
On the Rank and Periodic Rank

of Finite Dynamical Systems

Maximilien Gadouleau
Department of Computer Science

Durham University
Durham, UK

m.r.gadouleau@durham.ac.uk

Submitted: May 12, 2017; Accepted: Aug 27, 2018; Published: Sep 21, 2018

c©The author. Released under the CC BY license (International 4.0).

Abstract

A finite dynamical system is a function f : An → An where A is a finite alpha-
bet, used to model a network of interacting entities. The main feature of a finite
dynamical system is its interaction graph, which indicates which local functions
depend on which variables; the interaction graph is a qualitative representation of
the interactions amongst entities on the network. The rank of a finite dynamical
system is the cardinality of its image; the periodic rank is the number of its pe-
riodic points. In this paper, we determine the maximum rank and the maximum
periodic rank of a finite dynamical system with a given interaction graph over any
non-Boolean alphabet. The rank and the maximum rank are both computable in
polynomial time. We also obtain a similar result for Boolean finite dynamical sys-
tems (also known as Boolean networks) whose interaction graphs are contained in
a given digraph. We then prove that the average rank is relatively close (as the
size of the alphabet is large) to the maximum. The results mentioned above only
deal with the parallel update schedule. We finally determine the maximum rank
over all block-sequential update schedules and the supremum periodic rank over all
complete update schedules.

Mathematics Subject Classifications: 05C38, 05C50, 15A03, 06E30

1 Introduction

Finite Dynamical Systems (FDSs) have been used to represent networks of interacting
entities as follows. A network of n entities has a state x = (x1, . . . , xn) ∈ [q]n, represented
by a q-ary variable xv ∈ [q] = {0, 1, . . . , q−1} on each entity v, which evolves according to
a deterministic function f = (f1, . . . , fn) : [q]n → [q]n, where fv : [q]n → [q] represents the
update of the local state xv. FDSs have been used to model gene networks (see [10, 17]),
neural networks [2, 9], network coding [14], social interactions [8, 12] and more (see [7]).
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The architecture of an FDS f : [q]n → [q]n can be represented via its interaction
graph IG(f), which indicates which update functions depend on which variables. More
formally, IG(f) has {1, . . . , n} as vertex set and there is an arc from u to v if fv(x) depends
on xu. In different contexts, the interaction graph is known–or at least well approximated–
, while the actual update functions are not. One main problem of research on FDSs is
then to predict their dynamics according to their interaction graphs. However, due to
the wide variety of possible local functions, determining properties of an FDS given its
interaction graph is in general a difficult problem.

For instance, maximising the number of fixed points of an FDS based on its interaction
graph was the subject of a lot of work, e.g. in [1, 2, 6, 13, 14]. The logarithm of the number
of fixed points is notably upper bounded by the transversal number of its interaction graph
[2, 14]. This upper bound is reached for large classes of graphs (e.g. perfect graphs) but
is not tight in general [14]. Moreover, there is a dramatic change whether we assume that
the FDS has an interaction graph equal to a certain digraph or only contained in that
digraph (this is the distinction between guessing number and strict guessing number in
[5]).

In this paper, we are interested in maximising two other very important dynamical
parameters of an FDS given its interaction graph. First, the rank of an FDS f is the
number of images of f . In particular, determining the maximum rank also determines
whether there exists a bijective FDS with a given interaction graph. This is equivalent
to the existence of so-called reversible dynamics, where the whole history of the system
can be traced back in time. Second, because there is only a finite number of states, all
the asymptotic points of f are periodic. The number of periodic points of f is referred to
as its periodic rank. In contrast with the situation for fixed points, we derive a bound
on these two quantities which is attained for all interaction graphs and all alphabets. In
particular, there exists a bijection with interaction graph contained in D if and only if all
the vertices of D can be covered by disjoint cycles. Moreover, we prove that our bound
is attained for functions whose interaction graph is equal to a given digraph, and not
only contained, for all non-Boolean alphabets. We then show that the average rank is
relatively close (as D is fixed and q tends to infinity) to the maximum.

These results can be viewed as the discrete analogue to Poljak’s matrix theorem in
[11], which proves tat the maximum rank of Mp, where M is a real matrix with given
support D and p > 1, is given by the maximum number of pairwise independent p-walks
in D (see the sequel for a precise definition). However, our results extend Poljak’s result
for the discrete case in three ways (but Poljak’s result cannot be viewed as a consequence
of our results). Firstly, they hold for all functions, not only linear functions. Secondly,
they explicitly determine the maximum periodic rank. Thirdly, the average rank of a
real matrix cannot be properly defined, hence our result on the average rank of finite
dynamical systems is completely novel.

