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Abstract

We give a new characterization of Littlewood–Richardson–Stembridge tableaux
for Schur P -functions by using the theory of q(n)-crystals. We also give alter-
nate proofs of the Schur P -expansion of a skew Schur function due to Ardila and
Serrano, and the Schur expansion of a Schur P -function due to Stembridge using
the associated crystal structures. Finally we introduce the notion of semistandard
decomposition tableaux of a shifted skew shape and discuss its crystal structure.

Mathematics Subject Classifications: 17B37, 22E46, 05E10

1 Introduction

Let P+ be the set of strict partitions and let Pλ be the Schur P -function corresponding to
λ ∈P+ [12]. The set of Schur P -functions is an important class of symmetric functions,
which is closely related with representation theory and algebraic geometry (see [10] and
references therein). For example, the Schur P -polynomial Pλ(x1, . . . , xn) in n variables
is the character of a finite-dimensional irreducible representation Vn(λ) of the queer Lie
superalgebra q(n) with highest weight λ up to a power of 2 when the length `(λ) of λ is
no more than n [13].

The set of Schur P -functions forms a basis of a subring of the ring of symmetric
functions, and the structure constants with respect to this basis are nonnegative integers,
that is, given λ, µ, ν ∈P+,

PµPν =
∑
λ

fλµνPλ,

∗This work was supported by Samsung Science and Technology Foundation under Project Number
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for some nonnegative integers fλµν . The first and the most well-known result on a combi-
natorial description of fλµν was obtained by Stembridge [16] using shifted Young tableaux,
which is a combinatorial model for Schur P - or Q-functions [11, 17]. It is shown that
fλµν is equal to the number of semistandard tableaux with entries in a Z2-graded set
N = { 1′ < 1 < 2′ < 2 < · · · } of shifted skew shape λ/µ and weight ν such that (i)
for each integer k > 1 the southwesternmost entry with value k is unprimed or of even
degree and (ii) the reading words satisfy the lattice property. Here we say that the value
|x| is k when x is either k or k′ in a tableau. Let us call these tableaux the Littlewood–
Richardson–Stembridge (LRS) tableaux (Definitions 17 and 18).

Recently, two more descriptions of fλµν were obtained in terms of semistandard decom-
position tableaux, which is another combinatorial model for Schur P -functions introduced
by Serrano [14]. It is shown by Cho that fλµν is given by the number of semistandard de-
composition tableaux of shifted shape µ and weight w0(λ−ν) whose reading words satisfy
the λ-good property (see [3, Corollary 5.14]). Here we assume that `(λ), `(µ), `(ν) 6 n, and
w0 denotes the longest element in the symmetric group Sn. Another description is given
by Grantcharov, Jung, Kang, Kashiwara, and Kim [6] based on their crystal base theory
for the quantized enveloping algebra of q(n) [7]. They realize the crystal Bn(λ) associated
to Vn(λ) as the set of semistandard decomposition tableaux of shape λ with entries in
{ 1 < 2 < · · · < n }, and describe fλµν by characterizing the lowest weight vectors of weight
w0λ in the tensor product Bn(µ) ⊗ Bn(ν). We also remark that bijections between the
above mentioned combinatorial models for fλµν are studied in [4] using insertion schemes
for semistandard decomposition tableaux.

The main result in this paper is to give another new description of fλµν using the
theory of q(n)-crystals, and show that it is indeed equivalent to that of Stembridge.
More precisely, we show that fλµν is equal to the number of semistandard tableaux with
entries in N of shifted skew shape λ/µ and weight ν such that (i) for each integer k > 1
the southwesternmost entry with value k is unprimed or of even degree and (ii) the
reading words satisfy the hook lattice property (see Definitions 12 and 13 and Theorem
14). It is obtained by semistandardizing the standard tableaux which parametrize the
lowest weight vectors counting fλµν in [6], where the hook lattice property naturally arises
from the configuration of entries in semistandard decomposition tableaux. We show that
these tableaux for fλµν are equal to LRS tableaux (Theorem 20), and hence obtain a new
characterization of LRS tableaux.

We study other Schur P - or Q-positive expansions and their combinatorial descriptions
from a viewpoint of crystals. First we consider the Schur P -positive expansion of a skew
Schur function

sλ/δr =
∑
ν∈P+

aλ/δr ν Pν

for a skew diagram λ/δr contained in a rectangle ((r+1)r+1), where δr = (r, r−1, . . . , 1) [1].
We give a combinatorial description of aλ/δr ν (Theorem 27) by considering a q(n)-crystal
structure on the set of usual semistandard tableaux of shape λ/δr and characterizing the
lowest weight vectors corresponding to each ν ∈ P+. As a byproduct we also give a
simple alternate proof of Ardila–Serrano’s description of aλ/δr ν [1] (Theorem 31), which
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can be viewed as a standardization of our description.
We next consider the Schur expansion of a Schur P -function

Pλ =
∑
µ

gλµsµ

for λ ∈ P+. It is equivalent to the expansion of a symmetric function Sµ = Sµ(x, x)
in terms of Schur Q-functions Qλ = 2`(λ)Pλ, where Sµ(x, y) is a super Schur function in
variables x and y. We give a simple and alternate proof of Stembridge’s description of
gλµ [16] (Theorem 33) by characterizing the type A lowest weight vectors of weight w0µ
in the q(n)-crystal Bn(λ) when `(λ), `(µ) 6 n.

Finally, based on the characterization of semistandard decomposition tableaux in [6,
Proposition 2.3], we introduce the notion of semistandard decomposition tableaux of a
shifted skew shape λ/µ. The set of such tableaux, say Bn(λ/µ), naturally admits a q(n)-
crystal structure and we describe its decomposition into Bn(ν)’s generalizing the notion
of hook lattice property. We remark that the character of Bn(λ/µ) is not equal to the
skew Schur P -function corresponding to λ/µ in general, and it would be interesting to
have a more direct representation-theoretic interpretation of Bn(λ/µ).

The paper is organized as follows. In Section 2, we review the notion of q(n)-crystals
and related results. In Section 3, we describe a combinatorial description of fλµν and show
that it is equivalent to that of Stembridge. In Sections 4 and 5, we discuss the Schur
P -positive expansion of a skew Schur function and the Schur expansion of a Schur P -
function, respectively. In Section 6, we discuss semistandard decomposition tableaux of
shifted skew shape, and the Schur P -positive expansions of their characters.

2 Crystals for queer Lie superalgebras

2.1 Notation and terminology

In this subsection, we introduce necessary notation and terminologies. Let Z+ be the set
of nonnegative integers. We fix a positive integer n > 2 throughout this paper.

Let P = {λ = (λi)i>1 |λi ∈ Z+, λi > λi+1 (i > 1),
∑

i>1 λi < ∞} be the set of
partitions, and let P+ = {λ = (λi)i>1 |λ ∈ P, λi = λi+1 ⇒ λi = 0 (i > 1) } be the set
of strict partitions. For λ ∈ P, let `(λ) denote the length of λ, and |λ| =

∑
i>1 λi. Let

Pn = {λ | `(λ) 6 n } ⊆P and P+
n = P+ ∩Pn.

The (unshifted) diagram of λ ∈P is defined to be the set

Dλ = { (i, j) ∈ N2 : 1 6 j 6 λi, 1 6 i 6 `(λ) },

and the shifted diagram of λ ∈P+ is defined to be the set

D+
λ = { (i, j) ∈ N2 : i 6 j 6 λi + i− 1, 1 6 i 6 `(λ) }.

We identify Dλ and D+
λ with diagrams where a box is placed at the i-th row from the top

and the j-th column from the left for each (i, j) ∈ Dλ and D+
λ , respectively. For instance,
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if λ = (6, 4, 2, 1), then

Dλ = and D+
λ =

.

Let A be a linearly ordered set. We denote by WA the set of words of finite length
with letters in A. For w ∈WA and a ∈ A, let ca(w) be the number of occurrences of a in
w.

