
thus obtain that ∑

e∈E(Kn)

(n+ 2)xe 6 n · ex(n+ 1, a, 2),

is a valid inequality for T (n, a, 2) since it was produced as a conic combination of valid
inequalities. Since we know

∑
e∈E(Kn)

xe is an integer for any x ∈ T (n, a, 2),

∑
e∈E(Kn)

xe 6

⌊
n

n+ 2
ex(n+ 1, a, 2)

⌋

is also a valid inequality for T (n, a, 2)

Note that this yields the upper bound

ex(n, a, 2) 6

⌊
n

n+ 2
ex(n+ 1, a, 2)

⌋
. (2)

Theorem 6. The equation

ex(n, a, 2) =

⌊
n

n− 2

⌊
n− 1

n− 3

⌊
n− 2

n− 4

⌊
· · ·
⌊
a+ 2

a

⌊
a+ 1

a− 1
·
((

a

2

)
− 1

)⌋⌋
· · ·
⌋⌋⌋⌋

holds.

Proof. Putting inequalities (1) and (2) together, we get that

ex(n+ 1, a, 2) 6

⌊
n+ 1

n− 1
· ex(n, a, 2)

⌋
6

⌊
n+ 1

n− 1

⌊
n

n+ 2
· ex(n+ 1, a, 2)

⌋⌋
. (3)

We now show that ⌊
n+ 1

n− 1

⌊
n

n+ 2
· ex(n+ 1, a, 2)

⌋⌋
6 ex(n+ 1, a, 2),

thus turning (3) into an equation and proving our claim.
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Suppose not. Then

ex(n+ 1, a, 2) + 1 6

⌊
n+ 1

n− 1

⌊
n

n+ 2
· ex(n+ 1, a, 2)

⌋⌋
,

which implies that:

ex(n+ 1, a, 2) + 1 6

⌊
n+ 1

n− 1
· n

n+ 2
· ex(n+ 1, a, 2)

⌋
= ex(n+ 1, a, 2) +

⌊
2

(n− 1) · (n+ 2)
· ex(n+ 1, a, 2)

⌋
.

Certainly, this means that

1 6
2

(n− 1) · (n+ 2)
· ex(n+ 1, a, 2)

6
2

(n− 1) · (n+ 2)
·
⌊
n+ 1

n− 1

⌊
n

n− 2

⌊
· · ·
⌊
a+ 1

a− 1
·
((

a

2

)
− 1

)⌋
· · ·
⌋⌋⌋

6
2

(n− 1) · (n+ 2)
· n+ 1

n− 1
· n

n− 2
· · · a+ 1

a− 1
·
((

a

2

)
− 1

)
=

(n+ 1) · n · (a+ 1) · (a− 2)

(n− 1) · (n+ 2) · a · (a− 1)
.

So we have that
(n− 1) · (n+ 2)

(n+ 1) · n
6

(a+ 1) · (a− 2)

a · (a− 1)
.

By simplifying this inequality, we obtain that

1− 2

n · (n+ 1)
6 1− 2

a · (a− 1)
,

which implies that
n · (n+ 1) 6 a · (a− 1),

which is impossible since n > a > 3. We have reached a contradiction, thus proving our
claim.

Corollary 7. The integrality gap between Q(n, a, 2) and T (n, a, 2) is less than one in the
1-direction.

Proof. In the proof of the last theorem, we saw that⌊
max

x∈Q(n,a,2)
1x

⌋
= ex(n, a, 2) = max

x∈T (n,a,2)
1x.

The result follows.
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To the best of our knowledge, the exact formula

ex(n, a, 2) =

⌊
n

n− 2

⌊
n− 1

n− 3

⌊
n− 2

n− 4

⌊
· · ·
⌊
a+ 2

a

⌊
a+ 1

a− 1
·
((

a

2

)
− 1

)⌋⌋
· · ·
⌋⌋⌋⌋

was not known before. In the form (1− 1
a−1)n

2

2
, Turán’s bound calculates the number of

edges in an complete a − 1-partite graph where all parts have equal size. It is of course
only possible to do so if n = 0 mod a− 1, and so the Turán bound is equal to ex(n, a, 2)
only if n = 0 mod a− 1. For all other cases, ex(n, a, 2) <

(
1− 1

a−1

)
n2

2
.

3 Facets of the Turán Polytope

In this section, we investigate some facet classes of T (n, a, r). Some of these facets can be
seen as analogs of famous facets of the stable set polytope. We first make a few general
polytopal remarks that will help us generalize our results, then we show that the inequal-
ities we described in the previous section are facet-defining for T (n, a, 2) under certain
conditions, and we end with a proof that generalizations of web and wheel inequalities
are facet-inducing for T (n, a, r) under certain conditions.

3.1 General polytopal considerations

Proposition 8. Any facet we will add to the defining inequalities of T (G, a, r) will be of
the form αTx 6 b where αe > 0 for all e ∈ E(G) and b > 0.