The results mentioned above hold for the so-called parallel update schedule, where
all entities update their local state at the same time, and hence x becomes f(x). We
then study complete update schedules, where all entities update their local state at least
once, and block-sequential schedules where all entities update their local state exactly

the electronic journal of combinatorics 25(3) (2018), #P3.48 2



once (the parallel schedule being a very particular example of block-sequential schedule).
We then prove that the upper bound on the rank in parallel remains valid for any block-
sequential schedule but is no longer valid for all complete schedules. We also determine the
maximum periodic rank when considering all possible complete schedules. In particular,
there exists a function f with interaction graph D and a complete schedule σ such that
fσ is a bijection if and only if all the vertices of D belong to a cycle.

The rest of the paper is organised as follows. Section 2 introduces some useful notation
and describes our results on the maximum (periodic) rank in parallel. Section 3 then
proves our result on the average rank. Finally, the maximum rank and periodic rank
under different update schedules are investigated in Section 4.

2 Maximum (periodic) rank in parallel

2.1 Background and notation

Let D = (V,E) be a digraph on n vertices; let V = {1, . . . , n} be its set of vertices and
E ⊆ V 2 its set of arcs. The digraph may have loops, but no parallel arcs. The adjacency
matrix M ∈ {0, 1}n×n has entries mu,v = 1 if and only if (u, v) ∈ E. We denote the
in-neighbourhood of a vertex v in D by

N−(v;D) = {u ∈ V : (u, v) ∈ E}.

When there is no confusion, we shall omit the dependence on D. This is extended to sets of
vertices: N−(S) =

⋃
v∈S N

−(v). The out-neighbourhood is defined similarly. A source is
a vertex with empty in-neighbourhood; a sink is a vertex with empty out-neighbourhood.
The in-degree of v is the cardinality of its in-neighbourhood and is denoted by dv.

A walk w = (v0, . . . , vp) is a sequence of (not necessarily distinct) vertices such that
(vs, vs+1) ∈ E for all 0 6 s 6 p − 1. A path is a walk where all vertices are distinct. A
cycle is a walk where only the first and last vertices are equal. We refer to p as the length
of the walk; a p-walk is a walk of length p. We say that two p-walks w = (w0, . . . , wp), w

′ =
(w′0, . . . , w

′
p) are independent if ws 6= w′s for all 0 6 s 6 p. We denote the maximum

number of pairwise independent p-walks as αp(D).
Edmonds gave a formula for α1(D) in [3], based on the König-Ore formula:

α1(D) = n−max{|S| − |N−(S)| : S ⊆ V }.

This was greatly generalised by Poljak, who showed that αp(D) could be computed
in polynomial time and who gave a formula for αp(D) for all p > 1 in [11]. Sup-
pose that C1, . . . , Cr and P1, . . . , Ps are vertex-disjoint cycles and paths. The cycle
Ci = (c0, . . . , cl−1) produces l independent p-walks of the form Wa = (ca, ca+1, . . . , ca+p−1),
where indices are computed mod l and 0 6 a 6 l − 1. The path Pj = (d0, . . . , dm−1)
produces m − p independent p-walks of the form Wb = (db, db+1, . . . , db+p−1), where
0 6 d 6 m − p − 1. Poljak’s theorem asserts that this is the optimal way of produc-
ing pairwise independent p-walks. We denote the number of vertices of a cycle C and of
a path P as |C| and |P |, respectively.
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Theorem 1 ([11]). For every digraph D and a positive integer p,

αp(D) = max

{
r∑
i=1

|Ci|+
s∑
j=1

(|Pj| − p)

}
,

where the maximum is taken over all families of pairwise vertex-disjoint cycles and paths
C1, . . . , Cr and P1, . . . , Ps.

Corollary 2. For all p > n,

αp(D) = αn(D) = max

{
r∑
i=1

|Ci|

}
,

where the maximum is taken over all families of pairwise vertex-disjoint cycles.

A finite dynamical system is a function f : [q]n → [q]n, where [q] = {0, 1, . . . , q−1}
is a finite alphabet; we denote f = (f1, . . . , fn), where fv : [q]n → [q]. The interaction
graph IG(f) is the digraph with vertex set V = {1, . . . , n} such that (u, v) ∈ E(IG(f))
if and only if fv depends essentially on u, i.e. there exist x, y ∈ [q]n which only differ on
coordinate u such that fv(x) 6= fv(y). The set of all functions over an alphabet of size q
and whose interaction graph is (contained in) D is denoted as

F[D, q] := {f : [q]n → [q]n : IG(f) = D},
F(D, q) := {f : [q]n → [q]n : IG(f) ⊆ D}.

