Crystals and Schur P-positive expansions

Seung-Il Choi^{*}

Jae-Hoon Kwon

Research Institute of Mathematics Seoul National University Seoul, Korea

ignatioschoi@snu.ac.kr

Department of Mathematical Sciences Seoul National University Seoul, Korea jaehoonkw@snu.ac.kr

Submitted: Dec 20, 2017; Accepted: Jun 5, 2018; Published: Jul 13, 2018 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We give a new characterization of Littlewood–Richardson–Stembridge tableaux for Schur *P*-functions by using the theory of q(n)-crystals. We also give alternate proofs of the Schur *P*-expansion of a skew Schur function due to Ardila and Serrano, and the Schur expansion of a Schur *P*-function due to Stembridge using the associated crystal structures. Finally we introduce the notion of semistandard decomposition tableaux of a shifted skew shape and discuss its crystal structure.

Mathematics Subject Classifications: 17B37, 22E46, 05E10

1 Introduction

Let \mathscr{P}^+ be the set of strict partitions and let P_{λ} be the Schur *P*-function corresponding to $\lambda \in \mathscr{P}^+$ [12]. The set of Schur *P*-functions is an important class of symmetric functions, which is closely related with representation theory and algebraic geometry (see [10] and references therein). For example, the Schur *P*-polynomial $P_{\lambda}(x_1, \ldots, x_n)$ in *n* variables is the character of a finite-dimensional irreducible representation $V_n(\lambda)$ of the queer Lie superalgebra $\mathfrak{q}(n)$ with highest weight λ up to a power of 2 when the length $\ell(\lambda)$ of λ is no more than n [13].

The set of Schur *P*-functions forms a basis of a subring of the ring of symmetric functions, and the structure constants with respect to this basis are nonnegative integers, that is, given $\lambda, \mu, \nu \in \mathscr{P}^+$,

$$P_{\mu}P_{\nu} = \sum_{\lambda} f^{\lambda}_{\mu\nu} P_{\lambda},$$

^{*}This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1501-01.

for some nonnegative integers $f_{\mu\nu}^{\lambda}$. The first and the most well-known result on a combinatorial description of $f_{\mu\nu}^{\lambda}$ was obtained by Stembridge [16] using shifted Young tableaux, which is a combinatorial model for Schur *P*- or *Q*-functions [11, 17]. It is shown that $f_{\mu\nu}^{\lambda}$ is equal to the number of semistandard tableaux with entries in a \mathbb{Z}_2 -graded set $\mathcal{N} = \{1' < 1 < 2' < 2 < \cdots\}$ of shifted skew shape λ/μ and weight ν such that (i) for each integer $k \ge 1$ the southwesternmost entry with value k is unprimed or of even degree and (ii) the reading words satisfy the *lattice property*. Here we say that the value |x| is k when x is either k or k' in a tableau. Let us call these tableaux the *Littlewood*-*Richardson-Stembridge (LRS) tableaux* (Definitions 17 and 18).

Recently, two more descriptions of $f_{\mu\nu}^{\lambda}$ were obtained in terms of semistandard decomposition tableaux, which is another combinatorial model for Schur *P*-functions introduced by Serrano [14]. It is shown by Cho that $f_{\mu\nu}^{\lambda}$ is given by the number of semistandard decomposition tableaux of shifted shape μ and weight $w_0(\lambda - \nu)$ whose reading words satisfy the λ -good property (see [3, Corollary 5.14]). Here we assume that $\ell(\lambda), \ell(\mu), \ell(\nu) \leq n$, and w_0 denotes the longest element in the symmetric group \mathfrak{S}_n . Another description is given by Grantcharov, Jung, Kang, Kashiwara, and Kim [6] based on their crystal base theory for the quantized enveloping algebra of $\mathfrak{q}(n)$ [7]. They realize the crystal $\mathbf{B}_n(\lambda)$ associated to $V_n(\lambda)$ as the set of semistandard decomposition tableaux of shape λ with entries in $\{1 < 2 < \cdots < n\}$, and describe $f_{\mu\nu}^{\lambda}$ by characterizing the lowest weight vectors of weight $w_0\lambda$ in the tensor product $\mathbf{B}_n(\mu) \otimes \mathbf{B}_n(\nu)$. We also remark that bijections between the above mentioned combinatorial models for $f_{\mu\nu}^{\lambda}$ are studied in [4] using insertion schemes for semistandard decomposition tableaux.

The main result in this paper is to give another new description of $f_{\mu\nu}^{\lambda}$ using the theory of $\mathfrak{q}(n)$ -crystals, and show that it is indeed equivalent to that of Stembridge. More precisely, we show that $f_{\mu\nu}^{\lambda}$ is equal to the number of semistandard tableaux with entries in \mathcal{N} of shifted skew shape λ/μ and weight ν such that (i) for each integer $k \ge 1$ the southwesternmost entry with value k is unprimed or of even degree and (ii) the reading words satisfy the *hook lattice property* (see Definitions 12 and 13 and Theorem 14). It is obtained by semistandardizing the standard tableaux which parametrize the lowest weight vectors counting $f_{\mu\nu}^{\lambda}$ in [6], where the hook lattice property naturally arises from the configuration of entries in semistandard decomposition tableaux. We show that these tableaux for $f_{\mu\nu}^{\lambda}$ are equal to LRS tableaux (Theorem 20), and hence obtain a new characterization of LRS tableaux.

We study other Schur P- or Q-positive expansions and their combinatorial descriptions from a viewpoint of crystals. First we consider the Schur P-positive expansion of a skew Schur function

$$s_{\lambda/\delta_r} = \sum_{\nu \in \mathscr{P}^+} a_{\lambda/\delta_r \,\nu} \, P_{\nu}$$

for a skew diagram λ/δ_r contained in a rectangle $((r+1)^{r+1})$, where $\delta_r = (r, r-1, \ldots, 1)$ [1]. We give a combinatorial description of $a_{\lambda/\delta_r\nu}$ (Theorem 27) by considering a $\mathfrak{q}(n)$ -crystal structure on the set of usual semistandard tableaux of shape λ/δ_r and characterizing the lowest weight vectors corresponding to each $\nu \in \mathscr{P}^+$. As a byproduct we also give a simple alternate proof of Ardila–Serrano's description of $a_{\lambda/\delta_r\nu}$ [1] (Theorem 31), which

can be viewed as a standardization of our description.

We next consider the Schur expansion of a Schur P-function

$$P_{\lambda} = \sum_{\mu} g_{\lambda\mu} s_{\mu}$$

for $\lambda \in \mathscr{P}^+$. It is equivalent to the expansion of a symmetric function $S_{\mu} = S_{\mu}(x, x)$ in terms of Schur *Q*-functions $Q_{\lambda} = 2^{\ell(\lambda)} P_{\lambda}$, where $S_{\mu}(x, y)$ is a super Schur function in variables x and y. We give a simple and alternate proof of Stembridge's description of $g_{\lambda\mu}$ [16] (Theorem 33) by characterizing the type A lowest weight vectors of weight $w_0\mu$ in the $\mathbf{q}(n)$ -crystal $\mathbf{B}_n(\lambda)$ when $\ell(\lambda), \ell(\mu) \leq n$.

Finally, based on the characterization of semistandard decomposition tableaux in [6, Proposition 2.3], we introduce the notion of semistandard decomposition tableaux of a shifted skew shape λ/μ . The set of such tableaux, say $\mathbf{B}_n(\lambda/\mu)$, naturally admits a $\mathbf{q}(n)$ -crystal structure and we describe its decomposition into $\mathbf{B}_n(\nu)$'s generalizing the notion of hook lattice property. We remark that the character of $\mathbf{B}_n(\lambda/\mu)$ is not equal to the skew Schur *P*-function corresponding to λ/μ in general, and it would be interesting to have a more direct representation-theoretic interpretation of $\mathbf{B}_n(\lambda/\mu)$.

