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Abstract

We introduce diagrams and essential sets for signed permutations, extending
the analogous notions for ordinary permutations. In particular, we show that the
essential set provides a minimal list of rank conditions defining the Schubert variety
or degeneracy locus corresponding to a signed permutation. Our essential set is in
bijection with the poset-theoretic version defined by Reiner, Woo, and Yong, and
thus gives an explicit, diagrammatic method for computing the latter.

Mathematics Subject Classifications: 05E99, 14M15, 14N15, 06A07

Introduction

Representing a permutation in Sn as a matrix of dots in an n×n array of boxes, its (Rothe)
diagram is the subset of boxes that remain after striking out the boxes (weakly) south or
east of each dot. The boxes of the diagram correspond naturally to the inversions of the
permutation, so the number of them is equal to the length of the permutation. In fact, the
diagram is a convenient way of encoding a great deal of information about a permutation.
The goal of this article is to develop an analogous tool for signed permutations.

A permutation v ∈ Sn determines n2 rank conditions on the set of all n× n matrices,
by requiring that each lower-left submatrix have rank at least that of the corresponding
part of the permutation matrix for v; more generally, v determines a degeneracy locus
for a flagged vector bundle on a variety, as the locus of points where the fiber satisfies
these conditions. These rank conditions are highly redundant, however. A minimal list of

∗This work was partially supported by NSF Grant DMS-1502201 and a postdoctoral fellowship from
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non-redundant rank conditions is determined by the essential set of v, introduced in [Fu].
It can be read easily from the diagram of v: the definition of the essential set identifies it
with the set of southeast corners of the diagram.

Seeking formulas for degeneracy loci of other classical types [AF0, AF1], we were
motivated to find minimal lists of rank conditions corresponding to signed permutations,
since these index degeneracy loci in other types. For example, in the type B setting of
an odd-rank vector bundle equipped with a nondegenerate quadratic form, an isotropic
flag can be represented (locally) by a (2n + 1) × n matrix whose columns are required
to be isotropic and mutually orthogonal. A signed permutation w specifies 2n2 + n rank
conditions on such a matrix, most of which are redundant; we shall find a minimal essential
set of rank conditions which suffice, and can be read easily from the diagram of w, which
is introduced here.

All the statements and most of the arguments in the body of this paper will be
combinatorial, but it will be useful to explain some of this geometric motivation in more
detail first. Consider an odd-rank vector bundle V on a variety X , equipped with a
nondegenerate quadratic form and flags of subbundles V ⊃ E1 ⊃ E2 ⊃ · · · and V ⊃
F1 ⊃ F2 ⊃ · · · , with E1 and F1 maximal isotropic. A signed permutation w defines a
degeneracy locus Ωw ⊆ X by imposing certain rank conditions dim(Ep ∩ Fq) > k. Here
k = rw(p, q) is the value of a rank function associated with w.

To describe the rank conditions, it is enough to consider the special case where
X is the odd orthogonal flag variety, and Ωw is a Schubert variety of codimension
equal to the length of w.∗ Let us assume the flag F• comes from a standard basis
en, . . . , e1, e0, e1, . . . , en (using q to denote −q). That is, extending to a complete flag
by setting F0 = F⊥

1 , F1 = F⊥
2 , etc. (so Fq = F⊥

q+1), the space Fq is spanned by {ei | i > q}
for all q. An isotropic flag E• can be represented by a (2n + 1) × n matrix whose rows
correspond to the basis vectors ei: labelling the columns n, . . . , 1, the space Ep is the
span of the columns whose labels are at most p. One can always scale the bottom-most
nonzero entry in each column to 1; the remaining entries are either free or determined
from the other entries by the isotropicity condition. If the 1’s are in positions (w(i), ı)
for i = 1, . . . , n, then dim(Ep ∩ Fq) = #{i 6 p |w(i) > q}, and this defines the rank
function rw(p, q). The Schubert variety Ωw is defined as the set of all E• such that
dim(Ep ∩ Fq) > rw(p, q) for 1 6 p 6 n and n 6 q 6 n (or, more precisely, by taking the
closure of the locus where equality holds). An example is shown in Figure 1, where the
entries determined by isotropicity are represented by an “×”; cf. [FP, §6.1].

The diagram of a signed permutation w is a combinatorial abstraction of the matrix
representing E• (see Figures 1 and 2). Its definition, given in detail in §1.2, is similar to
the diagram of an ordinary permutation, with the additional feature of markings “×”;
the white boxes not containing an × form the diagram, while all the white boxes form
the extended diagram.

In terms of the matrix, the rank rw(p, q) is equal to the number of dots in the region
weakly southwest of the box (q, p). The essential set Ess(w) consists of certain basic triples

∗In fact, this case is all we need for the purposes of this article; the reader may freely substitute
“Schubert variety” for “degeneracy locus”, or vice versa, according to taste.
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Figure 1: Diagram of the signed permutation 2 3 1.

(k, p, q), where k = rw(p, q) and the box (q− 1, p) is a southeast corner of the (extended)
diagram of w. In contrast with ordinary permutations, however, not all southeast corners
give essential conditions for a signed permutation. There are two exceptions, stemming
from two simple linear-algebraic facts about isotropic subspaces: first, the conditions
dim(Ep ∩ Fq) > k and dim(E⊥

p ∩ F⊥
q ) > k + p + q − 1 are equivalent; and second, for

k, p, q > 0 the condition dim(Ep ∩ Fq) > k is implied by dim(Ep ∩ F⊥
q ) > k + q − 1. An

example is shown in Figure 2. See Definition 1.2 for details.
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w = 5 6 4 3 1 2

nullity(A64, <1) > 2

nullity(A64, <2) > 3

nullity(A63, <4) > 4

nullity(A61, <5) > 1

nullity(A61, <3) > 2

nullity(A61, <1) > 3

Figure 2: Diagram and essential rank conditions. In the diagram, each essential position
is labelled with the number of dots strictly south and weakly west of it.

The key geometric fact about essential sets is the following:

Theorem A (Corollary 2.6). The degeneracy locus corresponding to a signed permutation
w is defined by the conditions dim(Ep ∩ Fq) > k, as (k, p, q) ranges over Ess(w).

Taking X to be the orthogonal flag variety, E• the tautological isotropic flag, and F•

a flag of trivial isotropic bundles, Theorem A says the Schubert variety corresponding to

the electronic journal of combinatorics 25(3) (2018), #P3.46 3



w is determined by rank conditions from the essential set. This particular case suffices to
prove the general degeneracy locus statement.