We consider successive iterations of f ; we thus denote f 1(x) = f(x) and fk+1(x) =
f(fk(x)) for all k > 1. Recall that x is an image if there exists y such that x = f(y); x
is a periodic point of f if there exists k ∈ N such that fk(x) = x. We are interested in
the following quantities:

1. the rank of f is the number of its images: |Ima(f)|;

2. the periodic rank of f is the number of its periodic points: |Per(f)|.

It will be useful to scale these two quantities using the logarithm in base q:

ima(f) := logq |Ima(f)|,
per(f) := logq |Per(f)|.

Moreover, the maximum (periodic) rank over all functions in F[D, q] is denoted as

ima[D, q] := max{ima(f) : f ∈ F[D, q]},
per[D, q] := max{per(f) : f ∈ F[D, q]};
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and ima(D, q) and per(D, q) are defined similarly. We finally note that per(f) = ima(fp)
for all p > qn − 1. Therefore, the main strategy is to maximise the scaled rank of fp for
all p; we thus denote

ima[D, q, p] := max{ima(fp) : f ∈ F[D, q]},
ima(D, q, p) := max{ima(fp) : f ∈ F(D, q)}.

We then have

ima[D, q] = ima[D, q, 1]

per[D, q] = ima[D, q, qn],

and similarly for ima(D, q) and per(D, q).

2.2 Maximum rank and periodic rank

Theorem 3. For all D, p, and q > 3,

ima[D, q, p] = ima(D, q, p) = αp(D).

For all D, p,
ima[D, 2, p] = αp(D).

Corollary 4 (Maximum rank). For all D and q > 3,

ima[D, q] = ima(D, q) = α1(D).

For q = 2,
ima(D, 2) = α1(D).

Corollary 5 (Maximum periodic rank). For all D and q > 3,

per[D, q] = per(D, q) = αn(D).

For q = 2,
per(D, 2) = αn(D).

The case q = 2 is indeed specific, for there exist graphs D such that max{ima(fp) :
f ∈ F[D, 2]} < αp(D) for all p > 1. We shall investigate this in the next subsection.

We obtain two immediate consequences of Corollary 4. Firstly, we determine which
graphs admit so-called reversible dynamics, i.e. for which graphs D we can find a permu-
tation in F[D, q].

Corollary 6 (Reversible dynamics in parallel). For any q > 3, there exists f ∈ F[D, q]
which is a permutation of [q]n if and only if all the vertices of D can be covered by disjoint
cycles.

the electronic journal of combinatorics 25(3) (2018), #P3.48 5



Secondly, Robert’s seminal theorem indicates that if the interaction graph of f is
acyclic, then fn is constant (i.e. per(f) = 0) [16]. Since αn(D) = 0 if and only if D is
acyclic, we obtain the following result.

Corollary 7. The graph D is acyclic if and only if fn is constant for all q and all
f ∈ F[D, q].

The rest of this subsection is devoted to the proof of Theorem 3. We begin with the
upper bound on the scaled rank, which follows a form of max-flow min-cut theorem (or
at least, the min-cut uper bound).

We now review the communication model based on terms from logic introduced by
Riis and Gadouleau in [15]. Let {x1, . . . , xk} be a set of variables and consider a set of
function symbols {f1, . . . , fl} with respective arities (numbers of arguments) d1, . . . , dl.
A term is defined to be an object obtained from applying function symbols to variables
recursively. We say that u is a subterm of t if the term u appears in t. Furthermore, u is
a direct subterm of t if t = fj(v1, . . . , u, . . . , vdj), and we denote it by u ≺ t.

Let Γ = {t1, . . . , tr} be a set of terms built on variables x1, . . . , xk and function symbols
f1, . . . , fl of respective arities d1, d2, . . . , dl. We denote the set of variables that occur in
terms in Γ as Γvar and the collection of subterms of one or more terms in Γ as Γsub. To the
term set Γ we associate the acyclic digraph GΓ = (VΓ = Γsub, EΓ = {(u, v) : u ≺ v}). The
set of sources in GΓ is Γvar and the set of sinks is Γ. The min-cut of Γ is the minimum
size of a vertex cut of GΓ between Γvar and Γ.

An interpretation for Γ over [q] is an assignment of the function symbols ψ =
{f̄1, . . . , f̄l}, where f̄i : [q]di → [q] for all 1 6 i 6 l. We note that f̄i may not depend
essentially on all its di variables. Once all the function symbols fi are assigned functions
f̄i, then by composition each term tj ∈ Γ is assigned a function t̄j : [q]k → [q]. We
shall abuse notations and also denote the induced mapping of the interpretation as
ψ : [q]k → [q]r, defined as ψ(a) =

(
t̄1(a), . . . , t̄r(a)

)
.

