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Abstract

In this paper we introduce a problem that bridges forbidden subposet and forbid-
den subconfiguration problems. The sets F1, F2, . . . , F|P | form a copy of a poset P , if
there exists a bijection i : P → {F1, F2, . . . , F|P |} such that for any p, p′ ∈ P the re-
lation p <P p′ implies i(p) ( i(p′). A family F of sets is P -free if it does not contain
any copy of P . The trace of a family F on a set X is F|X := {F ∩X : F ∈ F}.

We introduce the following notions: F ⊆ 2[n] is l-trace P -free if for any l-subset
L ⊆ [n], the family F|L is P -free and F is trace P -free if it is l-trace P -free for all
l 6 n. As the first instances of these problems we determine the maximum size of
trace B-free families, where B is the butterfly poset on four elements a, b, c, d with
a, b < c, d and determine the asymptotics of the maximum size of (n− i)-trace Kr,s-
free families for i = 1, 2. We also propose a generalization of the main conjecture of
the area of forbidden subposet problems.

Mathematics Subject Classifications: 06A07, 05D05

1 Introduction

In this paper we introduce a problem that bridges two areas of extremal finite set theory,
namely forbidden subposet problems and traces of set families. We denote by [n] the set
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of the first n positive integers and for a set X we use the notation 2X ,
(
X
k

)
,
(
X
6k

)
,
(
X
>k

)
to

denote the family of all subsets of X, all subsets of X of size k (that we also call k-subsets
of X), all subsets of X of size at most k, and all subsets of X of size at least k, respectively.
The family

(
X
k

)
is often called the kth level of X. Throughout the paper we use standard

order notions.

We will use the following well-known fact multiple times:∣∣∣∣( [n]

6 bn/2− n2/3c

)
∪
(

[n]

> bn/2 + n2/3c

)∣∣∣∣ = o

(
1

n

(
n

bn/2c

))
.

Using this, we will assume several times throughout the paper that all members of a
family F have cardinalities in the interval [n/2 − n2/3, n/2 + n2/3] (as this way we lose
only o( 1

n

(
n
bn/2c

)
) sets). Note that for our purposes it is always going to be enough to use

the interval [n/3, 2n/3] instead of [n/2− n2/3, n/2 + n2/3].

Forbidden subposet problems. The very first result in extremal finite set theory
is due to Sperner [19], who proved that if a family F ⊆ 2[n] does not contain two sets in
inclusion, then the size of F is at most

(
n
bn/2c

)
and the only families achieving this size are(

[n]
bn/2c

)
and

(
[n]
dn/2e

)
. This was later generalized by Erdős [6], who showed that if F ⊆ 2[n]

does not contain a chain of length k+ 1 (i.e. nested sets F1 ( F2 ( · · · ( Fk+1), then the
size of F is at most

∑k
i=1

(
n

bn−k
2
c+i

)
, the sum of the k largest binomial coefficients of order

n. There is a vast literature of Sperner type problems (see the not very recent monograph
of Engel [5]); we focus on forbidden subposet problems introduced by Katona and Tarján
[12]. We say that the sets F1, F2, . . . , F|P | form a copy of a poset P , if there exists a
bijection i : P → {F1, F2, . . . , F|P |} such that for any p, p′ ∈ P the relation p <P p

′ implies
i(p) ( i(p′). A family F of sets is P -free if it does not contain any copy of P . Katona
and Tarján initiated the study of the parameter La(n, P ), the maximum size of a P -free
family F ⊆ 2[n]. Note that with this notation the above-mentioned result of Erdős can
be formulated as

La(n, Pk+1) =
k∑

i=1

(
n

bn−k
2
c+ i

)
,

where Pk+1 denotes the chain of size k + 1. For any poset P , a copy of a chain of length
|P | in a family F is always a copy of P . Thus, the result of Erdős implies

La(n, P ) 6 (|P | − 1)

(
n

bn/2c

)
.

Therefore it is natural to ask for the existence and value of

lim
n→∞

La(n, P )(
n
bn/2c

) ,

denoted by π(P ). It is not known whether π(P ) exists for every poset, but the precise
or asymptotic value of La(n, P ) has been determined for many posets and in all known
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cases the (asymptotically) optimal construction consists of some of the middle levels of
[n]. This motivated the following conjecture that first appeared in [10].

Conjecture 1 ([10]). For any poset P let e(P ) denote the largest integer k such that for
any j and n the family ∪ki=1

(
[n]
j+i

)
is P -free. Then π(P ) exists and is equal to e(P ).

Conjecture 1 was proved for many classes of posets. Let us state one of the nicest
results of the area. To do so we need the following definition. For a poset P the Hasse
diagram, denoted by H(P ), is a graph whose vertices are elements of P , and xy is an edge
if x < y and there is no other element z of P with x < z < y. A poset T is a tree poset
if its Hasse diagram is a tree. Let h(T ) denote the length of a longest chain in T . Bukh
proved the following.

Theorem 2 ([3]). For any tree poset T , we have

La(n, T ) = (h(T )− 1 + o(1))

(
n

bn/2c

)
.

Traces of set families. The trace of a set family is its restriction to a subset of its
underlying set. Formally, the trace of a set F on another set X is

F |X := F ∩X,

and the trace of a family F on X is

F|X := {F |X : F ∈ F}.

As different sets can have the same trace, we obtain |F|X | 6 |F|. The fundamental result
about traces of set families is the so-called Sauer-lemma proved independently by Sauer
[17], Shelah [18], and Vapnik and Chervonenkis [20].