For λ, µ ∈ P with Dµ ⊆ Dλ, a tableau of shape λ/µ means a filling on the skew
diagram Dλ \Dµ with entries in A. For λ, µ ∈ P+ with D+

µ ⊆ D+
λ , a tableau of shifted

shape λ/µ is defined in a similar way. For a tableau T of (shifted) shape λ/µ, let w(T )
be the word given by reading the entries of T row by row from top to bottom, and from
right to left in each row. We denote by Ti,j the j-th entry (from the left) of the i-th
row of T from the top. For 1 6 i 6 `(λ), let T (i) = Ti,λi · · ·Ti,1 be the subword of w(T )
corresponding to the i-th row of T . Then we have w(T ) = T (1) · · ·T (`(λ)). We also denote
by wrev(T ) the word obtained by reading the entries of w(T ) from right to left. Note that
Ti,j is not the entry of T at the (i, j)-position of the (shifted) skew diagram of λ/µ, that
is, (i, j) ∈ Dλ \Dµ or (i, j) ∈ D+

λ \D+
µ . For a ∈ A, let ca(T ) = ca(w(T )) be the number

of occurrences of a in T .
Suppose that A is a linearly ordered set with a Z2-grading A = A0tA1. For λ, µ ∈P

with Dµ ⊆ Dλ, let SSTA(λ/µ) be the set of tableaux of shape λ/µ with entries in A which
is semistandard, that is, (i) the entries in each row (resp. column) are weakly increasing
from left to right (resp. from top to bottom), (ii) the entries in A0 (resp. A1) are strictly
increasing in each column (resp. row). Similarly, for λ, µ ∈P+ with D+

µ ⊆ D+
λ , we define

SST+
A (λ/µ) to be the set of semistandard tableaux of shifted shape λ/µ with entries in

A.
Let N = { 1′ < 1 < 2′ < 2 < · · · } be a linearly ordered set with a Z2-grading N0 = N

and N1 = N′ = {1′, 2′, · · · }. Put [n] = { 1, . . . , n } and [n]′ = { 1′, . . . , n′ }, where the
Z2-grading and linear ordering are induced from N. For a ∈ N, we write |a| = k when a
is either k or k′.

2.2 Semistandard decomposition tableaux and Schur P -functions

Let us recall the notion of semistandard decomposition tableaux [6, 14], which is our main
combinatorial object.

Definition 1.

(1) A word u = u1 · · ·us in WN is called a hook word if it satisfies u1 > u2 > · · · > uk <
uk+1 < · · · < us for some 1 6 k 6 s. In this case, let u↓= u1 · · ·uk be the weakly
decreasing subword of maximal length and u↑= uk+1 · · ·us the remaining strictly
increasing subword in u.

(2) For λ ∈ P+, let T be a tableau of shifted shape λ with entries in N. Then T is
called a semistandard decomposition tableau of shape λ if

the electronic journal of combinatorics 25(3) (2018), #P3.7 4



(i) T (i) is a hook word of length λi for 1 6 i 6 `(λ),

(ii) T (i) is a hook subword of maximal length in T (i+1)T (i), the concatenation of
T (i+1) and T (i), for 1 6 i < `(λ).

For any hook word u, the decreasing part u↓ is always nonempty by definition.
For λ ∈P+, let SSDT (λ) be the set of semistandard decomposition tableaux of shape

λ. Let x = {x1, x2, . . .} be a set of formal commuting variables, and let Pλ = Pλ(x) be
the Schur P -function in x corresponding to λ ∈ P+ (see [10]). It is shown in [14] that
Pλ is given by the weight generating function of SSDT (λ):

Pλ =
∑

T∈SSDT (λ)

xT , (1)

where xT =
∏

i>1 x
ci(T )
i .

Remark 2. Recall that the Schur P -function Pλ can be realized as the character of tableaux
T ∈ SST+

N (λ) with no primed entry or entry of odd degree on the main diagonal (cf.
[10, 11, 17]). The notion of semistandard decomposition tableaux was introduced in [14]
to give a plactic monoid model for Schur P -functions. In this paper, we follow its modified
version (Definition 1) introduced in [6], by which it is easier to describe q(n)-crystals [6,
Remark 2.6]. We also refer the reader to [4] for more details on relation between the
combinatorics of these two models.

The following is a useful criterion for a tableau to be a semistandard decomposition
one, which plays an important role in this paper.

Proposition 3. ([6, Proposition 2.3]) For λ ∈P+, let T be a tableau of shifted shape λ
with entries in N. Then T ∈ SSDT (λ) if and only if T (k) is a hook word for 1 6 k 6 `(λ),
and none of the following conditions holds for each 1 6 k < `(λ):

(1) Tk,1 6 Tk+1,i for some 1 6 i 6 λk+1,

(2) Tk+1,i > Tk+1,j > Tk,i+1 for some 1 6 i < j 6 λk+1,

(3) Tk+1,j < Tk,i < Tk,j+1 for some 1 6 i 6 j 6 λk+1.

Equivalently, T ∈ SSDT (λ) if and only if T (k) is a hook word for 1 6 k 6 `(λ), and the
following conditions hold for 1 6 k < `(λ):

(a) if Tk,i 6 Tk+1,j for 1 6 i 6 j 6 λk+1, then i 6= 1 and Tk+1,i−1 < Tk+1,j,

(b) if Tk,i > Tk+1,j for 1 6 i 6 j 6 λk+1, then Tk,i > Tk,j+1.

For λ ∈ P+, let SSDTn(λ) be the set of tableaux T ∈ SSDT (λ) with entries in
[n]. By Proposition 3(1), we see that SSDTn(λ) 6= ∅ if and only if λ ∈ P+

n . We
denote by Pλ(x1, . . . , xn) the Schur P -polynomial in x1, . . . , xn given by specializing Pλ
at xn+1 = xn+2 = · · · = 0. Then we have Pλ(x1, . . . , xn) =

∑
T∈SSDTn(λ) x

T .
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For λ ∈ P+
n , let Hλ

n be the element in SSDTn(λ) where the subtableau with entry
`(λ) − i + 1 is a connected border strip of size λ`(λ)−i+1 starting at (i, i) ∈ D+

λ for each
i = 1, . . . , `(λ), and let Lλn be the one where the subtableau with entry n − i + 1 is a
connected horizontal strip of size λi starting at (i, i) ∈ D+

λ for each i = 1, . . . , `(λ). For
example, when n = 4 and λ = (4, 3, 1), we have

3 2 2 1

2 1 1

1

Hλ
n =

4 4 4 4

3 3 3

2

Lλn =

.

Indeed, Hλ
n and Lλn are the unique tableaux in SSDTn(λ) such that

(c1(H
λ
n), . . . , cn(Hλ

n)) = λ, (c1(L
λ
n), . . . , cn(Lλn)) = w0λ.

Here we assume that P+
n ⊂ Zn+ and the symmetric group Sn acts on Zn+ by permutation,

where w0 is the longest element in Sn.

2.3 Crystals

Let us first review the crystals for the general linear Lie algebra gl(n) in [8, 9].
Let P∨ =

⊕n
i=1 Zei be the dual weight lattice and P = HomZ(P∨,Z) =

⊕n
i=1 Zεi the

weight lattice with 〈εi, ej〉 = δij for 1 6 i, j 6 n. Define a symmetric bilinear form ( · | · )
on P by (εi|εj) = δij for 1 6 i, j 6 n. Let {αi = εi− εi+1 (i = 1, . . . , n− 1) } be the set of
simple roots, and {hi = ei−ei+1 (i = 1, . . . , n−1) } the set of simple coroots of gl(n). Let
P+ = {λ |λ ∈ P, 〈λ, hi〉 > 0 (i = 1, . . . , n− 1) } be the set of dominant integral weights.

A gl(n)-crystal is a set B together with the maps wt : B → P , εi, ϕi : B → Z∪{−∞}
and ẽi, f̃i : B → B ∪{0} for i = 1, . . . , n− 1 satisfying the following conditions: for b ∈ B
and i = 1, . . . , n− 1,

(1) ϕi(b) = 〈wt(b), hi〉+ εi(b),

(2) εi(ẽib) = εi(b)− 1, ϕi(ẽib) = ϕi(b) + 1, wt(ẽib) = wt(b) + αi if ẽib ∈ B,

(3) εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b)− 1, wt(f̃ib) = wt(b)− αi if f̃ib ∈ B,

(4) f̃ib = b′ if and only if b = ẽib
′ for b′ ∈ B,

(5) ẽib = f̃ib = 0 when ϕi(b) = −∞.

