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Abstract

The notion of robust expansion has played a central role in the solution of several
conjectures involving the packing of Hamilton cycles in graphs and directed graphs.
These and other results usually rely on the fact that every robustly expanding
(di)graph with suitably large minimum degree contains a Hamilton cycle. Previous
proofs of this require Szemerédi’s Regularity Lemma and so this fact can only be
applied to dense, sufficiently large robust expanders. We give a proof that does not
use the Regularity Lemma and, indeed, we can apply our result to sparser robustly
expanding digraphs.

Mathematics Subject Classifications: 05C20, 05C35, 05C38, 05C45

1 Introduction

Throughout, we work with simple directed graphs (also called digraphs), i.e. directed
graphs with no loops and with at most two edges between each pair of vertices (one in
each direction). A Hamilton cycle in a (directed) graph is a (directed) cycle that passes
through every vertex. Over the last several decades, there has been intense study in
finding sufficient conditions for the existence of Hamilton cycles in graphs and digraphs.
The seminal result in the case of graphs is Dirac’s Theorem [5] and in the case of digraphs
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n. 258345 (A. Lo).
†Supported by the Netherlands Organisation for Scientific Research (NWO) through the Gravitation
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the electronic journal of combinatorics 25(3) (2018), #P3.44 1



is Ghouila-Houri’s Theorem [7], each giving tight minimum degree conditions for the
existence of Hamilton cycles.

This paper concerns Hamilton cycles in robust expanders. Below we define a robust
expander and give some brief background.

Definition 1. For an n-vertex digraph D = (V,E), ν ∈ (0, 1), and S ⊆ V , the robust
ν-outneighbourhood of S, denoted RN+

ν (S), is the set of vertices that have at least νn
inneighbours in S. Given 0 < ν 6 τ < 1, we say D is a robust (ν, τ)-outexpander if

|RN+
ν (S)| > |S|+ νn

for every S ⊆ V satisfying τn 6 |S| 6 (1− τ)n. The robust ν-in-neighbourhood, RN−(S),
and robust (ν, τ)-inexpanders are defined similarly. We refer to D as a robust (ν, τ)-
expander if it is both a robust (ν, τ)-in and -outexpander.

Usually the parameters ν and τ are thought of as small constants as in Theorem 2
below, but we will also be interested in these parameters as functions of n. Note that
robust expansion is a resilient property, i.e. if D is a robust outexpander, then D remains
a robust outexpander (with slightly worse parameters) after removing a sparse subgraph.

Robust expansion has played a central role in the proofs of several conjectures about
Hamilton cycles. The starting point of many of these proofs is the following result which
says that a robust expander with linear minimum semi-degree contains a Hamilton cycle.
The semi-degree δ0(D) of a digraph D is given by δ0(D) = min(δ+(D), δ−(D)) where
δ+(D) and δ−(D) are respectively the minimum outdegree and minimum indegree of D.

Theorem 2 ([19]). Let n0 be a positive integer and γ, ν, τ be positive constants such that
1/n0 � ν 6 τ � γ < 1. Let D be a digraph on n > n0 vertices with δ0(D) > γn which is
a robust (ν, τ)-outexpander. Then D contains a Hamilton cycle.

This result was first proved in [19] by Kühn, Osthus and Treglown. A simpler proof is
given in [16] and an algorithmic version is given in [3]. The proofs of Theorem 2 presented
in [19, 16, 3] all rely on the Regularity Lemma and so in particular one can only work
with sufficiently large and dense digraphs.

Our main purpose in this paper is to give a proof of the above result that avoids the
use of the Regularity Lemma, but uses instead the recent absorption technique developed
by Rödl, Ruciński and Szemerédi [24] (with special forms appearing in earlier work e.g.
[12]). We apply our technique to “sparse” robust expanders which have not been studied
before but which we hope may find applications. In addition we consider cycles of different
lengths. The most general form of our result is stated below.

Theorem 3. Let n ∈ N and ν, τ, γ ∈ (0, 1) satisfying 4 13

√
log2 n/n < ν 6 τ 6 γ/16 <

1/16. Let D be an n-vertex digraph with δ0(G) > γn which is a robust (ν, τ)-outexpander.
Then, for any νn/2 6 ` 6 n and any vertex v of D, D contains a directed cycle of length
` through v.
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The result above is algorithmic. We believe some form of it should be true for much
sparser graphs than we are able to prove it for.

Theorem 2 (and its undirected version) have been used as a black box in several papers
including [20, 15, 11, 17, 22, 6]. Below we discuss results that require the Regularity
Lemma only because they rely (directly or indirectly) on Theorem 2. For some such
results, we can now replace Theorem 2 with Theorem 3 to give proofs that do not require
the Regularity Lemma and consequently hold for much smaller values of n.

1.1 Hamiltonicity in oriented graphs

Robust expansion was first used to prove an approximate analogue of Dirac’s Theorem
for oriented graphs (an oriented graph is a directed graph in which there is at most one
edge between each pair of vertices).

Theorem 4 ([10]). For every ε > 0 there exists n0 = n0(ε) such that if D is an oriented
graph with n > n0 vertices and δ0(D) > 3

8
n+ εn then D contains a Hamilton cycle.

Here the constant 3/8 cannot be improved due to examples given in [10]. The result
above was proved using the Regularity Lemma and an exact version was proved later in
[8] also using the Regularity Lemma. A consequence of Theorem 3 is that one can adapt
the proof of Theorem 4 to avoid the use of the Regularity Lemma.

Corollary 5. Let n ∈ N and 0 < ε < 1/64 with n > ε−40. If D is an n-vertex oriented
graph with δ0(D) > 3

8
n+ εn then D contains a Hamilton cycle.

In fact, one can use Theorem 3 to adapt the proof of the exact version in [8] to avoid the
use of the Regularity Lemma.

1.2 Hamiltonicity and degree sequences

In [19], Kühn, Osthus and Treglown give an approximate solution to a conjecture of Nash-
Williams [21] about sufficient conditions on the degree sequence of a digraph to guarantee
the existence of a Hamilton cycle. Their result uses the Regularity Lemma, but Theorem 3
can be used to adapt their proof to avoid the use of the Regularity Lemma and thus give
a better approximation.

For a digraph D, consider its outdegree sequence d+1 6 . . . 6 d+n and indegree sequence
d−1 6 . . . 6 d−n . Note that d+i and d−i do not necessarily correspond to the degree of the
same vertex of D.

Theorem 6. Let n ∈ N and γ ∈ (0, 1/2) be such that n > 291γ−27. Let D be an n-vertex
digraph such that for all i < n/2,

• d+i > i+ γn or d−n−i−γn > n− i,

• d−i > i+ γn or d+n−i−γn > n− i.

Then, for any νn/2 6 ` 6 n and any vertex v of D, D contains a directed cycle of length
` through v.
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1.3 Hamiltonicity in regular graphs

In [13, 14], Kühn, Osthus, Staden and the first author prove the one remaining case of
a conjecture of Bollobás and Haggvist, making (indirect) use of the Regularity Lemma:
they prove that there exits n0 such that every 3-connected D-regular graph on n > n0

vertices with D > n/4 is Hamiltonian. Replacing the use of Theorem 2 by Theorem 3
in [13, 14] gives a proof of the result avoiding the Regularity Lemma.