The theorem can be interpreted in terms of rank conditions on matrices, as follows.
Take a standard basis en, . . . , e1, e0, e1, . . . , en for a vector space of dimension 2n+ 1, and
fix the symmetric bilinear form defined by 〈ei, e〉 = δi,j. Let X be the set of (2n+1)× n
full-rank matrices with isotropic and pairwise orthogonal columns, with rows indexed
n, . . . , 0, . . . , n (top to bottom) and columns indexed n, . . . , 1 (left to right).

Corollary. Given a signed permutation w, with rank function rw(p, q) as defined above,
let Ωw ⊆ X be the subset

Ωw = {A ∈ X | nullity(A6p, <q) > rw(p, q) for all 1 6 p 6 n, n 6 q 6 n},

where A6p, <q is the (upper-left) submatrix on columns n, . . . , p and rows n, . . . , q − 1.
Then the conditions

nullity(A6p, <q) > k for (k, p, q) ∈ Ess(w)

suffice to determine Ωw, and they form a minimal set with this property.

To deduce this from Theorem A, observe that the the flag variety SO2n+1/B can be rep-
resented as a quotient of the set of matrices X , and the composed map Ep →֒ V ։ V/Fq

is represented by the submatrix A6p, <q. The set Ωw is the preimage of the corresponding
Schubert variety under the quotient map. An example is shown in Figure 2.

With Theorem A in mind, we define the basic signed permutation w(k, p, q) associated
to a basic triple (k, p, q) so that the Schubert variety Ωw(k,p,q) is defined by a single rank
condition (see §2.1 for the combinatorial definition). The geometric statement of Theo-
rem A is a direct consequence of a combinatorial statement about Bruhat order—a signed
permutation w is the supremum of the basic signed permutations corresponding to the
elements of Ess(w) (Theorem 2.3). This, in turn, relies on our main result about essential
sets:

Theorem B (Theorem 2.2). The essential set of a signed permutation w corresponds to
the set of basic signed permutations which are maximal among all those below w in Bruhat
order.

Theorem B also suggests a link with a general poset-theoretic definition of essential
set introduced by Reiner, Woo, and Yong in the course of finding descriptions for the
cohomology rings of Schubert varieties [RWY]. We establish a bijective correspondence in
Proposition 2.10. Along the way, we also show that the set of basic signed permutations
is in bijection with the base of the group of signed permutations, which was studied by
Lascoux and Schützenberger [LS] and Geck and Kim [GK] in the context of characterizing
Bruhat order of Weyl groups.

From an alternative point of view, our diagrammatic definition together with Theo-
rem B may be taken as an efficient method for computing the essential set as defined in
[RWY], and hence finding generators for the ideal of the cohomology ring of a Schubert
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variety. From the perspective of [LS] and [GK], this also leads to an efficient means of
comparing elements in Bruhat order on signed permutations.

It would be interesting to see signed analogues of other properties of diagrams for
(ordinary) permutations. For instance, “balanced fillings” of the diagram of a permutation
are in bijection with reduced words, and this leads to a formula for the corresponding
Stanley symmetric function [KLR, FGRS]. Is there a similar story for diagrams of signed
permutations? (In [H], a different notion of diagram is proposed, as well as a set of
balanced fillings in bijection with reduced words; the tradeoff is that one must label all
the boxes of the diagram of a permutation in S2n, rather than the smaller set of boxes we
consider here.) In a different direction, Eriksson and Linusson characterized the sets that
can arise as essential sets of permutations, and used this to give an efficient algorithm for
reconstructing a permutation from its essential set; in fact, only a subset of the essential
set is required [EL]. A result of this kind for signed permutations would be useful, as well.

Much of our discussion of diagrams and essential sets for signed permutations has a
“type B” flavor, but this is primarily for notational convenience. The group Wn of signed
permutations is also the Weyl group of type C, and indeed, one can recast all the results
in a form more adapted to the symplectic group; an indication is given at the end of the
article. Type D, however, is another matter—the Weyl group is a subgroup of Wn, and it
does not satisfy the “dissective” condition used in §2.3. It would be interesting to work
out the analogous story for type D, but this case seems sufficiently distinct to be treated
separately.

Notation. Our conventions and notation for signed permutations are very close to those
described in [BB, §8.1]. We review them here.

We will consider permutations of (positive and negative) integers

. . . , n, . . . , 2, 1, 0, 1, 2, . . . , n, . . . ,

using the bar to denote a negative sign, and we take the natural order on them, as above.
All permutations are finite, in the sense that v(m) = m whenever |m| is sufficiently large.
We generally write permutations in S2n+1 using one-line notation, by listing the values
v(n) v(n− 1) · · · v(n).

A signed permutation is a permutation w of these symbols with the property that for
each i, w(ı) = w(i). A signed permutation is in Wn if w(m) = m for all m > n; this
is a group isomorphic to the hyperoctahedral group, the Weyl group of types Bn and
Cn. When writing signed permutations in one-line notation, we only list the values on
positive integers: w ∈ Wn is represented as w(1) w(2) · · · w(n). For example, w = 2 1 3
is a signed permutation in W3, and w(3) = 3 since w(3) = 3. The length of a signed
permutation can be computed as

ℓ(w) = #{0 < i < j |w(i) > w(j)}+#{0 < i 6 j |w(i) + w(j) < 0}.

The longest element in Wn, denoted w
(n)
◦ , is 1 2 · · · n, and has length n2.

The definition of Wn presents it as embedded in the symmetric group S2n+1, consid-
ering the latter as the group of all permutations of the integers n, . . . , 0, . . . , n. We will
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write ι : Wn →֒ S2n+1 for emphasis when a signed permutation is considered as a full
permutation. Specifically, ι sends w = w(1) w(2) · · · w(n) to the permutation

w(n) · · · w(2) w(1) 0 w(1) w(2) · · · w(n)

in S2n+1. (There is a similar embedding ι′ : Wn →֒ S2n, defined by omitting the value
“w(0) = 0”.)

Using the natural inclusions Wn ⊂ Wn+1 ⊂ · · · , we have the infinite Weyl group
W∞ =

⋃
Wn, and we will sometimes refer to elements w ∈ W∞, when n is understood

or irrelevant. The embeddings are compatible with the corresponding inclusions S2n+1 ⊂
S2n+3 ⊂ · · · .

A permutation v has a descent at position i if v(i) > v(i + 1); here i may be any
integer. The same definition applies to signed permutations w, but we only consider
descents at positions i > 0, following the convention of recording the values of w only
on positive integers. A descent at 0 simply means that w(1) is negative. For example,
w = 2 1 3 has descents at 0 and 2, while ι(w) = 3 1 2 0 2 1 3 has descents at −3, −1, 0,
and 2.

1 Defining the essential set

Our definitions of diagram and essential set for signed permutations are modeled on the
analogous notions for permutations, so we briefly review that case first. The conventions
we use here are adapted to make the transition to signed permutations simpler, so they
differ slightly from those used in [Fu] and elsewhere.