Here 0 is a formal symbol and −∞ is the smallest element in Z ∪ {−∞} such that
−∞ + n = −∞ for all n ∈ Z. For µ ∈ P , let Bµ = { b ∈ B |wt(b) = µ }. When Bµ is
finite for all µ, we define the character of B by chB =

∑
µ∈P |Bµ|eµ, where eµ is a basis

element of the group algebra Q[P ].
Let B1 and B2 be gl(n)-crystals. A tensor product B1 ⊗ B2 is a gl(n)-crystal, which

is defined to be B1 ×B2 as a set with elements denoted by b1 ⊗ b2, where
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wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max{εi(b1), εi(b2)− 〈wt(b1), hi〉},
ϕi(b1 ⊗ b2) = max{ϕi(b1) + 〈wt(b2), hi〉, ϕi(b2)},

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2, if ϕi(b1) > εi(b2),

b1 ⊗ ẽib2, if ϕi(b1) < εi(b2),

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2, if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2, if ϕi(b1) 6 εi(b2),

(2)

for i = 1, . . . , n− 1. Here we assume that 0⊗ b2 = b1 ⊗ 0 = 0.
For λ ∈ Pn, let Bn(λ) be the crystal associated to an irreducible gl(n)-module with

highest weight λ, where we regard λ as
∑n

i=1 λiεi ∈ P+. We may regard [n] as the set of
vertices in Bn(ε1), where wt(k) = εk for k ∈ [n], and hence W[n] as a gl(n)-crystal where
we identify w = w1 . . . wr with w1⊗ · · · ⊗wr ∈ Bn(ε1)

⊗r. The crystal structure on W[n] is
easily described by the so-called signature rule (cf. [9, Section 2.1]). For λ ∈Pn, the set
SST[n](λ) becomes a gl(n)-crystal under the identification of T with w(T ) ∈W[n], and it is
isomorphic toBn(λ) [9]. In general, one can define a gl(n)-crystal structure on SST[n](λ/µ)
for a skew diagram λ/µ. By abuse of notation, we set Bn(λ/µ) := SST[n](λ/µ).

Next, let us review the notion of crystals associated to polynomial representations of
the queer Lie superalgebra q(n) developed in [6, 7].

Definition 4. A q(n)-crystal is a set B together with the maps wt : B → P , εi, ϕi : B →
Z∪ {−∞} and ẽi, f̃i : B → B ∪ {0} for i ∈ I := { 1, . . . , n− 1, 1 } satisfying the following
conditions:

(1) B is a gl(n)-crystal with respect to wt, εi, ϕi, ẽi, f̃i for i = 1, . . . , n− 1,

(2) wt(b) ∈
⊕

i∈[n] Z+εi for b ∈ B,

(3) wt(ẽ1b) = wt(b) + α1, wt(f̃1b) = wt(b)− α1 for b ∈ B,

(4) f̃1b = b′ if and only if b = ẽ1b
′ for all b, b′ ∈ B,

(5) for 3 6 i 6 n− 1, we have

(i) the operators ẽ1 and f̃1 commute with ẽi, f̃i,

(ii) if ẽ1b ∈ B, then εi(ẽ1b) = εi(b) and ϕi(ẽ1b) = ϕi(b).

Let Bn be a q(n)-crystal which is the gl(n)-crystal Bn(ε1) together with f̃1 1 = 2
(in dashed arrow):

1 2 3 · · · n
1

1

2 3 n− 1

.
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Here we write b
i−→ b′ if f̃ib = b′ for b, b′ ∈ B and i ∈ I \ {1} as usual, and b

1
99K b′ if

f̃1b = b′.
For q(n)-crystals B1 and B2, the tensor product B1 ⊗B2 is the gl(n)-crystal B1 ⊗B2

where the actions of ẽ1 and f̃1 are given by

ẽ1(b1 ⊗ b2) =

{
ẽ1b1 ⊗ b2, if 〈ε1,wt(b2)〉 = 〈ε2,wt(b2)〉 = 0,

b1 ⊗ ẽ1b2, otherwise,

f̃1(b1 ⊗ b2) =

{
f̃1b1 ⊗ b2, if 〈ε1,wt(b2)〉 = 〈ε2,wt(b2)〉 = 0,

b1 ⊗ f̃1b2, otherwise.

(3)

Then it is easy to see that B1 ⊗ B2 is a q(n)-crystal. In particular, W[n] is also a q(n)-
crystal.

Let B be a q(n)-crystal. Suppose that B is a regular gl(n)-crystal, that is, each
connected component in B is isomorphic to Bn(λ) for some λ ∈Pn. Let W = Sn be the
Weyl group of gl(n) which is generated by the simple reflection ri corresponding to αi for
i = 1, . . . , n− 1. We have a group action of W on B denoted by S such that

Sri(b) =

{
f̃
〈wt(b),hi〉
i b, if 〈wt(b), hi〉 > 0,

ẽ
−〈wt(b),hi〉
i b, if 〈wt(b), hi〉 6 0,

for b ∈ B and i = 1, . . . , n− 1. For 2 6 i 6 n− 1, let wi ∈ W be such that wi(αi) = α1,
and let

ẽi = Sw−1
i
ẽ1Swi , f̃i = Sw−1

i
f̃1Swi . (4)

For b ∈ B, we say that b is a q(n)-highest weight vector if ẽib = ẽib = 0 for 1 6 i 6 n− 1,
and b is a q(n)-lowest weight vector if Sw0b is a q(n)-highest weight vector.

For λ ∈P+, let Bn(λ) = SSDTn(λ), and consider an injective map

Bn(λ) �
� // W[n]

T � // wrev(T ).

(5)

Then we have the following.

Theorem 5. ([6, Theorem 2.5]) Let λ ∈P+
n be given.

(a) The image of Bn(λ) in (5) together with {0} is invariant under the action of ẽi and

f̃i for i ∈ I, and hence Bn(λ) is a q(n)-crystal.

(b) The q(n)-crystal Bn(λ) is connected where Hλ
n is a unique q(n)-highest weight vector

and Lλn is a unique q(n)-lowest weight vector.

Remark 6. In [7], a semisimple tensor category over the quantum superalgebra Uq(q(n))
is introduced, and it is shown that each irreducible highest weight module Vn(λ) in this
category, parametrized by λ ∈ P+

n , has a crystal base. Furthermore, it is shown in [6,
Theorem 2.5(c)] that the crystal of Vn(λ) is isomorphic to Bn(λ).
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Figure 1: The q(3)-crystal B3(3, 1)

Let B1 and B2 be q(n)-crystals. For b1 ∈ B1 and b2 ∈ B2, let us say that b1 and
b2 are equivalent and write b1 ≡ b2 if there exists an isomorphism of q(n)-crystals ψ :
C(b1) −→ C(b2) such that ψ(b1) = b2 where C(bi) denotes the connected component of
bi ∈ Bi (i = 1, 2) as a q(n)-crystal.

By [7, Theorem 4.6], each connected component in B⊗Nn (N > 1) is isomorphic to
Bn(λ) for some λ ∈P+

n with |λ| = N . Indeed, for b = b1 ⊗ · · · ⊗ bN ∈ B⊗Nn , there exists
a unique λ ∈P+

n and T ∈ Bn(λ) such that b ≡ T . In particular, b is a q(n)-lowest (resp.
q(n)-highest) weight vector if and only if b ≡ Lλn (resp. Hλ

n).
The following lemma plays a crucial role in characterization of q(n)-lowest weight

vectors in B⊗Nn and hence describing the decompositions of B⊗Nn and Bn(µ) ⊗ Bn(ν)
(µ, ν ∈P+

n ) into connected components in [6].

Lemma 7. ([6, Lemma 1.15, Corollary 1.16]) For b = b1⊗ · · · ⊗ bN ∈ B⊗Nn , the following
are equivalent:

(1) b is a q(n)-lowest weight vector,

(2) b′ = b2 ⊗ · · · ⊗ bN is a q(n)-lowest weight vector and εb1 + wt(b′) ∈ w0P+
n ,
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(3) wt(bM ⊗ · · · ⊗ bN) ∈ w0P+
n for all 1 6M 6 N .

Hence, we have the following immediately by Lemma 7.

Corollary 8. For λ(1), . . . , λ(s) ∈P+
n and T1 ⊗ · · · ⊗ Ts ∈ Bn(λ(1))⊗ · · · ⊗Bn(λ(s)), the

following are equivalent:

(1) T1 ⊗ · · · ⊗ Ts is a q(n)-lowest weight vector,

(2) Tr ⊗ · · · ⊗ Ts ∈ Bn(λ(s)) ⊗ · · · ⊗ Bn(λ(r)) is a q(n)-lowest weight vector for all
1 6 r 6 s.

Note that we do not have an analogue of Lemma 7 for q(n)-highest weight vectors.

