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A Ek-uniform hypergraph (in short, k-graph) H is a pair (V| F), where V = V(H) is a
finite set of vertices and £ = FE(H) is a family of k-element subsets of V. A matching
of size s in H is a family of s pairwise disjoint edges of H. If the matching covers all
the vertices of H, then we call it a perfect matching. Given a set S C V(H), the degree
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degy(S) of S is the number of the edges of H containing S. We omit the subscript when
the underlying hypergraph is obvious from the context, and simply write deg(v) when
S = {v}. The minimum (-degree of H, denoted by 0,(H), is the minimum deg(S) over
all (-subsets S of V(H).

Given integers ¢ < k < n such that k divides n, we define the minimum ¢-degree
threshold my(k,n) as the smallest integer m such that every k-graph H on n vertices
with d,(H) > m contains a perfect matching. In recent years the problem of determining
me(k,n) has received much attention, see, e.g., [2, 4, 5, 6, 7, 8,9, 11, 12, 13, 15, 16, 17,
19, 20, 21]. For example, Rodl, Ruciriski, and Szemerédi [17] determined my_;(k,n) for
all k£ > 3 and sufficiently large n. For more Dirac-type results on hypergraphs, we refer
readers to surveys [14, 25].

In this paper we focus on 3-graphs. Han, Person and Schacht [4] showed that

mi(3,n) = <g + 0(1)) <Z) (1)

Kiihn, Osthus and Treglown [10] and independently Khan [6] later proved that m(3,n) =
(”;1) — (2”2/3) + 1 for sufficiently large n.

Motivated by the relation between Dirac’s condition and Ore’s condition for Hamilton
cycles, Tang and Yan [18] studied the degree sum of two (k — 1)-sets that guarantees
a tight Hamilton cycle in k-graphs. Zhang and Lu [22] studied the degree sum of two
(k — 1)-sets that guarantees a perfect matching in k-graphs.

Our objective is to find an Ore’s condition that guarantees a perfect matching in 3-
graphs. As Ore’s theorem concerns the degree sum of two non-adjacent vertices in graphs,
we consider the degree sum of two vertices in 3-graphs. In a hypergraph, two distinct
vertices are adjacent if there exists an edge containing both of them. The following are
three possible ways of defining the minimum degree sum of a 3-graph H. Let o9(H) =
min{deg(u) + deg(v) : u,v € V(H) are adjacent}, o4(H) = min{deg(u) + deg(v) : u,v €
V(H)}, and o (H) = min{deg(u) + deg(v) : u,v € V(H) are not adjacent}.

The parameter o} is closely related to the Dirac threshold m4(3,n) — we can prove
that when n is divisible by 3 and sufficiently large, every 3-graph H on n wvertices with

ob(H) = 2((";") — (2"2/ %)) + 1 contains a perfect matching. Indeed, such H contains at

most one vertex u with deg(u) < (*}') — (2”2/3). If deg(u) < (5/9 —¢)(}) for some € > 0,
then we choose an edge containing u and find a perfect matching in the remaining 3-graph
by (1) immediately. Otherwise, 8;(H) = (5/9 — £)(3). We can prove that H contains a
perfect matching by following the same approach as in [10].!

On the other hand, no condition on ¢/ alone guarantees a perfect matching. In fact,
let H be the 3-graph whose edge set consists of all triples that contain a fixed vertex. This
H contains no two disjoint edges even though it satisfies all conditions on ¢} (because
any two vertices of H are adjacent).

Therefore we focus on 3. More precisely, we determine the largest oo(H) among all

3-graphs H of order n without isolated vertex such that H contains no perfect matching.

'In fact, due to the absorbing method, we only need to verify the extremal case.
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(Trivially H contains no perfect matching if it contains an isolated vertex.) Let us define a
3-graph H, which is one of the so-called space barriers for perfect matchings (see Section
5 for their definitions and a connection to a well-known conjecture of Erdds [3]). The
vertex set of Hf is partitioned into two vertex classes S and T of size n/3+41 and 2n/3—1,

Figure 1: H}: every edge intersects I" in two or three vertices.

respectively, and whose edge set consists of all triples containing at least two vertices of
T (see Figure 1). For any two vertices u € T and v € S,

deg(u) = (2”/?2’ N 2) + (g + 1) (2?" - 2> > (2”/2 N 1) — deg(v).