Proof. We simply need to show that T (G, a, r) is down-monotone in Rn
+. This is indeed

the case since any y such that 0 6 y 6 x for all x ∈ T (G, a, r) will also be in T (G, a, r)
since y will respect all the constraints of T (G, a, r).

We now show that some facets of T (G, a, r) can be lifted to T (G′, a, r) where G ⊂ G′

because of the following theorem of Padberg.

Theorem 9 (Padberg, 1973). Let S ⊆ {0, 1}n be monotone (i.e., y 6 x ∈ S implies
y ∈ S), PS := conv(S) be full-dimensional, I ⊆ {1, 2, . . . , n}, PS(I) := PS ∩ {x ∈ Rn|xi =
0 ∀i ∈ I} and xI ∈ Rn denote a vector with xIi = 0 for all i ∈ I. Suppose

∑
j 6∈I αjxj 6 αo

with α0 > 0 defines a facet of Ps(I) and i ∈ I. Define

αi := α0 −max{
∑
j 6∈I

αjx
I
j |ei + xI ∈ S}.

Here ei is a unit vector in Rn with the ith component equal to one. Then

αixi +
∑
j 6∈I

αjxj 6 a0

defines a facet of PS(I\{i}).
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Corollary 10. Let G and H be two r-uniform hypergraphs such that H ⊆ G and such that
ex(He, a, r) = ex(H, a, r) + 1 for every e ∈ E(G)\E(H) where He = (V (H), E(H) ∪ e).
If
∑

e∈E(H) xe 6 ex(H, a, r) is a facet of T (H, a, r), then it is also a facet of T (G, a, r).

Proof. We first note that T (G, a, r) is a full-dimensional monotone polytope since 0 as
well as every unit vector is in T (G, a, r). Moreover, we know that if the characteristic
vector of an edge set S is in T (G, a, r), then it is a-clique-free and if we take a subset of
S, then it is also a-clique-free, and so its characteristic vector will also be in T (G, a, r).
Thus, T (G, a, r) is also monotone, and so the setup is similar to the one of the previous
theorem.

We let I := E(G)\E(H), and we now show that T (H, a, r) = T (G, a, r) ∩ {x ∈
R|E(G)||xe = 0 ∀e ∈ I}. Indeed, T (H, a, r) contains every point P that is in T (G, a, r) for
which xe = 0 for all e ∈ I since such a point must be a convex combination of vertices of
T (G, a, r) for which xe = 0 for all e ∈ I (if the combination contained a positive coefficient
for some vertex of T (G, a, r) for which there exists xe′ = 1 for some e′ ∈ I, then P would
have xe′ > 0, a contradiction). Since vertices of T (G, a, r) for which xe = 0 are also
vertices of T (H, a, r), P is also in T (H, a, r). We can show similarly that every point in
T (H, a, r) is in T (G, a, r) ∩ {x ∈ R|E(G)||xe = 0 ∀e ∈ I}.

Suppose
∑

e∈E(H) xe 6 ex(H, a, r) is a facet of T (H, a, r). Take any e′ ∈ I, and

let ce′ := ex(H, a, r) − max{
∑

e6∈I xe|x ∈ T (H, a, r) and e′ ∪ x is a − clique-free}. Since
ex(He′ , a, r) = ex(H, a, r)+1, we know there exists an a-clique-free set of edges S in He′ of
size ex(H, a, r)+1 which must contain e′ (else we would have ex(H, a, r) = ex(H, a, r)+1!),
and S\{e′} is still a-clique-free and completely inH, so ce′ = 0 since |S\{e′}| = ex(H, a, r).
Thus by the previous theorem,

∑
e∈E(H) xe 6 ex(H, a, r) is also a facet of T (He′ , a, r).

Adding another edge e′′ ∈ E(G)\(E(H)∪{e′}) will yield the same argument that 0 =
c0 −max{

∑
e6∈I\{e′} xe|x ∈ T (He′ , a, r) and e′′ ∪ x is a− clique-free} since ex(He′′ , a, r) =

ex(H, a, r) + 1, and so there is an edge set of size ex(H, a, r) in T (H, a, r) (and thus also
in T (He′ , a, r)) that fulfills the requirements.

We can therefore add all of the edges in E(G)\E(H), and get that
∑

e∈E(H) xe 6
ex(H, a, r) is a facet of T (G, a, r).

Corollary 11. Let G and H be two r-uniform hypergraphs such that H ⊆ G. If∑
e∈E(H)

cexe 6 c0

is a facet of T (H, a, r) such that for every e′ ∈ E(G)\E(H) there exists x∗ such that∑
e∈E(H) cex

∗
e = c0 for which x∗ ∪ e′ is a-clique-free, then it is also a facet of T (G, a, r).