1.1 Essential sets for S2n+1

We will consider arrays of boxes with rows and columns indexed by positive and negative
integers {n, . . . , 1, 0, 1, . . . , n}. The permutation matrix associated to v ∈ S2n+1 has dots
in positions (v(i), i), for n 6 i 6 n, and is empty otherwise. The diagram of v is the
collection of boxes that remain after striking out those which are (weakly) south or east
of a dot in the permutation matrix. The number of boxes in the diagram is equal to the
length of the permutation.

The rank function of a permutation is defined by

rv(p, q) = #{i 6 p | v(i) > q}, (1)

for n 6 p, q 6 n. This is also the number of dots strictly south and weakly west of the
box (q − 1, p) in the permutation matrix of v.

Adapting terminology from [Fu] and [RWY], the essential positions of v are the pairs
(p, q) such that the box (q − 1, p) is a southeast (SE) corner of the diagram of v. (This
apparently awkward notation is easier to understand in terms of the geometry explained
in the next paragraph, together with the diagrams.) The essential set of v is the set
Ess(v) of (k, p, q) such that (p, q) is an essential position, and k = rv(p, q); it is obviously
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Figure 3: Diagram for v = 1 3 2 0 2 3 1, with essential set highlighted. The circled
corners connected with dashed lines illustrate the symmetry of Lemma 1.1.

in bijection with the set of essential positions of v, but it will be useful to preserve the
extra information of the rank function.

It is often helpful to think of flags of subspaces E• and F• in a (2n + 1)-dimensional
vector space V , with basis en, . . . , e1, 0, e1, . . . , en. The n×n array corresponds to a matrix
with respect to this basis. The space Ep is spanned by the columns labelled p, p+ 1, . . .—
i.e., from p to the left—and the space Fq is spanned by the basis vectors eq, eq+1, . . .—i.e.,
from q down. The number k = rv(p, q) records the dimension of Ep ∩ Fq; it is also the
corank of the map Ep → V/Fq, and the box (q − 1, p) is the SE corner of submatrix
corresponding to this map.

Figure 3 illustrates these notions, for v = 1 3 2 0 2 3 1, with the numbers rv(p, q)
placed in the boxes (q− 1, p) corresponding to the essential positions. The essential set is

Ess(v) = { (1, 3, 1), (1, 1, 2), (3, 0, 1), (2, 2, 2) }.

An equivalent, numerical description of essential positions is useful: (a, b) is a SE
corner of the diagram of v if and only if

v−1(a) > b and v(b) > a; v−1(a+ 1) 6 b and v(b+ 1) 6 a. (2)

This is also equivalent to requiring the conditions

v(b) > a > v(b+ 1) and (3)

v−1(a) > b > v−1(a+ 1). (3′)

In other words, v has a descent at b, with a lying in the interval of the jump, and v−1

has a descent at a, with b lying in the interval of the jump. The essential positions are
recovered as those (p, q) such that (q−1, p) satisfies (2), and the essential set is recovered
by including k = rv(p, q).

A basic triple (of type A) is a triple of integers (k, p, q) such that k > max{0, 1−
p− q}. It is easy to see that the elements of Ess(v) are basic triples.

the electronic journal of combinatorics 25(3) (2018), #P3.46 7



1.2 Essential sets for Wn

By convention, a signed permutation w is written in terms of its values on positive integers,
but since w(ı) = w(i), it is also determined by its values on negative integers. Given
w ∈ Wn, its corresponding matrix is the (2n + 1) × n array of boxes, with rows indexed
by {n, . . . , n} and columns indexed by {n, . . . , 1}, with dots in the boxes (w(i), i) for
n 6 i 6 1. For each dot, we also place an “×” in the same column and opposite row, as
well as in the boxes to the right of this ×. (To be precise, an × is placed in those boxes
(a, b) such that a = w(i) for some i 6 b. This is similar to the matrix representation of
Schubert cells described in [FP, §6.1].)

The extended diagram D+(w) of a signed permutation w is the collection of boxes
in the (2n+ 1)× n rectangle that remain after striking out those which are south or east
of a dot. The diagram D(w) ⊆ D+(w) is the subset of boxes of the extended diagram
that are not marked with an ×. As for permutations, the number of boxes of D(w) is
equal to the length of w. In fact, the inversions of w are in bijection with the boxes of
D(w): writing the positive simple roots for Bn as ǫ1, ǫ2 − ǫ1, . . . , ǫn − ǫn−1, and using the
convention ǫı = −ǫi, the box in position (i, j) lies in D(w) if and only if ǫi − ǫw(j) is an
inversion.

The matrix and extended diagram come from the corresponding notions for ordinary
permutations, via the embeddeding ι : Wn →֒ S2n+1: the matrix and extended diagram
of w ∈ Wn correspond to the first n columns of the matrix and diagram for ι(w). See
Figure 4, where the unshaded boxes are those of D+(w).

The rank function of a signed permutation is defined by

rw(p, q) = #{i > p |w(i) 6 q}, (4)

for 1 6 p 6 n and n 6 q 6 n. Using the symmetry w(ı) = w(i), this is also equal to
#{i 6 p |w(i) > q}, so the rank functions rw and rι(w) agree where both are defined.

Integers (k, p, q) form a basic triple (of type B) if the same inequality as for type A
is satisfied, i.e., k > max{0, 1− p− q}, together with three additional conditions: p > 0,
q 6= 0, and if p = 1 then q > 0.

Before discussing essential sets for signed permutations, we record a simple observa-
tion. When v = ι(w) lies in the image of ι : Wn →֒ S2n+1, its essential set is symmetric: the
lower-right corners of the boxes corresponding to essential positions are reflected about
the center. (The example of w = 2 3 1 is shown in Figure 3, where these corners are
circled.) To describe this symmetry more precisely, given a basic triple (k, p, q) of type A,
let (k, p, q)⊥ = (k+ p+ q− 1, p+ 1, q + 1) be its reflection; this defines an involution on
basic triples.

Lemma 1.1. For w ∈ Wn, the essential set of ι(w) ∈ S2n+1 is preserved by reflection.
That is, (k, p, q) is in Ess(ι(w)) if and only if (k, p, q)⊥ is in Ess(ι(w)).

Proof. First, we show that the SE corners of the diagram are centrally symmetric. If
v = ι(w) and (a, b) is a SE corner of the diagram of v, then using v(k) = v(k), the
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Figure 4: Matrix, diagram, and essential set for a signed permutation. (As a visual aid,
the center row is indicated with dashed lines.)

inequalities (2) become

b > v−1(a) and a > v(b);

b 6 v−1(a+ 1) and a 6 v(b+ 1).