Theorem 3 ([17, 18, 20]). If the size of a family F ⊆ 2[n] is larger than
∑k−1

i=0

(
n
i

)
, then

there exists a k-subset X of [n] such that F|X = 2X holds.

The bound in Theorem 3 is tight as shown by
(

[n]
6k−1

)
and

(
[n]

>n−k+1

)
, but there are

many other extremal families and a complete characterization is not yet known. This
theorem leads naturally in several directions. One of them is the area of forbidden sub-
configurations. If H ⊆ 2[k] is a fixed family, then one can ask for the maximum size
of a ’big’ family F ⊆ 2[n] such that for any k-subset X of [n], the trace F|X does not
contain a subfamily isomorphic to H. For more details, the interested reader is referred
to the survey of Anstee [2] and the references within. Naturally, one can consider several
forbidden configurations at once. To mix the areas of forbidden subposet problems and
forbidden subconfigurations, we will forbid all configurations that can be described by a
poset structure.

We say that F ⊆ 2[n] is l-trace P -free if for any l-subset L ⊆ [n], the family F|L is
P -free. A family F is trace P -free if it is l-trace P -free for all l 6 n. Let Tr(n, P ) be the
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maximum size of a trace P -free family F ⊆ 2[n] and Trl(n, P ) be the maximum size of an
l-trace P -free family F ⊆ 2[n].

If the traces of two sets on some set X are in inclusion, then they remain in inclusion
for any subset Y of X, however the traces might coincide on Y . So it is not straightforward
from definition that forbidding a subposet in the trace on a smaller subset is a stronger
property than doing the same on a larger subset. However, in Section 3 we will prove the
following rather easy monotonicity result.

Proposition 4. For a poset P let E(P ) denote the number of edges in the Hasse diagram
H(P ). If E(P ) 6 k 6 l, then we have

Trk(n, P ) 6 Trl(n, P ).

Proposition 4 implies that for any integer k we have Tr(n, Pk+1) = Trk(n, Pk+1). The
value Trk(n, Pk+1) =

∑k−1
i=0

(
n
i

)
follows from Theorem 3. The second author proved in [14]

that the only k-trace Pk+1-free families are
(

[n]
6k−1

)
and

(
[n]

>n−k+1

)
(moreover, he showed

that for any fixed k 6 l we have Trl(n, Pk+1) =
∑k−1

i=0

(
n
i

)
if n is large enough and the

only extremal families are
(

[n]
6k−1

)
and

(
[n]

>n−k+1

)
).

Note that for any poset P if y(P ) denotes the largest integer m with 2[m] not containing

a copy of P , then by Theorem 3 we have Tr(n, P ) 6
∑y(P )

i=0

(
n
i

)
, i.e. Tr(n, P ) grows

polynomially in n.
The simplest non-chain posets are

∨
and

∧
, both being a poset on 3 elements a, b, c

with a <∨ b, c and a, b <∧ c. As they are both subposets of P3, we have Tr(n,
∨

),
Tr(n,

∧
) 6 n + 1 and taking complements yields Tr(n,

∨
) = Tr(n,

∧
). Moreover, we

know that there exist trace
∧

-free and trace
∨

-free families of size n + 1, namely
(
[n]
61

)
and

(
[n]

>n−1

)
. The first contains

∨
and does not contain

∧
, while it is the opposite for the

second family. On the other hand if we forbid both
∨

and
∧

as traces, then the family
cannot have more than 2 sets.

As a first non-trivial and non-chain instance of the problem of finding Tr(n, P ) we
will consider the butterfly poset B on 4 elements a, b, c, d with a, b <B c, d.

Theorem 5. For n > 4 we have

Tr(n,B) = b3n/2c+ 1.

As remarked above, Theorem 3 implies that Tr(n, P ) grows polynomially in n and
the same argument shows that for any fixed l > y(P ) we have Trl(n, P ) = O(nl−1). The
situation completely changes when l is close to n. By definition, we have Trn(n, P ) =
La(n, P ). Observe that if n is large enough and F consists of consecutive levels of [n],

say F = ∪j
′

i=j

(
[n]
i

)
, then for any (n − k)-subset X of [n] we have F|X = ∪j

′

i=j−k
(
X
i

)
. In

particular, if j′ − j + k + 1 6 e(P ), then F|X is P -free. This shows the inequality

Trn−k(n, P ) > (e(P )− k + o(1))

(
n

bn/2c

)
.

Therefore we propose the following generalization of Conjecture 1.
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Conjecture 6. For any poset P and integer k < e(P ) we have

Trn−k(n, P ) = (e(P )− k + o(1))

(
n

bn/2c

)
.

Moreover, if k > e(P ), then Trn−k(n, P ) = o(
(

n
bn/2c

)
) holds.

Note that to see the moreover part of Conjecture 6, by Proposition 4, it is enough to
prove its statement for k = e(P ).

Conjecture 6 was verified for chains by the second author in [15] and he obtained the
exact value of Trn−1(n, Pk+1) for any positive integer k in [16]. We prove Conjecture 6 for
the posets Kr,s on r+ s elements a1, a2, . . . , ar, b1, b2, . . . , bs with ai < bj for any 1 6 i 6 r
and 1 6 j 6 s. We will use the notation

∧
r for Kr,1 and

∨
s for K1,s. Note that e(Kr,s) = 2

if r and s are both at least two and e(
∨

s) = e(
∧

r) = 1. Conjecture 1 was verified for
Kr,s by De Bonis and Katona [4]. Therefore the following theorem implies Conjecture 6
in the case of the posets Kr,s.