Intuitively, if S is a vertex cut of GΓ between Γvar and Γ, then the terms in Γ “depend
on” the terms in S. As such, the scaled rank of any induced mapping ψ cannot be greater
than the size of S. This intuition is given formally as follows.

Theorem 8 ([15] with our notation). Let Γ be a term set with min-cut of ρ and ψ be an
interpretation for Γ over [q], then ima(ψ) 6 ρ.

We illustrate the communication model and Theorem 8 by the following example.
Consider the term set

Γ :={t1 := f1(f2(x1, x2, x3), f1(x1, x2)),

t2 := f3(f2(x1, x2, x3)),

t3 := f4(f2(x1, x2, x3), f1(x1, x2))}.

The set of variables is Γvar = {x1, x2, x3}, while the set of subterms is

Γsub = {x1, x2, x3, u := f1(x1, x2), v := f2(x1, x2, x3), t1, t2, t3}
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The graph GΓ is displayed below. We see that {u, v} forms a vertex cut of GΓ between
Γvar and Γ: t1 = f1(v, u), t2 = f3(v) and t3 = f4(u, v). In fact, the min-cut is indeed 2.

x1 x2 x3

u v

t1 t2 t3

A possible interpretation for Γ over [2] is (all operations mod 2)

f̄1(a1, a2) = a1 + a2

f̄2(a1, a2, a3) = a1a2a3

f̄3(a1) = a1

f̄4(a1, a2) = 0.

The corresponding induced mapping is

ψ(a) = (a1 + a2 + a1a2a3, a1a2a3, 0) ,

and its scaled rank is log2 3, which is indeed no more than 2.

Lemma 9. For any p > 1 and f̄ ∈ F(D, q), ima(f̄p) 6 αp(D).

Proof. For all v ∈ V , denoting N−(v;D) = {u1, . . . , uk} sorted in increasing order, we
have f̄v(x) = f̄v(xu1 , . . . , xuk). By definition, f̄p is the induced mapping of an interpreta-
tion for Γp = {tp1, . . . , tpn}, where Γ0 = {t01 = x1, . . . , t

0
n = xn} and for all 1 6 s 6 p,

tsv = fv(t
s−1
u1

, . . . , ts−1
uk

).

The graph GΓp = (VΓp , EΓp) is then given by

VΓp = Γ0 ∪ · · · ∪ Γp

EΓp = {(ts−1
w , tsv) : 1 6 s 6 p, w ∈ N−(v;D)}.

A flow in GΓp is a set of vertex-disjoint paths from Γ0 to Γp. Such a path is of the
form tW = (t0w0

, . . . , tpwp
) where ws−1 ∈ N−(ws;D); it naturally induces a walk in D:

W = (w0, . . . , wp). Since the paths tW and tW ′ are vertex-disjoint, the corresponding
walks W and W ′ are independent. Therefore, the max-flow of GΓp is at most αp(D). By
the max-flow min-cut theorem and Theorem 8, ima(f̄p) 6 αp(D).
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Let W1, . . . ,Wα be α := αp(D) independent walks of length p, where we denote Wi =
(wi,0, . . . , wi,p). According to Theorem 1, those arise from families of disjoint cycles and
paths. By construction, if w precedes w′ on one walk and w′ appears on another walk and
has a predecessor there, then w precedes w′ in the other walk as well. For all 0 6 s 6 p,
we denote W s = {wi,s : 1 6 i 6 α}, U s = V \W s and U ′ = V \ (W 1 ∪ · · · ∪W p).

We can now construct the finite dynamical systems which attain the upper bound on
the scaled rank. The case q = 2 and f ∈ F(D, 2) is easy. We use a finite dynamical
system where wi,s+1 simply copies the value xwi,s

; this will transmit the value xwi,0
along

the walk Wi.

Lemma 10. The function f ∈ F(D, 2) defined as

fwi,s+1
(x) = xwi,s

0 6 s 6 p− 1, 1 6 i 6 α,

fu(x) = 0 if u ∈ U ′,

satisfies ima(fp) = αp(D).

Proof. Let X = {x ∈ [2]n : xU0 = (0, . . . , 0)}; we then have logq |X| = |W 0| = αp(D).
It is easy to show, by induction on s, that for all 0 6 s 6 p, |f sW s(X)| = |X|. Thus
ima(fp) = αp(D).