Equivalently,

v−1(a) 6 b+ 1 and v(b) 6 a + 1;

v−1(a + 1) > b+ 1 and v(b+ 1) > a + 1.

These are the conditions for (a+ 1, b+ 1) to be a SE corner corresponding to an essential
position.

This shows that (k, p, q) is in Ess(v) if and only if (k′, p+ 1, q+ 1) is in Ess(v), where
k′ = rv(p + 1, q + 1). It remains to check that this rank is equal to k + p + q − 1, as
claimed. This is easily done by examining a permutation matrix and using rv(p, q) =
#{i 6 p |w(i) > q} = #{i > p |w(i) 6 q}.

The essential set of a signed permutation w is a subset of the essential set of the
corresponding permutation ι(w).

Definition 1.2. Let w be a signed permutation. The essential set of w is the set Ess(w)
of triples of integers (k, p, q), with k = rw(p, q), such that (q − 1, p) is a SE corner of the
extended diagramD+(w), with two exceptions: a SE corner does not contribute to Ess(w)
if

(i) it is in the rightmost column and (strictly) above the center row; or

(ii) it is not in the rightmost column and there is another SE corner above it, in the
same column and “opposite” row—that is, in box (q, p)—and the two rank conditions
differ by exactly q − 1.

The essential positions of w are those pairs (p, q) such that (k, p, q) ∈ Ess(w), for
k = rw(p, q). (As before, Ess(w) is clearly in bijection with the set of essential positions.)
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The two exceptions can be phrased more formally as follows:

(i) if p = 1 and q < 0, then (k, p, q) is not in Ess(w);

(ii) if p > 1 and q > 0, and both (q−1, p) and (q, p) are SE corners, with k = rw(p, q) =
rw(p, q + 1)− q + 1, then (k, p, q) is not in Ess(w).

The first exception is easily understood: w(0) = 0 prevents the diagram of ι(w) from
having SE corners in this region, so such (k, p, q) are not included in Ess(ι(w)). (Compare
Figures 3 and 4.) Noting this, it is easy to see that Ess(w) ⊆ Ess(ι(w)), and consequently,
each (k, p, q) ∈ Ess(w) is a basic triple of type B. (In fact, this also explains why those
(k, p, q) with p = 1 and q < 0 are excluded in the definition of basic triples of type B.)

The second exception also has a simple explanation. Geometrically, for any k, p, q > 0,
the condition dim(Ep∩F

⊥
q ) > k+q−1 implies the condition dim(Ep∩Fq) > k, because an

isotropic subspace of F⊥
q /Fq must have dimension no greater than q−1. Combinatorially,

if rw(p, q) > k + q − 1, then automatically rw(p, q) > k, since at most half (i.e. q − 1)
of the rows between q and q may contain dots to the left of p. The latter condition is
therefore redundant, and should be excluded from the essential set.

Examples illustrating Exception (ii) are shown in Figure 5. In Figure 5(a), placing
three dots strictly south and weakly west (SSW) of the box (3, 3) forces at least one of
them to be SSW of the box (2, 3), so (1, 3, 3) is not in the essential set. In Figure 5(b),
by contrast, both SE corners are required; the essential set is {(3, 3, 2), (2, 3, 3)}.

2 Rank conditions and Bruhat order

The main results of this section show that essential sets determine the corresponding
signed permutations, and can be used to make comparisons in Bruhat order. We also
establish the connection with the general poset-theoretic essential sets of [RWY]. The
statements are primarily combinatorial, but since some of the terminology and motivation
is geometric, we begin by briefly reviewing the context.

Let V be an odd-dimensional vector space, say dimV = 2n + 1, and fix a complete
flag of subspaces

V = Fn ⊃ · · · ⊃ F1 ⊃ F0 ⊃ F1 ⊃ · · · ⊃ Fn,

with dimFi = n + 1 − i. Each permutation v ∈ S2n+1 determines a Schubert variety in
the complete flag variety, defined by

Ωv = {E• | dim(Ep ∩ Fq) > rv(p, q) for n 6 p, q 6 n}.

The rank conditions in this definition are highly redundant. Up to a change of notation,
the results of [Fu, §3] show that it is sufficient to restrict to those (p, q) which are essential
positions for v.

Now equip V with a nondegenerate quadratic form, and assume F• is isotropic. A
signed permutation w ∈ Wn defines a Schubert variety in the orthogonal flag variety, by
a similar prescription:

Ωw = {E• | dim(Ep ∩ Fq) > rw(p, q) for 1 6 p 6 n and n 6 q 6 n}.

the electronic journal of combinatorics 25(3) (2018), #P3.46 10



5
4
3
2
1
0
1
2
3
4
5

5 4 3 2 1

3

1× × × × ×

× × × ×

× × ×

× ×

×

w = 4 5 3 1 2

= w(3, 3, 2)

(a)

× × × × ×

× × × ×

× × ×

× ×

×

2

3

w = 1 5 4 3 2

(b)

Figure 5: Diagrams and essential sets of signed permutations. Example (a) is basic;
example (b) is not.

We will see that the rank conditions dim(Ep ∩ Fq) > k for (k, p, q) ∈ Ess(w) suffice to
define Ωw. (As mentioned in the introduction, the same discussion applies to degeneracy
loci, with the flag varieties replaced by an arbitrary base variety.)

2.1 Basic permutations and signed permutations

A basic triple (k, p, q) of type A defines a basic permutation v(k, p, q), which is the
minimal element in Bruhat order such that rv(p, q) > k. It can be written down as
follows: start at position p, and, proceeding right to left, place k entries in descending
order, ending with q; then fill in the remaining entries in increasing order from left to
right. For example, v(3, 1, 2) = 4 3 2 2 3 4 1 0 1. (The three entries placed in the first
step are at positions 1, 0, and 1, shown in bold.)

Recall that a permutation v is grassmannian if it has exactly one descent, and v is
bigrassmannian if both v and v−1 are grassmannian. From the construction, v(k, p, q)
is grassmannian, having a single descent at p. Moreover, v−1 is equal to v(k, q+1, p+1),
so v is bigrassmannian. In fact, all bigrassmannian permutations arise this way: the basic
permutations are exactly the bigrassmannian ones (see, e.g., [RWY, Lemma 4.1]).

It follows from results of Kobayashi [Ko] and Reiner, Woo, and Yong [RWY] that for a
permutation v, the essential set Ess(v) coincides with the set of those basic triples (k, p, q)
such that v(k, p, q) is maximal among all basic permutations below v in Bruhat order on
the symmetric group.
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We will provide an analogue of this fact for signed permutations. Parallel to the type
A situation, the basic signed permutation corresponding to a basic triple of type B is
the element w = w(k, p, q) which is minimal (in Bruhat order), such that rw(p, q) = k. It
is not immediately obvious that such a minimum is unique, though it is not hard to prove
(see Lemma 2.5). To write w(k, p, q), start at position p, and place k consecutive entries, in
increasing order, ending with q; then fill in the unused positive entries in increasing order.
If 0 < q < k, then “q − 1, 1” counts as “consecutive”. For example, w(2, 2, 3) = 1 4 3 2,
and w(3, 2, 2) = 4 3 1 2.