Theorem 7. For any positive integer s > 1, we have

(i) s
n

(
n
bn/2c

)
6 Trn−1(n,

∨
s) 6

(
3s3

n
+ o

(
1
n

)) (
n
bn/2c

)
.

Furthermore, if r, s > 2, then we have

(ii) Trn−1(n,Kr,s) = (1 + o(1))
(

n
bn/2c

)
, and

(iii) Trn−2(n,Kr,s) 6
6((s+1)2+(r+1)2)

n

(
n
bn/2c

)
.

The smallest poset for which Conjecture 1 has not yet been proved is the diamond
poset D on four elements a, b, c, d with a < b, c < d. The best known upper bound on
La(n,D) is due to Grósz, Methuku, and Tompkins [11]. We will prove that the moreover
part of Conjecture 6 holds for D.

Theorem 8. For the diamond poset D we have

Trn−2(n,D) = O

(
1

n1/3

(
n

bn/2c

))
.

The remainder of this paper is organized as follows: Section 2 deals with trace P -free
families; Theorem 5 along with some further remarks are shown there. A general result
on (n − 1)-traces of families that implies Theorem 7 is proved in Section 3 along with
Theorem 8 and other results about l-trace P -free families. Finally, Section 4 contains
some concluding remarks.

2 Trace P -free families

Theorem 3 has many proofs in the literature. One of them (obtained independently
by Alon [1] and Frankl [8]) uses down-compression. For a set F and an element i, the
down-compression operator is defined as

Di(F ) := F \ {i},
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and for a family of sets F we define

Di(F) := {Di(F ) : F ∈ F , Di(F ) /∈ F} ∪ {F : F ∈ F , Di(F ) ∈ F}.

It was proved in [1, 8] that if we are given a family F ⊆ 2[n] such that there does not exist
a k-set X with F|X = 2X , then the same holds for Di(F) for any i ∈ [n]. As any family
F can be turned into a downward closed family (a family D for which C ⊂ D ∈ D implies
C ∈ D) by applying a finite number of down-compressions, to prove Theorem 3 it is enough
to show its statement for downward closed families, which is rather straightforward.

Observe that the trace P -free property is not preserved by down-compression, however
there is a way to obtain bounds on Tr(n, P ) by considering only downward closed families.
Frankl in [8] introduced the arrow relation (n,m) → (k, l) which, by definition, holds if
for any family F ⊆ 2[n] of size m, there exists a k-set X such that |F|X | > l. With this
notation Theorem 3 can be formulated as

(n, 1 +
k−1∑
i=0

(
n

i

)
)→ (k, 2k)

for any pair n > k. Frankl used down-compression to prove the following.

Theorem 9 ([8]). The following statements are equivalent.

(i) (n,m)→ (k, l)

(ii) For every downward closed family D ⊆ 2[n] of size m, there exists a k-set X such
that |D|X | > l.

We want to make use of Theorem 9 to determine Tr(n, P ). In order to do that we make
two simple observations. First note that if for some k-set X the trace F|X contains more
than La(k, P ) sets, then F cannot be trace P -free. Therefore we obtain the following.

Proposition 10. For every poset P we have

Tr(n, P ) 6 min{m : ∃k (n,m)→ (k, La(k, P ) + 1)} − 1.

One can go one step further and improve Proposition 10. Suppose one determined the
value of Tr(k, P ) for some small integer k. Then obviously, if for some k-set X the trace
F|X contains more than Tr(k, P ) sets, then F cannot be trace P -free, so we obtain the
following.

Proposition 11. For every poset P we have

Tr(n, P ) 6 min{m : ∃k (n,m)→ (k, Tr(k, P ) + 1)} − 1.

Proof of Theorem 5. The proof relies on two lemmas.

Lemma 12. We have
Tr(5, B) = 8.
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Proof. We start with the following simple claim.

Claim 13. We have
(5, 9)→ (3, 6) and (5, 9)→ (4, 7).

Proof of Claim. By Theorem 9, it is enough to prove the statement for downward closed
families D ⊆ 2[5] of size 9. If D contains a set D of size 3, then |2D| = 8 > 6. Otherwise
D contains at least 3 sets of size 2. As they are all subsets of [5], for two of them D1, D2,
we have |D1 ∪D2| = 3 and as D is downward closed, we have |D ∩ 2D1∪D2| > 6.

Similarly we have either three 2-sets on three vertices or two 2-sets on four vertices,
both cases give 7 sets on three or four vertices.

Suppose F ⊆ 2[5] is a trace B-free family of size 9. Then by Claim 13 there exists a
3-set X with |F|X | > 6. We may suppose that X = [3] and as F is B-trace free, we must
have

F|[3] =

(
[3]

1

)
∪
(

[3]

2

)
.

Claim 14. Suppose there is a set F ∈ F with 4 ∈ F . Then we have either

• F|[4] =
(
[4]
2

)
, or

• F|[4] is isomorphic to {{2}, {3}, {1, 4}, {2, 3}, {1, 2, 4}, {1, 3, 4}}, or

• F|[4] is isomorphic to {{1, 4}, {2, 4}, {3, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.