Hence ao(H}) = (*27%) + (n/3+1)(2n/3 —2) + (*"37) = 2n?/3 — 8n/3 +2. Obviously,
H? contains no perfect matching. The following is our main result.

Theorem 1. There exists ng € N such that the following holds for all integers n = ng
that are divisible by 3. Let H be a 3-graph of order n > ng without isolated vertex. If

o2(H) > 09(H};) = 2n* — $n + 2, then H contains a perfect matching.

Theorem 1 actually follows from the following stability result. For two hypergraphs
H, and H,, we write H; C H, if H; is a subgraph of Hs.

Theorem 2. There exist € > 0 and ng € N such that the following holds for all integers
n = ng that are divisible by 3. Suppose that H is a 3-graph of order n > ngy without
isolated vertex and oy(H) > 2n?/3—en?, then H C H? or H contains a perfect matching.

Indeed, if oo(H) > 2n?/3 — 8n/3 + 2, then H ¢ H} and by Theorem 2, H contains
a perfect matching. Furthermore, Theorem 2 implies that H; is the unique extremal
3-graph for Theorem 1 because all proper subgraphs H of H satisty o5(H) < 02(H}}).

This paper is organized as follows. In Section 2, we provide preliminary results and
an outline of our proof. We prove an important lemma in Section 3 and we complete
the proof of Theorem 2 in Section 4. Section 5 contains concluding remarks and open
problems.

Notation: Given vertices vy, ..., v, we often write vy - - - v, for {vy,...,v,}. The neigh-
borhood N (u,v) is the set of the vertices w such that uvw € E(H). Let Vi, Vs, V3 be three
vertex subsets of V/(H), we say that an edge e € E(H) is of type V1VoV5 if e = {vy, vo, v3}
such that v; € Vi, v, € V5 and v3 € V3.
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Given a vertex v € V(H) and a set A C V(H), we define the link L,(A) to be the
set of all pairs uw such that u,w € A and uwvw € E(H). When A and B are two disjoint
sets of V/(H), we define L,(A, B) as the set of all pairs uw such that u € A, w € B and
ww € E(H).

We write 0 < a7 < ay < ag if we can choose the constants aq,as, a3 from right to
left. More precisely there are increasing functions f and g such that given as, whenever
we choose some ay < f(a3) and a; < g(as), all calculations needed in our proof are valid.

2 Preliminaries and proof outline

We will need small constants
l<egkng <Ly <pg T 1

Suppose H is a 3-graph such that oo(H) > 2n?/3 —en?. Let W = {v € V(H) : deg(v) <
n?/3 —en?/2}, U = V\W. If W = (), then (1) implies that H contains a perfect
matching. We thus assume that |W]| > 1. Any two vertices of W are not adjacent —
otherwise o9(H) < 2n?/3 — en?, a contradiction. If [W| > n/3 + 1, then H C H} and we
are done. We thus assume |W| < n/3 for the rest of the proof.

Our proof will use the following claim.

Claim 3. If |W| = n/4, then every vertex of U is adjacent to some vertex of W.

Proof. To the contrary, assume that some vertex ug € U is not adjacent to any vertex in
W. Then we have deg(uo) < (”,") = ("WI™"). Since [W| > n/4 and n is sufficiently
large,

n—n/4—1 9 9 n?
d < = —n2_C 1< 22
eg(uo) < ) ) 55" §" +1< 7 5"
which contradicts the definition of U. O]

By Claim 3, when |W| > %, we have deg(u) > (2n*/3—en?) — (n}‘w‘) for every u € U.
This is stronger than the bound given by the definition of U because

2 —|W 2 -2 37 3 2
(§n2—5n2) — (n 2‘ ’) > (§n2—6n2) - (n 5 4) = <%—5>n2+§n> %—gnQ.

Our proof consists of two steps.
Step 1. We prove that H contains a matching that covers all the vertices of .

Lemma 4. There exist € > 0 and ng € N such that the following holds. Suppose that
H is a 3-graph of order n > ny without isolated vertex and oo(H) > 2n*/3 — en®. Let
W ={v e V(H) : deg(v) < n?/3 —en?/2}. If |[W| < n/3, then H contains a matching
that covers every vertex of W.
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We will prove Lemma 4 in Section 3. The following is an outline of the proof. Consider
a largest matching M in H such that every edge of M contains one vertex from W and
assume |M| < |W|. If [W]| < (1/3 — )n, then we choose two adjacent vertices, one from
W and the other from V' \ W to derive a contradiction with oo(H). If |W| > (1/3—~)n, we
use three unmatched vertices, one from W and two from V' \ W to derive a contradiction.