The explicit formula for a basic signed permutation depends on the relative order of
k, p, q, and 0.

w(k, p, q)

q > p 1, · · · , p− 1, q + k − 1, · · · , q, p, · · · , q − 1

p > q > 0 1, · · · , q − 1, q + k, · · · , p+ k, q + k − 1, · · · , q

k > q > 0 k + 1, · · · , p+ k − 1, k, · · · , q − 1, 1, · · · , q

q > k 1, · · · , q − k, q + 1, · · · , p+ k − 1, q + k − 1, · · · , q

The inverse of w(k, p, q) is w(k, q, p) when q > 0, and it is w(p + q + k − 1, q − 1, p− 1)
when q < 0; in particular, the inverse of a basic signed permutation is again basic. The
length of w(k, p, q) is computed as follows:

ℓ(w(k, p, q))

q > 0 (p+ q − 1)k +
(
k

2

)

k > q > 0 pk +
(
k

2

)
−

(
q+1
2

)

q > k (p+ q + k − 1)k

Remark 2.1. A basic signed permutation w(k, p, q) is grassmannian, with a unique descent
at p− 1. Since its inverse is also basic, the basic elements are bigrassmannian. However,
in contrast to type A, not all bigrassmannians are basic. For example, in W4, there are 45
bigrassmannians, and all but one are basic; the exception is 1 4 3 2. In W5, there are five
elements that are bigrassmannian but not basic: 1 4 3 2 5, 1 4 5 3 2, 1 5 4 3 2, 1 5 4 2 3,
and 1 2 5 4 3. See [GK, §4] for a direct comparison of bigrassmannians and basic elements
in Wn via generating functions for each.

The assignment of a basic signed permutation to a basic triple is one-to-one. The
smallest n such that w(k, p, q) ∈ Wn is n(k, p, q) = max{p+k−1, q+k−1}. This makes
it easy to enumerate the basic elements of Wn: we have

#{w(k, p, q) ∈ Wn} =
2n3 + n

3
. (5)

We now come to the poset-theoretic characterization of the essential set. For v ∈ S∞,
the main theorem of [Ko] identifies Ess(v) with the set of type A basic triples (k, p, q)
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such that v(k, p, q) is maximal among all basic permutations below v in Bruhat order. We
have an analogue of this for signed permutations:

Theorem 2.2. Let w be a signed permutation. The essential set Ess(w) is equal to the set
of basic triples (k, p, q) such that w(k, p, q) is maximal among all basic signed permutations
below w in Bruhat order.

In light of the theorem, when no confusion seems likely, we will identify Ess(w) with the
corresponding set of basic signed permutations w(k, p, q).

The proof of Theorem 2.2 is postponed to §3. In the rest of this section, we elaborate
on some consequences and related facts.

An important property of the essential set is that Ess(w) determines w. To state this
more precisely, we use the notion of supremum in a poset. Given a poset P and a subset
Y ⊆ P , an element x ∈ P is the supremum of Y if x > y for all y ∈ Y , and if x′ > y for
all y ∈ Y , then x′ > x. (See [GK, §2.4].) A supremum is clearly unique if it exists; when
it does exist, write x = sup(Y ).

The following is an analogue of [Fu, Lemmas 3.10 and 3.14].

Theorem 2.3. Let w be a signed permutation.

(i) w is the supremum of its essential set.

(ii) The essential set Ess(w) is minimal with the property that w = sup(Ess(w)); in other
words, w 6= sup(Y ) for any Y ( Ess(w). More precisely, choose any (k0, p0, q0) ∈
Ess(w). Then one can find an element w′ ∈ Wn such that

rw′(q0, p0) < k0, and

rw′(q, p) > k for all (k, p, q) ∈ Ess(w)r {(k0, p0, q0)}.

(iii) If Y is any set of basic signed permutations such that sup(Y ) = w, then Y ⊇ Ess(w).

In particular, Ess(w) is the unique minimial set of basic elements whose supremum is w.

In the course of proving this, we will establish a connection with the base of the Coxeter
group Wn, as well as the notion of essential set considered in [RWY]. This is done in §2.3.
First, we briefly digress to describe the connection with geometry.

2.2 Rank conditions

We will use the notation C(k, p, q) to denote the rank condition dim(Ep ∩ Fq) > k. The
basic triples (k, p, q) of type A (defined in §1.1) correspond to rank conditions C(k, p, q)
which are nontrivial and for which equality is feasible; similarly, the basic triples of type
B (§1.2) correspond to rank conditions which are nontrivial and feasible for isotropic
subspaces.
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Using the correspondence between Bruhat order and containment of Schubert vari-
eties, the fact that v(k, p, q) is the minimal permutation in S∞ satisfying rv(p, q) > k
says the Schubert variety Ωv(k,p,q) is defined by the single rank condition C(k, p, q) inside
the complete flag variety. A little more generally, we have the following standard fact
(cf. [RWY, Lemma 4.1 and Proposition 4.6]):

Lemma 2.4. Let (k, p, q) and (k′, p′, q′) be basic triples (of type A). The rank condition
C(k, p, q) implies C(k′, p′, q′) if and only if v(k, p, q) > v(k′, p′, q′). Furthermore, for a
general permutation v, the condition C(k, p, q) holds on the Schubert variety Ωv if and
only if v > v(k, p, q).

The analogous statement for signed permutations and rank conditions on isotropic
flags is a consequence of the following lemma.

Lemma 2.5. For a basic triple (k, p, q) of type B, the corresponding basic signed permu-
tation w(k, p, q) is the unique minimum among elements w ∈ Wn such that rw(p, q) > k.

Indeed, Lemma 2.5 is equivalent to the statement: the rank condition C(k, p, q) holds
on Ωw if and only if w > w(k, p, q). We give a proof using a geometric construction.

Proof. We claim that the subvariety of the orthogonal flag variety defined by the rank
condition C(k, p, q) is irreducible and has codimension equal to ℓ(w(k, p, q)). It is therefore
equal to the corresponding Schubert variety Ωw(k,p,q), so the statement about Bruhat order
follows.