The paper is organized as follows. In Section 2, we review the notion of $\mathfrak{q}(n)$ -crystals and related results. In Section 3, we describe a combinatorial description of $f^{\lambda}_{\mu\nu}$ and show that it is equivalent to that of Stembridge. In Sections 4 and 5, we discuss the Schur *P*-positive expansion of a skew Schur function and the Schur expansion of a Schur *P*function, respectively. In Section 6, we discuss semistandard decomposition tableaux of shifted skew shape, and the Schur *P*-positive expansions of their characters.

2 Crystals for queer Lie superalgebras

2.1 Notation and terminology

In this subsection, we introduce necessary notation and terminologies. Let \mathbb{Z}_+ be the set of nonnegative integers. We fix a positive integer $n \ge 2$ throughout this paper.

Let $\mathscr{P} = \{\lambda = (\lambda_i)_{i \ge 1} | \lambda_i \in \mathbb{Z}_+, \lambda_i \ge \lambda_{i+1} (i \ge 1), \sum_{i \ge 1} \lambda_i < \infty\}$ be the set of partitions, and let $\mathscr{P}^+ = \{\lambda = (\lambda_i)_{i \ge 1} | \lambda \in \mathscr{P}, \lambda_i = \lambda_{i+1} \Rightarrow \lambda_i = 0 \ (i \ge 1)\}$ be the set of strict partitions. For $\lambda \in \mathscr{P}$, let $\ell(\lambda)$ denote the length of λ , and $|\lambda| = \sum_{i \ge 1} \lambda_i$. Let $\mathscr{P}_n = \{\lambda \mid \ell(\lambda) \le n\} \subseteq \mathscr{P}$ and $\mathscr{P}_n^+ = \mathscr{P}^+ \cap \mathscr{P}_n$.

The (unshifted) diagram of $\lambda \in \mathscr{P}$ is defined to be the set

$$D_{\lambda} = \{ (i, j) \in \mathbb{N}^2 : 1 \leq j \leq \lambda_i, \ 1 \leq i \leq \ell(\lambda) \},\$$

and the shifted diagram of $\lambda \in \mathscr{P}^+$ is defined to be the set

$$D_{\lambda}^{+} = \{ (i, j) \in \mathbb{N}^{2} : i \leq j \leq \lambda_{i} + i - 1, \ 1 \leq i \leq \ell(\lambda) \}.$$

We identify D_{λ} and D_{λ}^+ with diagrams where a box is placed at the *i*-th row from the top and the *j*-th column from the left for each $(i, j) \in D_{\lambda}$ and D_{λ}^+ , respectively. For instance,

The electronic journal of combinatorics 25(3) (2018), #P3.7

if $\lambda = (6, 4, 2, 1)$, then

Let \mathcal{A} be a linearly ordered set. We denote by $\mathcal{W}_{\mathcal{A}}$ the set of words of finite length with letters in \mathcal{A} . For $w \in \mathcal{W}_{\mathcal{A}}$ and $a \in \mathcal{A}$, let $c_a(w)$ be the number of occurrences of a in w.

For $\lambda, \mu \in \mathscr{P}$ with $D_{\mu} \subseteq D_{\lambda}$, a tableau of shape λ/μ means a filling on the skew diagram $D_{\lambda} \setminus D_{\mu}$ with entries in \mathcal{A} . For $\lambda, \mu \in \mathscr{P}^+$ with $D_{\mu}^+ \subseteq D_{\lambda}^+$, a tableau of shifted shape λ/μ is defined in a similar way. For a tableau T of (shifted) shape λ/μ , let w(T)be the word given by reading the entries of T row by row from top to bottom, and from right to left in each row. We denote by $T_{i,j}$ the *j*-th entry (from the left) of the *i*-th row of T from the top. For $1 \leq i \leq \ell(\lambda)$, let $T^{(i)} = T_{i,\lambda_i} \cdots T_{i,1}$ be the subword of w(T)corresponding to the *i*-th row of T. Then we have $w(T) = T^{(1)} \cdots T^{(\ell(\lambda))}$. We also denote by $w_{\text{rev}}(T)$ the word obtained by reading the entries of w(T) from right to left. Note that $T_{i,j}$ is not the entry of T at the (i, j)-position of the (shifted) skew diagram of λ/μ , that is, $(i, j) \in D_{\lambda} \setminus D_{\mu}$ or $(i, j) \in D_{\lambda}^+ \setminus D_{\mu}^+$. For $a \in \mathcal{A}$, let $c_a(T) = c_a(w(T))$ be the number of occurrences of a in T.

Suppose that \mathcal{A} is a linearly ordered set with a \mathbb{Z}_2 -grading $\mathcal{A} = \mathcal{A}_0 \sqcup \mathcal{A}_1$. For $\lambda, \mu \in \mathscr{P}$ with $D_{\mu} \subseteq D_{\lambda}$, let $SST_{\mathcal{A}}(\lambda/\mu)$ be the set of tableaux of shape λ/μ with entries in \mathcal{A} which is semistandard, that is, (i) the entries in each row (resp. column) are weakly increasing from left to right (resp. from top to bottom), (ii) the entries in \mathcal{A}_0 (resp. \mathcal{A}_1) are strictly increasing in each column (resp. row). Similarly, for $\lambda, \mu \in \mathscr{P}^+$ with $D^+_{\mu} \subseteq D^+_{\lambda}$, we define $SST^+_{\mathcal{A}}(\lambda/\mu)$ to be the set of semistandard tableaux of shifted shape λ/μ with entries in \mathcal{A} .

Let $\mathcal{N} = \{ 1' < 1 < 2' < 2 < \cdots \}$ be a linearly ordered set with a \mathbb{Z}_2 -grading $\mathcal{N}_0 = \mathbb{N}$ and $\mathcal{N}_1 = \mathbb{N}' = \{ 1', 2', \cdots \}$. Put $[n] = \{ 1, \ldots, n \}$ and $[n]' = \{ 1', \ldots, n' \}$, where the \mathbb{Z}_2 -grading and linear ordering are induced from \mathcal{N} . For $a \in \mathcal{N}$, we write |a| = k when a is either k or k'.

2.2 Semistandard decomposition tableaux and Schur P-functions

Let us recall the notion of semistandard decomposition tableaux [6, 14], which is our main combinatorial object.

Definition 1.

- (1) A word $u = u_1 \cdots u_s$ in $\mathcal{W}_{\mathbb{N}}$ is called a *hook word* if it satisfies $u_1 \ge u_2 \ge \cdots \ge u_k < u_{k+1} < \cdots < u_s$ for some $1 \le k \le s$. In this case, let $u \downarrow = u_1 \cdots u_k$ be the weakly decreasing subword of maximal length and $u \uparrow = u_{k+1} \cdots u_s$ the remaining strictly increasing subword in u.
- (2) For $\lambda \in \mathscr{P}^+$, let T be a tableau of shifted shape λ with entries in N. Then T is called a *semistandard decomposition tableau* of shape λ if

- (i) $T^{(i)}$ is a hook word of length λ_i for $1 \leq i \leq \ell(\lambda)$,
- (ii) $T^{(i)}$ is a hook subword of maximal length in $T^{(i+1)}T^{(i)}$, the concatenation of $T^{(i+1)}$ and $T^{(i)}$, for $1 \leq i < \ell(\lambda)$.

For any hook word u, the decreasing part $u\downarrow$ is always nonempty by definition.

For $\lambda \in \mathscr{P}^+$, let $SSDT(\lambda)$ be the set of semistandard decomposition tableaux of shape λ . Let $x = \{x_1, x_2, \ldots\}$ be a set of formal commuting variables, and let $P_{\lambda} = P_{\lambda}(x)$ be the Schur *P*-function in *x* corresponding to $\lambda \in \mathscr{P}^+$ (see [10]). It is shown in [14] that P_{λ} is given by the weight generating function of $SSDT(\lambda)$:

$$P_{\lambda} = \sum_{T \in SSDT(\lambda)} x^{T}, \tag{1}$$

where $x^T = \prod_{i \ge 1} x_i^{c_i(T)}$.