For q > 3 and f ∈ F[D, q], we use a finite dynamical system where wi,s+1 wishes to
copy the value xwi,s

whenever it can. Each other vertex u ∈ N−(wi,s+1) has a red light
(the value 2). If all lights are red, then wi,s+1 cannot copy the value xwi,s

any more;
instead it flips it from 0 to 1 and vice versa.

Lemma 11. For q > 3, the function f ∈ F[D, q] defined as

fwi,s+1
(x) =

{
1− xwi,s

if xwi,s
∈ {0, 1} and xN−(wi,s+1)\wi,s

= (2, . . . , 2),

xwi,s
otherwise

0 6 s 6 p− 1, 1 6 i 6 α,

fu(x) =

{
1 if xN−(u) = (1, . . . , 1)

0 otherwise

if u ∈ U ′,

satisfies ima(fp) = αp(D).

Proof. The proof is similar, albeit more complex, than the one of Lemma 10.

Claim 12. For all 0 6 s 6 p−1, if xW s 6= yW s and xUs , yUs ∈ {0, 1}|Us|, then fW s+1(x) 6=
fW s+1(y) and fUs+1(x), fUs+1(y) ∈ {0, 1}|Us+1|.

Proof of Claim 12. We prove the first assertion. First, suppose there exists wi,s ∈ W s

where xwi,s
> 2 and xwi,s

6= ywi,s
, then

fwi,s+1
(x) = xwi,s

6= fwi,s+1
(y).
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Second, suppose that for any wi,s ∈ W s such that xwi,s
6= ywi,s

, we have {xwi,s
, ywi,s

} =
{0, 1}. Then

fwi,s+1
(x) = 1− xwi,s

⇔ xN−(wi,s+1)\wi,s
= (2, . . . , 2)

⇔ (N−(wi,s+1) ⊆ W s) ∧ (yN−(wi,s+1)\wi,s
= (2, . . . , 2))

⇔ fwi,s+1
(y) = 1− ywi,s

.

For the second assertion, let v ∈ U s+1, then either v ∈ U ′ or v = wi,t+1 with 0 6
t 6= s. If v ∈ U ′, then fv(x) ∈ {0, 1} for any x. Suppose that v = wi,t+1 such that
fwi,t+1

(x) /∈ {0, 1}. Then xwi,t
/∈ {0, 1}, which implies wi,t ∈ W s, say wi,t = wj,s; but then,

v = wj,s+1 /∈ U s+1. �

Let X = {x ∈ [q]n : xU0 = (0, . . . , 0)}; we then have logq |X| = |W 0| = αp(D).

Claim 13. For all 0 6 s 6 p, |f sW s(X)| = |X| and for any x ∈ X, f sUs(x) ∈ {0, 1}|Us|.

Proof of Claim 13. The proof is by induction on s; the statement is clear for s = 0.
Suppose it holds for up to s. For any distinct x, y ∈ X, we have f sW s(x) 6= f sW s(y)
and f sUs(x), f sUs(y) ∈ {0, 1}|Us|. By Claim 12, we obtain that f s+1

W s+1(x) 6= f s+1
W s+1(y) and

f s+1
Us+1(x) ∈ {0, 1}s+1. �

2.3 Maximum rank in the Boolean case

We first exhibit a class of digraphs for which the upper bound on the rank is not reached
in the Boolean case.

Proposition 14. Let D be a digraph such that α1(D) = n and dv = 2 for all vertices
v ∈ V . Then ima(fp) < αp(D) for all f ∈ F[D, 2] and all p > 1.

Proof. Suppose f ∈ F[D, 2] is a permutation of {0, 1}n, then all the local functions fv
must be balanced, i.e. |f−1

v (0)| = |f−1
v (1)| for all v ∈ V . Because the in-degree of v is

equal to two, say N−(v) = {u1, u2}, we must have fv(xu1 , xu2) = xu1 + xu2 + cv, where
cv ∈ GF(2). Therefore, f(x) = Mx + c, but since every vertex has even in-degree, the
sum of all rows in M (in GF(2)) equals zero and M is singular.

For instance, if D is the undirected cycle on n vertices, or the directed cycle on n
vertices with a loop on each vertex, then for all p > 1, αp(D) = n but ima(fp) < n for all
f ∈ F[D, 2].

It is unknown whether there exist other such examples. On the other hand, we can
easily exhibit a class of digraphs which do reach the bound. For instance, let D = K̊n

be the clique with a loop on each vertex (alternatively, E = V 2). Then the following
f ∈ F[K̊n, 2] is a permutation:

fv(x) =

{
xv if x /∈ {(0, . . . , 0), (1, . . . , 1)}
xv + 1 otherwise;
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indeed f is the transposition of (0, . . . , 0) and (1, . . . , 1). Less obviously, the clique also
admits a permutation of {0, 1}n.