To prove the claim, it is enough to show the corresponding locus in the orthogonal
Grassmannian is irreducible of the correct codimension. This is an exercise in resolving
singularities. Let Z ⊆ X = OG(n + 1 − p, 2n + 1) be the (reduced) subset defined
by dim(Ep ∩ Fq) > k, where F• is a fixed isotropic flag. This is the closure of the

locus Z◦ where equality holds. If q > 0, then Fq is isotropic. In this case, let Z̃ ⊂
X × Gr(k, Fq) be pairs (Ep, L) such that L ⊆ Ep and L is a k-dimensional subspace of
Fq. The first projection has image Z, and it is an isomorphism over the open subset
Z◦. The second projection is surjective onto Gr(k, Fq), with orthogonal Grassmannians

OG(n + 1 − p − k, 2n − 2k + 1) as fibers; in particular, Z̃ is smooth and irreducible.

Comparing the dimensions of Z̃ and X , we find that Z has codimension (p+q−1)k+
(
k

2

)
,

which is equal to ℓ(w(k, p, q)) as claimed. The cases k > q > 0 and q > k are similar.

Lemma 2.5 and Theorem 2.3 imply a shorter description of Schubert varieties in the
orthogonal flag variety.

Corollary 2.6. The Schubert variety Ωw is defined by the rank conditions C(k, p, q) for
basic triples (k, p, q) in Ess(w), and this is a minimal list of rank conditions.

2.3 Bases

As defined by Lascoux and Schützenberger [LS], the base of a finite Coxeter group W
(or any finite poset) is the set of non-identity elements x which cannot be written as the
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supremum of any subset Y ⊆ W not containing x.† This notion was developed further
by Geck and Kim [GK], who identify the base for each finite Coxeter group, and also by
Reading [Re].

In type A, the base of the symmetric group is the set of all bigrassmannian permuta-
tions ([LS, Théorème 4.4]). Below we will prove that the basic elements w(k, p, q) form
the base of Wn, giving a new description of the base (cf. [GK, Theorem 4.6] for another
description).

Remark 2.7. In the first statement of [LS, Théorème 7.4], it is claimed that the base of
Wn can also be described as those w such that ι(w) is the supremum of elements v(k, p, q)
and v(k, p, q)⊥ in S2n+1, for some type A basic triple (k, p, q).‡ However, the example of
w(2, 2, 1) = 3 2 1 shows that this is not the case. The gap lies in [LS, Lemme 7.3], which
is clarified below in the discussion following Lemma 3.1.

A finite Coxeter group (or poset) is dissective if for every element x of the base, the
complement W r {x′ | x′ > x} has a unique maximal element u; in other words, there is
a disjoint decomposition W = {x′ | x′ > x} ⊔ {u′ | u′ 6 u}. If such a u exists, we call it
the dissecting element associated to x. The groups Sn and Wn (of types A and B) are
dissective, but the Weyl group of type D is not [LS, GK].

Given a basic triple (k, p, q), and an integer n > n(k, p, q) (so that w(k, p, q) ∈ Wn),
set

u(k, p, q, n) = w(n+ 2− p− k, p, q + 1) · w(n)
◦ ,

replacing “q+1” with “1” when q = 1. This is the maximal element of Wn with ru(q, p) =
k − 1. Note that although the basic signed permutation w(k, p, q) does not depend on n,
the element u(k, p, q, n) necessarily does. We will soon see that these are the dissecting
elements. First, we give another characterization of these signed permutations.

Lemma 2.8. Let (k, p, q) be a basic triple of type B, and fix an integer n with n >

n(k, p, q) := max{p+ k − 1, q + k − 1}. The element u(k, p, q, n) is the unique maximum
among elements w ∈ Wn such that rw(p, q) < k.

Equivalently, C(k, p, q) fails on Ωw if and only if w 6 u(k, p, q, n). This is an easy conse-

quence of Lemma 2.5, using the involution w
(n)
◦ .

An alternative characterization of the base is given in [GK, §2.4]: it is the set of
elements w which are minimal in the complement of an interval {u′ | u′ 6 u}, for some
u. In general, this u is not required to be uniquely determined by w, but for dissective
posets, there is a unique maximal such u for each w.

Proposition 2.9. The basic signed permutations in Wn form the base of Wn.

Proof. The number of basic signed permutations is equal to the cardinality of the base
(see [LS, p. 24, Remarque] or [GK, p. 300]), so we only need to establish one inclusion.
We will show that every basic signed permutation lies in the base.

†The elements of the base are sometimes called join-irreducible elements in the poset literature.
‡More precisely, their claim refers to an embedding of w in S2n, but this version is equivalent.
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Since every element w ∈ Wn has either rw(p, q) > k or rw(p, q) < k, Lemmas 2.5 and
2.8 show that

Wn = {w |w > w(k, p, q)} ⊔ {w |w 6 u(k, p, q, n)}.

In particular, w(k, p, q) is the (unique) minimal element in the complement of the interval
{w |w 6 u(k, p, q, n)}, so it lies in the base.

The proof also shows that Wn is dissective: since every element of the base is of the
form w(k, p, q), the fact that u(k, p, q, n) is the unique maximum in the complement of
{w |w > w(k, p, q)} shows that u(k, p, q, n) is the dissecting element corresponding to
w(k, p, q).

We now turn to Theorem 2.3.

Proof of Theorem 2.3. In general, an element w of a finite poset is equal to the supremum
of the set of base elements lying below w [GK, §2.4]. It is sufficient to include the maximal
such elements, and by Theorem 2.2 together with Proposition 2.9, for w ∈ Wn, these
constitute Ess(w); therefore w = sup(Ess(w)).

For the second statement in (ii), concerning minimality, observe that w(k0, p0, q0) 66
w(k, p, q) for any (k, p, q) ∈ Ess(w)r {(k0, p0, q0)}, because by Theorem 2.2, elements of
the essential set are incomparable. By the dissective property, it follows that w(k, p, q) 6
u(k0, p0, q0, n) for all such (k, p, q), and therefore the intersection

{w |w 6 u(k0, p0, q0, n)} ∩
⋂

(k,p,q)∈Ess(w)r{(k0,p0,q0)}

{w |w > w(k, p, q)}

is nonempty. Any element of this intersection can be taken as the desired w′; for instance,
w′ = u(k0, p0, q0, n) works.

2.4 A bijection

Finally, we make the relationship with the essential set of [RWY] precise, for both per-
mutations and signed permutations.

For the purposes of this subsection only, let us consider permutations in Sn as acting
on {1, . . . , n} in the usual way; the definitions and conventions for signed permutations in
Wn remain as before. This results in some changes of notation for type A, but no further
complications. The rank function for v ∈ Sn is redefined as rv(p, q) = #{i 6 p | v(i) > q},
and basic triples of type A have k, p, q > 0 and p > k > p− q. In one-line notation, the
corresponding basic permutation v(k, p, q) is

v(k, p, q) = 1, · · · , p− k, q + 1, · · · q + k, p− k + 1, · · · , q.