Proof of Claim. The set F intersects [3] in a 1 or 2-element set. We separate cases accord-
ing to this. We introduce the notation A := F|[4], Ai := F|[4]\{i} (i ∈ [4]). In particular,

we have seen so far that F|[3] = A4 =
(
[3]
1

)
∪
(
[3]
2

)
.

Case 1. {1, 4} ∈ F|[4] = A.

Case 1.1. {1, 2, 4} ∈ A. Let us consider A3. We have {1, 2, 4} and {1, 4} are in
A3. Also as we have {3} ∈ A4 we have either ∅ or {4} is in A3. Thus we cannot have
{1} ∈ A3, hence {1, 3} 6∈ A. As we have {1, 3} ∈ A4 we must have {1, 3, 4} ∈ A.

Also only one of {2} or {2, 4} can be in A as otherwise they would form a copy of B
in A3 with {1, 2, 4} and ∅ or {4}.

Case 1.1.1. {2} ∈ A. In this case {2, 3, 4} 6∈ A, otherwise A1 would contain {2},
{4}, {2, 4} and {2, 3, 4}. As {2, 3} ∈ A4, we must have {2, 3} ∈ A. Thus we know {1, 4},
{1, 2, 4}, {1, 3, 4}, {2}, {2, 3} are all in A. If {3, 4} was in A, then A2 would contain
{1, 3, 4}, {3, 4}, {3} and ∅, a contradiction. As {3} ∈ A4, we must have {3} ∈ A. It is
easy to see that no other set can be added in this case.

Case 1.1.2. {2} 6∈ A. As {2} ∈ A4, we must have {2, 4} ∈ A.

Case 1.1.2.1. {2, 3} ∈ A. Then {3, 4} cannot be in A, as that would give {3},
{4}, {3, 4}, {1, 3, 4} in A2. As {3} ∈ A4, we have {3} ∈ A, but then A3 contains ∅, {2},
{2, 4} and {1, 2, 4}, a contradiction.
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Case 1.1.2.2. {2, 3} 6∈ A. As {2, 3} ∈ A4, we have that {2, 3, 4} ∈ A. If {3} is
in A, then A2 contains {3}, {4}, {3, 4} and {1, 3, 4}, a contradiction. So {3} 6∈ A, but
{3} ∈ A4, hence we must have {3, 4} ∈ A. Thus {1, 2, 4}, {1, 4}, {1, 3, 4}, {2, 4}, {2, 3, 4},
{3, 4} are in A. Note that every additional set would create a copy of B in A1 except
for {2, 3}, {1, 2, 3} and {1, 2, 3, 4}. However, in this case {2, 3} is not in A and neither
{1, 2, 3} nor {1, 2, 3, 4} can be in A because {1, 2, 3} 6∈ A4.

Case 1.2. {1, 2, 4} 6∈ A. By symmetry we can also assume {1, 3, 4} 6∈ A, otherwise
we go back to Case 1.1. Hence we have {1, 2}, {1, 3} ∈ A. Then {1}, {1, 2}, {1, 4} ∈ A3,
thus ∅ cannot be in A3, hence {3} 6∈ A, thus {3, 4} ∈ A, and similarly {2, 4} ∈ A. Let
us consider A1 now. It contains {3}, {3, 4}, {4}, thus it cannot contain {2, 3, 4}, hence
{2, 3, 4} 6∈ A, thus {2, 3} ∈ A, i.e A contains

(
[4]
2

)
. It is easy to see that no other set can

be added.

Case 2. There are no 2-element sets in A that contain 4. Then {1}, {2}, {3} ∈ A.
We may assume {1, 2, 4} = F |[4] ∈ A. Let us consider A1. It contains ∅, {2}, {2, 4} by
the above. Also as {2, 3} ∈ A4, we have either {2, 3} or {2, 3, 4} in A, and any of these
complete a copy of B.

We are done with the proof of Claim 14.

We are now ready to prove Lemma 12. Notice that in all cases of Claim 14, we have
|F|[4]| = 6. We will show that |F|Y | 6 6 holds for every other 4-element subset Y of [5]
as well, which contradicts (5, 9)→ (4, 7).

Let us consider the possible outcomes of Claim 14. Let Z = Y \ {5}, then we have
either F|Z =

(
Z
1

)
∪
(
Z
2

)
or F|Z is a copy of the diamond poset. In the first case we can

apply Claim 14, this time with [3] replaced by Y ∩ [4] and 4 by 5, to obtain |F|Y | 6 6. In
the second case notice that F|Y ⊆ F|Z ∪ {F ∪ {5} : F ∈ F|Z}. As this latter family is a
copy of 2[3], to ensure the B-free property, we must have |F|Y | 6 6.

Lemma 15. If n > 6, then we have

(n, b3n/2c+ 2)→ (5, 9).

Proof. It is enough to verify the statement for downward closed families D ⊆ 2[n] of size
b3n/2c + 2. If D contains a set D of size 3, then there exists x /∈ D with {x} ∈ D,
and thus |D|D∪{x}| > 9. So we may assume D ⊆

(
[n]
62

)
. If D does not contain two 2-sets

with non-empty intersection, then |D ∩
(
[n]
2

)
| 6 bn/2c and we are done. If D1, D2 ∈ D

are 2-sets with non-empty intersection and D3 ∈ D ∩
(
[n]
2

)
is disjoint from D1 ∪D2, then

D|D1∪D2∪D3 ⊇ 2D1 ∪ 2D2 ∪ 2D3 and we are done.
This means that D ∩

(
[n]
2

)
is either a triangle or a star. In the former case we have

|D| 6 3 + n + 1 < b3n/2c + 2. In the latter case, if the star consists of at most 3 sets,
then again |D| 6 3 + n + 1 < b3n/2c + 2, while if the star consists of at least 4 sets
D1, D2, D3, D4, then |D|D1∪D2∪D3∪D4| = 10.
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Now the upper bound in Theorem 5 follows from Proposition 11, Lemma 12 and
Lemma 15. For the lower bound we consider a family that consists of the empty set, all
the 1-element sets, and bn/2c pairwise disjoint 2-element sets. It is easy to see that this
family does not contain the butterfly poset, and as it is downward closed, it does not
contain it as a trace either. This finishes the proof of Theorem 5.