1.4 Outline

In the next section we collect some notation and in Section 3, we prove some simple facts
about robustly expanding digraphs. Section 4 is devoted to describing and constructing
an ‘absorbing structure’ H in a robustly expanding digraph D. Informally, one can think
of H as a set of edges of D which have the property that (almost) any small collection
of vertex-disjoint cycles of D can be connected together into a long cycle using the edges
of H. In Section 5 we show that the vertices of any robustly expanding digraph can be
covered by a small number of cycles. In Section 6 we combine these results to prove
Theorem 3, and we give some concluding remarks in Section 7.

We mention here that during the course of various proofs, several straightforward
calculations, which we feel detract from the main argument, are suppressed and can be
found at the end of the paper.

2 Notation

The digraphs considered in this paper do not have loops and we allow up to two edges
between any pair x, y of distinct vertices, at most one in each direction. Given a digraph
D = (V,E), we sometimes write V (D) := V for its vertex set and E(D) := E for its edge
set and |D| for the number of its vertices. We write xy for an edge directed from x to y.

We write H ⊆ D to mean that H is a subdigraph of D, i.e. V (H) ⊆ V (D) and
E(H) ⊆ E(D). Given X ⊆ V (D), we write D − X for the digraph obtained from D
by deleting all vertices in X, and D[X] for the subdigraph of D induced by X. Given
F ⊆ E(D), we write D−F for the digraph obtained from D by deleting all edges in F . If
H is a subdigraph of D, we write D−H for D−E(H). For two subdigraphs H1 and H2

of D, we write H1 ∪H2 for the subdigraph with vertex set V (H1) ∪ V (H2) and edge set
E(H1) ∪ E(H2). For a set U , U2 means the set of all ordered pairs of U , and U [2] means
the set of all ordered pairs of U except pairs of the form (x, x).

If x is a vertex of a digraph D, then N+
D (x) denotes the outneighbourhood of x,

i.e. the set of all those vertices y for which xy ∈ E(D). Similarly, N−D (x) denotes the
inneighbourhood of x, i.e. the set of all those vertices y for which yx ∈ E(D). We write
d+D(x) := |N+

D (x)| for the outdegree of x and d−D(x) := |N−D (x)| for its indegree. We
denote the minimum outdegree of D by δ+(D) := min{d+D(x) : x ∈ V (D)} and the min-
imum indegree δ−(D) := min{d−D(x) : x ∈ V (D)}. The minimum semi-degree of D is
δ0(D) := min{δ+(D), δ−(D)}.
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Unless stated otherwise, when we refer to paths and cycles in digraphs, we mean
directed paths and cycles, i.e. the edges on these paths and cycles are oriented consistently.
We write P = x1x2 · · · xt to indicate that P is a path with edges x1x2, x2x3, . . . , xt−1xt,
where x1, . . . , xt are distinct vertices. We occasionally denote such a path P by x1Pxt
to indicate that it starts at x1 and ends at xt. We write P̊ for the interior of P , i.e.
P̊ = x2 · · ·xt−1. For two paths P = a · · · b and Q = b · · · c, we write aPbQc for the
concatenation of the paths P and Q and this notation generalises to cycles in the obvious
ways.

Throughout, logarithms are taken base e.

3 Preliminaries

In this section, we prove some basic properties of robust expanders. The following propo-
sition follows immediately from the definition of a robust expander.

Proposition 7. Suppose D = (V,E) is a robust (ν, τ)-expander and S ⊆ V with |S| 6 εn.
Then D − S is a (ν − ε, τ/(1− ε))-expander.

The following observation of DeBiasio, which can be found in [25], says that robust
inexpansion is essentially equivalent to robust outexpansion; thus we can and will restrict
ourselves to digraphs that are robust (ν, τ)-expanders. We reproduce the proof explicitly
quantifying the relationships between the various parameters.

Proposition 8 (DeBiasio). Suppose D = (V,E) is an n-vertex robust (ν, τ)-outexpander
with δ0(D) > γn, where γ > 2τ , τγ > ν2/2 and ν < 1/2. Then D is a robust (ν2/2, 2τ)-
inexpander.

Proof. Suppose that D is not a robust (ν2/2, 2τ)-inexpander. Then there is a set S ⊆ V
with 2τn 6 |S| 6 (1− 2τ)n such that |RN−ν2/2(S)| < |S|+ ν2/2. Let T = V \RN−ν2/2(S).
Observe that

|S|γn 6 e(V, S) 6 |RN−ν2/2(S)||S|+ ν2n2/2,

so |RN−ν2/2(S)| > γn/2, where we used that |S|γn/2 > τγn2 > ν2n2/2. Therefore

τn < n− (1− 2τ + ν2/2)n < |T | 6 (1− γ/2)n < (1− τ)n,

where the first and last inequalities follow from our choice of parameters. By the definition
of T , we have that e(T, S) < |T |ν2n/2 and so |RN+

ν (T ) ∩ S| < |T |ν/2 < νn/2. Hence

|RN+
ν (T )| = |RN+

ν (T ) \ S|+ |RN+
ν (T ) ∩ S|

< (n− |S|) + νn/2 6 n− (|S|+ ν2n/2) + νn/4

< n− |RN−ν2/2(S)|+ νn/4 6 |T |+ νn,

where we used that ν < 1
2

on the second line. Thus D is not a robust (ν, τ)-outexpander,
a contradiction.
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The next two lemmas show that robust expansion allows us to construct short paths
between prescribed pairs of vertices.

Lemma 9. Let 0 < ν 6 τ 6 γ/2 < 1/2 and n ∈ N satisfying n > 4ν−2. Suppose that D
is an n-vertex digraph which is a robust (ν, τ)-expander and δ0(D) > γn. Given distinct
vertices u, v ∈ V (D), there exists a path P = x0 · · ·xt+1 in D where x0 = u, xt+1 = v and
t 6 ν−1 − 1. (Note that P consists of at most ν−1 + 1 vertices.)

Proof. Let N1 := N+(u) and inductively define Ni+1 := RN+
ν (Ni). Note that |N1| >

γn > τn, so for all i > 1 if |Ni| < (1 − τ)n then |Ni+1| > |Ni| + νn. Observe that, for
some t 6 ν−1−1, we have |Nt| > (1− τ)n. Moreover Nt+1 = V (D) as δ0(D) > γn > 2τn.

Set xt+1 = v. For i = t, t − 1, . . . , 1, let xi be a vertex in (N−(xi+1) ∩ Ni) \
{u, xi+1, . . . , xt+1}, which exists as xi+1 ∈ RN+

ν (Ni) implies that |N−(xi+1) ∩Ni| > νn >
ν−1 + 1 > t+ 2. By setting x0 = u, we obtain a direct path P = x0 · · ·xt+1 in D.

Lemma 10. Let 0 < ν 6 τ 6 γ/4 < 1/4 and n, r ∈ N satisfying n > (6r + 11)ν−2.
Suppose that D is an n-vertex digraph which is a robust (ν, τ)-expander and δ0(D) >
γn. Given distinct vertices u1 . . . , ur, v1, . . . , vr ∈ V (D), there exists vertex-disjoint paths
P1, . . . , Pr in D where Pi is from ui to vi and |Pi| 6 2ν−1 + 1.

Proof. By induction assume that we have constructed vertex-disjoint paths P1, . . . , Pk−1 in
D for some k < r, where, for each i = 1, . . . , k−1, Pi is from ui to vi and |Pi| 6 2ν−1+1 6
3ν−1 and V (Pi) ∩ {ui+1, . . . , ur, vi+1, . . . , vr} = ∅. Let Dk−1 be the digraph obtained
from D by deleting all vertices in P1, . . . , Pk−1 and all vertices uk+1, . . . , ur, vk+1, . . . , vr.
Note that Dk−1 is obtained from D by deleting at most 3rν−1 6 1

2
νn vertices, so by

Proposition 7, Dk−1 is a robust (1
2
ν, 8

7
τ)-expander with δ0(Dk−1) > 7

8
γn > 7

8
γ|Dk−1|.