Remark 9. Let m > n be a positive integer, and put t = m − n. For N > 1, let
ψt : B⊗Nn −→ B⊗Nm be the map given by ψt(u1 ⊗ · · · ⊗ uN) = (u1 + t) ⊗ · · · ⊗ (uN + t).
Then for λ ∈P+

n and u ∈ B⊗Nn we have u ≡ Lλn if and only if ψt(u) ≡ Lλm. This implies
that the multiplicity of Bn(λ) in B⊗Nn is equal to that of Bm(λ) in B⊗Nm for λ ∈P+

n .

3 Littlewood–Richardson rule for Schur P -functions

For λ, µ, ν ∈ P+, the shifted Littlewood–Richardson coefficients fλµν are the coefficients
given by

PµPν =
∑
λ

fλµνPλ. (6)

In this section we give a new combinatorial description of fλµν using the theory of q(n)-
crystals. We also show that our description of fλµν is equivalent to Stembridge’s description
[16].

3.1 Shifted Littlewood–Richardson rule

Definition 10. Let w = w1 · · ·wN be a word in WN. Let mk = ck(w) + ck′(w) for k > 1.
We define w∗ = w∗1 · · ·w∗N to be the word obtained from w after applying the following
steps for each k > 1:

(1) Consider the letters wi’s with |wi| = k. Label them with 1, 2, . . . ,mk (as subscripts),
first enumerating the wp’s with wp = k from left to right, and then the wq’s with
wq = k′ from right to left.

(2) After the step (1), remove all ′ in each labeled letter k′j, that is, replace any k′j by
kj for ck(w) < j 6 mk.

Example 11.

w = 11′11′1 −→ 111
′
5121

′
413 −→ w∗ = 1115121413

w = 21′12′2′121 −→ 211
′
4112

′
42
′
3122213 −→ w∗ = 2114112423122213
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Definition 12. Let w = w1 · · ·wN ∈ WN be given. We say that w satisfies the hook
lattice property if the word w∗ = w∗1 · · ·w∗N associated to w given in Definition 10 satisfies
the following for k > 1:

(L1) if w∗i = k1, then no k + 1j for j > 1 occurs in w∗1 · · ·w∗i−1,

(L2) if (w∗s , w
∗
t ) = (k + 1i, ki+1) for some s < t and i > 1, then no k + 1j for i < j occurs

in w∗s · · ·w∗t ,

(L3) if (w∗s , w
∗
t ) = (kj+1, k + 1j) for some s < t and j > 1, then no ki for i 6 j occurs in

w∗s · · ·w∗t .

Definition 13. For λ, µ, ν ∈P+, let Fλµν be the set of tableaux Q such that

(1) Q ∈ SST+
N (λ/µ) with ck(Q) + ck′(Q) = νk for k > 1,

(2) for k > 1, if x is the rightmost letter in w(Q) with |x| = k, then x = k,

(3) w(Q) satisfies the hook lattice property in Definition 12.

Then we have the following characterization of fλµν .

Theorem 14. For λ, µ, ν ∈P+, we have

fλµν =
∣∣Fλµν∣∣ ,

that is, the shifted LR coefficient fλµν is equal to the number of tableaux in Fλµν.

Proof. Choose n such that λ, µ, ν ∈P+
n . Put

Lλµν = {T |T ∈ Bn(ν), T ⊗ Lµn ≡ Lλn }. (7)

By Corollary 8, we have

Bn(ν)⊗Bn(µ) ∼=
⊔

λ∈P+
n

Bn(λ)⊕|L
λ
µν |. (8)

Hence we have |Lλµν | = fλµν = fλνµ from (1) and the linear independence of Schur P -
polynomials Pλ(x1, . . . , xn)’s.

Let us prove fλµν = |Fλµν | by constructing a bijection

Lλµν
// // Fλµν

T //� // QT .

(9)

Let T ∈ Lλµν be given. Assume that wrev(T ) = u1 · · ·uN where N = |ν|. By Lemma 7,

there exists µ(m) ∈P+
n for 1 6 m 6 N such that

(i) (uN−m+1 · · ·uN)⊗ Lµn ≡ Lµ
(m)

n and µ(N) = λ,
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(ii) µ(m) is obtained by adding a box in the (n− um + 1)-st row of µ(m−1).

Here we assume that µ(0) = µ. Recall that

wrev(T ) = T (`(ν)) · · ·T (1),

where T (k) = Tk,1 · · ·Tk,λk is a hook word for 1 6 k 6 `(ν). We define QT to be a tableau
of shifted shape λ/µ with entries in N, where µ(m)/µ(m−1) is filled with{

k′, if um belongs to T (k)↑,
k, if um belongs to T (k)↓,

(10)

for some 1 6 k 6 `(ν). In other words, the boxes in QT corresponding to T (k)↑ are filled
with k′ from right to left as a vertical strip and then those corresponding to T (k)↓ are
filled with k from left to right as a horizontal strip.

By construction, it is clear that QT ∈ SST+
N (λ/µ) with ck′(QT ) + ck(QT ) = νk for

1 6 k 6 `(ν). Let w(QT ) = w1 · · ·wN . Since T (k) is a hook word for each k and the
rightmost letter, say um, in T (k)↓ is strictly smaller than the leftmost letter um+1 in T (k)↑,
the entry k in QT corresponding to um is located to the southeast of all k′’s in QT . So
the conditions Definition 13(1) and (2) are satisfied.

It remains to check that w(QT ) satisfies the hook lattice property. Note that if we
label k and k′ in (10) as kj and k′j, respectively when um = Tk,j, then it coincides with the
labeling on the letters in w(QT ) given in Definition 10(1). Now it is not difficult to see
that the conditions Proposition 3(1), (2), and (3) on T implies the conditions Definition
12 (L1), (L2), and (L3), respectively. Therefore, QT ∈ Fλµν .

If T, T ′ ∈ Lλµν with T (i) 6= T ′(i) for some i > 1, then it follows from (10) that QT 6= QT ′ ,
so the correspondence T 7→ QT is injective. Moreover, this correspondence is reversible,
and hence the map (9) is a bijection. This completes the proof.

Remark 15. We see from Remark 9 that |Lλµν | does not depend on n for all sufficiently
large n. Hence (8) also implies the Schur P -positivity of the product PµPν .

Remark 16. For T ∈ Lλµν , let Q̂T be the tableau of shifted shape λ/µ, which is defined

in the same way as QT in the proof of Theorem 14 except that we fill µ(m)/µ(m−1) with

m in (10) for 1 6 m 6 N . Then the set { Q̂T |T ∈ Lλµν } is equal to the one given in [6,
Theorem 4.13] to describe fλµν . For example,

3 3 4

2
T1 = ∈ L

(4,3,1)
(3,1)(3,1)

1

2 3

4

Q̂T1 =
1′

1 1

2

QT1 =

4 2 3

3
T2 = ∈ L

(4,3,1)
(3,1)(3,1)

3

1 4

2

Q̂T2 =
1

1′ 2

1

QT2 =
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3.2 Stembridge’s description of fλµν

Definition 17. Let w = w1 · · ·wN be a word in WN and wrev be the reverse word of w.
Let ŵ be the word obtained from w by replacing k by (k+ 1)′ and k′ by k for each k > 1.
Suppose that wŵrev = a1 · · · a2N , and let mk(i) = ck(a1 · · · ai) for k > 1 and 0 6 i 6 2N .
Then we say that w satisfies the lattice property if

mk+1(i) = mk(i) implies |ai+1| 6= k + 1 for k > 1 and i > 0. (11)

Here we assume that mk(0) = 0.

Definition 18. For λ, µ, ν ∈P+, let LRSλµν be the set of tableaux Q such that

(1) Q ∈ SST+
N (λ/µ) with ck(Q) + ck′(Q) = νk for k > 1,

(2) for k > 1, if x is the rightmost letter in w(Q) with |x| = k, then x = k,

(3) w(Q) satisfies the lattice property in Definition 17.

We call LRSλµν the set of Littlewood–Richardson–Stembridge tableaux.

Theorem 19. ([16, Theorem 8.3]) For λ, µ, ν ∈P+, we have

fλµν =
∣∣LRSλµν∣∣ ,

that is, the shifted LR coefficient fλµν is equal to the number of tableaux in LRSλµν.

Theorem 20. For λ, µ, ν ∈P+, we have

Fλµν = LRSλµν .

Proof. Since Definition 13(1) and (2) are the same as Definition 18(1) and (2), respectively,
it suffices to show that for any Q ∈ SST+

N (λ/µ), w := w(Q) satisfies the hook lattice
property in Definition 12 if and only if w satisfies the lattice property in Definition 17.
We assume that N = |ν|, w = w1 · · ·wN , w∗ = w∗1 · · ·w∗N , and wŵrev = a1 · · · a2N .