Proof. As in the previous corollary, we have that the setup is similar to that of the Padberg
lifting property. Here again, let I := E(G)\E(H) and ce′ := c0 − max{

∑
e 6∈I xe|x ∈

T (H, a, r) and e′ ∪ x is a − clique-free} for e′ ∈ I. Then, since there exists x∗ such that
x∗ ∪ e′ is a-clique-free and and such that

∑
e∈E(H) cex

∗
e = c0, we have that ce′ = 0 for

any e′ ∈ I. As in the previous corollary, we can add all of the edges in I one after the
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other without encountering problems, and so we get that
∑

e∈E(H) cexe 6 c0 is a facet for

T (G, a, r).

This is good news, and bad news at the same time. Many facets we find will still be
facets on higher-dimensional examples; our work on smaller graphs will often carry on to
larger graphs. However, the fact that all those facets remain and don’t get dominated by
others when we add more edges to the graph means that higher-dimensional polytopes
will have many, many, many facets, and thus makes it very unlikely that a complete
description can be found for them.

3.2 Some facets of T (n, a, 2)

3.2.1 Clique facets

The most trivial class of facets of the stable set polytope are the clique inequalities:∑
v∈Q xv 6 1 for every clique Q. Such inequalities are facets of the stable set polytope for

inclusionwise maximal cliques. Clique inequalities are also our most trivial class of facets.

Theorem 12. The clique inequality∑
e∈E(Kn)

xe 6 ex(n, a, 2)

is facet-defining for T (n, a, 2) if n 6= 0 mod (a− 1).

Proof. From Turán’s theorem, we know that any a-clique-free graph with ex(n, a, 2) edges
is an (a− 1)-partite complete graph with parts of size as equal as possible. Suppose there
are p1 parts of size b n

a−1c and p2 parts of size d n
a−1e such that p1 + p2 = a − 1 and

p1 · b n
a−1c+ p2 · d n

a−1e = n.
Let αx 6 β be satisfied by all x in the Turán polytope with

∑
e∈E(Kn)

xe = ex(n, a, 2);

then α(S) = β for each Turán edge set S with |S| = ex(n, a, 2), i.e., the optimal (a− 1)-
partite complete graphs we’ve just described.

Take two adjacent edges in Kn, without loss of generality, (n, 1) and (1, 2). We want
to show that α(1,n) = α(1,2). Since n 6= 0 mod (a−1), we know there exist optimal Turán
edge sets in the clique such that vertex n is in a part of size b n

a−1c and vertices 1 and 2
are together in a part of size d n

a−1e such that b n
a−1c < d

n
a−1e. For example, consider the

optimal Turán solution S1 where vertices n − b n
a−1c + 1 through n form one part, and

vertices 1 through d n
a−1e form another part. Fix the other vertices into a partition P that

makes the whole solution optimal.
Now consider another optimal solution S2 such that vertices d n

a−1e+1 through n−b n
a−1c

are partitioned into P , vertices n−b n
a−1c+ 1 through n with vertex 1 as well form a part

of size d n
a−1e and vertices 2 through d n

a−1e form another part of size b n
a−1c. This is thus

the previous solution but with vertex 1 moved to the other defined part. Note that we
couldn’t do that if n = 0 mod (a− 1) and still have an optimal solution after the move.
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Figure 2: Example of S1 and S2 for n = 14 and a = 4.

Since α(S1) = β = α(S2), this implies that

α(1,n−b n
a−1
c+1) + α(1,n−b n

a−1
c+2) + · · · + α(1,n) = α(1,2) + α(1,3) + · · · + α(1,d n

a−1
e). (4)

Now consider yet another optimal Turán edge set S3 such that again vertices d n
a−1e+1

through n−b n
a−1c are partitioned into P , vertices n−b n

a−1c+1 through n−1 with vertex
2 as well form a part of size b n

a−1c and vertices 3 through d n
a−1e with vertices 1 and n

form another part of size d n
a−1e.

14
1

3
4

5

678910

11
12

13
2

S3

2
1

13
12

11

678910

5
4

3
14

S4

Figure 3: Example of S3 and S4 for n = 14 and a = 4.

Finally, we consider one last optimal Turán solution S4, again with vertices d n
a−1e+ 1

through n−b n
a−1c are partitioned into P , vertices n−b n

a−1c+1 through n−1 with vertices
1 and 2 as well form a part of size d n

a−1e and vertices 3 through d n
a−1e with vertex n form

another part of size b n
a−1c (thus the previous solution but with vertex 1 moved to the

other defined part).
Again, since α(S3) = β = α(S4), this implies that

α(1,2) + α(1,n−b n
a−1
c+1) + α(1,n−b n

a−1
c+2) + · · ·+ α(1,n−1)

= α(1,3) + α(1,4) + · · ·+ α(1,d n
a−1
e) + α(1,n). (5)
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By subtracting equation 5 from equation 4, we get that

α(1,n) − α(1,2) = α(1,2) − α(1,n),

which implies that α(1,n) = α(1,2). Since we chose those edges without loss of generality, we
know that αe1 = αe2 for any two adjacent edges e1 and e2. By applying this observation
to all pairs of adjacent edges in the clique, we obtain that αe3 = αe4 for any two edges
e3, e4 of Kn. Note that it is clear that αe > 0. Thus α is a positive scalar multiple
of the left-hand side of the clique inequality, which is thus facet-defining when n 6= 0
mod (a− 1).