Note that |Dk−1| > n − 3rν−1 > n − rν−2 > 16ν−2. Apply Lemma 9 to Dk−1 giving a
path Pk in Dk−1 of length at most 2ν−1 + 1 from uk to vk. Thus Pk (as a path in D)
is vertex-disjoint from P1, . . . , Pk−1 and {uk+1, . . . , ur, vk+1, . . . , vr} as required. Thus by
induction we can find the paths P1, . . . , Pr.

We give a simple inequality that we shall use several times.

Proposition 11. Fix k, a > 0. Then ex > axk for all x > max(3k(log k+ 1) + 3 log a, 0).
Similarly for c, d > 0 if x > 3c(log c+ 1) + 3d, then we have x > c log x+ d.

Proof. We start by showing that for all a > 0 and x > max(3 log a+3, 0), we have ex > ax.
This is clearly true if 0 < a 6 1. If a > 1, set f(x) = ex−ax and set x0 := 3 log a+ 3 > 0.
We have f(x0) = e3a3 − 3a log a − 3a > 0 and f ′(x) = ex − a > 0 for all x > x0. Hence
f(x) > 0 for all x > x0 and so ex > ax for all x > max(3 log a+ 3, 0).

Finally, making the transformation X = kx and A = ak/kk, and assuming A, k > 0,
the inequality above becomes eX > AXk for all X > max(3k log k + 3 logA+ 3k, 0).

For the other inequality, note that x > c log x+ d if and only if ex > edxc, which holds
if x > max(3c log c+ 3d+ 3c, 0).

the electronic journal of combinatorics 25(3) (2018), #P3.44 6



4 The absorbing structure

In this section, we describe what we mean by an absorbing structure and show how to find
one in a robustly expanding digraph with large minimum in- and outdegree. We begin
by informally describing the properties we desire our absorbing structure to have. Given
a digraph D we shall seek a subdigraph S ⊆ D with the properties that

• |V (S)| is small;

• S contains a Hamilton cycle (on V (S));

• In D, given a small number of any vertex-disjoint paths P1, . . . , Pd that are also
vertex-disjoint from S, we can use S to absorb P1, . . . , Pd into C i.e. we can find a
Hamilton cycle C ′ on V (S) ∪ (

⋃d
i=1 V (Pi)).

The sequence of definitions that follow will lead to a precise description of our absorbing
structure. We start by defining an alternating path.

Definition 12. Let D be a digraph, and let x1, . . . , xt be distinct vertices of D with t
even. An alternating path P = [x1x2 · · ·xt] is a subgraph of D with vertex set {x1, . . . , xt}
(where x1, . . . , xt are distinct vertices) and edge set

{xixi+1 | i = 1, 3, 5, . . . , t− 1} ∪ {xj+1xj | j = 2, 4, 6, . . . , t− 2}.

We say P is an alternating path from x1 to xt.

An alternating path is thus a path where the directions of the edges alternate. It will
be important for us that the number of vertices in an alternating path is even so that the
first vertex has outdegree 1 and the last vertex has indegree 1.

As with paths, robust expansion allows us to construct alternating paths between
prescribed vertices.

Lemma 13. Let 0 < ν 6 τ 6 γ/2 < 1/2 and n ∈ N satisfying n > 4ν−2. Suppose that D
is an n-vertex digraph which is a robust (ν, τ)-expander and δ0(D) > γn. Given distinct
vertices u, v ∈ V (D), there exists an alternating path P = [x0 · · ·xtx∗t · · · x∗0] in D where
x0 = u, x∗0 = v and t 6 (ν−1 +4)/2 is even. (Thus P consists of at most ν−1 +6 vertices.)

Proof. Let N1 := N+(u) and inductively define

Ni+1 :=

{
RN+

ν (Ni) if i even;

RN−ν (Ni) if i odd.

Note that |N1| > γn > τn, so for all i > 1 if |Ni| < (1 − τ)n then |Ni+1| > |Ni| + νn.
Set r := dν−1e and observe that |Nr| > (1 − τ)n. Note that Nr′′ = V (D) for all r′′ > r
as δ0(D) > γn > 2νn. Choose r′ to be the smallest integer that is greater than r and
divisible by 4; thus r′ 6 ν−1 + 4 and Nr′ = V (D).
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Set yr′+1 = v. For i = r′, r′ − 1, . . . , 1, let yi be a vertex such that

yi ∈

{
N−(yi+1) ∩Ni \ {u, yi+1, . . . , yr′+1} if i even;

N+(yi+1) ∩Ni \ {u, yi+1, . . . , yr′+1} if i odd.

To see that such yi exists, observe that since yi+1 ∈ Ni+1 = RN+
ν (Ni), |N−(yi+1) ∩Ni| >

νn > 4ν−1 > ν−1 + 6 > r′ + 2 if i is even (and a similar inequality holds if i is odd).
Thus we obtain distinct vertices y1, . . . , yr′ such that yi+1yi, yjyj+1 ∈ E(D) for i =

1, 3, 5 . . . , r′−1 and j = 2, 4, 6, . . . , r′−2. Then relabelling y1, . . . , yr′ to x1, . . . , xtx
∗
t , . . . , x

∗
1

respectively and x0 := u, x∗0 := v gives the desired alternating path. Since r′ is divisible
by 4, we have that t is even as required.

Next we define ladders, which will be the key structures that allow us to absorb paths.

Definition 14. Let D be a digraph and let u, v ∈ V (D) be distinct vertices. A ladder L
from u to v is a subdigraph of D given by

L = Q ∪Q1 ∪Q3 ∪Q5 ∪ · · · ∪Qt−1,

where

(i) Q = [x0x1 · · · xtx∗t · · ·x∗1x∗0] is an alternating path (with t even) and x0 = u and
x∗0 = v;

(ii) Qi is a directed path from xi to x∗i for each i = 1, 3, . . . , t− 1; and

(iii) Q1, Q3, . . . , Qt−1 are vertex-disjoint paths and are each internally vertex-disjoint
from Q.

We call Q the alternating path of L.

• For i = 0, 2, 4, . . . , t − 2, we define Ri ⊆ L to be the path Ri := xixi+1Qi+1x
∗
i+1x

∗
i

and Rt := xtx
∗
t . We call these the rung paths of L.

• For i = 2, 4, . . . , t, define R′i ⊆ L to be the path R′i := xixi−1Qi−1x
∗
i−1x

∗
i . We call

these the alternative rung paths of L.

We say the ladder L is embedded in the cycle C if Ri ⊆ C for all i = 0, 2, 4, . . . , t.

It is relatively easy to construct ladders in robust expanders. First we show how a
ladder embedded in a cycle can be used to absorb a path into the cycle.

Lemma 15. Let D be a digraph and let u, v ∈ V (D) be distinct vertices. Let L ⊆ D be a
ladder from u to v embedded in a cycle C ⊆ D. For any path P ⊆ D from u to v that is
internally vertex-disjoint from C there exists a cycle C ′ ⊆ D such that

(i) P ⊆ C ′,
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x0
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(a) L.
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x2

x3

x4

x5

x6

x∗0

x∗1

x∗2

x∗3

x∗4

x∗5

x∗6

R4

R2

R0

R6

(b) Rung paths of L.

x0

x1

x2

x3

x4

x5

x6

x∗0

x∗1

x∗2

x∗3

x∗4

x∗5

x∗6

R′6

R′4

R′2

(c) Alternative rung paths of L.