Suppose that w satisfies the hook lattice property in Definition 12. We use induction
on 1 6 i 6 2N to show that a1 · · · a2N satisfies (11). We first observe from (L1) that a1 =
1 or 1′, and a1 satisfies (11) since mk(0) = 0 for all k > 1.

We now assume that a1 · · · ai for some 1 6 i < 2N satisfies (11). Suppose for the sake
of contradiction that mk+1(i) = mk(i) = m and |ai+1| = k+1 for some k > 1. Here m > 0
by (L1). By induction hypothesis, there exist s < t 6 i such that as = k with mk(s) = m
and at = k + 1 with mk+1(t) = m. Note that for each k > 1

ck(w) + ck′(w) > ck+1(w) + c(k+1)′(w), (12)

which implies that the number of k’s in wŵrev is greater than the number of k + 1’s in
wŵrev. So we can choose an integer u > i + 1 such that au = k and mk(u) = m + 1. We
now consider the following four cases:
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Case 1. Let 1 6 s < t < i+1 6 N . In this case w∗s = km, w∗t = k+1m and w∗i+1 = k+
1M for some M > m+1. (i) If u 6 N , then we have (w∗t , w

∗
i+1, w

∗
u) = (k+1m, k+1M , km+1),

which contradicts (L2). (ii) If N < u < 2N − s + 1, then a2N−u+1 = w2N−u+1 = k′

(s < 2N − u+ 1 6 N) but no k occurs in ws+1 · · ·wN which contradicts Definition 13(2).
(iii) If 2N − s+ 1 < u 6 2N , then we have (w∗2N−u+1, w

∗
s , w

∗
t ) = (km+1, km, k+ 1m), which

contradicts (L3).

Case 2. Let 1 6 s < t 6 N < i+1 6 2N . In this case w∗s = km and w∗t = k+1m. Since
w2N−u+1 = k′ (2N−u+1 < N), we have s 6= 2N−u+1. (i) If s < 2N−u+1, then we have
w2N−u+1 = k′ but no k in ws+1 · · ·wn since mk(i) = m, which contradicts Definition 13(2).
(ii) If 2N − u + 1 < s, then we have (w∗2N−u+1, w

∗
s , w

∗
t ) = (km+1, km, k + 1m), which

contradicts (L3).

Case 3. Let 1 6 s 6 N < t < i+ 1 6 2N . In this case w∗s = km, w∗2N−t+1 = k+ 1m. If
ai+1 = (k + 1)′, then a2N−i = k but it is impossible from the assumption mk(i) = m. So
ai+1 = k+ 1 and w∗2N−i = k+ 1m+1. (i) If s < 2N − t+ 1, then we have w2N−t+1 = (k+ 1)′

(2N − t + 1 6 N) but no k + 1 in w2N−t+2 · · ·wN since mk+1(i) = m, which contradicts
Definition 13(2). (ii) If 2N−t+1 < s, then by (12) there is an integer v > u such that av =
k and mk(v) = m + 2. So we have (w∗2N−v+1, w

∗
2N−u+1, w

∗
2N−i) = (km+2, km+1, k + 1m+1),

which contradicts (L3).

Case 4. Let N < s < t < i+1 6 2N . In this case w∗2N−s+1 = km and w∗2N−t+1 = k+1m.
(i) If ai+1 = k+1, then w2N−i = (k+1)′ and w∗2N−i = k+1m+1. By (12) there is an integer
v > u such that av = k and mk(v) = m + 2. So we have (w∗2N−v+1, w

∗
2N−u+1, w

∗
2N−i) =

(km+2, km+1, k+ 1m+1), which contradicts (L3). (ii) If ai+1 = (k+ 1)′, then w2N−i = k and
w∗2N−i = kM for some M < m. So we have (w∗2N−u+1, w

∗
2N−i, w

∗
2N−t+1) = (km+1, kM , k +

1m), which contradicts (L3).

Conversely, we assume that w satisfies the lattice property in Definition 17. We first
claim that w satisfies (L1). Given k > 1, let w∗i = k1 for some 1 6 i 6 N . If w∗j = k + 11

for some 1 6 j < i, then it follows that mk(j − 1) = mk+1(j − 1) = 0 and aj = k + 1,
which contradicts (11). Hence w satisfies (L1).

Next, we claim that w satisfies (L2). Suppose that there is a triple (w∗s , w
∗
u, w

∗
t ) =

(k + 1i, k + 1j, ki+1) for some k > 1, i < j, and 1 6 s < u < t 6 N . We may assume
that j = i + 1. Since w∗s = k + 1i is placed to the left of w∗u = k + 1i+1, it follows from
Definition 10 that as = k+ 1, and from Definition 18(2) that au = k+ 1. Since w satisfies
the lattice property, there is a positive integer v < s such that w∗v = ki, i.e., av = k and
mk(v) = i for some v < s. We have mk+1(u − 1) = mk(u − 1) = i and au = k + 1, a
contradiction. So w satisfies (L2).

Finally, we claim that w satisfies (L3). Suppose for the sake of contradiction that
(w∗s , w

∗
u, w

∗
t ) = (kj+1, ki, k + 1j) for some k > 1, i 6 j, and 1 6 s < u < t 6 N . We may

assume that i = j. Since w∗s = kj+1 is placed to the left of w∗u = kj, it follows that as = k′.
We consider four cases depending whether au and at are primed or not as follows:

Case 1. Let au = k′ and at = (k+1)′. It follows that a2N−u+1 = k (mk(2N−u+1) = j)
and a2N−t+1 = k+1 (mk(2N−u+1) = j). So we have mk+1(2N−t) = mk(2N−t) = j−1
and a2N−t+1 = k + 1, as desired.
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Case 2. Let au = k′ and at = k + 1. It follows that a2N−u+1 = k, mk(2N − u+ 1) = j
and mk+1(t) = j. Since t < 2N − u+ 1, we have mk(t) < mk+1(t). So there is an integer
0 6 t̂ < t such that mk(t̂) = mk+1(t̂) < j and at̂+1 = k + 1, as desired.

Case 3. Let au = k and at = (k+ 1)′. It follows that a2N−t+1 = k+ 1 and mk+1(2N −
t + 1) = j. From mk(2N − s + 1) = j + 1 and 2N − t + 1 < 2N − s + 1 we have
mk(2N − t + 1) = mk+1(2N − t + 1) = j. If there is another k + 1 between w∗t and w∗u,
then we obtain the desired contradiction. Otherwise, mk(2N − u) = mk+1(2N − u) and
a2N−u+1 = (k + 1)′, as desired.

Case 4. Let au = k and at = k + 1. From as = k′ (w∗s = kj+1) it follows that
mk(2N − u) = j. If mk+1(2N − u) = j, from a2N−u+1 = (k + 1)′ we get a contradiction.
If mk+1(2N − u) > j, by choosing the smallest integer t̂ > t such that mk+1(t̂) = j + 1
this leads to a contradiction.

Indeed, we have shown in the proof of Theorem 20 that

Corollary 21. Let w ∈WN be such that

(1) (ck(Q) + ck′(Q))k>1 ∈P+,

(2) for k > 1, if x is the rightmost letter in w with |x| = k, then x = k.

Then w satisfies the hook lattice property in Definition 12 if and only if w satisfies the
lattice property in Definition 17.

Remark 22. A bijection from LRSλµν to Lλµν is also given in [4, Theorem 4.7], which coincides
with the inverse of the map T 7→ QT in (9) (see also the remarks in [4, p.82]). The proof
of [4, Theorem 4.7] use insertion schemes for two versions of semistandard decomposition
tableaux and another combinatorial model for fλµν by Cho [3] as an intermediate object
between LRSλµν and Lλµν .

On the other hand, we prove more directly that the map T 7→ QT in (9) is a bijection
from Lλµν to LRSλµν by using a new characterization of the lattice property in Theorem 20.

4 Schur P -expansions of skew Schur functions

4.1 The Schur P -expansion of sλ/δr

For r > 0, let us denote by δr the partition (r, r − 1, . . . , 1) if r > 1, and (0) if r = 0. We
fix a nonnegative integer r.

Let λ ∈ P be such that Dδr ⊆ Dλ ⊆ D((r+1)r+1). Here ((r + 1)r+1) means the
rectangular partition (r + 1, . . . , r + 1) with length r + 1. For instance, the diagram

D(5,4,4,4,2)/δ4 =
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is contained in D(55).
It is shown in [1, 5] that the skew Schur function sλ/δk has a nonnegative integral

expansion in terms of Schur P -functions

sλ/δr =
∑
ν∈P+

aλ/δr ν Pν , (13)

together with a combinatorial description of aλ/δr ν . Moreover it is shown that these skew
Schur functions are the only ones (up to rotation of shape by 180◦), which have Schur
P -positivity. In this section, we give a new simple description of aλ/δr ν using q(n)-crystals.