Proposition 15. For any n 6= 3, ima[Kn, 2] = n.

Proof. Firstly, let n be even. Then we claim that f(x) = Mx is a permutation, or
equivalently that det(M) = 1. For det(M) = d(n) mod 2, where d(n) is the number of
derangements (fixed point-free permutations) of [n]. Enumerating the permutations of [n]
according to their number p of fixed points, we have

n! = d(n) +
n−1∑
p=1

(
n

p

)
d(n− p) + 1.

Since n! and
(
n
1

)
, . . . ,

(
n
n−1

)
are all even, it follows that d(n) is odd, thus det(M) = 1.

Secondly, let n > 5 be odd. We prove the result by induction on n odd. Let us settle
the case where n = 5. We construct f ∈ F[K5, 2] as follows:

(f1, f2, f3)(x) =

{
(x3, x1, x2) if x4 = x5

(x2, x3, x1) otherwise,

(f4, f5)(x) =

{
(x5, x4) if (x1, x2, x3) = (0, 0, 0)

(x5 + 1, x4 + 1) otherwise.

It is easy to check that f is a permutation of [2]5.
The inductive case is similar. Suppose that g ∈ F[Kn, 2] is a permutation, then

construct f ∈ F[Kn+2, 2] as follows:

(f1, . . . , fn)(x) =

{
g(x1, . . . , xn) if xn+1 = xn+2

g(x1, . . . , xn) + (1, . . . , 1) otherwise,

(fn+1, fn+2)(x) =

{
(xn+2, xn+1) if (x1, . . . , xn) = (0, . . . , 0)

(xn+2 + 1, xn+1 + 1) otherwise.

Again, it is easy to check that f is a permutation of [2]n.

Problem 16. Find a good lower bound on the maximum rank or maximum periodic rank
in F[D, 2].

3 Average rank

Theorem 17. The average scaled rank in F[D, q] tends to α1(D):

lim
q→∞

1

|F [D, q]|
∑

f∈F [D,q]

ima(f) = α1(D).
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Proof. The case α1(D) = 0 is trivial, thus let a := α1(D) > 1 and (u1, v1), . . . , (ua, va)
be a collection of pairwise independent arcs. Let q be large enough and f be chosen
uniformly at random amongst F[D, q]. Let h0 = (xu1 , . . . , xua) : [q]n → [q]a and for any
1 6 i 6 a, let

hi = (fv1 , . . . , fvi , xui+1
, . . . , xua) : [q]n → [q]a.

Let ci be defined as c0 = 1 and ci =
c2i−1

8
for 1 6 i 6 a.

Since |Ima(f)| > |Ima(ha)|, all we need is to prove the following claim: with high
probability, |Ima(hi)| > ciq

a.
The proof is by induction on i. The claim clearly holds for i = 0; suppose it holds for

i. Let g = (fv1 , . . . , fvi , xui+2
, . . . , xua) : [q]n → [q]a−1 and consider the set Z of images of

g which appear frequently in the image of hi:

Z :=

{
z ∈ Ima(g) : |(z, xi+1) ∈ Ima(hi)| > 1

2
ciq

}
.

Then

|Z| > 1

2
ciq

a−1,

for otherwise, we would have

|Ima(hi)| < q|Z|+
(

1

2
ciq

)
qa−1 6 ciq

a.

Now let N be the in-neighbourhood of vi+1; note that ui+1 ∈ N . Therefore, for each
z ∈ Z, there exist at least 1

2
ciq values of xN such that z = g(xN , yV \N) for some yV \N ;

denote this set of values as X. On X, fvi+1
(xN) is chosen uniformly at random.

Claim 18. With probability exponentially small, |fvi+1
(X)| 6 1

2
|X|.

Proof. For any Y ⊆ [q] with |Y | 6 1
2
|X|, the number of functions φ : X → [q] whose

image is contained in Y is |Y ||X| 6 (|X|/2)|X|. We obtain

P

(
|fvi+1

(X)| 6 1

2
|X|
)
6

(
q

|X|/2

)(
|X|
2q

)|X|
6

(
2eq

|X|

)|X|/2( |X|
2q

)|X|
=

(
e|X|
2q

)|X|/2
6
(eci

4

)ciq/4
.