Remark 2. Recall that the Schur *P*-function P_{λ} can be realized as the character of tableaux $T \in SST_{N}^{+}(\lambda)$ with no primed entry or entry of odd degree on the main diagonal (cf. [10, 11, 17]). The notion of semistandard decomposition tableaux was introduced in [14] to give a plactic monoid model for Schur *P*-functions. In this paper, we follow its modified version (Definition 1) introduced in [6], by which it is easier to describe q(n)-crystals [6, Remark 2.6]. We also refer the reader to [4] for more details on relation between the combinatorics of these two models.

The following is a useful criterion for a tableau to be a semistandard decomposition one, which plays an important role in this paper.

Proposition 3. ([6, Proposition 2.3]) For $\lambda \in \mathscr{P}^+$, let T be a tableau of shifted shape λ with entries in \mathbb{N} . Then $T \in SSDT(\lambda)$ if and only if $T^{(k)}$ is a hook word for $1 \leq k \leq \ell(\lambda)$, and none of the following conditions holds for each $1 \leq k < \ell(\lambda)$:

- (1) $T_{k,1} \leq T_{k+1,i}$ for some $1 \leq i \leq \lambda_{k+1}$,
- (2) $T_{k+1,i} \ge T_{k+1,j} \ge T_{k,i+1}$ for some $1 \le i < j \le \lambda_{k+1}$,
- (3) $T_{k+1,j} < T_{k,i} < T_{k,j+1}$ for some $1 \leq i \leq j \leq \lambda_{k+1}$.

Equivalently, $T \in SSDT(\lambda)$ if and only if $T^{(k)}$ is a hook word for $1 \leq k \leq \ell(\lambda)$, and the following conditions hold for $1 \leq k < \ell(\lambda)$:

- (a) if $T_{k,i} \leq T_{k+1,j}$ for $1 \leq i \leq j \leq \lambda_{k+1}$, then $i \neq 1$ and $T_{k+1,i-1} < T_{k+1,j}$,
- (b) if $T_{k,i} > T_{k+1,j}$ for $1 \leq i \leq j \leq \lambda_{k+1}$, then $T_{k,i} \geq T_{k,j+1}$.

For $\lambda \in \mathscr{P}^+$, let $SSDT_n(\lambda)$ be the set of tableaux $T \in SSDT(\lambda)$ with entries in [n]. By Proposition 3(1), we see that $SSDT_n(\lambda) \neq \emptyset$ if and only if $\lambda \in \mathscr{P}_n^+$. We denote by $P_{\lambda}(x_1, \ldots, x_n)$ the Schur *P*-polynomial in x_1, \ldots, x_n given by specializing P_{λ} at $x_{n+1} = x_{n+2} = \cdots = 0$. Then we have $P_{\lambda}(x_1, \ldots, x_n) = \sum_{T \in SSDT_n(\lambda)} x^T$.

The electronic journal of combinatorics $\mathbf{25(3)}$ (2018), #P3.7

For $\lambda \in \mathscr{P}_n^+$, let H_n^{λ} be the element in $SSDT_n(\lambda)$ where the subtableau with entry $\ell(\lambda) - i + 1$ is a connected border strip of size $\lambda_{\ell(\lambda)-i+1}$ starting at $(i,i) \in D_{\lambda}^+$ for each $i = 1, \ldots, \ell(\lambda)$, and let L_n^{λ} be the one where the subtableau with entry n - i + 1 is a connected horizontal strip of size λ_i starting at $(i,i) \in D_{\lambda}^+$ for each $i = 1, \ldots, \ell(\lambda)$. For example, when n = 4 and $\lambda = (4, 3, 1)$, we have

Indeed, H_n^{λ} and L_n^{λ} are the unique tableaux in $SSDT_n(\lambda)$ such that

$$(c_1(H_n^{\lambda}), \dots, c_n(H_n^{\lambda})) = \lambda, \quad (c_1(L_n^{\lambda}), \dots, c_n(L_n^{\lambda})) = w_0 \lambda$$

Here we assume that $\mathscr{P}_n^+ \subset \mathbb{Z}_+^n$ and the symmetric group \mathfrak{S}_n acts on \mathbb{Z}_+^n by permutation, where w_0 is the longest element in \mathfrak{S}_n .

2.3 Crystals

Let us first review the crystals for the general linear Lie algebra $\mathfrak{gl}(n)$ in [8, 9].

Let $P^{\vee} = \bigoplus_{i=1}^{n} \mathbb{Z}e_i$ be the dual weight lattice and $P = \operatorname{Hom}_{\mathbb{Z}}(P^{\vee}, \mathbb{Z}) = \bigoplus_{i=1}^{n} \mathbb{Z}\epsilon_i$ the weight lattice with $\langle \epsilon_i, e_j \rangle = \delta_{ij}$ for $1 \leq i, j \leq n$. Define a symmetric bilinear form $(\cdot | \cdot)$ on P by $(\epsilon_i | \epsilon_j) = \delta_{ij}$ for $1 \leq i, j \leq n$. Let $\{\alpha_i = \epsilon_i - \epsilon_{i+1} \ (i = 1, \dots, n-1)\}$ be the set of simple roots, and $\{h_i = e_i - e_{i+1} \ (i = 1, \dots, n-1)\}$ the set of simple coroots of $\mathfrak{gl}(n)$. Let $P^+ = \{\lambda \mid \lambda \in P, \ \langle \lambda, h_i \rangle \geq 0 \ (i = 1, \dots, n-1)\}$ be the set of dominant integral weights.

A $\mathfrak{gl}(n)$ -crystal is a set B together with the maps wt : $B \to P$, $\varepsilon_i, \varphi_i : B \to \mathbb{Z} \cup \{-\infty\}$ and $\tilde{e}_i, \tilde{f}_i : B \to B \cup \{\mathbf{0}\}$ for $i = 1, \ldots, n-1$ satisfying the following conditions: for $b \in B$ and $i = 1, \ldots, n-1$,

(1)
$$\varphi_i(b) = \langle \operatorname{wt}(b), h_i \rangle + \varepsilon_i(b),$$

(2)
$$\varepsilon_i(\widetilde{e}_i b) = \varepsilon_i(b) - 1$$
, $\varphi_i(\widetilde{e}_i b) = \varphi_i(b) + 1$, $\operatorname{wt}(\widetilde{e}_i b) = \operatorname{wt}(b) + \alpha_i$ if $\widetilde{e}_i b \in B$,

(3)
$$\varepsilon_i(\widetilde{f}_i b) = \varepsilon_i(b) + 1$$
, $\varphi_i(\widetilde{f}_i b) = \varphi_i(b) - 1$, $\operatorname{wt}(\widetilde{f}_i b) = \operatorname{wt}(b) - \alpha_i$ if $\widetilde{f}_i b \in B$,

- (4) $\tilde{f}_i b = b'$ if and only if $b = \tilde{e}_i b'$ for $b' \in B$,
- (5) $\widetilde{e}_i b = \widetilde{f}_i b = \mathbf{0}$ when $\varphi_i(b) = -\infty$.

Here **0** is a formal symbol and $-\infty$ is the smallest element in $\mathbb{Z} \cup \{-\infty\}$ such that $-\infty + n = -\infty$ for all $n \in \mathbb{Z}$. For $\mu \in P$, let $B_{\mu} = \{b \in B \mid \text{wt}(b) = \mu\}$. When B_{μ} is finite for all μ , we define the character of B by $\text{ch}B = \sum_{\mu \in P} |B_{\mu}|e^{\mu}$, where e^{μ} is a basis element of the group algebra $\mathbb{Q}[P]$.