Figure 1: A Ladder L = Q ∪Q1 ∪Q3 ∪Q5

(ii) V (L) ⊆ V (C ′),

(iii) for any path P ′ ⊆ C with V (P ′) ∩ V (L) = ∅, we have P ′ ⊆ C ′, and

(iv) if x ∈ V (D) satisfies x 6∈ V (C) ∪ V (P ), then x 6∈ V (C ′).

In particular, (i), (ii), (iii), and (iv) immediately imply

(v) V (C) ∪ V (P ) = V (C ′).

Proof. Let Q = [x0 · · ·xtx∗t · · ·x∗0] be the alternating path of L, and let Qi be the corre-
sponding paths of L from xi to x∗i for i = 1, 3, . . . , t − 1. Let R0, R2, . . . , Rt be the rung
paths of L and R′2, R

′
4, . . . , R

′
t the alternative rung paths. Set R′0 := P . We simply replace

Ri with R′i in C one at a time to obtain the desired cycle C ′. We spell out the details of
the induction below.

We define cycles C−2, C0, C2, C4, . . . , Ct as follows. Set C−2 := C. By induction, we
assume that Ci−2 is a cycle with R′0, . . . , R

′
i−2, Ri, . . . , Rt ⊆ Ci−2 (implicitly noting these

paths are vertex-disjoint) and that R̊′i = Qi−1 is vertex-disjoint from Ci−2. We obtain
Ci by deleting Ri from Ci−2 and replacing it with R′i. Since Ri and R′i are internally
vertex-disjoint and both are paths from xi to x∗i , then Ci is a cycle. Clearly we have
R′0, . . . , R

′
i, Ri+2, . . . , Rt ⊆ Ci. Since R̊i = R̊′i+2 = Qi+1 is vertex-disjoint from Ci (since

we deleted R̊i), then R̊′i+2 is vertex-disjoint from Ci.
Thus by induction, we have that C ′ := Ct is a cycle with R′0, . . . , R

′
t ⊆ C ′. Therefore

P = R′0 ⊆ C ′ proving (i). Furthermore, since

V (
t⋃
i=0
i even

Ri) = V (
t⋃
i=2
i even

R′i) = V (L)

then V (L) ⊆ V (C ′) proving (ii). In the above induction, we note that if P ′ ⊆ Ci−2 is
a path vertex-disjoint from L, then P ′ ⊆ Ci, so by induction if P ′ ⊆ C = C0 is a path
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vertex-disjoint from L, then P ′ ⊆ Ct = C ′ proving (iii). Finally, we note that, in the
above induction, for any vertex x ∈ V (D) \ (V (P ) ∪ V (L)), if x 6∈ Ci−2 then x 6∈ Ci,
proving (iv) and completing the proof.

From the previous lemma, we now see that embedding several carefully chosen ladders
into a cycle can give us the absorbing structure we desire. The next definition makes
precise what we mean by ‘carefully’ in the previous sentence.

Definition 16. Given a digraph D and distinct vertices x, y, u, v ∈ V (D), we say that the
ordered pair (u, v) ∈ V (D)[2] covers (x, y) ∈ V (D)2 if ux, yv ∈ E(D). Given K ⊆ V (D)[2]

and U ⊆ V (D), we say that K d-covers U if for every (x, y) ∈ U2 there exist d distinct
elements of K each of which covers (x, y). We say K is vertex-disjoint if no two elements
of K share a vertex.

Our motivation for this definition is the following. Suppose L is a ladder from u to v
embedded in a cycle C and P is a path from x to y that is vertex-disjoint from C, and
suppose further that (u, v) covers (x, y). Then we can extend P to the path uxPyv and
use the previous lemma to absorb P into C. For a digraph D, if we can find a small
set K ⊆ V (D)[2] which d-covers V (D), then we might hope to construct vertex-disjoint
ladders from u to v for each (u, v) ∈ K and embed all those ladders into a cycle C.
This structure would then have the property that any d vertex-disjoint paths of D (that
are also vertex-disjoint from C) could be absorbed into C. This will be our absorbing
structure.

Definition 17. Given a digraph D and d ∈ N, a d-absorber S of D is a triple S =
(K,L, C), where

• K ⊆ V (D)[2] is a set of vertex-disjoint pairs which d-covers V (D),

• L is a set of vertex-disjoint ladders such that for each (u, v) ∈ K, we have a ladder
L ∈ L from u to v,

• C ⊆ D is a cycle such that each L ∈ L is embedded in C.

We sometimes abuse notation by also writing S for the subgraph (∪L∈LL)∪C of D. Note
that V (C) = V (S).

It follows from Lemma 15 that a d-absorber can absorb d vertex-disjoint paths into
its cycle.

Corollary 18. Let D be a digraph and let S ⊆ D be a d-absorber. Suppose P1, . . . , Pr are
vertex-disjoint paths in D that are also vertex-disjoint from V (S) and r 6 d. Then there
exists a cycle C∗ in D such that V (C∗) = V (S) ∪ V (P1) ∪ · · · ∪ V (Pr).

Proof. Let xi and yi be such that Pi is a path from xi to yi for i = 1, . . . , r and let
S = (K,L, C). Since S is a d-absorber, for each i = 1, . . . , r, there exists (ui, vi) ∈ K
and Li ∈ L such that (ui, vi) covers (xi, yi) and Li is a ladder from ui to vi, and where
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u1, . . . , ur, v1, . . . , vr are distinct vertices. For each i, observe that Qi := uixiPiyivi is a
path in D and that Q1, . . . , Qr are vertex-disjoint.

Set C0 := C and assume by induction that there is a cycle Ci−1 ⊆ D with the property
that V (Ci−1) = V (C0) ∪ V (Q1) ∪ · · · ∪ V (Qi−1) and where Li, . . . , Lr are embedded in
Ci−1. Since Li is a ladder from ui to vi embedded in Ci−1 and Qi is a path from ui
to vi internally vertex-disjoint from Ci−1, Lemma 15 implies that there exists a cycle Ci
such that V (Ci) = V (Ci−1) ∪ V (Qi) = V (C) ∪ V (Q1) ∪ · · · ∪ V (Qi). Furthermore, by
Lemma 15, since Li+1, . . . , Lr are vertex-disjoint from Li, and are embedded in Ci−1, so
they are embedded in Ci.

This completes the induction step and so we obtain a cycle C∗ := Cr of D where
V (Cr) = V (C) ∪ V (Q1) ∪ · · · ∪ V (Qr) = V (S) ∪ V (P1) ∪ · · · ∪ V (Pr).

The sequence of lemmas that follow show how to build a d-absorber in a robust
expander. The first lemma shows how to find a d-cover in a digraph.

Lemma 19. Let γ ∈ (0, 1) and n, d ∈ N with d > 8 and

n > 105d2γ−4 log2(100dγ−2).

If D is an n-vertex digraph with δ0(D) > γn and U ⊆ V (D), then there exists a vertex-
disjoint K ⊆ V (D)[2] with |K| = d24γ−2(d log(24dγ−2 + 2 log n)e which d-covers U .