Therefore, with high probability, |fvi+1
(X)| > 1

2
|X| for all z ∈ Z, and hence

|Ima(hi+1)| > |Z|1
4
ciq > ci+1q

a.
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We make two remarks about Theorem 17.
Firstly, the theorem only gives an approximation of the average rank. Obtaining more

detailed information seems difficult, because the average rank can vary widely with the
digraph D. For instance, let us compare the complete graph with n loops K̊n to the empty
graph with n loops L̊n; both graphs have α1(D) = n. It is well known that the average
rank of a function [r] → [r] tends to εr, where ε = 1 − e−1. Then the average rank in
F[K̊n, q] tends to εqn, while in F[L̊n, q] it tends to εnqn.

Secondly, there is no analogue of the theorem for the periodic rank. Again, let us use
K̊n. The average periodic rank of a function [r]→ [r] tends to δ

√
r, where δ =

√
π/2 [4].

Then, the average periodic rank in F[K̊n, q] tends to δqn/2 = o(qαn(K̊n)).

4 Maximum (periodic) rank under different update schedules

An update schedule, or simply schedule, corresponds to the way the different entities of the
underlying network represented by f update their local state. More formally, a schedule
for f ∈ F[D, q] is any σ = (σ1, . . . , σt) where σi ⊆ V . We denote the application of f
using the schedule σ as fσ: for any S ⊆ V , we let f (S) where

f (S)
v =

{
fv(x) if v ∈ S,
xv otherwise,

and
fσ = fσt ◦ · · · ◦ fσ1 .

We now review three important classes of schedules.

1. σ is complete if every entity updates its local state at least once, i.e. if
⋃t
i=1 σi = V .

2. σ is block-sequential if every entity updates its local state exactly once, i.e. if⋃t
i=1 σi = V and σi ∩ σj = ∅ for all i 6= j.

3. σ is parallel if all entities update their state once and at the same time, i.e. if
σ = (V ). Clearly, f (V ) = f .

We first prove that the α1(D) upper bound on the scaled rank remains valid for block-
sequential schedules.

Theorem 19. If σ is a block-sequential schedule and f ∈ F[D, q], then ima(fσ) 6 α1(D).

Proof. We use a proof technique similar to that of Theorem 9. Let σ = (σ1, . . . , σt) be
a block-sequential schedule. Construct the term set Γ built on x1, . . . , xn and the n + 1
function symbols f1, . . . , fn, g, where fi is di-ary and g is unary, uniquely defined as such.

1. The subterm graph GΓ = (VΓ, EΓ) is as follows: VΓ = V 0 ∪ · · · ∪ V t consists of t+ 1
copies of V , and (ui−1, vi) ∈ EΓ if either (u, v) ∈ E and v ∈ σi or u = v and v /∈ σi.

2. On vi, Γ uses the function symbol fv if vi ∈ σi and the function symbol g if vi /∈ σi.
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Then it is clear that for any f̄ ∈ F(D, q), f̄σ can be viewed as an interpretation of Γ,
where g is interpreted as the identity. Therefore, ima(f̄σ) is no more than the min-cut of
Γ.

All that is left is to show that GΓ has at most α1(D) disjoint paths from V 0 to V t.
Let P1, . . . , Pm be a family of disjoint paths starting, without loss, at vertices 1, . . . ,m
and let v1, . . . , vm be the “first updated vertices” on the respective paths. Formally, let
Pi = (w0

0, . . . , w
t
t), where w0

0 = i, let a = min{b : wbb ∈ σb} (such a always exists since σ is
complete) and vi = wa. We then have (w0, w1, . . . , wa−1, wa) = (i, i, . . . , i, vi)..

Then for i 6= j, we have: (i, vi) and (j, vj) are arcs in D, i 6= j, and vi 6= vj (clear if
vi and vj are in different parts of σ, otherwise if vi, vj ∈ σa then because the paths are
disjoint we have vai 6= vaj ). In other words, (1, v1), . . . , (m, vm) are independent arcs in D,
thus m 6 α1(D).

In particular, we can refine Corollary 6 on the presence of reversible dynamics.

Corollary 20. For any q > 3, the following are equivalent:

1. F[D, q] contains a permutation of [q]n,

2. there exist f ∈ F[D, q] and a block-sequential schedule σ such that fσ is a permuta-
tion of [q]n,

3. all the vertices of D can be covered by disjoint cycles.

Problem 21. Is there an analogue of Theorem 19 for the periodic rank?