Corollary 13. If G contains a clique of size i with i 6= 0 mod (a− 1), say Qi, then the
corresponding clique inequality is a facet of T (G, a, 2).

Proof. Note that ex(Qi+e, a, 2) = ex(i, a, 2)+1 for all e ∈ E(G)\E(Qi) since any edge e in
G but not in the clique can be added to any optimal edge set of the clique without forming
an a-clique since other edges containing some vertices of both e and Qi are missing. Thus,
by Corollary 11, these clique inequalities are facets of T (G, a, 2). In particular, they are
facets of T (n, a, 2) for n > i.

3.2.2 Doubling Facets

In the polyhedral proof of the Turán theorem, we introduced another type of valid in-
equality, which we call the doubling inequality. We showed there that∑

e∈δ(v)

2xe +
∑

e∈E(Kn)\δ(v)

xe 6 ex(n+ 1, a, 2)

is a valid inequality for T (n, a, 2) for any v ∈ [n] since copying any vertex in a Turán edge
set gives an edge set that is also Turán. We now show that this inequality is sometimes
facet-defining.

Theorem 14. The doubling inequality∑
e∈δ(v)

2xe +
∑

e∈E(Kn)\δ(v)

xe 6 ex(n+ 1, a, 2)

is facet-defining for any v ∈ [n] for T (n, a, 2) when n = 0 mod (a − 1) and with n >
3(a− 1).

Proof. We first observe that there are two types of edge sets that are tight with the
doubling inequality for n = 0 mod (a− 1). The first type, which we call type I, is simply
the optimal Turán edge set of a clique, that is, a complete (a−1)-partite graph with each

part containing n
a−1 vertices. There are

( n
a−1
2

)
· ( n

a−1)2 edges in such a solution, including
n− n

a−1 edges that get doubled in the doubling inequality, thus the left-hand side of the

inequality yield
( n

a−1
2

)
· ( n

a−1)2 + n− n
a−1 which is equal to ex(n+ 1, a, 2), as desired.
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The second type of optimal Turán edge set, called type II, is given by the same
construction, but with one vertex being moved to another part and the vertex v that
gets doubled being in the part that lost a vertex. That is, an (a− 1)-partite graph with
all parts containing n

a−1 vertices except for two parts, one containing n
a−1 − 1 vertices

(including v) and one containing n
a−1 + 1 vertices.

w

v
→

v

w

→
v

v
w

Figure 4: Constructing an optimal solution of type II for the doubling inequality for
T (8, 3, 2)

One can check that the number of edges in a type II solution is the same as in a type
I solution by calculating how many edges we lose and gain, and that the second type of
solution is also tight with the doubling inequality if n = 0 mod a−1. Note that the type
II construction is not always optimal for the doubling inequality when n 6= 0 mod a− 1,
and observe that the type I constructions are already in the clique facet in these cases.

Let αx 6 β be a facet of T (n, a, 2) satisfied by all x in the Turán polytope with∑
e∈δ(v) 2xe +

∑
e∈E(Kn)\δ(v) xe = ex(n + 1, a, 2); then α(S) = β for both types of Turán

edge sets that we have just described.
Without loss of generality, let v = n

a−1 . Take two adjacent edges that do not contain
v, without loss of generality, (n, 1) and (1, 2). First consider the optimal solution S1 of
type I where vertices i · n

a−1 + 1 through (i+ 1) · n
a−1 form a part for 0 6 i 6 a− 2.

1

2

3

4

5

6

7

8

S1 1

5

6

7

8

2

3

4

S2

Figure 5: S1 and S2 for T (8, 3, 2)

Now consider the solution of type II S2 which is the same as S1 but with vertex 1
moved to the part containing vertices n − n

a−1 + 1 through n. Since α(S1) = β = α(S2),
we have that

α(1,n− n
a−1

+1) + α(1,n− n
a−1

+2) + · · ·+ α(1,n) = α(1,2) + α(1,3) + · · ·+ α(1, n
a−1

).
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Consider now two new optimal solutions. First, we consider one of type I, say S3,
where vertices i · n

a−1 + 1 through (i + 1) · n
a−1 form a part for 1 6 i 6 a − 3, vertices 3

through n
a−1 with vertices n and 1 form another part, and vertices n − n

a−1 + 1 through
n− 1 with vertex 2 form a final part.

8

1

3

4

2

5

6

7

S3 1

2

5

6

7

8

3

4

S4

Figure 6: S3 and S4 for T (8, 3, 2)

Second, we consider a final solution S4 of type II which is the same as S3 but with
vertex 1 moved to the part containing vertices n− n

a−1 + 1 through n− 1 as well as vertex
2. Since α(S3) = β = α(S4), we obtain that

α(1,2) + α(1,n− n
a−1

+1) + α(1,n− n
a−1

+2) + · · ·+ α(1,n−1)

= α(1,3) + α(1,4) + · · ·+ α(1, n
a−1

) + α(1,n).