For example, v(3, 4, 2) = 1 3 4 5 2.
As mentioned before, basic permutations are bigrassmannian, using the fact that the

inverse of v(k, p, q) is equal to v(p+ q− k, q, p), and they account for all bigrassmannians
in Sn.
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The assignment of v(k, p, q) to a basic triple is one-to-one. It is easy to describe the
inverse map: Given a bigrassmannian permutation, record the position of the unique
descent as p; starting at this position, collect all the consecutive entries to the left of it—
let k be the number of them, and let q+1 be the smallest one. Furthermore, the smallest n
such that v(k, p, q) lies in Sn is q+k. These two facts make it easy to enumerate the basic
permutations in Sn (or equivalently, the bigrassmannians)—there are 1

6
(n3 − n) =

(
n+1
3

)

of them.
We will need the dissecting elements for Sn, which are defined similarly to the elements

u(k, p, q, n) for Wn. Given a basic triple (of type A) (k, p, q) and n > q+ k, so v(k, p, q) ∈

Sn, set t(k, p, q, n) = v(n+ 1− q − k, n− p, q) · w
(n)
◦ . (This is the maximal element in Sn

having rt(q, p) < k.)
The diagram of a permutation in Sn is defined as usual, via the permutation matrix

with dots in positions (v(i), i). The essential set of v ∈ Sn is the set of basic triples (k, p, q)
such that (q, p) is a SE corner of the diagram of v and k = rv(p, q).

Given a permutation v ∈ Sn, let ERWY(v) denote the set of all permutations t ∈ Sn

which are minimal (in Bruhat order) among those not below v. For w ∈ Wn, define

ERWY(w) analogously. We write w
(n)
◦ for the longest element of Sn or Wn, depending on

context.

Proposition 2.10. Fix n.

(i) For any v ∈ Sn, the map sending (k, p, q) ∈ Ess(vw
(n)
◦ ) to t(k, p, q, n) · w

(n)
◦ is a

bijection onto ERWY(v).

(ii) For any w ∈ Wn, the map sending (k, p, q) ∈ Ess(ww
(n)
◦ ) to u(k, p, q, n) · w

(n)
◦ is a

bijection onto ERWY(w).

The proof is a translation of the argument in [RWY, Proposition 4.6]. The factor of w◦

arises from the fact that their Schubert varieties Xv correspond to our Ωvw◦
; furthermore,

our Ep is their (C
n/Vn−p)

∗. (Combining these two identifications explains why Xv appears
to be identified with Ωw◦v in [RWY].) Similarly, their Xw is our Ωww◦

in the orthogonal
flag variety.

Example 2.11. To illustrate, we compare with [RWY, Example 4.7]. Here n = 6, and
v = 4 2 5 1 6 3. They show that

ERWY(4 2 5 1 6 3) = {1 2 3 6 4 5, 1 3 4 5 2 6, 1 5 2 3 4 6, 3 4 1 2 5 6}.

Now vw◦ = 3 6 1 5 2 4, and one can compute

Ess(3 6 1 5 2 4) = {(1, 2, 5), (2, 2, 2), (2, 4, 4), (3, 4, 2)}.

The corresponding dissecting elements t(k, p, q, 6) are

5 4 6 3 2 1, 6 2 5 4 3 1, 6 4 3 2 5 1, 6 5 2 1 4 3,

so one recovers ERWY(v) by applying w
(6)
◦ .
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3 Proof of Theorem 2.2

Some temporary notation will be useful. Let B be the set of all type B basic triples. For
any w ∈ W∞, let M (w) be the set of type B basic triples (k, p, q) such that w(k, p, q) is
maximal among all basic signed permutations below w in Bruhat order. Thus we must
show M (w) = Ess(w).

Defining M (v) analogously for v ∈ S∞, we have M (ι(w)) = Ess(ι(w)) by [Ko] (or
[RWY, Proposition 4.6]). From the definitions, Ess(w) is contained in Ess(ι(w))∩B. To
prove the theorem, we will show that M (w) is also contained in Ess(ι(w))∩B, and then
show that the exceptions are the same as the ones specified in the definition of Ess(w)
(Definition 1.2). The key ingredient is a comparison of the Bruhat orders on S∞ and
W∞, so we begin with two lemmas concerning this. Throughout, we implicitly use the
fact that w 6 w′ in W∞ iff ι(w) 6 ι(w′) in S∞—see, e.g., [BB, Corollary 8.1.9]. (The
“if” statement fails for the type D Weyl group, giving another hint that this case is more
complicated.)

Suppose (k, p, q) and (k′, p′, q′) are two basic triples of type B, hence also of type A.
It is easy to see that if v(k′, p′, q′) > v(k, p, q) in type S∞, then w(k′, p′, q′) > w(k, p, q) in
W∞. The converse is not true, but the exceptions are easily classified.

Lemma 3.1. Suppose w(k′, p′, q′) > w(k, p, q) in type W∞, but v(k′, p′, q′) 6> v(k, p, q) in
S∞. Then either

(i) −k′ < q′ < 0 < q, and v(k′ + q′, p′, q′ + 1) > v(k, p, q) in S∞; or

(ii) q′ > 0 > q, and v(k′, p′, q′)⊥ > v(k, p, q) in S∞.

Proof. We have v(k′, p′, q′) > v(k, p, q) in S∞ (respectively, w(k′, p′, q′) > w(k, p, q) in
W∞) exactly when rv(k′,p′,q′)(p, q) > k (resp., rw(k′,p′,q′)(p, q) > k). To prove the lemma,
therefore, we need to compare the rank functions of v(k′, p′, q′) and w(k′, p′, q′). The
hypothesis is that

rw(k′,p′,q′)(p, q) > k > rv(k′,p′,q′)(p, q). (6)

When q′ 6 −k′, the negative columns of the permutation matrices for w(k′, p′, q′) and
v(k′, p′, q′) are the same, and so the corresponding rank functions agree; the inequality
(6) cannot hold in this case.

Consider −k′ < q′ < 0. In this case the rank functions for w = w(k′, p′, q′) and
v = v(k′, p′, q′) agree outside the region where 0 < p, q 6 k′ + q′ + 1 and p + q 6 p′ + k′.
Inside this region, rw(p, q) > rv(p, q), so one can choose k so that (6) holds. However, in
this region rw(p, q) = rv(k′+q′,p′,q′+1)(p, q), so the lemma is true in this case. (See Figure 6
for an illustration.)

Finally, assume q′ > 0. As in the previous case, the rank functions for w = w(k′, p′, q′)
and v = v(k′, p′, q′) agree outside the region where 0 < p < q′ and −k′ − q′ + 1 < q 6 −p.
Inside this region, rw(p, q) > rv(p, q), but rw(p, q) = rv(k′,p′,q′)⊥(p, q), so the lemma is true
in this case as well. (See Figure 7.)
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Figure 6: Proving Lemma 3.1, second case.