Step 2. We show that H contains a perfect matching.

Because of Lemma 4, we begin by considering a largest matching M such that M
covers every vertex of W and suppose that |M| < n/3. We distinguish the cases when
IM| < n/3 —nn and when |M| > n/3 — nn. In both cases we derive a contradiction
by comparing upper and lower bounds for the degree sum of three fixed vertices from
V\V(M). When |M| > n/3 — nn, we need the Dirac threshold (1).

In Step 2 we will apply three simple extremal results. The first lemma is Observation
1.8 of Aharoni and Howard [1]. A k-graph H is k-partite if V(H) can be partitioned into
Vi, -+, Vi, such that each edge of H meets every V; in precisely one vertex. If all parts
are of the same size n, we say H is n-balanced.

Lemma 5. [1] Let F be the edge set of an n-balanced k-partite k-graph. If F does not
contain s disjoint edges, then |F| < (s — 1)n*L.

The bound in the following lemma is tight because we may let G; be the empty graph
and G2 = Gg = Kn

Lemma 6. Let G, Go, G3 be three graphs on the same set V' of n > 4 vertices such that
every edge of Gy intersects every edge of G; for both i = 2,3. Then 2?21 Y vea degg (v) <
6(n — 1) for any set A C 'V of size 3.

Proof. Assume A = {uy,uz,u3} and b:=n —3 > 1. Our goal is to show that

3
Z degg, (u;) < 6b+ 12.

i=1 j=1

Let ¢; denote the number of the vertices in A of degree at least 3 in G;. We distinguish
the following two cases:

Case 1: /1 > 1.

If 04 > 2, say, degg, (u;) = 3 for j = 1,2, then E(G;) C {wus} for i = 2,3
otherwise we can find two disjoint edges, one from G; and the other from G, or Gj.
Therefore, Z;’:l degq, (u;) < 2 for i = 2,3. Moreover, Z?zl degg, (u;j) < 3b+6. We have

Sy >0 degg, (u) < 3b+10 < 6b+ 12,

If ¢, = 1, say, degg, (u1) > 3, then G is a star centered at u; for i = 2,3 — oth-
erwise one edge of (G; must be disjoint from one edge of G5 or GG3. In this case we
have 2521 degg, (u;) < b+ 2+ 4 and 23:1 degg (u;) < b+ 4 for i = 2,3. Therefore,

S >0 degg, (u;) < 3b+14 < 6b+12asb > 1.
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Case 2: /¢, =0.

Let us consider the value of max{¢s, (3}. First, if max{ls, (3} = 3, then E(G;) = 0.
Consequently, 37 Z?Zl degg, (u;) < 2(3b+6) = 6b + 12.

Second, assume max{/ls, (3} = 2. Without loss of generality, we assume ¢, = 2 and
degg, (u;) = 3 for j = 1,2. Then E(G;) C {ujug}. In this case 23:1 degq, (u;) < 2 and
Z?=1 degq, (u;) < 2b+4+2for i =2,3. Hence Z?Zl Zj’:1 degq, (u;) < 4b+14 < 6b+ 12
as b > 1.

Third, assume max{ly,f3} = 1. Without loss of generality, assume ¢, = 1
degg, (u1) = 3. Then Gy is a star centered at u;. We have Z?Zl degg, (u;) < 4 and
Z;’:l degg, (u;) <b-+244fori=2,3. So SO 22:1 degq, (u;) < 20+ 16 < 60+ 12 as
b>1.

At last, assume max{ly,f3} = 0. Then degg, (u;) < 2 for all 4,5 € {1,2,3}. Hence
SO 23:1 degq, (u;) <18 <6b+12asb > 1. O

The bound in the following lemma is tight because we may let G; = Gy = G35 be a
star of order n centered at a vertex of A.

Lemma 7. Let Gy, Gy, G5 be three graphs on the same set' V' of n > 5 vertices such that for
any i # j, every edge of G; intersects every edge from G;. Then 2?21 Y oveadegs. (v) <
3(n+1) for any set A CV of size 3.