Let B_1 and B_2 be $\mathfrak{gl}(n)$ -crystals. A tensor product $B_1 \otimes B_2$ is a $\mathfrak{gl}(n)$ -crystal, which is defined to be $B_1 \times B_2$ as a set with elements denoted by $b_1 \otimes b_2$, where

$$\begin{aligned} \operatorname{wt}(b_1 \otimes b_2) &= \operatorname{wt}(b_1) + \operatorname{wt}(b_2), \\ \varepsilon_i(b_1 \otimes b_2) &= \max\{\varepsilon_i(b_1), \varepsilon_i(b_2) - \langle \operatorname{wt}(b_1), h_i \rangle\}, \\ \varphi_i(b_1 \otimes b_2) &= \max\{\varphi_i(b_1) + \langle \operatorname{wt}(b_2), h_i \rangle, \varphi_i(b_2)\}, \end{aligned}$$

$$\widetilde{e}_{i}(b_{1} \otimes b_{2}) = \begin{cases} \widetilde{e}_{i}b_{1} \otimes b_{2}, & \text{if } \varphi_{i}(b_{1}) \geqslant \varepsilon_{i}(b_{2}), \\ b_{1} \otimes \widetilde{e}_{i}b_{2}, & \text{if } \varphi_{i}(b_{1}) < \varepsilon_{i}(b_{2}), \end{cases}$$

$$\widetilde{f}_{i}(b_{1} \otimes b_{2}) = \begin{cases} \widetilde{f}_{i}b_{1} \otimes b_{2}, & \text{if } \varphi_{i}(b_{1}) > \varepsilon_{i}(b_{2}), \\ b_{1} \otimes \widetilde{f}_{i}b_{2}, & \text{if } \varphi_{i}(b_{1}) \leqslant \varepsilon_{i}(b_{2}), \end{cases}$$
(2)

for $i = 1, \ldots, n - 1$. Here we assume that $\mathbf{0} \otimes b_2 = b_1 \otimes \mathbf{0} = \mathbf{0}$.

For $\lambda \in \mathscr{P}_n$, let $B_n(\lambda)$ be the crystal associated to an irreducible $\mathfrak{gl}(n)$ -module with highest weight λ , where we regard λ as $\sum_{i=1}^n \lambda_i \epsilon_i \in P^+$. We may regard [n] as the set of vertices in $B_n(\epsilon_1)$, where $\operatorname{wt}(k) = \epsilon_k$ for $k \in [n]$, and hence $\mathcal{W}_{[n]}$ as a $\mathfrak{gl}(n)$ -crystal where we identify $w = w_1 \dots w_r$ with $w_1 \otimes \dots \otimes w_r \in B_n(\epsilon_1)^{\otimes r}$. The crystal structure on $\mathcal{W}_{[n]}$ is easily described by the so-called signature rule (cf. [9, Section 2.1]). For $\lambda \in \mathscr{P}_n$, the set $SST_{[n]}(\lambda)$ becomes a $\mathfrak{gl}(n)$ -crystal under the identification of T with $w(T) \in \mathcal{W}_{[n]}$, and it is isomorphic to $B_n(\lambda)$ [9]. In general, one can define a $\mathfrak{gl}(n)$ -crystal structure on $SST_{[n]}(\lambda/\mu)$ for a skew diagram λ/μ . By abuse of notation, we set $B_n(\lambda/\mu) := SST_{[n]}(\lambda/\mu)$.

Next, let us review the notion of crystals associated to polynomial representations of the queer Lie superalgebra $\mathfrak{q}(n)$ developed in [6, 7].

Definition 4. A $\mathfrak{q}(n)$ -crystal is a set B together with the maps wt : $B \to P$, $\varepsilon_i, \varphi_i : B \to \mathbb{Z} \cup \{-\infty\}$ and $\tilde{e}_i, \tilde{f}_i : B \to B \cup \{\mathbf{0}\}$ for $i \in I := \{1, \ldots, n-1, \overline{1}\}$ satisfying the following conditions:

- (1) *B* is a $\mathfrak{gl}(n)$ -crystal with respect to wt, ε_i , φ_i , \tilde{e}_i , \tilde{f}_i for $i = 1, \ldots, n-1$,
- (2) wt(b) $\in \bigoplus_{i \in [n]} \mathbb{Z}_+ \epsilon_i$ for $b \in B$,
- (3) $\operatorname{wt}(\widetilde{e}_{\overline{1}}b) = \operatorname{wt}(b) + \alpha_1, \operatorname{wt}(\widetilde{f}_{\overline{1}}b) = \operatorname{wt}(b) \alpha_1 \text{ for } b \in B,$
- (4) $\widetilde{f}_{\overline{1}}b = b'$ if and only if $b = \widetilde{e}_{\overline{1}}b'$ for all $b, b' \in B$,
- (5) for $3 \leq i \leq n-1$, we have
 - (i) the operators $\tilde{e}_{\overline{1}}$ and $\tilde{f}_{\overline{1}}$ commute with \tilde{e}_i, \tilde{f}_i ,
 - (ii) if $\tilde{e}_{\overline{1}}b \in B$, then $\varepsilon_i(\tilde{e}_{\overline{1}}b) = \varepsilon_i(b)$ and $\varphi_i(\tilde{e}_{\overline{1}}b) = \varphi_i(b)$.

Let \mathbf{B}_n be a $\mathfrak{q}(n)$ -crystal which is the $\mathfrak{gl}(n)$ -crystal $B_n(\epsilon_1)$ together with $\tilde{f}_1 = 2$ (in dashed arrow):

$$\boxed{1} \xrightarrow[\overline{1}]{\longrightarrow} \boxed{2} \xrightarrow{2} \boxed{3} \xrightarrow{3} \cdots \xrightarrow{n-1} \boxed{n}.$$

The electronic journal of combinatorics $\mathbf{25(3)}$ (2018), #P3.7

Here we write $b \xrightarrow{i} b'$ if $\tilde{f}_i b = b'$ for $b, b' \in B$ and $i \in I \setminus \{\overline{1}\}$ as usual, and $b \xrightarrow{1} b'$ if $\tilde{f}_1 b = b'$.

For $\mathfrak{q}(n)$ -crystals B_1 and B_2 , the tensor product $B_1 \otimes B_2$ is the $\mathfrak{gl}(n)$ -crystal $B_1 \otimes B_2$ where the actions of $\tilde{e}_{\overline{1}}$ and $\tilde{f}_{\overline{1}}$ are given by

$$\widetilde{e}_{\overline{1}}(b_1 \otimes b_2) = \begin{cases} \widetilde{e}_{\overline{1}}b_1 \otimes b_2, & \text{if } \langle \epsilon_1, \operatorname{wt}(b_2) \rangle = \langle \epsilon_2, \operatorname{wt}(b_2) \rangle = 0, \\ b_1 \otimes \widetilde{e}_{\overline{1}}b_2, & \text{otherwise}, \end{cases}$$

$$\widetilde{f}_{\overline{1}}(b_1 \otimes b_2) = \begin{cases} \widetilde{f}_{\overline{1}}b_1 \otimes b_2, & \text{if } \langle \epsilon_1, \operatorname{wt}(b_2) \rangle = \langle \epsilon_2, \operatorname{wt}(b_2) \rangle = 0, \\ b_1 \otimes \widetilde{f}_{\overline{1}}b_2, & \text{otherwise}. \end{cases}$$

$$(3)$$

Then it is easy to see that $B_1 \otimes B_2$ is a $\mathfrak{q}(n)$ -crystal. In particular, $\mathcal{W}_{[n]}$ is also a $\mathfrak{q}(n)$ -crystal.