The above lemma and its proof show that w(k, p, q) 6 w(k′, p′, q′) in W∞ if and only
if

(i) v(k, p, q) 6 v(k′ + q′, p′, q′ + 1),

(ii) v(k, p, q) 6 v(k′, p′, q′)⊥, or

(iii) v(k, p, q) 6 v(k′, p′, q′)

in S∞. (This clarifies the claim before [LS, Lemme 7.3], where the first case is missing.)

Lemma 3.2. Given a signed permutation w, suppose (k, p, q) and (k′, p′, q′) are ba-
sic triples of type B, and are in the (type A) essential set Ess(ι(w)). Assume that
w(k′, p′, q′) > w(k, p, q) in Wn. Then

(i) p = p′;

(ii) q′ < 0 and q = q′ + 1; and

(iii) k = k′ + q′.

Proof. By assumption, w(k′, p′, q′) > w(k, p, q) in W∞, but v(k′, p′, q′) 6> v(k, p, q) in S∞,
since elements of an essential set are incomparable. Therefore Lemma 3.1 applies. In each
case of that lemma, a (type A) basic triple is asserted to be greater than (k, p, q); again
because distinct elements of the essential set are incomparable, the asserted inequality
must actually be an equality. In the first case, this yields the above conclusion. The
second case of Lemma 3.1 cannot hold, because (k′, p′, q′)⊥ = (p′+ q′+k′−1, p′+1, q′+1)
is not a type B basic triple.

Finally, we turn to the proof of the theorem.
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Figure 7: Proving Lemma 3.1, third case.

Proof of Theorem 2.2. First we show that M (w) is contained in the set of type B basic
triples inside Ess(ι(w)). Every basic triple in Ess(ι(w)) is either a type B basic triple
or a reflection of one, in the sense of Lemma 1.1; basic triples with p > 0 and q = 0
cannot occur because ι(w)(0) = 0, and triples with p 6 0 and q = 1 cannot occur
for the same reason. Now suppose (k, p, q) is in M (w), but not in Ess(ι(w)). This
means there is a (type A) basic triple (k′, p′, q′) such that v(k, p, q) < v(k′, p′, q′) 6 ι(w).
Such a basic triple cannot be of type B, since otherwise it would violate maximality of
w(k, p, q), so (k′, p′, q′)⊥ must be of type B. Note also that (k′, p′, q′)⊥ 6= (k, p, q), since the
permutations v(k, p, q) and v(k, p, q)⊥ are never comparable. Finally, since the Schubert
conditions C(k′, p′, q′) and C(k′, p′, q′)⊥ are equivalent on the type B flag variety, and
the first one implies C(k, p, q), so the second one does as well; therefore we must have
w(k′, p′, q′)⊥ > w(k, p, q), contradicting maximality again.
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Given that M (w) ⊆ Ess(ι(w)) ∩ B, the proposition is proved by determining when
two type B basic triples in Ess(ι(w)) yield comparable basic signed permutations, and
hence redundant conditions in type B. This is done by Lemma 3.2.

4 A variation for type C

The group Wn of signed permutations is isomorphic to the (type C) Weyl group of Sp2n,
as well as to the (type B) Weyl group of SO2n+1. The main results above are intrinsic
to Wn, and so do not depend on whether one regards it as type B or type C, but it is
sometimes useful to have diagrams adapted to the type C context. Here we briefly sketch
the modifications; all the results and proofs can easily be reformulated.

We will use the embdedding of Weyl groups ι′ : Wn →֒ S2n, which omits the value
w(0) = 0. For a signed permutation w ∈ Wn, one forms a matrix by placing dots in a
2n × n array of boxes as before: labelling the rows {n, . . . , 1, 1, . . . , n} and the columns
{n, . . . , 1}, dots are placed in the boxes (w(i), i) for n 6 i 6 1 (or equivalently, (w(i), ı)
for 1 6 i 6 n). An “×” is placed in boxes (a, b) such that a = w(i) for some i < b; that
is, for each dot, place an × in the columns strictly to the right, and rows opposite the
dot. This should be compared with the parametrization of Schubert cells in the type C
flag variety Sp2n/B given in [FP, §6.1].

The type C extended diagram is the collection of boxes D+
C (w) in the 2n × n

rectangle which remain after striking out those to the right or below a dot; the type
C diagram is the subset DC(w) ⊆ D+

C(w) of boxes not marked by an ×. As before,
the number of boxes in DC(w) is equal to ℓ(w)—the boxes (i, j) of DC(w) correspond to
inversions ǫi − ǫw(j) of w, using 2ǫ1, ǫ2 − ǫ1, . . . , ǫn − ǫn−1 as the simple roots for type Cn.

The essential set is determined exactly as in Definition 1.2, except that when q = 1,
we understand q − 1 to mean 1. (Thus if D+

C (w) has a SE corner in position (1, 2), it
determines an essential position (p, q) = (2, 1).) Examples are shown in Figure 8.

Just as for type B, the essential set gives a short list of rank conditions defining a
symplectic degeneracy locus (or Schubert variety in Sp2n/B). To set up notation, let
en, . . . , e1, e1, . . . , en be a basis for a vector space V , and define a symplectic form by
setting 〈ei, ej〉 = 0 and 〈eı, ej〉 = δi,j, for i, j > 0. The standard isotropic flag F• is defined
by taking Fq to be the span of ei, for i > q. As before, the Schubert variety Ωw is defined
as

Ωw = {E• | dim(Ep ∩ Fq) > rw(p, q) for all 1 6 p 6 n, n 6 q 6 n}.

The analogue of Corollary 2.6 is this:

Theorem 4.1. The type C Schubert variety Ωw ⊆ Sp2n/B is defined by the minimal list
of rank conditions dim(Ep ∩ Fq) > k, as (k, p, q) ranges over Ess(w).

The statement for degeneracy loci is as follows. Let V be an even-rank vector bundle on
a variety X , equipped with a symplectic form and two isotropic flags V ⊃ E1 ⊃ E2 ⊃ · · ·
and V ⊃ F1 ⊃ F2 ⊃ · · · ; set Fq = F⊥

q+1. The degeneracy locus Ωw ⊆ X associated to a
signed permutation is defined by the same rank conditions as the Schubert variety.
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Figure 8: Type C diagrams and essential sets.

Corollary 4.2. The rank conditions dim(Ep ∩ Fq) > k, for (k, p, q) in Ess(w), suffice
to define the symplectic degeneracy locus Ωw ⊆ X, and this is a minimal list of rank
conditions.
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