Proof. Assume A = {uy,uz,u3} and b:=n — 3 > 2. Our goal is to show that

3
Z Z degq, (u;) < 3b+ 12.

i=1 j=1

Let ¢; denote the number of the vertices in A of degree at least 3 in GG;. We distinguish
the following two cases:

Case 1: {; > 1 for some i € [3].

Without loss of generality, £, > 1 and degg, (u1) = 3. If degg, (u2) = 3 or degg, (us) >
3, say, degg, (u2) = 3, then F(G;) C {ujus} for i = 2,3 — otherwise we can find two disjoint
edges e; and ey from two distinct graphs of G, G, G's. In this case 23:1 degq, (u;) < 3b+6
and 2?21 degg, (u;) < 2 for i = 2,3, which implies that S Zj’:1 degg, (u;) < 3b+ 10.

Assume degg, (u;) < 2 for j = 2,3. We know that G, i = 2,3 is a star centered at u; —
otherwise one edge of G; must be disjoint from one edge of G;, i € {2,3}. If degg, (u1) > 3
or degg,(u1) = 3, then G is also a star centered at u;. In this case Z?:l degq, (u;) <
b+ 4 for i € [3], so 30, 23:1 degg. (u;) < 3b+ 12. Otherwise degg, (u1) < 2 for
i = 2,3, hence 25:1 degq, (u;) < 4 for i = 2,3. Since Z§:1 degg, (u;) < b+ 6, we have
SO Z?Zl degg, (u;) < b+ 14 < 3b + 12.

Case 2: (; =0 for i € [3].

In this case Z;’Zl degq, (u;) < 6 for + = 1,2,3. Hence SO Z;’Zl degq, (u;) < 18 <
3b+12as b > 2. O]
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3 Proof of Lemma 4

Choose a largest matching of H, denoted by M, such that every edge of M is of type
UUW. To the contrary, assume that |[M| < |[W|—1. Let Uy = V(M)NU, Uy =U \ Uy,
W1 = V(M) OW, and WQ = W\Wl Then |U1| = 2|M|, and |U2| =n— |W| —2|M| We
distinguish the following two cases.
Case 1: 0 < [W| < (5 —7)n.

We further distinguish the following two sub-cases:
Case 1.1: A vertex vy € W5 is adjacent to a vertex ug € Us.

Let M' ={ee M :3u € e, |N(vo,u')NUs| = 3}. Assume {uy,us,v1} € M’ such that
uy, ug € Uy, v1 € Wi, and |N(vg,u1) N Us| = 3. We claim that

N(UQ,Ul) N (UQ U {UQ}) = @ (2)

Indeed, if {ug, vi,us} € E(H) for some uz € Us, then we can find ug € Us \ {ug, us} such
that {vo,u1,us} € E(H). Replacing {uy,ug,v1} by {ug,v1,us} and {vg,us,us} gives a
larger matching than M, a contradiction. The case when {ug, vy, us} € E(H) is similar.

By the definition of M’, there are at most 2(|U;| — 2|M’|) edges containing vy with
one vertex in U \ V(M') and one vertex in U,. This implies that

U U
deg(vy) < (' 21|> + 20M||Us] + 2|03 | — 2| M) = (' 21|> + 2000 + [ M) (2]Us] — 4).

By (2), there are at most |U;||W;| — |M’| edges consisting of ug, one vertex in Uy, and one
vertex in Wi, and at most (|Us| — 1)(|W3| — |M’]) edges consisting of ug, one additional
vertex in Us, and one vertex in W;. Therefore,

Ul—1
dogun) < (171 ) sl 10I9AL = 1371+ (i = 1] a1

Ul -1
= (") i+ ol = D = i

and consequently,

deg(vg) +deg(ug) < (’Ul‘

2

Since [W| < (3 —7)n, we have [Us] > 3yn > 4. As |[M'| < |M| = [W;] = %, it follows
that

Ul -1
Y2l (V) oW ol - D2 )

U Ul -1
deg(vg) + deg(ug) < <| ;') +2|Uy| + (' |2 > + | U1 ||V

\Ur] | |UY]

+ (0 = )5E + SRl - )

(C)-()- () (m-pu

= (u1-v7 = (157) + ey - .
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Since |M| < |[W| —1 and |Uy| = n — 3|W| + 2, we derive that
n—3|W|+2
2

9 2
:_nz_zn+ﬁ_§(ﬁ+g_|wy> _

d%wﬂd%@ﬂ<m—MW4ﬁ—( )+mwvnmm—w

3 3 24 2\ 3
Since [W| < (5 —7)n, 0 < & < v and n is sufficiently large, we have

6 3

This contradicts our assumption on o9(H) because vy and ug are adjacent.