However, the maximum rank when considering any complete schedule is not bounded
by α1(D). In fact, the periodic rank can be much larger, as seen below. For any D and
q, we denote

per[D, q] = max{per(fσ) : f ∈ F[D, q], σ complete},

and per(D, q) is defined similarly.
Recall that a strong component of a digraph is trivial if it has no cycle, or equivalently

if it is a single loopless vertex. Clearly, a vertex v belongs to a cycle of D if and only if
{v} is not a trivial strong component of D. We denote the trivial strong components of
D as T1, . . . , Tt and their number as T (D). We shall show that per(D, q) 6 n − T (D).
On the other hand, we will also prove that this bound is actually an equality.

Proposition 22. For all D and q > 2,

per(D, q) = n− T (D).

Proof. Let f ∈ F[D, q] and σ be a complete schedule. Then (u, v) is an arc of IG(fσ) only
if there is a path from u to v in D. Consequently, if {v} is a trivial strong component of
D, then {v} is a trivial strong component of IG(fσ). By Corollary 5, we have per(fσ) 6
n− T (D).
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Conversely, let us remove all the arcs connecting strong components of D and all the
chords of any cycle in D. We obtain a new graph D′ which is the disjoint union of strong
chordless graphs; the trivial components T1, . . . , Tt of D′ are exactly those of D. Let
C1, . . . , Ck be a collection of cycles of D′ which cover all the vertices that do not belong
to a trivial component and σ = (T1, . . . , Tt, C1, . . . , Ck). Let f ∈ F[D′, q] such that

fv(x) =
∑

u∈N−(v)

xu mod q,

where an empty sum is equal to zero and the neighbourhood is according to D′. It is easy
to check that f

(Ci)
v is a permutation for all 1 6 i 6 k and hence that {x ∈ [q]n : xT1 =

. . . xTt = 0} is a set of qn−T (D) periodic points of fσ.

Next, by a similar argument we prove that per(D, q) actually approaches n− T (D).

Theorem 23. For all D,
sup
q>2
{per[D, q]} = n− T (D).

Proof. Let C1, . . . , Ck be a collection of cycles which cover all vertices belonging to a cycle,
W denote the set of remaining vertices and let σ = (W,C1, . . . , Ck). Let q − 1 = 2m be
large enough (m > 2n

2+1) and let α be a primitive element of GF(q − 1). Denote the
arcs in D as e1, . . . , el. Let A ∈ GF(q − 1)n×n such that au,v = α2i if (u, v) = ei and
au,v = 0 if (u, v) /∈ E and let g(x) = Ax. Now f ∈ F[D, q] is given as follows: view
[q] = GF(q − 1) ∪ {q − 1} and

fw(x) =

{
0 if xu ∈ GF(q − 1) for all u ∈ N−(w),

q − 1 otherwise,
∀w ∈ W

fv(x) =

{
gv(x) if xu ∈ GF(q − 1) for all u ∈ N−(v),

q − 1 otherwise,
∀v /∈ W.

Then f acts like g on the set of states X = {x ∈ GF(q − 1)n : xW = (0, . . . , 0)}; in
particular, we have f(X) ⊆ X. We can then remove W and consider h ∈ F[D \W, q − 1]
such that hv(xV \W ) = gv(xV \W , 0W ) for all v /∈ W instead. All we need to prove is that
h(C1,...,Ck) is a permutation of GF(q − 1)n−T (D).

Denote the square submatrix of A induced by the vertices of Cj as Aj. Then we remark
that det(Aj) 6= 0 for any 1 6 j 6 k. Indeed, let K1, . . . , Kl denote all the hamiltonian
cycles in the subgraph induced by the vertices of Cj (and without loss, K1 = Cj). For
any 1 6 a 6 l, let S(a) =

∑
ei∈Kl

2i. We note that S(1), . . . , S(l) are all distinct, hence

αS(1), . . . , αS(l) are all linearly independent (when viewed as vectors over GF(2)) and

det(Aj) =
l∑

a=1

αS(a) 6= 0.
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Now h(Cj)(x) = A′jx, where

A′j =

(
Aj Bj

0 I

)
,

where (Aj|Bj) are the rows of A corresponding to Cj and I is the identity matrix of
order n− T (D)− |Cj|. Since Aj is nonsingular, so is A′j. Hence h(Cj) is a permutation of

GF(q − 1)n−T (D), and by composition, so is h(C1,...,Ck).

If W is empty, then we can simplify the proof of Theorem 23 and work with GF(q)n

instead of GF(q−1)n−T (D) (this time q = 2p), hence we obtain a permutation. This yields
the following corollary on the presence of reversible dynamics.

Corollary 24. There exist q, σ and f ∈ F[D, q] such that fσ is a permutation of [q]n if
and only if all the vertices of D belong to a cycle.

The theorem brings the following natural question.

Problem 25. Is there an analogue of Theorem 23 for the rank?
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