Subtracting these two equations, we get that

α(1,n) − α(1,2) = α(1,2) − α(1,n),

meaning that α(1,n) = α(1,2). Since edges (1, 2) and (1, n) were chosen without loss of
generality as adjacent edges not containing v, we get that αe1 = αe2 for any two edges
e1, e2 not containing v by applying this fact to pairs of adjacent edges not containing v
repetitively. Let αe = A for any edge not containing v which we fixed to be n

a−1 at the
beginning. Then the first equation becomes(

n− n

a− 1

)
· A =

(
n− n

a− 1
− 2

)
· A+ α(1, n

a−1
),

which yields that α(1, n
a−1

) = 2A. Since v = n
a−1 was chosen without loss of generality, we

get that αe′ = 2A for any edge e′ such that v ∈ e′. Note that it is clear that αe > 0 for any
edge e, and thus we can conlude that α is a positive scalar multiple of the left-hand side
of the doubling inequality. Since we know the doubling inequality is tight with T (n, a, 2)
as we’ve seen through the two types of constructions, it is facet-defining. Finally, note
that the sets S1, S2, S3 and S4 all exist only if each part contains at least three vertices,
that is, if n > 3(a− 1).
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Theorem 15. The doubling inequality∑
e∈δ(v)

2xe +
∑

e∈E(Ki)\δ(v)

xe 6 ex(i+ 1, a, 2)

is facet-defining for any v ∈ V (Ki) for T (n, a, 2) when i = 0 mod (a−1), with i > 3(a−1)
and n > i.

Proof. By Corollary 11, we only need that for every e ∈ E(Kn)\E(Ki), there exists an
optimal solution S of the doubling inequality in Ki such that S ∪ e is Turán. This is
clear since, for any such edge e, S ∪ e is Turán for any optimal solution S of the doubling
inequality because any a-clique containing the vertices of e as well as some vertices of Ki

is missing some edges.

Clearly, T (n, a, 2) has many more facets than the ones we have spoken about. Since
the optimal solutions of the Turán graph problem are already known, it’s actually quite
easy to produce more facets by using proofs like the ones we have seen so far. For example,
instead of doubling just one vertex like in the last inequality, we could double two vertices,
say v1, v2. Then

4 · x(v1,v2) + 2 ·
∑

e∈E(Kn):
v1 or v2∈e

but not both

xe +
∑

e∈E(Kn):
v1 6∈e,v2 6∈e

xe 6 T (n+ 2, a, 2)

is facet-defining if n = 1 mod (a − 1), and we can keep playing this game with more
vertices. Similarly, it is easy to come up with non-rank facets for the web and wheel graphs.
However, these proofs all rely on knowing what optimal solutions look like, knowledge that
we are lacking in the next section when considering r-uniform hypergraphs with r > 3.
Still, note that if Turán’s conjecture for ex(n, 4, 3) is correct, then our proof for the clique
facets for T (n, a, 2) could be generalized to T (n, 4, 3) by using known constructions of
extremal graphs for that case (see, e.g., [Fro08]).

3.3 Some facets for T (n, a, r)

3.3.1 Hyperwheel Facets

Wheel facets for the stable set polytope are related to the graph formed by connecting
a single vertex to all vertices of a cycle. We generalize these graphs to hypergraphs and
show that they also yield facet-inducing inequalities for T (n, a, r).

Definition 16. A hyperwheel rW a
l is a r-uniform hypergraph on l vertices with one

vertex in the center, say l, and vertices [l− 1] placed in a cycle in increasing order around
it. The r-edges present are such that every a − 1 consecutive vertices form an a-clique
with vertex l. We only consider wheels for which n > 2a − 1, since otherwise we’d
have a complete hypergraph. For example, Figure 7 represents 3W 4

8 . We call edges that
contain the middle vertex, say l, spoke edges and those who don’t, cycle edges. Suppose
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Figure 7: A 3-hyperwheel on 8 vertices.

1 6 j1 < . . . < jr−1 6 l − 1, then we say that the cycle edge (i, i+ j1 mod l, . . . , i+ jr−1
mod l) spans jr−1 vertices, and the spoke edge (i, i + j1 mod l, . . . , i + jr−2 mod l, l)
spans jr−2 vertices if jr−1 and jr−2 are as small as possible. A spoke edge spans between
r− 1 and a− 1 vertices of the cycle and a cycle edge, between r and a− 1 vertices. Note
that a r-edge spanning β vertices of the cycle is contained in a − 1 − (β − 1) = a − β
of the hypercliques. We label the hyperclique spanning vertices i, i + 1, . . . , i + a − 2, l
mod (l−1) as hyperclique i. Note that hypercliques containing any edge e are consecutive
modulo a− 1 in that labeling. The hyperwheel rW a

l contains (l − 1) ·
(
a−1
r−1

)
r-edges.