Let *B* be a $\mathfrak{q}(n)$ -crystal. Suppose that *B* is a regular $\mathfrak{gl}(n)$ -crystal, that is, each connected component in *B* is isomorphic to $B_n(\lambda)$ for some $\lambda \in \mathscr{P}_n$. Let $W = \mathfrak{S}_n$ be the Weyl group of $\mathfrak{gl}(n)$ which is generated by the simple reflection r_i corresponding to α_i for $i = 1, \ldots, n-1$. We have a group action of *W* on *B* denoted by *S* such that

$$S_{r_i}(b) = \begin{cases} \widetilde{f}_i^{\langle \operatorname{wt}(b), h_i \rangle} b, & \text{if } \langle \operatorname{wt}(b), h_i \rangle \ge 0, \\ \widetilde{e}_i^{-\langle \operatorname{wt}(b), h_i \rangle} b, & \text{if } \langle \operatorname{wt}(b), h_i \rangle \leqslant 0, \end{cases}$$

for $b \in B$ and i = 1, ..., n - 1. For $2 \leq i \leq n - 1$, let $w_i \in W$ be such that $w_i(\alpha_i) = \alpha_1$, and let

$$\widetilde{e}_{\overline{i}} = S_{w_i^{-1}} \widetilde{e}_{\overline{1}} S_{w_i}, \quad \widetilde{f}_{\overline{i}} = S_{w_i^{-1}} \widetilde{f}_{\overline{1}} S_{w_i}.$$

$$\tag{4}$$

For $b \in B$, we say that b is a $\mathfrak{q}(n)$ -highest weight vector if $\tilde{e}_i b = \tilde{e}_i b = \mathbf{0}$ for $1 \leq i \leq n-1$, and b is a $\mathfrak{q}(n)$ -lowest weight vector if $S_{w_0}b$ is a $\mathfrak{q}(n)$ -highest weight vector.

For $\lambda \in \mathscr{P}^+$, let $\mathbf{B}_n(\lambda) = SSDT_n(\lambda)$, and consider an injective map

Then we have the following.

Theorem 5. ([6, Theorem 2.5]) Let $\lambda \in \mathscr{P}_n^+$ be given.

- (a) The image of $\mathbf{B}_n(\lambda)$ in (5) together with $\{\mathbf{0}\}$ is invariant under the action of \tilde{e}_i and \tilde{f}_i for $i \in I$, and hence $\mathbf{B}_n(\lambda)$ is a $\mathfrak{q}(n)$ -crystal.
- (b) The $\mathfrak{q}(n)$ -crystal $\mathbf{B}_n(\lambda)$ is connected where H_n^{λ} is a unique $\mathfrak{q}(n)$ -highest weight vector and L_n^{λ} is a unique $\mathfrak{q}(n)$ -lowest weight vector.

Remark 6. In [7], a semisimple tensor category over the quantum superalgebra $U_q(\mathbf{q}(n))$ is introduced, and it is shown that each irreducible highest weight module $V_n(\lambda)$ in this category, parametrized by $\lambda \in \mathscr{P}_n^+$, has a crystal base. Furthermore, it is shown in [6, Theorem 2.5(c)] that the crystal of $V_n(\lambda)$ is isomorphic to $\mathbf{B}_n(\lambda)$.

Figure 1: The q(3)-crystal $\mathbf{B}_3(3,1)$

Let B_1 and B_2 be $\mathfrak{q}(n)$ -crystals. For $b_1 \in B_1$ and $b_2 \in B_2$, let us say that b_1 and b_2 are equivalent and write $b_1 \equiv b_2$ if there exists an isomorphism of $\mathfrak{q}(n)$ -crystals ψ : $C(b_1) \longrightarrow C(b_2)$ such that $\psi(b_1) = b_2$ where $C(b_i)$ denotes the connected component of $b_i \in B_i$ (i = 1, 2) as a $\mathfrak{q}(n)$ -crystal.

By [7, Theorem 4.6], each connected component in $\mathbf{B}_n^{\otimes N}$ $(N \ge 1)$ is isomorphic to $\mathbf{B}_n(\lambda)$ for some $\lambda \in \mathscr{P}_n^+$ with $|\lambda| = N$. Indeed, for $b = b_1 \otimes \cdots \otimes b_N \in \mathbf{B}_n^{\otimes N}$, there exists a unique $\lambda \in \mathscr{P}_n^+$ and $T \in \mathbf{B}_n(\lambda)$ such that $b \equiv T$. In particular, b is a $\mathfrak{q}(n)$ -lowest (resp. $\mathfrak{q}(n)$ -highest) weight vector if and only if $b \equiv L_n^{\lambda}$ (resp. H_n^{λ}).

The following lemma plays a crucial role in characterization of $\mathfrak{q}(n)$ -lowest weight vectors in $\mathbf{B}_n^{\otimes N}$ and hence describing the decompositions of $\mathbf{B}_n^{\otimes N}$ and $\mathbf{B}_n(\mu) \otimes \mathbf{B}_n(\nu)$ $(\mu, \nu \in \mathscr{P}_n^+)$ into connected components in [6].

Lemma 7. ([6, Lemma 1.15, Corollary 1.16]) For $b = b_1 \otimes \cdots \otimes b_N \in \mathbf{B}_n^{\otimes N}$, the following are equivalent:

- (1) b is a q(n)-lowest weight vector,
- (2) $b' = b_2 \otimes \cdots \otimes b_N$ is a $\mathfrak{q}(n)$ -lowest weight vector and $\epsilon_{b_1} + \operatorname{wt}(b') \in w_0 \mathscr{P}_n^+$,

(3) wt $(b_M \otimes \cdots \otimes b_N) \in w_0 \mathscr{P}_n^+$ for all $1 \leq M \leq N$.

Hence, we have the following immediately by Lemma 7.

Corollary 8. For $\lambda^{(1)}, \ldots, \lambda^{(s)} \in \mathscr{P}_n^+$ and $T_1 \otimes \cdots \otimes T_s \in \mathbf{B}_n(\lambda^{(1)}) \otimes \cdots \otimes \mathbf{B}_n(\lambda^{(s)})$, the following are equivalent:

- (1) $T_1 \otimes \cdots \otimes T_s$ is a $\mathfrak{q}(n)$ -lowest weight vector,
- (2) $T_r \otimes \cdots \otimes T_s \in \mathbf{B}_n(\lambda^{(s)}) \otimes \cdots \otimes \mathbf{B}_n(\lambda^{(r)})$ is a $\mathfrak{q}(n)$ -lowest weight vector for all $1 \leq r \leq s$.

Note that we do not have an analogue of Lemma 7 for q(n)-highest weight vectors.

Remark 9. Let $m \ge n$ be a positive integer, and put t = m - n. For $N \ge 1$, let $\psi_t : \mathbf{B}_n^{\otimes N} \longrightarrow \mathbf{B}_m^{\otimes N}$ be the map given by $\psi_t(u_1 \otimes \cdots \otimes u_N) = (u_1 + t) \otimes \cdots \otimes (u_N + t)$. Then for $\lambda \in \mathscr{P}_n^+$ and $u \in \mathbf{B}_n^{\otimes N}$ we have $u \equiv L_n^{\lambda}$ if and only if $\psi_t(u) \equiv L_m^{\lambda}$. This implies that the multiplicity of $\mathbf{B}_n(\lambda)$ in $\mathbf{B}_n^{\otimes N}$ is equal to that of $\mathbf{B}_m(\lambda)$ in $\mathbf{B}_m^{\otimes N}$ for $\lambda \in \mathscr{P}_n^+$.

3 Littlewood–Richardson rule for Schur *P*-functions

For $\lambda, \mu, \nu \in \mathscr{P}^+$, the shifted Littlewood-Richardson coefficients $f^{\lambda}_{\mu\nu}$ are the coefficients given by

$$P_{\mu}P_{\nu} = \sum_{\lambda} f^{\lambda}_{\mu\nu} P_{\lambda}.$$
 (6)

In this section we give a new combinatorial description of $f^{\lambda}_{\mu\nu}$ using the theory of $\mathfrak{q}(n)$ crystals. We also show that our description of $f^{\lambda}_{\mu\nu}$ is equivalent to Stembridge's description
[16].