We state the last observation as a general lower bound. Let

LaD(n, P ) := max{|F| ⊆ 2[n] : F is P -free and downward closed}, and

LaU(n, P ) := max{|F| ⊆ 2[n] : F is P -free and upward closed}.

Proposition 16. We have

Tr(n, P ) > max{LaD(n, P ), LaU(n, P )}.

Let x(n, P ) be the largest integer such that
(

[n]
6x(n,P )

)
does not contain P . It is easy

to see that x(n, P ) is monotone decreasing in n, so we can define its limit x(P ) and
x(n, P ) = x(P ) for n large enough. It is easy to see that

LaD(n, P ) >
x(n,P )∑
i=0

(
n

i

)
>

x(P )∑
i=0

(
n

i

)
.

Remember that y(P ) is the largest integer such that 2[y(P )] does not contain P . If the

size of a family F ⊆ 2[n] is larger than
∑y(P )

i=0

(
n
i

)
, then by Theorem 3 it contains a subset

X of size y(P ) + 1 such that F|X = 2X holds. Obviously 2X contains a copy of P by

the definition of y(P ), thus we have Tr(n, P ) 6
∑y(P )

i=0

(
n
i

)
. By the observations above we

have
x(P )∑
i=0

(
n

i

)
6 LaD(n, P ) 6 Tr(n, P ) 6

y(P )∑
i=0

(
n

i

)
.

If for a poset P we have x(P ) = y(P ), then Tr(n, P ) =
∑x(P )

i=0

(
n
i

)
. In particular,

Proposition 17. If a poset P has a unique maximum element, then

Tr(n, P ) =

x(P )∑
i=0

(
n

i

)
.

3 l-traces

We start this section by showing the monotonicity of Trl(n, P ) in l.

Proof of Proposition 4. Let E(P ) 6 k 6 l and suppose F ⊆ 2[n] is k-trace P -free. We
claim that F is l-trace P -free. Assume otherwise. Then there exists an l-subset X of
[n] such that F|X contains a copy F1|X , F2|X , . . . , F|P ||X of P . For every edge e of the
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Hasse diagram H(P ) let xe be an element from Fi|X \ Fj|X if Fi|X and Fj|X are the
sets corresponding to the end vertices of e. As E(P ) 6 k, we obtain that |{xe : e ∈
E(H(P ))}| 6 k. Therefore, for any k-set Y ⊂ X containing {xe : e ∈ E(H(P ))} we have
that F1|Y , F2|Y , . . . , F|P ||Y form a copy of P in F|Y . Indeed, as Y ⊂ X, the containment
Fi|X ( Fj|X implies Fi|X ⊆ Fj|X and as {xe : e ∈ E(H(P ))} ⊆ Y proper containments
are preserved.

This contradicts the k-trace P -free property of F , so the proof is complete.

We continue with the proof of Theorem 7.

Proof of Theorem 7 (i). To see the lower bound consider the following well-known con-
struction due to Graham and Sloane [9]. Let us partition(

[n]

bn/2c

)
= F1 ∪ F2 ∪ · · · ∪ Fn

such that

Fi :=

{
F ∈

(
[n]

bn/2c

)
:
∑
j∈F

j ≡ i (mod n)

}
.

Let F be the union of the s largest Fi’s, and therefore we have

|F| > s

n

(
[n]

bn/2c

)
.

For any x ∈ [n], the trace F[n]\{x} contains sets of size bn/2c and bn/2c − 1, so a copy of∨
s would be possible if there existed an (bn/2c − 1)-set G that is contained in at least

s+ 1 sets of F . By construction, there is no such G, therefore F is (n− 1)-trace
∨

s-free.
To prove the upper bound let F ⊆ 2[n] be an (n − 1)-trace

∨
s-free family. Let

F1 = F ∩
( [n]

6n/2+n2/3

)
∩
( [n]

>n/2−n2/3

)
. Note that F1 cannot contain a chain of length s + 1

as omitting an element x of its smallest set would result in an (s + 1)-chain in the trace
F1|[n]\{x} contradicting the (n − 1)-trace

∨
s-free property. Therefore F1 contains an

antichain F2 with
|F2| > |F1|/s.

We will bound the size of F2 using the Lubell-function

λ(F2) =
∑
F∈F2

1(
n
|F |

) .
To this end we will count the number of pairs (F, C) with C being a maximal chain in [n]
and F ∈ F2 ∩ C. We will denote by C the set of all maximal chains in [n].

Let us consider G, the shadow of F2,

G := {G : ∃x ∈ F ∈ F2 : G = F \ {x}}

and for a set G ∈ G let
CG := {C ∈ C : G ∈ C}.
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Claim 18. For every chain C ∈ C there exist at most s sets G ∈ G with C ∈ CG.