Theorem 17. The following inequalities are valid and tight for T (n, a, r)∑
e∈E(rWa

l )

xe 6 |E(rW a
l )| −

⌈
l − 1

a− r + 1

⌉
=

(
a− 1

r − 1

)
· (l − 1)−

⌈
l − 1

a− r + 1

⌉
,

for all wheels rW a
l in Kr

n with l 6 n.

Proof. We first show that the inequality is valid by determining that it is a Chvátal-
Gomory cut. Add up the l − 1 inequalities of the r-hypercliques of size a with weight

1
a−r+1

, and the edge inequalities xe 6 1 for all edges e spanning β vertices with weight
β−r+1
a−r+1

. This yields the following Chvátal-Gomory cut∑
e∈E(rWa

l )

xe 6

(l − 1)
((

a
r

)
− 1 +

∑a−1
β=r−1

(
β−2
β−r+1

)
· (β − r + 1) +

∑a−1
β=r

(
β−2
β−r

)
· (β − r + 1)

)
a− r + 1


since there are

(
β−2
β−r+1

)
spoke edges starting at any vertex of the cycle and spanning the

next β − 1 vertices (where r− 1 6 β 6 a− 1) and there are
(
β−2
β−r

)
cycle edges starting at

any vertex of the cycle and spanning the next β − 1 vertices (where r 6 β 6 a− 1). We
can merge the two sums in the right-hand side together by recalling that

(
β−2
β−r+1

)
+
(
β−2
β−r

)
=(

β−1
β−r+1

)
to obtain (l − 1)

((
a
r

)
− 1 +

∑a−1
β=r

(
β−1
β−r+1

)
· (β − r + 1)

)
a− r + 1


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because
(
r−1−2
r−1−r+1

)
· (r − 1− r + 1) = 0. We now switch the indices to be from 1 to a− r

to simplify the formula: ⌊
(l − 1)

((
a
r

)
− 1 +

∑a−r
α=1

(
α+r−2
α

)
· α
)

a− r + 1

⌋
.

Then one can easily check that this is equal to
(
a−1
r−1

)
· (l − 1)−

⌈
l−1

a−r+1

⌉
as desired.

We now show that this inequality is tight by producing an edge set of size
(
a−1
r−1

)
·

(l − 1) − d l−1
a−r+1

e in rW a
l ⊂ Kr

n which contains no hyperclique of size a. We want to
take all of the edges except a minimum-size set of spoke edges which will ensure that no
clique is full. To do so, we remove spoke edges that are contained in as many cliques
as possible, namely spoke edges that span only r − 1 vertices. So first remove such a
spoke edge, say (a− r + 1, . . . , a− 1, l) without loss of generality, which ensures that the
hypercliques starting on vertex 1 through a− r+ 1 are not full. Then remove spoke edge
(2a−2r+2, . . . , 2a−r, l) which ensures that the hypercliques starting on vertices a−r+2
through 2a − 2r + 2 are not full, and so on. When the full cycle has been explored that
way, we only need to make sure we remove an edge before vertex 1. Thus, by removing⌈

l−1
a−r+1

⌉
edges, what remains is a-hyperclique-free since at least one spoke is missing in

each hyperclique. Given that the hyperwheel contains (l − 1) ·
(
a−1
r−1

)
edges in the first

place, it means that such a solution contains(
a− 1

r − 1

)
· (l − 1)−

⌈
l − 1

a− r + 1

⌉
r-hyperedges and so hyperwheel inequalities of type rW a

l are tight for T (n, a, r) with
n > l.

Note that in the previous proof, we have seen one type of optimal Turán edge set
for the hyperwheel rW a

l which we call a type I construction. Another type of optimal
Turán construction is to remove, without loss of generality, b l−1

a−r+1
c (r-1)-spanning spoke

edges, say edges (i · (a − r + 1), . . . , i · (a − r + 1) + r − 2, l) for 1 6 i 6 b l−1
a−r+1

c which

guarantees that the cliques starting on vertices 1 through b l−1
a−r+1

c and spanning the next
a− 2 vertices and central vertex l are all not full. Thus removing any edge contained in
all cliques starting on b l−1

a−r+1
c through l − 1 will yield an optimal Turán solution which

we call of type II.

Theorem 18. The inequality∑
e∈E(rWa

l )

xe 6

(
a− 1

r − 1

)
· (l − 1)−

⌈
l − 1

a− r + 1

⌉

is facet-defining for T (rW a
l , a, 2) if l − 1 = 1 mod (a− r + 1).
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Proof. Let αx 6 β be satisfied by all x in the Turán polytope with
∑

e∈E(rWa
l )
xe =(

a−1
r−1

)
· (l − 1) −

⌈
l−1

a−r+1

⌉
; then α(S) = β for each Turán edge set S with |S ∩r W a

l | =(
a−1
r−1

)
· (l − 1)−

⌈
l−1

a−r+1

⌉
.