3.1 Shifted Littlewood–Richardson rule

Definition 10. Let $w = w_1 \cdots w_N$ be a word in \mathcal{W}_N . Let $m_k = c_k(w) + c_{k'}(w)$ for $k \ge 1$. We define $w^* = w_1^* \cdots w_N^*$ to be the word obtained from w after applying the following steps for each $k \ge 1$:

- (1) Consider the letters w_i 's with $|w_i| = k$. Label them with $1, 2, \ldots, m_k$ (as subscripts), first enumerating the w_p 's with $w_p = k$ from left to right, and then the w_q 's with $w_q = k'$ from right to left.
- (2) After the step (1), remove all ' in each labeled letter k'_j , that is, replace any k'_j by k_j for $c_k(w) < j \leq m_k$.

Example 11.

$$w = 11'11'1 \longrightarrow 1_11'_51_21'_41_3 \longrightarrow w^* = 1_11_51_21_41_3$$
$$w = 21'12'2'121 \longrightarrow 2_11'_41_12'_42'_31_22_21_3 \longrightarrow w^* = 2_11_41_12_42_31_22_21_3$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 25(3) (2018), #P3.7

Definition 12. Let $w = w_1 \cdots w_N \in \mathcal{W}_N$ be given. We say that w satisfies the *hook* lattice property if the word $w^* = w_1^* \cdots w_N^*$ associated to w given in Definition 10 satisfies the following for $k \ge 1$:

- (L1) if $w_i^* = k_1$, then no $k + 1_j$ for $j \ge 1$ occurs in $w_1^* \cdots w_{i-1}^*$,
- (L2) if $(w_s^*, w_t^*) = (k + 1_i, k_{i+1})$ for some s < t and $i \ge 1$, then no $k + 1_j$ for i < j occurs in $w_s^* \cdots w_t^*$,
- (L3) if $(w_s^*, w_t^*) = (k_{j+1}, k+1_j)$ for some s < t and $j \ge 1$, then no k_i for $i \le j$ occurs in $w_s^* \cdots w_t^*$.

Definition 13. For $\lambda, \mu, \nu \in \mathscr{P}^+$, let $\mathsf{F}^{\lambda}_{\mu\nu}$ be the set of tableaux Q such that

- (1) $Q \in SST^+_{\mathcal{N}}(\lambda/\mu)$ with $c_k(Q) + c_{k'}(Q) = \nu_k$ for $k \ge 1$,
- (2) for $k \ge 1$, if x is the rightmost letter in w(Q) with |x| = k, then x = k,
- (3) w(Q) satisfies the hook lattice property in Definition 12.

Then we have the following characterization of $f^{\lambda}_{\mu\nu}$.

Theorem 14. For $\lambda, \mu, \nu \in \mathscr{P}^+$, we have

$$f_{\mu\nu}^{\lambda} = \left| \mathbf{F}_{\mu\nu}^{\lambda} \right|,$$

that is, the shifted LR coefficient $f_{\mu\nu}^{\lambda}$ is equal to the number of tableaux in $F_{\mu\nu}^{\lambda}$.

Proof. Choose n such that $\lambda, \mu, \nu \in \mathscr{P}_n^+$. Put

$$\mathbf{L}_{\mu\nu}^{\lambda} = \{ T \mid T \in \mathbf{B}_{n}(\nu), \ T \otimes L_{n}^{\mu} \equiv L_{n}^{\lambda} \}.$$

$$\tag{7}$$

By Corollary 8, we have

$$\mathbf{B}_{n}(\nu) \otimes \mathbf{B}_{n}(\mu) \cong \bigsqcup_{\lambda \in \mathscr{P}_{n}^{+}} \mathbf{B}_{n}(\lambda)^{\oplus |\mathbf{L}_{\mu\nu}^{\lambda}|}.$$
(8)

Hence we have $|\mathbf{L}_{\mu\nu}^{\lambda}| = f_{\mu\nu}^{\lambda} = f_{\nu\mu}^{\lambda}$ from (1) and the linear independence of Schur *P*-polynomials $P_{\lambda}(x_1, \ldots, x_n)$'s.

Let us prove $f_{\mu\nu}^{\lambda} = |\mathbf{F}_{\mu\nu}^{\lambda}|$ by constructing a bijection

Let $T \in L^{\lambda}_{\mu\nu}$ be given. Assume that $w_{rev}(T) = u_1 \cdots u_N$ where $N = |\nu|$. By Lemma 7, there exists $\mu^{(m)} \in \mathscr{P}_n^+$ for $1 \leq m \leq N$ such that

(i) $(u_{N-m+1}\cdots u_N)\otimes L_n^{\mu}\equiv L_n^{\mu^{(m)}}$ and $\mu^{(N)}=\lambda$,

The electronic journal of combinatorics $\mathbf{25(3)}$ (2018), #P3.7

(ii) $\mu^{(m)}$ is obtained by adding a box in the $(n - u_m + 1)$ -st row of $\mu^{(m-1)}$.

Here we assume that $\mu^{(0)} = \mu$. Recall that

$$w_{\rm rev}(T) = T^{(\ell(\nu))} \cdots T^{(1)},$$

where $T^{(k)} = T_{k,1} \cdots T_{k,\lambda_k}$ is a hook word for $1 \leq k \leq \ell(\nu)$. We define Q_T to be a tableau of shifted shape λ/μ with entries in \mathcal{N} , where $\mu^{(m)}/\mu^{(m-1)}$ is filled with

$$\begin{cases} k', & \text{if } u_m \text{ belongs to } T^{(k)}\uparrow, \\ k, & \text{if } u_m \text{ belongs to } T^{(k)}\downarrow, \end{cases}$$
(10)

for some $1 \leq k \leq \ell(\nu)$. In other words, the boxes in Q_T corresponding to $T^{(k)}\uparrow$ are filled with k' from right to left as a vertical strip and then those corresponding to $T^{(k)}\downarrow$ are filled with k from left to right as a horizontal strip.

By construction, it is clear that $Q_T \in SST_N^+(\lambda/\mu)$ with $c_{k'}(Q_T) + c_k(Q_T) = \nu_k$ for $1 \leq k \leq \ell(\nu)$. Let $w(Q_T) = w_1 \cdots w_N$. Since $T^{(k)}$ is a hook word for each k and the rightmost letter, say u_m , in $T^{(k)} \downarrow$ is strictly smaller than the leftmost letter u_{m+1} in $T^{(k)} \uparrow$, the entry k in Q_T corresponding to u_m is located to the southeast of all k's in Q_T . So the conditions Definition 13(1) and (2) are satisfied.

It remains to check that $w(Q_T)$ satisfies the hook lattice property. Note that if we label k and k' in (10) as k_j and k'_j , respectively when $u_m = T_{k,j}$, then it coincides with the labeling on the letters in $w(Q_T)$ given in Definition 10(1). Now it is not difficult to see that the conditions Proposition 3(1), (2), and (3) on T implies the conditions Definition 12 (L1), (L2), and (L3), respectively. Therefore, $Q_T \in \mathbf{F}^{\lambda}_{\mu\nu}$.

If $T, T' \in L^{\lambda}_{\mu\nu}$ with $T^{(i)} \neq T'^{(i)}$ for some $i \ge 1$, then it follows from (10) that $Q_T \neq Q_{T'}$, so the correspondence $T \mapsto Q_T$ is injective. Moreover, this correspondence is reversible, and hence the map (9) is a bijection. This completes the proof.

Remark 15. We see from Remark 9 that $|\mathbf{L}_{\mu\nu}^{\lambda}|$ does not depend on *n* for all sufficiently large *n*. Hence (8) also implies the Schur *P*-positivity of the product $P_{\mu}P_{\nu}$.