Proof of claim. Suppose to the contrary that C ∈ C contains G1 ( G2 ( · · · ( Gs+1

with Gi ∈ G for all 1 6 i 6 s + 1. Then there exist x1, x2, . . . , xs+1 with xi /∈ Gi and
Fi := Gi ∪ {xi} ∈ F2. But then we have

Fi|[n]\{x1} ) F1|[n]\{x1} = G1

for i = 2, 3, . . . , s+ 1 and they are all different, as F2 is an antichain. Thus these form a
copy of

∨
s.

Claim 19. For every G ∈ G there exist at most s sets F ∈ F2 with G ⊆ F .

Proof of claim. As G ∈ G there exists an x /∈ G with F = G ∪ {x} ∈ F2. As F2

is an antichain, any other F ′ ∈ F2 with G ⊆ F ′ must not contain x. So if there were
F1, F2, . . . , Fs ∈ F2 other than F all containing G, then the traces of F, F1, F2, . . . , Fs ∈ F2

on [n] \ {x} would form a copy of
∨

s.

Let us now count the number of pairs (F, C) with C being a maximal chain in [n] and
F ∈ F2 ∩ C. On the one hand it is ∑

F∈F2

|F |!(n− |F |)!.

On the other hand it is at most ∑
G∈G

∑
C∈CG

∑
F∈C∩F2

1.

As F2 is an antichain, no chain C ∈ CG can contain a set F ∈ F2 with F ⊆ G. Therefore,
by Claim 19 and the condition that F2 consists only of sets of size from [n/2−n2/3, n/2 +
n2/3], we have ∑

C∈CG

∑
F∈C∩F2

1 6
s

n− |G|
|CG| 6

3s

n
|CG|.

Claim 18 yields ∑
G∈G

|CG| 6 s|C| = s · n!,

and thus we obtain ∑
F∈F2

|F |!(n− |F |)! 6 3s2

n
n!.

Dividing by n! gives

λ(F2) 6
3s2

n
,

and thus

|F2| 6
3s2

n

(
n

bn/2c

)
,

the electronic journal of combinatorics 25(3) (2018), #P3.49 11



which implies

|F1| 6
3s3

n

(
n

bn/2c

)
.

As |
( [n]

6n/2−n2/3

)
∪
( [n]

6n/2+n2/3

)
| = o( 1

n

(
n
bn/2c

)
), the proof of Theorem 7 (i) is finished.

Proof of Theorem 7 (iii). The statement follows from part (i) and the following claim.
We denote by Kr,1,s the poset on r + 1 + s elements a1, a2, . . . , ar, c, b1, b2, . . . , bs with
ai < c < bj for any 1 6 i 6 r and 1 6 j 6 s.

Claim 20. For any pair r, s > 2 of positive integers, the inequality

Trn−2(n,Kr,1,s) 6 Trn−1(n,
∨

2s+1
) + Trn−1(n,

∧
2r+1

)

holds.

Proof of claim. Let F ⊆ 2[n] be a family of size Trn−1(n
∨

2s+1) + Trn−1(n,
∧

2r+1) + 1.
We can find pairs (Fi, xi) for 1 6 i 6 Trn−1(n,

∧
2r+1) + 1 and Fi ∈ F , xi ∈ [n] such that

all Fi’s are distinct and Fi|[n]\xi
is the bottom element of a copy of

∨
2s+1 in F|[n]\{xi}.

Therefore there exists a y ∈ [n] such that

{Fi|[n]\{y} : 1 6 i 6 Trn−1(n,
∧

2r+1
) + 1}

contains a copy of
∧

2r+1, say

F1|[n]\{y}, F2|[n]\{y}, . . . , F2r+2|[n]\{y}

with F1|[n]\{y} being the top element. We claim that F|[n]\{x1,y} contains a copy of Kr,1,s.
Indeed, let

F1, G1, G2, . . . , G2s+1 ∈ F

be sets the traces of which form a copy of
∨

2s+1 on [n] \ {x1} (these sets exist by the
definition of F1 and x1). As removing one element may cause at most 2 sets to have the
same trace, F1 and at least s of the Gi’s will have distinct traces on [n] \ {x1, y} and thus
will form a copy of

∨
r with F1|[n]\{x1,y} being the bottom element. The same reasoning

shows that we can pick r of F2, F3, . . . , F2r+2 such that their traces on [n]\{x1, y} together
with F1|[n]\{x1,y} form a copy of

∧
r with F1|[n]\{x1,y} being the top element. Putting these

copies of
∨

s and
∧

r together, we obtain a copy of Kr,1,s.

Note that Kr,s is a subposet of Kr,1,s, hence Theorem 7 (iii) is proved.

Let T be a tree poset with a unique maximum element m. We define two new posets
obtained from T . Let T k denote the poset obtained from T by replacing m with an
antichain of size k. Equivalently,

T k = T \ {m} ∪ {m1,m2, . . . ,mk}
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such that the mi’s form an antichain, for any t ∈ T \{m} and 1 6 i 6 k we have t <Tk mi

and for any t, t′ ∈ T \ {m} we have t <Tk t′ if and only if t <T t
′. Note that if k > 2, then

T k is not a tree poset unless there is a unique element of T that precedes m. Also, if T k

is not a tree poset, then e(T k) = e(T ) + 1 = h(T ).
Let T⊗r be the tree poset defined recursively (with respect to its height) in the following

way: if T = P1 is the poset with one element, then T⊗r = P1 for any r. Otherwise,
if the maximum element m of T has c children in its Hasse-diagram and the posets
below its children are T1, T2, . . . , Tc, then the maximum element of T⊗r has c · r children
m1,m2, . . . ,mcr such that m(j−1)r+i is the maximum element of a poset isomorphic to T⊗rj

for every 1 6 j 6 c and 1 6 i 6 r.