Proof. Set m := d24γ−2(d log(24dγ−2) + 2 log n)e and construct K∗ randomly by taking
a set of m elements, each picked independently and uniformly at random, from V (D)[2];
thus K∗ may not be vertex-disjoint. We have that

P(K∗ is vertex-disjoint) =
m−1∏
i=0

((
n− 2i

2

)
/

((
n

2

)
− i
))

>
m−1∏
i=0

((
n− 2i

2

)
/
(
n2/2

))
=

2m−1∏
i=0

(
1− i

n

)

> 1−
2m−1∑
i=1

i

n
> 1− 2m2

n
>

1

2
,

our choice of m and n and applying Proposition 11 1

For (x, y) ∈ U2, let cov(x, y) be the set of elements in V (D)[2] that cover (x, y). For a
uniformly random element (u, v) of V (D)[2], set

p := P((u, v) ∈ cov(x, y)) >
γn(γn− 1)

n(n− 1)
>
γ2

2
,

where the last inequality follows by our choice of n. Let Ex,y be the number of distinct

the electronic journal of combinatorics 25(3) (2018), #P3.44 11



elements of K∗ that cover (x, y) so that Ex,y ∼ bin(m, p). In particular,

P(Ex,y < d) =
d−1∑
i=0

(
m

i

)
pi(1− p)m−i 6 (1− p)m−d

d−1∑
i=0

mi

i!

6 emd(1− p)m−d 6 emd(1− γ2/2)m−d

6 md exp(−γ2(m− d)/2) 6 md exp(−γ2m/8) 6 n−2/2.

by our choices of m and applying Proposition 112. Let X be the number of elements of
U2 not d-covered by K∗. Then

P(X > 0) 6 E(X) =
∑

(x,y)∈U2

P(Ex,y < d) 6 1/2.

Therefore P(X = 0 and K∗ is vertex-disjoint) > 0.

Next we show how to build a ladder in a robust expander.

Lemma 20. Let 0 < ν 6 τ < γ/8 < 1/8 and n ∈ N satisfying n > 57ν−3. Let D be a
robust (ν, τ)-expander on n vertices with δ0(D) > γn and let u, v be distinct vertices of
D. Then there exists a ladder L from u to v with |L| 6 3ν−2 and where the alternating
path of L has at most 2ν−1 vertices.

Proof. By Lemma 13, we can find an alternating path Q = [x0 · · ·xtx∗t · · ·x∗0], where
x0 = u, x∗0 = v, and t 6 (ν−1 + 4)/2 is even (so this alternating path has at most
ν−1 + 6 6 2ν−1 vertices). Next, as in the definition of ladders, we construct vertex-
disjoint paths Q1, Q3, . . . , Qt−1, where Qi is from xi to x∗i and is vertex-disjoint from P
(except at its end points). We do this using Lemma 10.

Let D′ be the digraph obtained from D by deleting xi and x∗i for each even value
i = 0, . . . , t; thus we delete t+ 2 6 (ν−1 + 8)/2 6 ν−1 vertices and by our choice of large
n, Proposition 7 implies3 that D′ is a robust (1

2
ν, 16

15
τ)-expander with δ0(D′) > 15

16
γn. By

our choice of parameters and sufficiently large n, we can apply Lemma 104 with r = t/2
to obtain vertex-disjoint paths Q1, Q3, . . . , Qt−1 in D′ with each Qi from xi to x∗i and of
length at most 4ν−1+3. As paths in D, these paths are also vertex-disjoint from Q except
at their end-points.

Thus the union of the alternating path Q with the paths Q1, Q3, . . . , Qt−1 gives a
ladder L from u to v. We have |Q| 6 ν−1 + 6 6 ν−2/2, |Qi| 6 4ν−1 + 3 6 9ν−1/2 for each
odd i < t 6 ν−1. Thus |L| 6 9ν−2/4 + |Q| 6 3ν−2.

Next we show that we can build several ladders (between prescribed vertices) in a
robustly expanding digraph (for a suitable choice of parameters).

Lemma 21. Let 0 < ν 6 τ 6 γ/16 < 1/16 and n, k ∈ N satisfying n > 460kν−3. Let D
be a robust (ν, τ)-expander on n vertices with δ0(D) > γn and let u1, . . . , uk, v1, . . . , vk be
distinct vertices of D. Then we can construct vertex-disjoint ladders L1, . . . , Lk from ui
to vi such that |Li| 6 12ν−2 and |Pi| 6 8ν−1, where Pi is the alternating path of Li.
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Proof. By induction, suppose we have constructed vertex-disjoint ladders L1, . . . , Li−1 for
some i 6 k where Lj is from uj to vj and |Lj| 6 12ν−2 for all j < i, where the alternating
path Pj of Lj satisfies |Pj| 6 8ν−1 for all j < i, and where L1, . . . , Li−1 are disjoint from
Si := {ui, . . . , uk, vi, . . . , vk}. Let Di be obtained from D by deleting all the vertices of
L1, . . . , Li−1 and Si \ {ui, vi} (so ui, vi ∈ V (Di)); thus the number of vertices deleted is at
most

12ν−2(i− 1) + 2(k − i) 6 12kν−2 6 νn/2,

where the last inequality follows from our choice of n. The inequality above together with
Proposition 7 implies that Di is a robust (1

2
ν, 32

31
τ)-expander with δ(Di) > 31

32
γn. By our

choice of parameters and n, we can apply5 Lemma 20 to obtain a ladder Li from ui to
vi in Di with |Li| 6 12ν−2. and with alternating path Pi satisfying |Pi| 6 8ν−1. By our
choice of Di, we see that L1, . . . , Li are vertex-disjoint ladders disjoint from Si+1, where
Li is from ui to vi, completing the induction step and the proof.

Finally we combine our various constructions to show how to build a d-absorber in a
robustly expanding digraph.

Theorem 22. Let 0 < ν 6 τ 6 γ/16 < 1/16 and n, d ∈ N. Suppose d > 8 and

n > max
(
104d2γ−5 log2(100dγ−2), 105dγ−2ν−3 log(1500dγ−2ν−1)

)
.

If D is a robust (ν, τ)-expander on n vertices with δ0(D) > γn then we can find a d-
absorber S in D such that |V (S)| 6 1600ν−2γ−2(d log(dγ−2) + log n).

Proof. For our choice of γ, d, n, we can apply Lemma 19 to D to obtain a vertex-disjoint
K ⊆ V (D)[2] which d-covers V (D), and moreover m := |K| = d24γ−2(d log(24dγ−2) +
2 log n)e.

Next, by our choice of n, we can apply Lemma 21 6 (taking k = m) to construct a
ladder from a to b for every (a, b) ∈ K such that each ladder has at most 12ν−2 vertices,
the alternating path of each ladder has length at most 8ν−1, and the ladders are vertex-
disjoint.