Remark 16. For $T \in L^{\lambda}_{\mu\nu}$, let \widehat{Q}_T be the tableau of shifted shape λ/μ , which is defined in the same way as Q_T in the proof of Theorem 14 except that we fill $\mu^{(m)}/\mu^{(m-1)}$ with m in (10) for $1 \leq m \leq N$. Then the set $\{\widehat{Q}_T | T \in L^{\lambda}_{\mu\nu}\}$ is equal to the one given in [6, Theorem 4.13] to describe $f^{\lambda}_{\mu\nu}$. For example,

The electronic journal of combinatorics $\mathbf{25(3)}$ (2018), #P3.7

3.2 Stembridge's description of $f^{\lambda}_{\mu\nu}$

Definition 17. Let $w = w_1 \cdots w_N$ be a word in \mathcal{W}_N and w_{rev} be the reverse word of w. Let \hat{w} be the word obtained from w by replacing k by (k+1)' and k' by k for each $k \ge 1$. Suppose that $w \hat{w}_{rev} = a_1 \cdots a_{2N}$, and let $m_k(i) = c_k(a_1 \cdots a_i)$ for $k \ge 1$ and $0 \le i \le 2N$. Then we say that w satisfies the *lattice property* if

$$m_{k+1}(i) = m_k(i) \text{ implies } |a_{i+1}| \neq k+1 \text{ for } k \ge 1 \text{ and } i \ge 0.$$

$$(11)$$

Here we assume that $m_k(0) = 0$.

Definition 18. For $\lambda, \mu, \nu \in \mathscr{P}^+$, let $LRS^{\lambda}_{\mu\nu}$ be the set of tableaux Q such that

- (1) $Q \in SST^+_{\mathcal{N}}(\lambda/\mu)$ with $c_k(Q) + c_{k'}(Q) = \nu_k$ for $k \ge 1$,
- (2) for $k \ge 1$, if x is the rightmost letter in w(Q) with |x| = k, then x = k,
- (3) w(Q) satisfies the lattice property in Definition 17.

We call $LRS^{\lambda}_{\mu\nu}$ the set of *Littlewood-Richardson-Stembridge tableaux*.

Theorem 19. ([16, Theorem 8.3]) For $\lambda, \mu, \nu \in \mathscr{P}^+$, we have

$$f_{\mu\nu}^{\lambda} = \left| \texttt{LRS}_{\mu\nu}^{\lambda} \right|$$

that is, the shifted LR coefficient $f^{\lambda}_{\mu\nu}$ is equal to the number of tableaux in $\text{LRS}^{\lambda}_{\mu\nu}$.

Theorem 20. For $\lambda, \mu, \nu \in \mathscr{P}^+$, we have

$$\mathbf{F}_{\mu
u}^{\lambda} = \mathtt{LRS}_{\mu
u}^{\lambda}$$

Proof. Since Definition 13(1) and (2) are the same as Definition 18(1) and (2), respectively, it suffices to show that for any $Q \in SST_N^+(\lambda/\mu)$, w := w(Q) satisfies the hook lattice property in Definition 12 if and only if w satisfies the lattice property in Definition 17. We assume that $N = |\nu|$, $w = w_1 \cdots w_N$, $w^* = w_1^* \cdots w_N^*$, and $w \widehat{w}_{rev} = a_1 \cdots a_{2N}$.

Suppose that w satisfies the hook lattice property in Definition 12. We use induction on $1 \leq i \leq 2N$ to show that $a_1 \cdots a_{2N}$ satisfies (11). We first observe from (L1) that $a_1 =$ 1 or 1', and a_1 satisfies (11) since $m_k(0) = 0$ for all $k \geq 1$.

We now assume that $a_1 \cdots a_i$ for some $1 \leq i < 2N$ satisfies (11). Suppose for the sake of contradiction that $m_{k+1}(i) = m_k(i) = m$ and $|a_{i+1}| = k+1$ for some $k \geq 1$. Here m > 0by (L1). By induction hypothesis, there exist $s < t \leq i$ such that $a_s = k$ with $m_k(s) = m$ and $a_t = k+1$ with $m_{k+1}(t) = m$. Note that for each $k \geq 1$

$$c_k(w) + c_{k'}(w) > c_{k+1}(w) + c_{(k+1)'}(w),$$
(12)

which implies that the number of k's in $w\widehat{w}_{rev}$ is greater than the number of k + 1's in $w\widehat{w}_{rev}$. So we can choose an integer u > i + 1 such that $a_u = k$ and $m_k(u) = m + 1$. We now consider the following four cases:

Case 1. Let $1 \leq s < t < i+1 \leq N$. In this case $w_s^* = k_m$, $w_t^* = k+1_m$ and $w_{i+1}^* = k+1_M$ for some $M \geq m+1$. (i) If $u \leq N$, then we have $(w_t^*, w_{i+1}^*, w_u^*) = (k+1_m, k+1_M, k_{m+1})$, which contradicts (L2). (ii) If N < u < 2N - s + 1, then $a_{2N-u+1} = w_{2N-u+1} = k'$ $(s < 2N - u + 1 \leq N)$ but no k occurs in $w_{s+1} \cdots w_N$ which contradicts Definition 13(2). (iii) If $2N - s + 1 < u \leq 2N$, then we have $(w_{2N-u+1}^*, w_s^*, w_t^*) = (k_{m+1}, k_m, k+1_m)$, which contradicts (L3).

Case 2. Let $1 \leq s < t \leq N < i+1 \leq 2N$. In this case $w_s^* = k_m$ and $w_t^* = k+1_m$. Since $w_{2N-u+1} = k' (2N-u+1 < N)$, we have $s \neq 2N-u+1$. (i) If s < 2N-u+1, then we have $w_{2N-u+1} = k'$ but no k in $w_{s+1} \cdots w_n$ since $m_k(i) = m$, which contradicts Definition 13(2). (ii) If 2N - u + 1 < s, then we have $(w_{2N-u+1}^*, w_s^*, w_t^*) = (k_{m+1}, k_m, k+1_m)$, which contradicts (L3).

Case 3. Let $1 \leq s \leq N < t < i+1 \leq 2N$. In this case $w_s^* = k_m$, $w_{2N-t+1}^* = k+1_m$. If $a_{i+1} = (k+1)'$, then $a_{2N-i} = k$ but it is impossible from the assumption $m_k(i) = m$. So $a_{i+1} = k+1$ and $w_{2N-i}^* = k+1_{m+1}$. (i) If s < 2N-t+1, then we have $w_{2N-t+1} = (k+1)'$ $(2N-t+1 \leq N)$ but no k+1 in $w_{2N-t+2} \cdots w_N$ since $m_{k+1}(i) = m$, which contradicts Definition 13(2). (ii) If 2N-t+1 < s, then by (12) there is an integer v > u such that $a_v = k$ and $m_k(v) = m+2$. So we have $(w_{2N-v+1}^*, w_{2N-u+1}^*, w_{2N-i}^*) = (k_{m+2}, k_{m+1}, k+1_{m+1})$, which contradicts (L3).

Case 4. Let $N < s < t < i+1 \le 2N$. In this case $w_{2N-s+1}^* = k_m$ and $w_{2N-t+1}^* = k+1_m$. (i) If $a_{i+1} = k+1$, then $w_{2N-i} = (k+1)'$ and $w_{2N-i}^* = k+1_{m+1}$. By (12) there is an integer v > u such that $a_v = k$ and $m_k(v) = m+2$. So we have $(w_{2N-v+1}^*, w_{2N-u+1}^*, w_{2N-i}^*) = (k_{m+2}, k_{m+1}, k+1_{m+1})$, which contradicts (L3). (ii) If $a_{i+1} = (k+1)'$, then $w_{2N-i} = k$ and $w_{2N-i}^* = k_M$ for some M < m. So we have $(w_{2N-u+1}^*, w_{2N-i}^*, w_{2N-i+1}^*) = (k_{m+1}, k_M, k+1_m)$, which contradicts (L3).

Conversely, we assume that w satisfies the lattice property in Definition 17. We first claim that w satisfies (L1). Given $k \ge 1$, let $w_i^* = k_1$ for some $1 \le i \le N$. If $w_j^* = k + 1_1$ for some $1 \le j < i$, then it follows that $m_k(j-1) = m_{k+1}(j-1) = 0$ and $a_j = k + 1$, which contradicts (11). Hence w satisfies (L1).