Theorem 21. For any integer s > 2 and tree poset T with a unique maximum element
we have

Trn−1(n, T
s) = (e(T ) + o(1))

(
n

bn/2c

)
.

Proof. The proof relies on the following lemma.

Lemma 22. For any integer s > 2 we have

Trn−1(n, T
s) 6 La(n, T⊗2) + Trn−1(n,

∨
s−1

) + 1.

Proof of lemma. Let F ⊆ 2[n] be a family of size La(n, T⊗2) + Trn−1(n,
∨

s−1) + 1. Then
F contains a copy of T⊗2. Let F1 be the set of this copy corresponding to the top element
of T⊗2. As F \ {F1} is still larger than La(n, T⊗2), we can pick a set F2 ∈ F \ {F1} that
corresponds to the top element of T⊗2 in a copy in F \ {F1}. Repeating this, we can
obtain sets F1, F2, . . . , FTrn−1(n,

∨
s−1)+1 with the property that for every Fj there exists a

copy of T⊗2 in F in which they correspond to the top element. Let us write

F ′ := {F1, F2, . . . , FTrn−1(n,
∨

s−1)+1}.

By definition, there exists x ∈ [n] such that F ′|{x} contains a copy of
∨

s−1, say F1 \
{x}, F2 \ {x}, . . . , Fs \ {x}. We claim that F|[n]\{x} contains a copy of T s with F1 \
{x}, F2 \ {x}, . . . , Fs \ {x} playing the role of the s top elements of T s.

Indeed, without loss of generality we can assume that Fs \ {x} ( Fi \ {x} holds for
all 1 6 i 6 s− 1. We know that there exists a copy of T⊗2 in F with Fs playing the role
of the top element of T⊗2. We claim that we can take some of the sets (including Fs) of
this copy of T⊗2 such that their traces on [n] \ {x} form a copy of T and thus together
with F1 \ {x}, F2 \ {x}, . . . , Fs−1 \ {x} they form a copy of T s in F[n]\{x}. To see this,
we only need to observe that if G1, G2 ( G and G1 6= G2, then for any y at least one of
G1 \ {y}, G2 \ {y} is a proper subset of G \ {y}. So we can pick the sets of the copy of T
recursively starting with Fs.

Thus we indeed obtained a copy of T s in F|[n]\{x}.

Now the upper bound in Theorem 21 follows from Lemma 22, Theorem 7 (i) and
Theorem 2 using the simple observation that the height of T and T⊗r are the same and
therefore we have e(T ) = e(T⊗r) for any integer r.
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The lower bound is due to the general observation made before Conjecture 6 that
Trn−1(n, P ) > (e(P )− 1− o(1))

(
n
bn/2c

)
holds for any poset P .

Note that Theorem 7 (ii) follows by applying Theorem 21 to T =
∧

r.

In the remainder of this section, we prove Theorem 8. We will use the following lemma.

Lemma 23. Let G be a graph on n vertices and let ` : E → R be a labeling of the edges
such that in any 4-cycle the edges with the smallest and largest `-value are adjacent (if
there are more edges with smallest or largest `-value, then all these pairs of edges are
adjacent). Then G cannot contain a complete bipartite graph with partite sets of size 3
and 17.

Proof of lemma. We can assume that ` is injective as that makes the weakest restriction.
Suppose towards a contradiction that G contains 20 vertices A,B,C and v1, v2, . . . , v17
such that A,B,C are connected to all vi’s. By rearranging, we may assume that `(Avi) <
`(Avj) whenever i < j. By the famous result of Erdős and Szekeres [7], a sequence of
m2 + 1 numbers contains a monotone subsequence of m+ 1 terms, there exist five vertices
vi1 , . . . , vi5 (i1 < i2 < i3 < i4 < i5) such that the sequence l(Bvij) j = 1, 2, 3, 4, 5 is
monotone. Applying again the Erdős -Szekeres result we find three vertices α, β, γ among
the vij ’s such that

`(Aα), `(Aβ), `(Aγ);

`(Bα), `(Bβ), `(Bγ);

`(Cα), `(Cβ), `(Cγ)

all form monotone sequences. So two of these triples are monotone decreasing or increas-
ing. By rearranging if necessary, we may suppose that

`(Aα) < `(Aβ) < `(Aγ); `(Bα) < `(Bβ) < `(Bγ); and `(Aα) < `(Bα)

hold.
As Aα is the smallest labeled edge in the cycles AαBβ and AαBγ, using that the

smallest and the largest labeled edges must be adjacent, we obtain l(Bβ) < l(Aβ) and
l(Bγ) < l(Aγ). But then in the cycle AβBγ we have l(Bβ) < l(Aβ), l(Bγ) < l(Aγ), so
the smallest labeled edge is Bβ and the largest labeled edge is Aγ, contradicting that
these should be adjacent.