Let L = {L1, . . . , Lm} be the set of constructed ladders and let R1, . . . , Rs be the
collection of all rung paths of all the ladders constructed; thus s 6 4ν−1m. Let xi and
yi be the initial and final vertices of Ri and let D′ be the digraph obtained from D by
deleting all internal vertices of R1, . . . , Rs. So we have deleted at most 12ν−2m 6 νn/2
vertices7. Then D′ is a (1

2
ν, 32

31
τ)-expander by Proposition 7. By our choice8 of parameters

and n, we can apply Lemma 10 (with n = |D′|, r = s and ν, τ, γ replaced by 1
2
ν, 32

31
τ, 31

32
γ)

to find paths Ui from yi to xi+1 for each i = 1, . . . , s, where indices are understood to
be modulo s and each path has length at most 4ν−1 + 1. Then C = x1R1U1 · · ·RsUsx1
is a cycle in which all the ladders L1, . . . , Lm are embedded. Thus S = (K,L, C) is
a d-absorber of D. Also |V (S)| 6 12ν−2m + s(4ν−1 + 1) 6 32ν−2m. Recall that m =
d24γ−2(d log(24dγ−2)+2 log n)e 6 25dγ−2 log(24dγ−2)+48γ−2 log n as dγ−2 log(24dγ−2) >
1. Therefore |V (S)| 6 1600ν−2γ−2(d log(dγ−2) + log n) as required.

the electronic journal of combinatorics 25(3) (2018), #P3.44 13



5 Rotation-extension: 1-factors with few cycles

Let D be a digraph. Throughout this section, a factor U of D refers to a 1-factor of D,
i.e. a spanning subgraph of D in which every vertex has in- and outdegree 1. Thus a factor
consists of a collection of vertex-disjoint cycles. We shall think of U interchangeably as
both a set of vertex-disjoint cycles U = {C1, . . . , Ck} and as the corresponding subgraph
U = C1∪· · ·∪Ck of D. The purpose of this section is to show that any robustly expanding
digraph with sufficiently high minimum in- and outdegree contains a factor with few cycles:
our main tool is an interesting variation of the rotation-extension technique of Pósa [23].
The first lemma shows that any robustly expanding digraph with large enough minimum
in- and outdegree has a factor.

Lemma 23. Let 0 < ν 6 τ < γ < 1 and n ∈ N. If D = (V,E) is an n-vertex robust
(ν, τ)-expander with δ0(D) > γn then D has a 1-factor.

Proof. Let V = {v1, . . . , vn}. Consider the bipartite (undirected) graph G whose vertex
set is X ∪Y where X = {x1, . . . , xn} and Y = {y1, . . . , yn} and xiyj is an edge of G if and
only if vivj ∈ E. Note that D contains a factor if and only if G has a perfect matching, so
it is sufficient for us to verify Hall’s condition for G. Indeed suppose S ⊆ X. If |S| 6 τn,
then |NG(S)| = |N+

D (S)| > γn > τn > |S|. If |S| > (1 − τ)n then since every vertex
in Y has degree at least γn > τn (since δ−(D) > γn) then |NG(S)| = |Y | > |S|. If
τn 6 |S| 6 (1 − τ)n, then |NG(S)| = |N+

D (S)| > |RN+
ν (S)| > |S| + νn > |S|. Hence by

Hall’s Theorem (see e.g. [2]) G has a perfect matching and hence D has a factor.

We now introduce various notions we shall need. We say F is a prefactor of D if F
can be obtained from a factor of D by deleting one edge. Thus F ′ consists of a collection
of cycles C1, . . . , Ck−1 together with a path P . We interchangeably think of F as the set
F = {C1, . . . , Ck−1, P} and as the subgraph F = C1 ∪ · · · ∪Ck−1 ∪ P of D. If P is a path
from a vertex x to a vertex y, we say x is the origin of F and y is the terminus of F
written x = ori(F ) and y = ter(F ) respectively. Every vertex v of D except ori(F ) has a
unique inneighbour in F which we denote by F−(v).

An extension of F (in D) is a prefactor F ′ of D obtained from F as follows. Assuming
F = {C1, . . . , Ck−1, P}, x = ori(F ) and y = ter(F ), we pick any vertex z ∈ N+

D (y) \ {x}:

(i) if z ∈ V (P ) we set F ′ = {C1, . . . , Ck−1, C
′, P ′}, where C ′ = zPyz and P ′ = xPz−,

where z− := F−(z) is the predecessor of z on P ;

(ii) if z ∈ V (Ci) for some i then set F ′ = {C1, . . . , Ci−1, Ci+1, . . . , Ck−1, P
′}, where

P ′ = xPyzCiz
− and z− := F−(z) is the predecessor of z in Ci.

We say F ′ is an extension of F along the edge yz. Notice that F and F ′ differ only in
their path and in that one or the other contains an additional cycle. For case (i), we
say F ′ is a cycle-creating extension of F and for case (ii) we say F ′ is a cycle-destroying
extension of F . Notice also that for any extension F ′ of F , we have ori(F ) = ori(F ′) and
that F ′ is uniquely determined from F by specifying the terminus of F ′.

Here is the main step in obtaining a factor with few cycles.
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Lemma 24. Let n ∈ N and ν, τ, γ, ξ ∈ (0, 1) satisfying ν 6 τ , γ > 2τ + ξ, ξ < 1
4
ν2 and

n > 32ν−3. Suppose D = (V,E) is an n-vertex robust (ν, τ)-expander with δ0(D) > γn
and suppose that for each prefactor F of D, we have an associated set B(F ) ⊆ V of
‘forbidden’ vertices satisfying ori(F ) ∈ B(F ) and |B(F )| 6 ξn. Fix any prefactor F ∗

of D. Then for all but at most τn vertices y ∈ V , there exists a sequence of prefactors
F0 = F ∗, F1, . . . , Ft where y = ter(Ft) and for each i = 1, . . . , t we have that Fi is an
extension of Fi−1 and ter(Fi) 6∈ B(Fi−1).

Proof. Let x = ori(F0) = ori(F ∗). For each r ∈ N, we define Sr to be the set of ver-
tices that are reachable from F0 by a sequence of at most r successive extensions while
avoiding forbidden sets. More precisely, y ∈ Sr if and only if there exists a sequence
F ∗ = F0, F1, . . . , Fr′ with r′ 6 r such that y = ter(Fr′), and for all i = 1, . . . , r′, Fi is an

extension of Fi−1 and ter(Fi) 6∈ B(Fi−1). For each y ∈ Sr, we set F
(r)
y := Fr′ (if there are

many choices of Fr′ , we pick one arbitrarily). In particular y ∈ ter(F
(r)
y ).

In order to prove the lemma, it is sufficient to show that |St| > (1 − τ)n for some t.
Let us begin by noting that |S1| > (γ − ξ)n − 1 > 2τn − 1 > τn, where the last two
inequalities follow by our choice of parameters and n. To see the first inequality note that
each distinct outneighbour w of ter(F0) (except possibly x) gives an extension of F0 with
a distinct terminus w− := F−0 (w), and each such w− is in S1 unless w− ∈ B(F0).

We shall show that Sr+1 contains most vertices in {F−0 (w) : w ∈ RN+
ν (Sr)}. Fix

r > 1. For each w ∈ RN+
ν (Sr) \ {x}, we say w is good if there exists v ∈ Sr such that

w ∈ N+(v), F
(r)−
v (w) = F−0 (w), and F−0 (w) 6∈ B(F

(r)
v ). Otherwise we say w is bad. Note

that if w ∈ RN+
ν (Sr) \ {x} is good, then F−0 (w) ∈ Sr+1. Indeed, let F0, . . . , Fr′ = F

(r)
v be

a sequence of extensions that show v ∈ Sr. Then extending Fr′ = F
(r)
v along the edge vw

gives an extension F ′ whose terminus is F
(r)−
v (w) = F−0 (w) 6∈ B(F

(r)
v ). Thus the sequence

F0, . . . , Fr′ , F
′ shows that F−0 (w) ∈ Sr+1.