2 22
deg(vo) + deg(ug) < §n2 I + B3 <’yn + z) < =n? —en’.

Case 1.2: No vertex in W5 is adjacent to any vertex in Us,.

Fix vy € W3, Since vy is not adjacent to any vertex in Us, we have deg(vg) < (llgl) =
(2‘]2\4 ‘). Since vy is not an isolated vertex, there exists a vertex u; € U; that is adjacent
to vg. By the assumption, there is no edge of H containing u,, a vertex from Us, and a
vertex from Wy. Thus deg(u;) < (|U|2_1) + (|U] = D|W| — |Us||Ws3|. Since | M| < |W|—1
and |U| =n — |W|, it follows that

deg(vg) + deg(uy) < (2(|W| B 1)) + (|U| . 1) + (U= DW]| = (n—3|W|+2)

2 2
3 1\° 1, 5 13
=—[|W]=2 n?oZ -
2 (' | 2) T Ty
Furthermore, since |W| < (5 —7)n and 0 < € < 7, we derive that

3/n 1\N? 1 5 13
deg(vo) + deg(u1) < 5 (— -y — —) +-n?— -n+4+ —

2\3 2 2 2 8
2 3 5\ o 3
=\|=-- = — - = 2
(3 7+2’y)n (3 27)n+
2
<§n2—5n2,

contradicting our assumption on oy(H).
Case 2: |[W|> (3 —y)n.
Claim 8. |M| > n/3 —+'n.

Proof. To the contrary, assume that |M| < n/3 —+'n. Fix vy € W). Then deg(vg) <
(g') — ('L;Q|) because there is no edge of type UsUsW,. Suppose u € U is adjacent to vyg.

Trivially deg(u) < (1) + (|U] — 1)|W|. Thus

dego) + degtu) < (177 1) + g = o+ (1) = (19)

— =1V = 1) - ('U;').
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Our assumptions imply that |U| < 2n/3 + yn and |Uy| = 27/'n. As a result,

2 el 2
deg(vo) + deg(u) < (n— 1) (§n+’m - 1) - ( ’;n) < gnQ —en?,

because ¢ < 7 < 7' and n is sufficiently large. This contradicts our assumption on
O'Q(H). ]

Fix uy # us € Uy and vy € Wy, Trivially deg(w) < ('U‘) for any vertex w € W and

deg(u) < (|U| Y+ [W|(|U| — 1) for any vertex u € U. Furthermore, for any two distinct
edges ey, e € M, we observe that at least one triple of type UUW with one vertex from
each of e; and e; and one vertex from {uy, us, vo} is not an edge — otherwise there is a
matching Mj of size three on e; Ues U{uy, ug, vo} and MzUM \ {ey, €2} is thus a matching
larger than M. By Claim 8, |M| > n/3 —4'n. Thus,

deg (1) + des(u) + deg(vg) < 2 (<|U|2_ 1) W] - 1)) + ('g') - (”/3 ) 7/”)

On the other hand, since [W| > (3 —)n > n/4, Claim 3 implies that u; is adjacent
to some vertex in W for ¢ = 1,2. We know that vy is adjacent to some vertex in U.
Therefore, deg(u;) > (2n?/3 —en?) — ('g') for i = 1,2, and deg(vg) > (2n?/3 —en?) —

((‘U'gl) +|W|(JU| - 1)). It follows that

deg(uy) 4 deg(usz) + deg(vo) > 3 (2312 — 5n2) — 2(‘2') — ('U’Q_ 1) — [W|(|U] = 1).

The upper and lower bounds for deg(u;) + deg(usz) + deg(vy) together imply that

(1) ()-(757) (5 ).

n/3 —+'n 2n? 9
or (U —-1)(n—1)— 3< 5 >> 5

which is impossible because |U| < 2n/3 4+ 9n, 0 < ¢ € v < 7' < 1 and n is sufficiently
large. This completes the proof of Lemma 4.