Consider two distinct spoke edges, including one that spans r−1 vertices of the cycle,
such that both start from the same vertex, without loss of generality, say (1, 2, . . . , r −
2, l−1, l) and (i1, . . . , ir−2, l−1, l) where 1 6 ij 6 a−2 for all 1 6 j 6 r−2. Let solution
S1 be the edge set

E(rW a
l )\

{{
(i · (a− r + 1), i · (a− r + 1) + 1, . . . , i · (a− r + 1) + r − 2, l)|1 6 i 6

⌊
l − 1

a− r + 1

⌋}

∪ (1, 2, . . . , r − 2, l − 1, l)

}

and S2 be

E(rW a
l )\

{{
(i · (a− r + 1), i · (a− r + 1) + 1, . . . , i · (a− r + 1) + r − 2, l)|1 6 i 6

⌊
l − 1

a− r + 1

⌋}

∪ (i1, . . . , ir−2, l − 1, l)

}
,

which are clearly two optimal Turán sets respectively of type I and II in rW a
l since l−1 = 1

mod (a−r+1) and so the only clique that is still full after removing {(i ·(a−r+1), i ·(a−
r+1)+1, . . . , i · (a−r+1)+r−2, l)|1 6 i 6 b l−1

a−r+1
c} is the clique (l−1, l, 1, 2, . . . , a−2)

so removing any of those two spoke edges will make the graph a-clique-free. This means
that α(S1) = β = α(S2) which implies that α(1,2,...,r−2,l−1,l) = α(i1,...,ir−2,l−1,l). Since we can
show this for any spoke edge starting on the same vertex as a spoke edge that spans r− 1
vertices, we obtain that αe1 = αe2 for any two spoke edges e1 and e2.

Now consider a spoke edge spanning r − 1 vertices of the cycle and any cycle edge
that starts on the same vertex, without loss of generality (1, 2, . . . , r − 2, l − 1, l) and
(i1, . . . , ir−1, l − 1) where 1 6 ij 6 a− 2 for all 1 6 j 6 r − 1. Again, if we let S3 be the
same edge set as S1 and S4 be

E(rW a
l )\

{{
(i · (a− r + 1), i · (a− r + 1) + 1, . . . , i · (a− r + 1) + r − 2, l)|1 6 i 6

⌊
l − 1

a− r + 1

⌋}

∪ (i1, . . . , ir−1, l)

}
,

then they are both optimal Turán solutions respectively of type I and II by the same
argument as we’ve just seen. Thus, we have that α(S3) = β = α(S4) which implies that
α(1,2,...,r−2,l−1,l) = α(i1,...,ir−1,l−1). Since this is true for any spoke spanning r − 1 vertices
and any cycle edge starting on the same vertex, we have that αe1 = αe2 for any two edges
in rW a

l . It is also clear that αe > 0 for all edges e ∈ E(rW a
l ). We thus conclude that α3

is a positive scalar multiple of the left-hand side of the hyperwheel inequality, which is
thus facet-defining when l − 1 = 1 mod (a− r + 1).
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Theorem 19. The inequalities∑
e∈E(rWa

l )

xe 6

(
a− 1

r − 1

)
· (l − 1)−

⌈
l − 1

a− r + 1

⌉

are facet-defining for T (n, a, r) for all rW a
l ⊆ Kr

n with l − 1 = 1 mod a− r + 1.

Proof. By Theorem 10, we simply need to show that there exists a Turán edge set of size(
a−1
r−1

)
· (l − 1)−

⌈
l−1

a−r+1

⌉
+ 1 in E(rW a

l ) ∪ e for every e ∈ E(Kr
n)\E(rW a

l ). First consider
an edge e ∈ E\E(rW a

l ) that is not an edge of the hyperwheel. If e = (i1, . . . , ir) such that
ij 6∈ V (rW a

l ) for some 1 6 j 6 r, then it is clear that we can add this edge to any optimal
Turán edge set in rW a

l without creating a clique of size a. Now suppose e = (i1, . . . , ir)
such that ij ∈ V (rW a

l ) for all 1 6 j 6 r. We know that e spans at least a vertices of
the cycle since these are the only edges missing. If e spans more than a vertices, then we
can add it to any optimal Turán edge set in rW a

l without creating an a clique since any
a-clique containing e would have to contain also another edge spanning at least a vertices,
which we know are absent from such an edge set given that they aren’t in the hyperwheel
in the first place. So we just have to show that there exists an optimal Turán edge set S
in rW a

l such that S ∪ e is still Turán when e spans a vertices. If r > 2, then there exist
other edges missing in those a vertices, and so they cannot form a clique. When r = 2,
there exists an optimal solution where an edge (b, b + 1) is missing, namely the type II
construction we discussed with, without loss of generality, let e = (a−1, l−1) and remove
edge (1, l− 1) and edges ((a− 1) · i, l) for 1 6 l 6 b l−1

a−1c from the wheel. Adding e to this
optimal type II Turán solution does not create an a-clique.