Since the function w 7→ F−0 (w) is injective, each w ∈ RN+
ν (Sr) \ {x} that is good

corresponds to a distinct vertex of Sr+1. Thus, assuming |Sr| 6 (1− τ)n, we have

|Sr+1| > |RN+
ν (Sr)| − b− 1 > |Sr|+ νn− b− 1,

where b is the number of bad vertices, which we now bound from above.
Let

A := {(v, w) : v ∈ Sr, w ∈ RN+
ν (Sr) ∩N+(v), F−0 (w) ∈ B(F (r)

v )}
B := {(v, w) : v ∈ Sr, w ∈ RN+

ν (Sr) ∩N+(v), F (r)−
v (w) 6= F−0 (w)}.

We have that |A ∪ B| > bνn. To see this note that each bad vertex w ∈ RN+
ν (Sr) has at

least νn inneighbours v ∈ Sr, and each such pair (v, w) belongs to A ∪ B. On the other

hand, we have |A| 6
∑

v∈Sr
|B(F

(r)
v )| 6 |Sr|ξn and |B| 6 |Sr|r. The first inequality is

clear while second inequality follows from the following claim:

Claim: For each v ∈ Sr, there are at most r vertices w for which F
(r)−
v (w) 6= F−0 (w).
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Proof. (of Claim) If F ′ is any extension of F then there is exactly one vertex w for which
F ′−(w) 6= F−(w). Therefore if F ′ is obtained from F by a sequence of at most r successive
extensions, then there are at most r vertices w for which F ′−(w) 6= F−(w), and the claim
follows.

Thus we have that bνn 6 (ξn+ r)|Sr|, whence b 6 ν−1ξn+ ν−1r. For each r 6 2ν−1,
if |Sr| 6 (1− τ)n then we have

|Sr+1| > |Sr|+ νn− b− 1 > |Sr|+ νn− ν−1ξn− 2ν−2 − 1 > |Sr|+
1

2
νn,

where the last inequality follows9 by our choice of parameters and n. Thus for some
t 6 2ν−1, we have |St| > (1− τ)n, as required.

We give one piece of notation before proving the existence of factors with few cycles
in robustly expanding digraphs. If P and Q are paths in a directed graph D, we write
Q ⊆ P if Q is an initial segment of P , i.e. P and Q have the same initial vertex and
P [V (Q)] = Q. If Q ⊆ P but Q 6= P , we write Q ⊂ P .

Theorem 25. Let n ∈ N and ν, τ, γ, ξ ∈ (0, 1) satisfying ν 6 τ , γ > 2τ + ξ, ξ < 1
4
ν2,

and n > 32ν−3. If D = (V,E) is an n-vertex robust (ν, τ)-expander with δ0(D) > γn then
there exists a factor U∗ of D which consists of at most 2ξ−1 cycles.

Proof. By Lemma 23, D contains a factor U0. Suppose U is any factor in which all cycles
have length at least s for some s < 1

2
ξn and where exactly ` > 1 cycles have length s. We

claim that, using Lemma 24, we can obtain a factor U ′ from U in which all cycles have
length at least s and at most `− 1 cycles have length s. Applying this claim iteratively,
we eventually obtain a factor U∗ of D in which every cycle has length at least 1

2
ξn and so

this factor has at most 2ξ−1 cycles, proving the theorem.
It remains to prove the claim. Suppose U = {C1, . . . , Ck} where C1, . . . , Ck are the

cycles of U in increasing order of length with |C1| = s < 1
2
ξn. Delete any edge of C1 to

form a path P and let F0 = {C2, . . . , Ck, P} be the resulting prefactor of D, and let x be
its origin.

For each prefactor F of D, let B(F ) denote the set of the first and last 1
2
ξn vertices

on the path in F (if the path has at most ξn vertices then B(F ) is the set of all vertices
on the path). Note that for the prefactor F0, |P | = |C1| < 1

2
ξn and so B(F0) = V (P ).

By Lemma 24, for at least (1− τ)n vertices y ∈ V , there exists a sequence of extensions
F0, F1, . . . , Ft such that Fi is an extension of Fi−1, ter(Fi) 6∈ B(Fi−1), and ter(Ft) = y.
Since |N−(x) \B(F0)| > γn− ξn > τn, we can choose y to be in N−(x) \B(F0).

Writing Pi for the path in the prefactor Fi, by our choice of B(·), it is straightforward
to show by induction that P = P0 ⊂ Pi for all i = 1, . . . , t. Indeed, since B(F0) = V (P ),
F1 must be a cycle-destroying extension of F0, and so P = P0 ⊂ P1. Suppose P ⊂ Pi−1
for some i > 1 and let P ′i−1 be the subpath of Pi−1 consisting of the first 1

2
ξn vertices;

in particular P ⊂ P ′i−1. If Fi is a cycle-creating extension of Fi−1, then since V (P ′i−1) ⊆
B(Fi−1), we must have Pi ⊇ P ′i−1 ⊃ P . If F is a cycle-destroying extension of Fi the
Pi ⊃ Pi−1 ⊃ P0.
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Our choice of B(·) also ensures that if Fi is a cycle-creating extension of Fi−1, then
the new cycle has length at least 1

2
ξn.

Let Ft = {C ′1, . . . , C ′k′ , Pt}, where C ′1 . . . , C
′
k′ are cycles and we know Pt is a path from

x to y of length more than |P | = |C1|. Since y ∈ N−D (x), we can turn Pt into a cycle C∗

and form a factor U ′ = {C ′1 . . . , C ′k′ , C∗} of D. We have |C∗| = |Pt| > |C1| = s.
Every cycle in U ′ that was created in the sequence of extensions F0, . . . , Ft has length

at least 1
2
ξn > s and |C∗| > |C1| = s. Every other cycle of U ′ was also a cycle of U .

Hence every cycle in U ′ has length at least s and the number of cycles of length exactly
s has been reduced by at least one. This proves the claim and the theorem.

6 Hamiltonicity

We now combine Theorem 22, Corollary 18 and Theorem 25 to give the following result
from which we deduce Theorem 3.

Theorem 26. Let 0 < ν 6 τ 6 γ/16 < 1/16 and let n ∈ N. Assume

n > max{108γ−5ν−4 log2(104γ−2ν−2), 107γ−2ν−5 log(150000γ−2ν−3)}.

If D is an n-vertex robust (ν, τ)-expander with δ0(D) > γn, then for any νn/2 6 ` 6 n
and any v ∈ V (D), D contains a cycle of length ` containing v.

Proof. Let ξ := ν2/32 and d := d2ξ−1e > 8. We begin by applying Theorem 22 to D to
find a d-absorber S, where

|V (S)| 6 1600ν−2γ−2(d log(dγ−2) + log n).

One can check that the conditions on the parameters and n are met10

Set D′ := D − V (S). By our choice11 of n, we have |V (S)| < νn/2 and so by
Proposition 7 D′ is a robust (1

2
ν, 32

31
τ)-expander with δ0(D′) > 31

32
γn. By our choice of ξ

and n, we can apply Theorem 2512 to D′ to obtain a factor in D′ with at most 2ξ−1 6 d
cycles. By removing one edge from each of the cycles let P1, . . . , Pr be the resulting
paths with r 6 d. Consider any νn/2 6 ` 6 n and any v ∈ V (D). Note D′ contains
vertex-disjoint paths P ′1, . . . , P

′
r′ such that r′ 6 d and |P ′1| + . . . + |P ′r′ | = ` − |V (S)|

and v ∈ V (S)∪
⋃
i∈r′ V (P ′i ) (by removing appropriate vertices of P1, . . . , Pr if necessary).

Applying Corollary 18, to these paths and the d-absorber S, we obtain a cycle C of length
` in D with v ∈ V (C).