4 Proof of Theorem 2

Choose a matching M such that (i) M covers all the vertices of W (ii) subject to (i), | M| is
the largest. Lemma 4 implies that such a matching exists. Let My = {e € M : enW # 0},
My = M\ My, and U3 = V(H) \ V(M). We have |M,| = |W|, |Ms| = |M|— |W|,
|Us| = n =3[ M.

Suppose to the contrary, that |M| < n/3 — 1. Fix three vertices u;, us, uz of Us. We
distinguish the following two cases.
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Case 1: |M| < n/3 —nn.
Trivially, for every i € {1,2,3}, there are at most 3|M| edges in H containing u; and
two vertices from the same edge of M. For any distinct e, e; from M, we claim that

3
D Ly (€1, e2)] < 18. (3)
=1

Indeed, let H; be the 3-partite subgraph of H induced on three parts {uj,us,us}, e,
and e;. We observe that H; does not contain a perfect matching — otherwise, letting
M, be a perfect matching of Hy, (M \ {e1,e2}) U M; is a larger matching than M, a
contradiction. Apply Lemma 5 with n = k = s = 3, we obtain that |F(H;)| < 18.
Therefore 37 | Ly, (e1, e2)| < 18.

For any e € M, we claim that

3
> 1Lu(e, Us)| < 6(|Us| = 1).
i=1

Indeed, assume e = {vy, v9,v3} € My with vy € W. Apply Lemma 6 with A = {uy, us, us},
V = Us, and G; = (Us, L,,(Us)) for i = 1,2,3. Since |M| < n/3 — 4, we have |B| =
|Us| — 3 > 2. By the maximality of M, no edge of G is disjoint from an edge of G
or G3. By Lemma 6, 337 Z?zl degg, (u;) < 6(|Us| —1). Hence >0, Ly, (e,Us)| =

iy 2o degg, (uy) < 6(|Us| - 1).
Similarly, for any e € My, we can apply Lemma 7 to obtain that

3
> " |Lu, (e, Us)| < 3(|Us| + 1).
=1

Putting these bounds together gives

S deg(un) < 18( 1) 9101+ 30 IV (1), L) + 3 10 (V (). )

M
< 18(' 2 ') T O|M] + 6IML| (U] — 1) + 31M] (U] + 1).

Since |M| = |W|, |Ms| = |M| — |W|, |Us| = n — 3|M]|, we derive that

3
M
> deg(us) < 18(' ) ’) + 9| M|+ 6|W|(n — 3|M| — 1) + 3(|M| — |W|)(n — 3|M| + 1)
=1
= (3n — 9|W| + 3)|M| + 3|W|n — 9|W].

Furthermore, 3n — 9|W| +3 > 0 and |M| < n/3 — nn implies that
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Zdeg u;) < (3n — 9|W| + 3) <§ — nn) + 3|W|n — 9|W|

= (9nn —9) [W|+ (1 —3n)n*+ (1 — 3n)n. (4)

If |[W| < n/4, from (4), we have

3 5
Zdeg ui) < 97771—9)%+(1—3n)n2+(1—3n)n: (1—177) n? — <3n+1) n,

2

which contradicts the condition "7 | deg(u;) > 3 ("— - —) because u; € Us for i € [3]

3
and ¢ < 1.

If |W| > n/4, Claim 3 implies that w; is adjacent to one vertex of W, i = 1,2,3.
Furthermore, deg(w) < ('g‘) for w € W. So

ST Cml (T ()]

The upper and lower bounds for Z?:1 deg(u;) together imply that

_ N2
onm—9) W]+ (1—3m)n2 +(1—3nn+3(" IV 55 (22 o)
2 3

which is a contradiction because |W| > n/4, 0 < e < n < 1 and n is sufficiently large.

Case 2: | M| >n/3 —nn.

If IM| =n/3 — 1, then |Us| = 3 and we can not apply Lemmas 6 and 7. Fortunately,
when |M| > n/3 — nn, Lemma 5 suffices for our proof.

Let W = {v € W : deg(v) < (5/18 + 7)n*}. Let M’ be the sub-matching of M
covering every vertex of W'. If [W'| < pn, we claim that degy,(u) > (2 +7) (5) for
every vertex u € V(H'), where H' := H[V \ V(M’)]. Indeed, from the definition of W,
degy (u) > (5/18 + 7)n? for every vertex u € V(H'). Hence,

5)
degy (u) = degy(u) — 3n|W'| > (E + 7') n* — 3n|W’|.