First we consider a q(n)-crystal structure on Bn(λ/δr).

Proposition 23. Let λ ∈Pn be such that Dδr ⊆ Dλ ⊆ D(r+1)r+1. Then the gl(n)-crystal

Bn(λ/δr), regarded as a subset of W[n] together with 0 is invariant under ẽ1 and f̃1. Hence
Bn(λ/δr) is a q(n)-crystal.

Proof. Let N = |λ| − |δr|. For T ∈ Bn(λ/δr), let w(T ) = w1 · · ·wN . Recall that T is
identified with w(T ) in W[n]. Here we call the box in Dλ/δr containing wi the wi-box, and
call the set of boxes (x, r − x + 2) ∈ Dλ/δr for 1 6 x 6 r + 1 the main anti-diagonal of
Dλ/δr .

Suppose that f̃1w(T ) 6= 0. There exists 1 6 i 6 N − 1 such that wi = 1 and wj 6= 1, 2
for all i < j 6 N , and

f̃1(w1 · · ·wi−1 1wi+1 · · ·wN) = w1 · · ·wi−1 2 wi+1 · · ·wN ,

by the tensor product rule (3). We first observe that the entry 1 in T can be placed only
on the main anti-diagonal in Dλ/δr . If there is a box in Dλ/δr below the wi-box, then it
corresponds to wj for some j > i, and hence its entry is greater than 2. Moreover, if there
is a box in Dλ/δr to the right of the wi-box, then its entry is greater than 1 since it is not
on the main anti-diagonal. So we conclude that there exists T ′ ∈ SST[n](λ/δr) such that

w(T ′) = f̃1w(T ).

Suppose that ẽ1w(T ) 6= 0. There exists 1 6 i 6 N − 1 such that wi = 2 and wj 6= 1, 2
for all i < j 6 N , and

ẽ1(w1 · · ·wi−1 2wi+1 · · ·wN) = w1 · · ·wi−1 1 wi+1 · · ·wN , (14)

by the tensor product rule (3). If the wi-box is not on the main anti-diagonal, then the
wi+1-box is placed to the left of the wi-box. Then the wi+1-box is filled with 1 or 2, which
contradicts (14). So the wi-box is on the main anti-diagonal, and thus f̃1w(T ) = w(T ′)
for some T ′ ∈ Bn(λ/δr). This completes the proof.

Remark 24. The above proposition is a slight generalization of [7, Example 2.10(d)],
which considers only the set of semistandard tableaux of shape Yλ with entries in [n] for
a strict partition λ ∈ P+. Here Yλ is the skew diagram having λ1 boxes on the main
anti-diagonal, λ2 boxes on the second one, etc.
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Corollary 25. Under the above hypothesis, the skew Schur function sλ/δr is Schur P -
positive.

Proof. Since Bn(λ/δr) is a q(n)-crystal, the skew Schur polynomial sλ/δr(x1, . . . , xn) is a
nonnegative integral linear combination of Pν(x1, . . . , xn). From the fact that Bn(λ/δr)
lies inside B(ε1)

N for N = |λ| − |δr| we then apply Remark 9.

Definition 26. Let λ ∈P be such that Dδr ⊆ Dλ ⊆ D((r+1)r+1) and ν ∈P+. Let Aλ/δr ν
be the set of tableaux Q such that

(1) Q ∈ SST+
[r+1](ν) with ck(Q) = λr−k+2 − k + 1 for 1 6 k 6 r + 1,

(2) for 1 6 k 6 r and 1 6 i 6 N ,

mk(i) 6 mk+1(i) + 1,

where wrev(Q) = w1 · · ·wN and mk(i) = ck(w1 · · ·wi).

Then we have the following combinatorial description of aλ/δr ν .

Theorem 27. For λ ∈P with Dδr ⊆ Dλ ⊆ D((r+1)r+1) and ν ∈P+, we have

aλ/δr ν =
∣∣Aλ/δr ν∣∣ .

Proof. Choose n such that λ, ν ∈P+
n . We may assume that λ1 = `(λ) = r + 1. Let

Lλ/δr ν = {T ∈ Bn(λ/δr) |T ≡ Lν }. (15)

By Proposition 23, we have

Bn(λ/δr) ∼=
⊔

ν∈P+
n

Bn(ν)⊕|Lλ/δr ν |. (16)

By linear independence of Pν(x1, . . . , xn)’s for ν ∈P+
n , we have aλ/δr ν = |Lλ/δr ν |.

Let us construct a bijection

Lλ/δr ν
// // Aλ/δr ν

T //� // QT

(17)

as follows. Let T ∈ Lλ/δr ν be given. Suppose that w(T ) = u1 · · ·uN , where N = |ν|. By

Lemma 7, there exists ν(m) ∈P+
n for 1 6 m 6 N such that uN−m+1 · · ·uN ≡ Lν

(m)
, where

ν(1) = (1), ν(N) = ν, and ν(m) is obtained by adding a box in the (n− um + 1)-st row of
ν(m−1) for 1 6 m 6 N with ν(0) = ∅.

Note that wrev(T ) = T (r+1) · · ·T (1), where T (l) = Tl,1 · · ·Tl,λl−r−1+l is a weakly increas-
ing word corresponding to the l-th row of T for 1 6 l 6 r + 1. Let QT be a tableau of
shifted shape ν with entries in N, where ν(m)/ν(m−1) is filled with r + 2 − l if um occurs
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in T (l), for some 1 6 l 6 r+ 1. Note that the boxes in QT corresponding to T (l) are filled
with r + 2− l as a horizontal strip. So QT satisfies the condition Definition 26(1).

For each k > 1, let us enumerate the letter k’s in QT from southwest to northeast by
k1, k2, . . .. Since T ∈ SSTn(λ/δr), we see that the entry ki in QT corresponds to Tl,i for
i > 1, where l = r + 2 − k, and moreover (k + 1)i is located in the southwest of ki+1 for
i > 2. This implies the condition Definition 26(2), and hence QT ∈ Aλ/δr ν .

Finally, one can check that correspondence T 7→ QT is a bijection.

Example 28. Let λ = (6, 5, 5, 4, 4, 2) with Dλ ⊆ D(66) and n = 7. For ν = (5, 4, 2), we
have Lλ/δ5 ν = {T1, T2 } and Aλ/δ5 ν = {QT1 , QT2 } as follows.

6
5

5 7
6 6

6 7 7
7 7

T1 =

5
6

5 7
6 6

6 7 7
7 7

T2 =
1 1 2 2 4

2 3 3 6

4 5

QT1 =
1 1 2 2 4

2 3 3 5

4 6

QT2 =

Moreover, we have

s(6,5,5,4,4,2)/δ5 = 2P(5,3,2,1) + 2P(5,4,2) + P(6,3,2) + P(6,4,1).

Remark 29. For λ ∈ P with Dδr ⊆ Dλ ⊆ D((r+1)r+1), let λ\ = (λ\1, . . . , λ
\
r+1) such that

λ\i is the number of boxes on the i-th anti-diagonal from the main anti-diagonal, which
is obviously a strict partition. One can see that there is a unique tableau of shape λ/δr
with weight λ\ satisfying the condition in Lemma 7. Moreover, if aλ/δr ν 6= 0, then ν is
less than or equal to λ\ with respect to the dominance ordering. So we have

sλ/δr = Pλ\ +
∑
ν<λ\

aλ/δr,νPν .

4.2 Ardila–Serrano’s expansion of sδr+1/µ

We fix a nonnegative integer r. For µ ∈ P with Dµ ⊆ Dδr+1 , let us recall the result on
the Schur P -expansion of he skew Schur function sδr+1/µ by Ardila and Serrano [1].

Let N = |δr+1| − |µ|, and let Tδr+1/µ be the tableau obtained by filling δr+1/µ with
1, 2, . . . , N subsequently, starting from the bottom row to top, and from left to right in
each row. For instance,

Tδ5/(4,1,1) =

1
2 3
4 5
6 7 8

9

.

For ν ∈P+ with |ν| = N , let Bδr+1/µ ν be the set of tableaux Q such that
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(1) Q ∈ SST+
[N ](ν) where each entry i ∈ [N ] occurs exactly once,

(2) if j is directly above i in Tδr+1/µ, then j is placed strictly to the right of i in Q,

(3) if i+ 1 is placed to the right of i in Tδr+1/µ, then i+ 1 is strictly below i in Q.