Finally we can prove Theorem 3.

Proof of Theorem 3. Given that D is an n-vertex robust (ν, τ)-outexpander with δ0(D) >
γn, by Proposition 8, D is a robust (ν ′, τ)-expander where ν ′ = ν2/2 (our choice of
parameters ensures the conditions of Proposition 8 are met). By our choice 13 of n we
can apply Theorem 26 to D to obtain a Hamilton cycle in D.
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We deduce Corollary 5 from Theorem 3, but first we need the following leema from [17,
Lemma 13.1].

Lemma 27. Let n ∈ N and ν, τ, ε ∈ (0, 1) satisfy ν 6 1
8
τ 2 and τ 6 1

2
ε. If D is an

oriented graph on n vertices with δ+(D) + δ−(D) + δ(D) > 3n/2 + εn then G is a robust
(ν, τ)-outexpander.

The explicit dependence between the parameters was not given in [17], but we have
computed them and included them in the statement above.

Proof of Corollary 5. Let ν = ε2/2, τ := 2ε and γ = 3/8 so 4 13

√
log2 n/n 6 ν 6 τ 6

γ/16 < 1/16. Given an n-vertex oriented graph D with δ0(D) > 3n/8 + εn, we have that
δ(D) + δ+(D) + δ−(D) > 3n/2 + 4εn. So by Lemma 27, D is a robust (ν, τ)-outexpander.
Finally, we apply Theorem 3 to obtain a Hamilton cycle.

To prove Theorem 6, we need the following lemma from [19, Lemma 13].

Lemma 28. Let n ∈ N and τ, γ ∈ (0, 1) satisfy 2τ + 4τ 2 6 γ 6 1/2 and n > γ−2. Let D
be an n-vertex digraph such that for all i < n/2,

• d+i > i+ γn or d−n−i−γn > n− i,

• d−i > i+ γn or d+n−i−γn > n− i.

Then G is a robust (τ 2, τ)-outexpander and δ0(D) > γn.

Proof of Theorem 6. Let τ := γ/16. By Lemma 28, D is a robust (τ 2, τ)-outexpander
and δ0(D) > γn. Finally, we apply Theorem 3 to obtain a Hamilton cycle.

7 Concluding remarks and an open problem

It would be interesting to know for which choices of parameters ν = ν(n) and τ = τ(n)
an n-vertex robust (ν, τ)-expander is guaranteed to be Hamiltonian. We believe the true
values of ν and τ for which this holds should be much smaller than what we have proved.
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[4] B. Csaba, D. Kühn, A. Lo, D. Osthus and A. Treglown. Proof of the 1-factorization
and Hamilton decomposition conjectures. Mem. Amer. Math. Soc. 224, monograph
1154, 2016.

[5] G. A. Dirac. Some theorems on abstract graphs. Proc. London. Math. Soc. 2:69-81,
1952.

[6] A. Ferber, M. Krivelevich and B. Sudakov. Counting and packing Hamilton cycles
in dense graphs and oriented graphs. J. Combin. Theory Ser. B 122:196–220, 2017.

[7] A. Ghouila-Houri. Une condition suffisante d’existence d’un circuit hamiltonien. C.R.
Acad. Sci. Paris 25:495–497, 1960.
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Notes

1 Let c′ = 100γ−2 and d′ = 50dγ−2 log(24dγ−2). Since d > 8, we have

√
n > 300dγ−2 log(100dγ−2) > 300γ−2(log(100γ−2) + 1) + 150dγ−2 log(24dγ−2) > 3c′(log c′ + 1) + 3d′.

By Proposition 11, we have

√
n > c′ log

√
n+ d′ > 50γ−2 log n+ 50dγ−2 log(24dγ−2) > 2m.

2Note n2md exp(−γ2m/8) 6 1/2 holds if em > (2mdn2)8γ
−2

, which holds by Proposition 11 if m >
24γ−2(d log(8dγ−2)+d+log(2n2)), which holds if m > 24γ−2(d log(24dγ−2)+2 log n) as d log 3 > d+log 2.

3The choice of n implies ν−1 6 1
2νn 6 1

16γn 6 1
16n.

4Note that

n− (t+ 2) > n− ν−1 > 56ν−3 > 4(12ν−1 + 11)ν−2

Thus conditions of Lemma 10 hold (with r = t/2 6 ν−1/2 and ν, τ, γ, n replaced by 1
2ν,

16
15τ,

15
16γ, n− (t+

2)).
5We check the conditions of Lemma 20 with ν, τ, γ, n replaced by 1

2ν,
32
31τ,

31
32γ, |Di|. Note that |Di| >

n− 12kν−2 > 459ν−3 > 57(ν/2)−3.
6 Let c′ = 24000γ−2ν−3 and d′ = 12000γ−2ν−3d log(24dγ−2). Since d > 8, we have

n/2 > 5 · 104γ−2ν−3d log(1500dγ−2ν−1) > 4 · 105γ−2ν−3 log(1500γ−1/2ν−3/4)

> 105γ−2ν−3 log(24000γ−2ν−3) > 4c′ log c′ > 3c′(log c′ + 1).

Also, we have

n/2 > 5 · 104γ−2ν−3d log(1500dγ−2ν−1) > 36000γ−2ν−3 log(24dγ−2) = 3d′.

Proposition 11 implies that

n > c′ log n+ d′ > 12000γ−2ν−3(2 log n+ d log(24dγ−2))

> 460ν−3 · 25γ−2(2 log n+ d log(24dγ−2)) > 460mν−3.

7We need n > 24ν−3, which is true by the previous note.
8Note that 11 6 s 6 4ν−1m and n > 460mν−3 by Note 6. Thus, |D′| > n− 12ν−2m > 28 · 4ν−3m >

4(6s+ 11)ν−2.
9We note ν−1ξn 6 1

4νn and 1 6 2ν−2 6 1
8νn.

10 Note that d := d2ξ−1e 6 3ξ−1 6 100ν−2 and ν−1 > 16. Hence

104d2γ−5 log2(100dγ−2) 6 108γ−5ν−4 log2(104γ−2ν−2) 6 n
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and

105dγ−2ν−3 log(1500dγ−2ν−1) 6 107γ−2ν−5 log(150000γ−2ν−3) 6 n.

11 Need n > 2ν−1|V (S)| so sufficient that n > 3200γ−2ν−3(d log(dγ−2) + log n). By Proposition 11
this holds if

n > 9600γ−2ν−3
(
log(3200γ−2ν−3) + 1

)
+ 9600γ−2ν−3d log(dγ−2).

Recall that d 6 100ν−2. The inequality above holds if n > 107γ−2ν−5 log(105γ−2ν−4), which holds if
n > 3 · 107γ−2ν−5 log(γ−2ν−4).

12We check that 31
32γ > 64

31τ + ξ, which holds (using γ > 16τ and ξ 6 ν 6 τ). We check that
ξ < 1

4 ( 1
2ν)2 = 1

16ν
2, which holds. We check n−|V (S)| > max(32( 1

2ν)−3, τ−1). Since |V (S)| 6 1
2νn 6 1

2n,
it is sufficient that n > 512ν−3. This is clearly implied by our choice of n.

13 Recall that ν 6 γ/16. so

max{108γ−5(ν′)−4 log2(104γ−2(ν′)−2), 107γ−2(ν′)−5 log(15000γ−2(ν′)−3)}
6 40000ν−13 log2 250ν−8 6 40000ν−13 log2 ν−10 6 (4ν−1)13 log2 ν−1 6 n.
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