Thus, if e ∈ E(Kr
n)\E(rW a

l ), then there always exists an optimal Turán edge set S in
rW a

l such that S ∪ e is also Turán. Therefore,hyperwheel inequalities on l vertices with
l − 1 = 1 mod (a − r + 1) will still be facet-defining for T (n, a, r), n > l. Actually, by
this argument, these wheel inequalities will be facet-inducing for any T (G, a, r) for any
graph G that contains such hyperwheels as subgraphs.

Note that one can give a full linear descriptions of T (rW r+1
l , r + 1, r): one needs

only clique, non-negativity, edge and hyperwheel inequalities. For a proof, see http:

//people.math.umass.edu/~raymond/wheel.pdf.

3.3.2 Hyperweb Facets

A web (or circulant) is a graph with vertices [n] where (i, j) ∈ E if i and j differ by at
most k (mod n) and i 6= j. Inequalities built from webs are also facet-defining for the
stable set polytope. We again consider a generalization to hypergraphs, and show that
corresponding inequalities are facet-defining for T (n, a, r).

Definition 20. A hyperweb rW
a−1
l is a r-uniform hypergraph on l vertices placed in a

cycle in increasing order, say 1 through l. The r-edges present are such that every a
consecutive vertices form an a-clique, i.e., for any given vertex, any edge starting with it
and spanning at most the next a−1 vertices will be present. We only consider hyperwebs

the electronic journal of combinatorics 25(3) (2018), #P3.43 18

http://people.math.umass.edu/~raymond/wheel.pdf
http://people.math.umass.edu/~raymond/wheel.pdf


Figure 8: A 3-hyperweb 3W
3

7 on 7 vertices.

for which l > 2a, so that we do not have a complete hypergraph. A hyperweb is thus for
us a hyperwheel with the central vertex removed. For example, Figure 8 represents the

edges present in 3W
3

7.

We can prove for hyperwebs theorems similar to the ones we had for hyperwheels.
Their proofs are along the same lines, so we just write their statements; the proofs can
be found on http://people.math.umass.edu/~raymond/web.pdf.

Theorem 21. The following inequalities are valid and tight for T (n, a, r)∑
e∈E(rW

a−1
l )

xe 6

(
a− 1

r − 1

)
· l −

⌈
l

a− r + 1

⌉
,

for all hyperwebs rW
a−1
l in Kr

n with l 6 n.

Theorem 22. Inequality ∑
e∈E(rW

a−1
l )

xe 6

(
a− 1

r − 1

)
· l −

⌈
l

a− r + 1

⌉

is facet-defining for T (rW
a−1
l , a, 2) if l = 1 mod (a− r + 1).

Theorem 23. The inequalities∑
e∈E(rW

a−1
l )

xe 6

(
a− 1

r − 1

)
· l −

⌈
l

a− r + 1

⌉

are facet-defining for T (n, a, r) for all rW
a−1
l ⊆ Kr

n with l = 1 mod (a−r+1) and l 6 n.

Theorem 24. We have that

T (rW
r

l , r + 1, r) = {x ∈ R|E(rW
r
l )|| x(Qr+1) 6 r ∀Qr+1 ∈ Qr+1

rW r
l

x(rW
r

l ) 6 r · l −
⌈
l

2

⌉
0 6 xe 6 1 ∀e ∈ E(rW

r

l )}

and that all of these inequalities are necessary if l is odd.
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4 Conclusion

Obviously, there is still a lot of work to do on the Turán hypergraph problem and also
on its polytope. Hopefully, it is clear that the Turán polytope is interesting in itself,
notwithstanding its connection to the famous problem. Its structure is combinatorially
rich, and the many parallels that can be drawn between its facets and those of the stable
set polytope—one of the polytopes that has been studied the most—make the Turán
polytope even more intriguing. In the future, we would love to see whether the rank
facets of the stable set polytope for quasi-line graphs (see [EOSV08]) can be transferred
to the Turán polytope.

Understanding some of the facet structure of the Turán polytope also allowed us to
understand better why the Turán problem is so hard in general. Indeed, given that the
facets we found do not get dominated as the number of vertices grows, this leads us to
believe that the number of facets of T (n, a, r) becomes unwieldy as n grows. For example,
we proved that cliques of size i were facet-defining for T (n, 3, 2) for all i odd and n > i.
This means that T (n, 3, 2) already has at least(

n

3

)
+

(
n

5

)
+

(
n

7

)
+ · · ·+

(
n

n′

)
≈ 2n−1

facets, where n′ = n if n is odd or n′ = n − 1 if n is even. And these are just the clique
facets! Optimizing over a polytope with many facets in a random direction is generally
hard, and so this might explain why the problem remains open in general. In another
way, we are not trying to optimize in a random direction, so coming up with a clever
sequence of Chvátal-Gomory cuts might be possible just like it was for the graph case.
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