Theorem 30. ([1, Theorem 4.10]) For µ ∈P with Dµ ⊆ Dδr+1, the skew Schur function
sδr+1/µ is given by a nonnegative integral linear combination of Schur P -functions

sδr+1/µ =
∑
ν∈P+

bδr+1/µ νPν ,

where bδr+1/µ ν = |Bδr+1/µ ν |.

Now we show that Theorem 27 (after a little modification of its proof) implies Theorem
30. Let λ ∈P be such that Dδr ⊆ Dλ ⊆ D((r+1)r+1).

Let ν ∈ P+ with |ν| = N = |λ| − |δr|, and let Lλ/δr ν be as in (15). Then |Lλ/δr ν | =
aλ/δr ν by (16). Let T ∈ Lλ/δr ν be given with w(T ) = u1 · · ·uN . Recall by Lemma 7
that there exists a sequence of strict partitions ν(m) ∈ P+

n for 1 6 m 6 N such that

uN−m+1 · · ·uN ≡ Lν
(m)

, where ν(1) = (1), ν(N) = ν, and ν(m) is obtained by adding a box
in the (n− um + 1)-st row of ν(m−1) with ν(0) = ∅.

We define Q′T to be the tableau of shifted shape ν such that ν(m)/ν(m−1) is filled with
m for 1 6 m 6 N . Then we have the following.

Theorem 31. Let λ ∈ P be such that Dδr ⊆ Dλ ⊆ D((r+1)r+1) and ν ∈ P+. Then we
have a bijection

Lλ/δr ν
// // Bδr+1/(λc)′ ν

T //� // Q′T

where λc := (r+1−λr+1, r+1−λr, . . . , r+1−λ1) is the complement of λ in ((r+1)r+1).

Proof. Let T ′λ/δr be the tableau obtained by filling λ/δr with 1, 2, . . . , N subsequently,
starting from the leftmost column to rightmost, and from bottom to top in each column.
For instance, when λ = (5, 4, 4, 4, 2) and r = 4, we have

T ′λ/δr =

9
8
75
643

21 .

By definition of Q′T , we can check that

(1) Q′T ∈ SST+
[N ](ν) where each entry i ∈ [N ] occurs exactly once,

(2) if j is directly above i in T ′λ/δr , then then j is strictly below i in Q′T ,
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(3) if i + 1 is placed to the right of i in T ′λ/δr , then i + 1 is placed strictly to the right
of i in Q′T .

We see that Tδr+1/(λc)′ is obtained from T ′λ/δr by flipping with respect to the main
anti-diagonal. This implies that Q′T ∈ Bδr+1/(λc)′ ν . Since the correspondence T 7→ Q′T is
reversible, it is a bijection.

Corollary 32. Under the above hypothesis, we have a bijection

Aλ/δr ν
//// Bδr+1/(λc)′ ν

QT
//� // Q′T

for T ∈ Lλ/δr ν.

Recall that for a skew shape η/ζ, we have sη/ζ = s(η/ζ)π , where (η/ζ)π is the (skew)
diagram obtained from η/ζ by rotating 180 degree (which can be seen for example by
reversing the linear ordering on N in [2]). Also if sη/ζ has a Schur P -expansion, then we
have sη/ζ = sη′/ζ′ by applying the involution ω on the ring symmetric function sending sη
to sη′ since ω(Pν) = Pν for ν ∈P+(see [10, p. 259, Exercise 3.(a)]).

Hence we have
sλ/δr = sδr+1/λc = sδr+1/(λc)′ ,

for λ ∈P such that Dδr ⊆ Dλ ⊆ D((r+1)r+1). This implies that

aλ/δr ν = bδr+1/λc ν = bδr+1/(λc)′ ν , (18)

for ν ∈P+, where aλ/δr ν are given in (13). Equivalently, we have

a(µc)′/δr ν = bδr+1/µ′ ν = bδr+1/µ ν , (19)

for µ ∈P with Dµ ⊆ Dδr+1 . Therefore Theorem 30 follows from Theorem 27, Corollary
32, and (18) (or (19)).

5 Schur expansion of Schur P -function

For λ ∈ P+ and µ ∈ P, let gλµ be the coefficient of sµ in the Schur expansion of Pλ,
that is,

Pλ =
∑
µ

gλµsµ. (20)

The purpose of this section is to give an alternate proof of the following combinatorial
description of gλµ due to Stembridge.

Theorem 33. ([16, Theorem 9.3]) For λ ∈P+ and µ ∈P, we have

gλµ = |Gλµ| ,

where Gλµ is the set of tableaux Q such that
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(1) Q ∈ SSTN(µ) with ck(Q) + ck′(Q) = λk for k > 1,

(2) for k > 1, if x is the rightmost letter in w(Q) with |x| = k, then x = k,

(3) w(Q) satisfies the lattice property.

Proof. The proof is similar to that of Theorem 14. Choose n such that λ ∈ P+
n and

µ ∈Pn. Let

Lλµ = {T |T ∈ Bn(λ), f̃iT = 0 (1 6 i 6 n− 1), wt(T ) = w0µ }.

Then we have as a gl(n)-crystal

Bn(λ) ∼=
⊔
µ

Bn(µ)⊕|Lλµ|, (21)

and hence gλµ = |Lλµ| by linear independence of Schur polynomials. Let us define a map

Lλµ
//// Gλµ

T //� // QT

as follows. Let T ∈ Lλµ be given. Assume that wrev(T ) = u1 · · ·uN where N = |λ|. Since
T is a gl(n)-lowest weight vector, we have by (2) that uN−m+1 ⊗ · · · ⊗ uN ∈ B⊗mn is a
gl(n)-lowest weight element for 1 6 m 6 N . This implies that there exists µ(m) ∈ Pn

for 1 6 m 6 N such that uN−m+1 · · ·uN is equivalent as an element of gl(n)-crystal to a
gl(n)-lowest weight element in Bn(µ(m)), where µ(N) = µ and µ(m) is obtained by adding
a box in the (n− um + 1)-st row of µ(m−1) with µ(0) = ∅.

We define QT to be a tableau of shape µ with entries in N, where µ(m)/µ(m−1) is filled
with {

k′, if um belongs to T (k)↑,
k, if um belongs to T (k)↓,

for some 1 6 k 6 `(λ). By almost the same arguments as in the proof of Theorem 14,
we see that QT satisfies the conditions (1) and (2) for Gλµ, and w(QT ) satisfies the hook
lattice property, which implies that it satisfies the lattice property by Corollary 21. (We
leave the details to the reader.) Finally the correspondence T 7→ QT is a well-defined
bijection.

Example 34. Let λ = (3, 1). From Figure 1 we get three gl(3)-lowest weight vectors in
B3(λ)

3 2 3
1 .

3 2 3
2

3 3 3
2

By applying the mapping T 7→ QT in the proof of Theorem 33 to these tableaux we have
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1′ 1
1
2

1′ 1
1 2

1 1 1
2

.

Thus P(3,1) = s(3,1) + s(2,2) + s(2,1,1).

Remark 35. Let λ ∈ P+ be such that D+
λ ⊆ D+

δr+1
for some r > 0. Let λc+ be a strict

partition obtained by counting complementary boxes D+
δr+1
\ D+

λ in each column from
right to left. It is shown in [5] that

sδr+1/λ =
∑
ν∈P+

|ν|=|λ|

gνλPνc+ .

By (18) or (19), we have gν λ = aλc/δr (νc+)′ . One may expect that there is a natural bijection
between Gν λ and Aλc/δr (νc+)′ that we have not yet make explicit.

6 Semistandard decomposition tableaux of skew shapes

Let λ/µ be a shifted skew diagram for λ, µ ∈ P+ with D+
µ ⊆ D+

λ . Without loss of
generality, we assume in this section that λ1 > µ1 and `(λ) > `(µ).

Let T be a tableau of shifted skew shape λ/µ. For p, q > 1, let T (p, q) denote the
entry of T at the p-th row and the q-th diagonal from the main diagonal in D+

λ (that is,
{ (i, i) | i > 1} ∩D+

λ ) whenever it is defined. Note that T (p, q) is not necessarily equal to
Tp,q if µ is nonempty.