Since |W'| < pn, 0 < v < p < 7 < 1 and n is sufficiently large, we have
D 5 n
degyy(u) > (18—|—T>n2—3pn2>(§—|—7) (2)

In addition, n is divisible by 3, so |V (H')| is divisible by 3. (1) implies that H’ contains
a perfect matching M”. Now M’ U M" is a perfect matching of H.
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Therefore, we assume that |W’| > pn in the rest of the proof. If one vertex of
Uy, Us, U3, say, up, is adjacent to one vertex in W', the definition of W’ implies that
deg(uy) > 2n?/3 — en? — (&% + 7) n®. Recall that deg(u;) > n?/3 —en?/2 for i = 2,3.
Thus

3
4 5 19
Zlzldeg(ui) > <§n2 — 2€n2) - <E + 7') n? = <1_8 — 2 — 7'> n?. (5)
On the other hand,

3
M
S deg(u) < 18(' k ’) O[] + 9[M](n — 3[M] — 1) = 9| M](n — 2/M]| 1)
=1

where, by (3), 18(“\24 |) bounds the number of edges intersecting two members of M,
9|M| bounds the number of edges with two vertices in the same member of M, and
9| M |(n—3|M|—1) bounds the number of edges with one vertex in V(M) and an additional
vertex in Us (besides ;). Since the function f(z) := 9z(n—2x—1) decreases when z > 21,
we have f(x) < f(§ —nn) for all 2 > § — nn. It follows that

i deg(ui) <9 (g - nn) (n -2 (g - nn> - 1) = (1+ 30— 189*)n* — (3 — 9n)n.

Note that (14 37— 187%)n* — (3 —9n)n < (13 —2e — 7) n? because 0 < e K n K 7 <K 1
and n is sufficiently large. We thus obtain a contradiction with (5).
We thus assume that none of uy, us, us is adjacent to any vertex in W’. It follows that

> dentu) < 1815 ) aqan - o+ oar - e - 3iag - )

+ 3(2%4/') +32|M)(n — 3| M| — 1)

1 3 245 9 3
— 3 |IM|+=n—=2IM|) = =M+ Zn|M| - 9| M| + Zn2.
3<| |+2n 2! |> 4! | +2nl | =9 |+4n

As before, 18(|M|_2|M/‘) bounds the number of edges intersecting two members of M \ M,
9(|M| — |M'|) for those with two vertices in the same member of M \ M’, and 9(|M| —
|M'|)(n — 3|M| — 1) for those with one vertex in V(M \ M’) and an additional vertex in
Us (besides u;). In addition, 3(2“;/[/') bounds the number of edges with two vertices in
V(M) \ W', and 3(2|M'|)(n — 3|M'| — 1) for those with one vertex in V(M’) \ W’ and
one vertex in V(H) \ V(M'). Since —n/2 + 3|M|/2 < 0 and |M'| = |W'| = pn,

3 2
13 45 o 9 3,
;deg(ui) < -3 <pn—|— 5= i\M\) = 1M+ SnlM| = 9| M| + n

1 1 1\? 9 15 3 9 9 9
:—18(|M|—Zn—1pn+z) +<§—§p2—1p)n2—1pn—zn+§.
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Recall that 0 < p < 1, so }ln + %lpn — }1 < g —nn. Furthermore, [M| > 2 — nn, hence we
have

3 2

11 1 9 15, 3
> deg(u;) < —18 (5 —mn—n——pn+ =) +(z——p*—p)n?
- eg(u:) (3 et Ty 4) (8 57 4'0)

APy

= (1—3p" = 9Inp + 30— 189°) n® + (9 — 3)n,

which contradicts the condition 37 deg(u;) > 3 (n?/3 — en?®/2) because 0 < £ < 7 <
p < 1 and n is sufficiently large. This completes the proof of Theorem 2.