Proof of Theorem 8. Let F ⊆ 2[n] be an (n− 2)-trace diamond-free family. As∣∣∣∣( [n]

6 bn/2− n2/3c

)
∪
(

[n]

> bn/2 + n2/3c

)∣∣∣∣ = o

(
1

n

(
n

bn/2c

))
,

we may and will assume that all sets of F have size from [n/2− n2/3, n/2 + n2/3].
Let us consider a symmetric chain partition C of 2[n], i.e. C consists of

(
n
bn/2c

)
pairwise

disjoint chains C such that ∪C∈CC = 2[n] and for any C ∈ C the set SC = {|C| : C ∈ C}
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forms an interval with minSC + maxSC = n. (We will not use the latter property of a
symmetric chain partition.) For any C ∈ C let us define the graph GC with vertex set [n]
and edge set {

e ∈
(

[n]

2

)
: ∃C ∈ C, C ∪ e ∈ F

}
.

Let eC denote the number of edges in GC and let us bound
∑
C∈C eC.

Every F ∈ F contains
(|F |

2

)
pairs and each of them belongs to different chains. More-

over, for every C and every edge e ∈ E(GC) there can be at most 3 sets F ∈ F containing
e and F \ e ∈ C (as otherwise these sets would form a 4-chain, i.e. a special copy of the
diamond), so we obtain

1

54
n2|F| 6 1

3

∑
F∈F

(
|F |
2

)
6
∑
C∈C

eC.

On the other hand, for any C ∈ C let us define the labeling ` : E(GC)→ {0, 1, . . . , n} by
letting `(e) := |C| with C ∈ C, C∪e ∈ F (if there are more such sets C, then take the size
of an arbitrary one). Note that GC and the labeling ` satisfy the conditions of Lemma 23.
Indeed, if e1, e2, e3, e4 are consecutive edges of a 4-cycle in GC with C1, C2, C3, C4 ∈ C
and ei ∪ Ci = Fi ∈ F such that |C1| 6 |C2|, |C4| 6 |C3|, then the traces of the Fi’s
on [n] \ e1 form a copy of the diamond poset. Lemma 23 implies GC does not contain
a complete bipartite graph with parts of size 3 and 17. The celebrated Kővári - T.
Sós - Turán theorem [13] states that for any pair 1 6 s 6 t of integers if a graph G
on n vertices does not contain a complete bipartite graph with part sizes s and t, then
e(G) 6 (1/2+o(1))(t−1)1/sn2− 1

s holds. With s = 3 and t = 17, this implies eC = O(n5/3)
for all C ∈ C. Summing over C we obtain

1

54
n2|F| = O

((
n

bn/2c

)
n5/3

)
.

Rearranging yields the theorem.

4 Concluding remarks

We finish this article by posing some remarks and problems concerning our results.

• We conjecture the following about the butterfly poset:

Conjecture 24. If n > 5, then Trn−1(n,B) =
(

n
bn/2c

)
.

•We introduced the functions LaD(n, P ) and LaU(n, P ) as lower bounds on Tr(n, P ).
They seem to be interesting in their own right, and we are not aware of any earlier study
on them. Natural questions arise about the order of magnitude of LaD(n, P ).

It is natural to ask if we can find an upper bound on LaD(n, P ) using x(P ). However,
we show a poset Pm for every m such that x(Pm) = 1 and LaD(n, P ) = Ω(nm).
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Let (Pm, <) consist of a minimal element a, 2m + 1 elements b1, . . . , b2m+1 with a < bi
for 1 6 i 6 2m + 1 and m′ :=

(
2m+1

2

)
elements c1, . . . , cm′ such that for every two different

bk, bl there is exactly one cj with bk, bl < cj. Observe that we have x(Pm) = 1, as a family
consisting of sets of size at most 2 is Pm-free if and only if its 2-element sets do not contain
a copy of the complete graph Km. On the other hand consider a partition of [n] into m
sets A1, . . . , Am of almost equal size. Consider the family F of sets that intersect every
Aj in at most one element. It is obvious that F is downward closed and has cardinality
Ω(nm). We will show it is Pm-free.

Suppose by contradiction that F contains a copy of Pm. Let F1 be the subfamily
consisting of the sets that correspond to b1, . . . , b2m+1. If two distinct elements of Aj are
both contained in members of F1, then they are both contained in a set corresponding to
ck for some k, which is impossible. Thus ∪F1 intersects every Aj in at most one vertex,
which implies | ∪ F1| 6 m. Therefore we have |F1| 6 2m, a contradiction.

• Concerning the connection of LaD(n, P ), LaU(n, P ) and Tr(n, P ), the obvious
question is the following: is Proposition 16 sharp for n large enough? We know that
6 = Tr(3, B) > max{LaD(3, B), LaU(3, B)} = 5, but also that

Tr(n,B) = max{LaD(n,B), LaU(n,B)}

if n > 4. The sharpness of Proposition 16 would mean that we could use down-compression
in forbidden subposet problems for traces, similarly to Theorem 9.

Another possible improvement that would essentially be equivalent to using down-
compressions is at Proposition 11. Can we replace Tr by max{LaD, LaU} in Proposi-
tion 11? For the butterfly poset and n = 3 these are different but (n,m) → (5, 9) would
give the same bound. On the other hand, note that Proposition 11 is sharp for any poset
P . Indeed, Tr(n, P ) > min{m : ∃k (n,m) → (k, Tr(k, P ) + 1)} − 1, as shown by k = n.
The question is if we can choose a small k. More precisely, is there a constant c(P ) for
every poset P such that determining Tr(c(P ), P ) and using Proposition 11 is enough to
find Tr(n, P ) for every n (like c(P ) = 5 for the butterfly poset)?
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