For example, when λ/µ = (5, 4, 2)/(3, 1), we have

T (1, 4) T (1, 5)

T (2, 2) T (2, 3) T (2, 4)

T (3, 1) T (3, 2)

=

T1,1 T1,2

T2,1 T2,2 T2,3

T3,1 T3,2

Definition 36. For λ, µ ∈ P+ with D+
µ ⊆ D+

λ , a skew semistandard decomposition
tableau T of shape λ/µ is a tableau of shifted shape λ/µ with entries in N such that
T (k) is a hook word for 1 6 k 6 `(λ) and the following holds for 1 6 k < `(λ) and
1 6 i 6 j 6 λk+1:

(S1) if T (k, i) 6 T (k + 1, j), then i 6= 1 and T (k + 1, i− 1) < T (k + 1, j),

(S2) if T (k, i) > T (k + 1, j), then T (k, i) > T (k, j + 1),

where we assume that T (p, q) for p, q > 1 is empty if it is not defined.
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Let SSDT (λ/µ) be the set consisting of skew semistandard decomposition tableaux
of shape λ/µ. Note that when µ is empty, the set SSDT (λ/µ) is equal to SSDT (λ) by
Proposition 3.

Suppose that `(λ) 6 n. Let Bn(λ/µ) be the set of T ∈ SSDT (λ/µ) with entries in
[n]. As in (5), consider the injective map

Bn(λ/µ) �
� // W[n]

T � // wrev(T ).

(22)

Proposition 37. Under the above hypothesis, the image of Bn(λ/µ) in (22) together

with {0} is invariant under the action of ẽi and f̃i for i ∈ I, and hence Bn(λ/µ) is a
q(n)-crystal.

Proof. Choose a sufficiently large M such that all the entries in LµM are greater than n.

For a tableau T of shifted shape λ/µ with entries in [n], let T̃ := LµM ∗T be the tableau of

shifted shape λ, that is, the subtableau of shape shifted µ in T̃ is LµM and its complement

in T̃ is T . By definition of SSDT (λ/µ) and Proposition 3, we have

T ∈ Bn(λ/µ) if and only if T̃ ∈ BM(λ). (23)

Let T ∈ Bn(λ/µ) and i ∈ I be given. If x̃iT̃ 6= 0 (x = e, f), then we have by (23) that

x̃iT̃ = LµM ∗T ′ for some T ′ ∈ Bn(λ/µ). This implies that x̃iwrev(T ) = wrev(T ′). Therefore,

the image of Bn(λ/µ) in (22) together with {0} is invariant under the action of ẽi and f̃i
for i ∈ I.

Since Bn(λ/µ) is a subcrystal of B⊗Nn with N = |λ| − |µ|, we have

Bn(λ/µ) ∼=
⊔

ν∈P+
n

|ν|=N

Bn(ν)⊕f
λ/µ
ν (n) (24)

for some f
λ/µ
ν (n) ∈ Z+. Moreover by Remark 9, we have

fλ/µν := fλ/µν (m) = fλ/µν (n) (m > n). (25)

If we put

P ◦λ/µ =
∑

T∈SSDT (λ/µ)

xT ,

then we have from (24) and (25)

P ◦λ/µ =
∑
ν∈P+

fλ/µν Pν . (26)
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Example 38. For η ∈ P+
n with `(η) = `, let λ = η + Lδ` and µ = Lδ` ∈ P+

n , where
L > η1. Since each column in λ/µ has at most one box, we have

Bn(λ/µ) ∼= Bn(η1)⊗ · · · ⊗Bn(η`).

By applying Theorem 14 repeatedly, we see that f
λ/µ
ν for ν ∈P+

n in this case is equal to
the number of tableaux Q such that

(1) Q ∈ SST+
N (ν) with ck(Q) + ck′(Q) = ηk for k > 1,

(2) for each k > 1, if x is the rightmost in w(Q) with |x| = k, then x = k.

One can generalize the notion of hook lattice property in Definition 12 to describe the
coefficient f

λ/µ
ν .

Definition 39. Let w = w1 · · ·wN ∈ WN be given and let w∗ = w∗1 · · ·w∗N be the word
associated to w given in Definition 10. For µ ∈ P+, we say that w satisfies the hook
µ-lattice property if w∗ satisfies the following for each k > 1:

(L1) if k > `(µ) and w∗i = k1, then no k + 1j for j > 1 occurs in w∗1 · · ·w∗i−1,

(L2) if (w∗s , w
∗
t ) = (k + 1i, ki+1−αk) for some s < t and αk < i, then no k + 1j for i < j

occurs in w∗s · · ·w∗t ,

(L3) if (w∗s , w
∗
t ) = (kj+1−αk , k + 1j) for some s < t and αk < j, then no ki for i 6 j − αk

occurs in w∗s · · ·w∗t ,

where αk = µk − µk+1.

Theorem 40. For λ, µ, ν ∈P+, we have

fλ/µν =
∣∣Fλ/µν

∣∣ ,
where F

λ/µ
ν is the set of tableaux Q such that

(1) Q ∈ SST+
N (ν) with ck(Q) + ck′(Q) = λk − µk for k > 1,

(2) for k > 1, if x is the rightmost letter in w(Q) with |x| = k, then x = k,

(3) w(Q) satisfies the hook µ-lattice property.

Proof. The proof is similar to that of Theorem 14. Choose n such that λ, µ, ν ∈P+
n . Put

Lλ/µ
ν = {T |T ∈ Bn(λ/µ), T ≡ Lν }.

From (24) and (25), we have |Lλ/µ
ν | = f

λ/µ
ν . Let us define a map

L
λ/µ
ν

// F
λ/µ
ν

T � // QT
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as follows. Let N = |λ| − |µ|. Suppose that T ∈ L
λ/µ
ν is given with wrev(T ) = u1 · · ·uN .

By Lemma 7 there exists ν(m) ∈ P+
n for 1 6 m 6 N such that uN−m+1 · · ·uN ≡ Lν

(m)

where ν(N) = ν and ν(m) is obtained by adding a box in the (n− um + 1)-st row of ν(m−1)

with ν(0) = ∅.
Note that wrev(T ) = T (`(λ)) · · ·T (1), where T (k) is a hook word for 1 6 k 6 `(λ). Then

we define QT to be a tableau of shifted shape ν with entries in N, where ν(m)/ν(m−1) is
filled with {

k′, if um belongs to T (k)↑,
k, if um belongs to T (k)↓,

(27)

for some 1 6 k 6 `(λ).
First, by the same argument as in the proof of Theorem 14, we see that QT satisfies

the condition (2) for F
λ/µ
ν by the same argument as in the proof of Theorem 14.

Let us check that w(QT ) satisfies the hook µ-lattice property. If we label k and k′ in
(27) as kj and k′j, respectively, when um = Tk,j, then it coincides with the labeling on the
letters in w(QT ) given in Definition 10(1).

Choose a sufficiently large M such that all the entries in LµM are greater than n.
Let S = LµM ∗ T (see the proof of Proposition 37). Since S ∈ BM(λ), the conditions
Proposition 3(1), (2), and (3) on S and hence on T (cf. (23)) imply the conditions Defi-

nition 39(L1), (L2), and (L3), respectively. Therefore, QT ∈ F
λ/µ
ν .

Finally the correspondence T 7→ QT is injective and also reversible. Hence it is a
bijection.

Example 41. Let λ/µ = (3, 1)/(1). Then

P ◦(3,1)/(1) = P(3) + P(2,1),

since we have for ν ∈ {(3), (2, 1)} and n = 4

4 4

4
T1 = ∈ L

λ/µ
ν 1 1 2QT1 = ∈ F

λ/µ
ν

4 4

3
T2 = ∈ L

λ/µ
ν

1 1

2

QT2 = ∈ F
λ/µ
ν

.

Remark 42. Recall that for λ, µ ∈ P+ with D+
µ ⊆ D+

λ , the skew Schur P -function Pλ/µ
is given by the weight generating function

Pλ/µ =
∑
T

xT ,

where the sum is over all tableaux in SST+
N (λ/µ) with no primed entry or entry of odd

degree on the main diagonal (cf. [10, 11, 17]). Then it is well-known that

Pλ/µ =
∑
ν∈P+

2`(µ)+`(ν)−`(λ)fλµνPν .
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We should remark that P ◦λ/µ is not in general equal to Pλ/µ, that is, f
λ/µ
ν is not necessarily

equal to 2`(µ)+`(ν)−`(λ)fλµν . For example, we have

P(3,1)/(1) = P(3) + 2P(2,1),

which is not equal to P ◦(3,1)/(1) in Example 41. It would be also interesting to have a more

direct representation-theoretic interpretation of Bn(λ/µ).
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