5 Concluding remarks

In this paper we consider the minimum degree sum of two adjacent vertices that guarantees
a perfect matching in 3-graphs. Given 3 < k < n and 2 < s < n/k, can we generalize this
problem to k-graphs not containing a matching of size s? For 1 < ¢ < k, let Hﬁ’k’s denote
the k-graph whose vertex set is partitioned into two sets S and T of size n — s¢ + 1 and
st — 1, respectively, and whose edge set consists of all the k-sets with at least ¢ vertices
in 7T It is clear that H ks contains no matching of size s. A well-known conjecture of
Erdés [3] says that Hn ks OF H* ks 18 the densest k-graph on n vertices not containing
a matching of size s. It is reasonable to speculate that the largest oo(H) among all k-
graphs H on n vertices not containing a matching of size s is also attained by Hf
Note that Hkk s is a complete k-graph of order sk — 1 together with n — sk + 1 1solated

vertices and thus oo(HY, ) = Q(Sk 2). When 1 < ¢ < k — 2, any two vertices of H

n,k,s n,k,s

are adjacent and thus 0'2<H£Lks) = 261(Hf ;). When ¢ = k — 1, it is easy to see that
aa(HETL) = 2(E072) 1 (0 = sk — 1) +2) ().
Assume s = n/k. Since d;( nkn/k) 61( nkn/k) for 1 < ¢ < k—2and H ko /k
contains isolated vertices, we only need to compare o2(H,,, /) and UQ(HS’k’n ). For
sufficiently large n, it is easy to see that 02<H71L7k’n/k) < oo(H*1 ) when k < 6 and

n,k,n/k
o2 (Hy o) > O_Q(HS’;}n/k) when k > 7.

Problem 9. Does the following hold for any sufficiently large n that is divisible by k7

Let H be a k-graph of order n without isolated vertex. If k£ < 6 and oo(H) > UQ(H:: kln/k)

or k=7 and oo(H) > oo H} knyk)s then H contains a perfect matching.

Now assume k = 3 and 2 < s < n/3. Note that

S I L (U )

oo (H? 5,) = (232_ 2) +(n—2s+1) (231_ 2) + (232_ 1> = (25 —2)(n —1).
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It is easy to see that o9(Hy3,) > 09(H,,,). Zhang and Lu [23] made the following
conjecture.

Conjecture 10. [23] There exists ny € N such that the following holds. Suppose that H
is a 3-graph of order n > ng without isolated vertex. If oo(H) > 2 ((";") — (")) and

n > 3s, then H contains no matching of size s if and only if H is a subgraph of H? ;.

Zhang and Lu [23] showed that the conjecture holds when n > 9s*. Later the same
authors [24] proved the conjecture for n > 13s. If Conjecture 10 is true, then it implies
the following theorem of Kiihn, Osthus and Treglown [10].

Theorem 11. [10] There exists ng € N such that if H is a 3-graph of order n > ng with

h(H) > ("51) —("7°) + 1 and n = 3s, then H contains a matching of size s.

Our Theorem 1 suggests a weaker conjecture than Conjecture 10.

Conjecture 12. There exists n; € N such that the following holds. Suppose that H is a
3-graph of order n > ny without isolated vertex. If oy(H) > 09(H? 4,) and n > 3s, then
H contains a matching of size s.

On the other hand, we may allow a 3-graph to contain isolated vertices. Note that
oo(H 5,) = 09(H} 5 ,) if and only if s < (2n +4)/9. We make the following conjecture.

n,3,s

Conjecture 13. There exists ny € N such that the following holds. Suppose that H is a
3-graph of order n > ny and 2 < s < n/3. If o9(H) > 09(H2,,) and s < (2n +4)/9 or

n,3,s
oo(H) > 09(H 5 ,) and s > (2n44)/9, then H contains a matching of size s.

In fact, we can derive Conjecture 13 from Conjecture 12 as follows. Let ny =
max{("}), 3n,} and H be a 3-graph of order n > n, satisfying the assumption of Conjec-
ture 13. If H contains no isolated vertex, then H contains a matching of size s by Con-
jecture 12. Otherwise, let W be the set of isolated vertices in H. Let H' = H[V (H) \ W]
and n’ = n — |W|. Then H' is a 3-graph without isolated vertex and oo(H') = o9(H).
When 2 < s < (2n 4 4)/9, we have 0o(H') > 03(H; 3,) > 02(H} 5,). In addition, since
n>= ("21) and

2

we have n’ > n;. When s > (2n + 4)/9, we have o3(H') > 03(H} 5,
oa(H? 5,). In addition, since n > 3n,/2 and

Q(n’z—l) s ox(H) > 2(332—2> N 2(2(71—21)/3)7

we have n’ > ny. In both cases, Conjecture 12 implies that H’ contains a matching of size
S.

2(”/ - 1> > oo(H') > (25— 2)(n — 1) > 2(n — 1),

) > oo H?

n,3,s

) >
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