Next, we claim that w satisfies (L2). Suppose that there is a triple $(w_s^*, w_u^*, w_t^*) = (k + 1_i, k + 1_j, k_{i+1})$ for some $k \ge 1$, i < j, and $1 \le s < u < t \le N$. We may assume that j = i + 1. Since $w_s^* = k + 1_i$ is placed to the left of $w_u^* = k + 1_{i+1}$, it follows from Definition 10 that $a_s = k + 1$, and from Definition 18(2) that $a_u = k + 1$. Since w satisfies the lattice property, there is a positive integer v < s such that $w_v^* = k_i$, i.e., $a_v = k$ and $m_k(v) = i$ for some v < s. We have $m_{k+1}(u-1) = m_k(u-1) = i$ and $a_u = k + 1$, a contradiction. So w satisfies (L2).

Finally, we claim that w satisfies (L3). Suppose for the sake of contradiction that $(w_s^*, w_u^*, w_t^*) = (k_{j+1}, k_i, k+1_j)$ for some $k \ge 1$, $i \le j$, and $1 \le s < u < t \le N$. We may assume that i = j. Since $w_s^* = k_{j+1}$ is placed to the left of $w_u^* = k_j$, it follows that $a_s = k'$. We consider four cases depending whether a_u and a_t are primed or not as follows:

Case 1. Let $a_u = k'$ and $a_t = (k+1)'$. It follows that $a_{2N-u+1} = k \ (m_k(2N-u+1) = j)$ and $a_{2N-t+1} = k+1 \ (m_k(2N-u+1) = j)$. So we have $m_{k+1}(2N-t) = m_k(2N-t) = j-1$ and $a_{2N-t+1} = k+1$, as desired. Case 2. Let $a_u = k'$ and $a_t = k + 1$. It follows that $a_{2N-u+1} = k$, $m_k(2N-u+1) = j$ and $m_{k+1}(t) = j$. Since t < 2N - u + 1, we have $m_k(t) < m_{k+1}(t)$. So there is an integer $0 \leq \hat{t} < t$ such that $m_k(\hat{t}) = m_{k+1}(\hat{t}) < j$ and $a_{\hat{t}+1} = k + 1$, as desired.

Case 3. Let $a_u = k$ and $a_t = (k+1)'$. It follows that $a_{2N-t+1} = k+1$ and $m_{k+1}(2N-t+1) = j$. From $m_k(2N-s+1) = j+1$ and 2N-t+1 < 2N-s+1 we have $m_k(2N-t+1) = m_{k+1}(2N-t+1) = j$. If there is another k+1 between w_t^* and w_u^* , then we obtain the desired contradiction. Otherwise, $m_k(2N-u) = m_{k+1}(2N-u)$ and $a_{2N-u+1} = (k+1)'$, as desired.

Case 4. Let $a_u = k$ and $a_t = k + 1$. From $a_s = k'$ $(w_s^* = k_{j+1})$ it follows that $m_k(2N-u) = j$. If $m_{k+1}(2N-u) = j$, from $a_{2N-u+1} = (k+1)'$ we get a contradiction. If $m_{k+1}(2N-u) > j$, by choosing the smallest integer $\hat{t} > t$ such that $m_{k+1}(\hat{t}) = j + 1$ this leads to a contradiction.

Indeed, we have shown in the proof of Theorem 20 that

Corollary 21. Let $w \in W_N$ be such that

(1)
$$(c_k(Q) + c_{k'}(Q))_{k \ge 1} \in \mathscr{P}^+,$$

(2) for $k \ge 1$, if x is the rightmost letter in w with |x| = k, then x = k.

Then w satisfies the hook lattice property in Definition 12 if and only if w satisfies the lattice property in Definition 17.

Remark 22. A bijection from $LRS^{\lambda}_{\mu\nu}$ to $L^{\lambda}_{\mu\nu}$ is also given in [4, Theorem 4.7], which coincides with the inverse of the map $T \mapsto Q_T$ in (9) (see also the remarks in [4, p.82]). The proof of [4, Theorem 4.7] use insertion schemes for two versions of semistandard decomposition tableaux and another combinatorial model for $f^{\lambda}_{\mu\nu}$ by Cho [3] as an intermediate object between $LRS^{\lambda}_{\mu\nu}$ and $L^{\lambda}_{\mu\nu}$.

On the other hand, we prove more directly that the map $T \mapsto Q_T$ in (9) is a bijection from $L^{\lambda}_{\mu\nu}$ to $LRS^{\lambda}_{\mu\nu}$ by using a new characterization of the lattice property in Theorem 20.

4 Schur *P*-expansions of skew Schur functions

4.1 The Schur *P*-expansion of s_{λ/δ_r}

For $r \ge 0$, let us denote by δ_r the partition (r, r - 1, ..., 1) if $r \ge 1$, and (0) if r = 0. We fix a nonnegative integer r.

Let $\lambda \in \mathscr{P}$ be such that $D_{\delta_r} \subseteq D_{\lambda} \subseteq D_{((r+1)^{r+1})}$. Here $((r+1)^{r+1})$ means the rectangular partition $(r+1,\ldots,r+1)$ with length r+1. For instance, the diagram

is contained in $D_{(5^5)}$.

It is shown in [1, 5] that the skew Schur function s_{λ/δ_k} has a nonnegative integral expansion in terms of Schur *P*-functions

$$s_{\lambda/\delta_r} = \sum_{\nu \in \mathscr{P}^+} a_{\lambda/\delta_r \,\nu} \, P_{\nu},\tag{13}$$

together with a combinatorial description of $a_{\lambda/\delta_r\nu}$. Moreover it is shown that these skew Schur functions are the only ones (up to rotation of shape by 180°), which have Schur *P*-positivity. In this section, we give a new simple description of $a_{\lambda/\delta_r\nu}$ using q(n)-crystals.

First we consider a $\mathfrak{q}(n)$ -crystal structure on $B_n(\lambda/\delta_r)$.

Proposition 23. Let $\lambda \in \mathscr{P}_n$ be such that $D_{\delta_r} \subseteq D_\lambda \subseteq D_{(r+1)^{r+1}}$. Then the $\mathfrak{gl}(n)$ -crystal $B_n(\lambda/\delta_r)$, regarded as a subset of $W_{[n]}$ together with **0** is invariant under $\tilde{e}_{\overline{1}}$ and $\tilde{f}_{\overline{1}}$. Hence $B_n(\lambda/\delta_r)$ is a $\mathfrak{q}(n)$ -crystal.

Proof. Let $N = |\lambda| - |\delta_r|$. For $T \in B_n(\lambda/\delta_r)$, let $w(T) = w_1 \cdots w_N$. Recall that T is identified with w(T) in $\mathcal{W}_{[n]}$. Here we call the box in D_{λ/δ_r} containing w_i the w_i -box, and call the set of boxes $(x, r - x + 2) \in D_{\lambda/\delta_r}$ for $1 \leq x \leq r + 1$ the main anti-diagonal of D_{λ/δ_r} .

Suppose that $\tilde{f}_{1}w(T) \neq 0$. There exists $1 \leq i \leq N-1$ such that $w_i = 1$ and $w_j \neq 1, 2$ for all $i < j \leq N$, and

$$f_{\overline{1}}(w_1 \cdots w_{i-1} \ 1 \ w_{i+1} \cdots w_N) = w_1 \cdots w_{i-1} \ 2 \ w_{i+1} \cdots w_N,$$

by the tensor product rule (3). We first observe that the entry 1 in T can be placed only on the main anti-diagonal in D_{λ/δ_r} . If there is a box in D_{λ/δ_r} below the w_i -box, then it corresponds to w_j for some j > i, and hence its entry is greater than 2. Moreover, if there is a box in D_{λ/δ_r} to the right of the w_i -box, then its entry is greater than 1 since it is not on the main anti-diagonal. So we conclude that there exists $T' \in SST_{[n]}(\lambda/\delta_r)$ such that $w(T') = \tilde{f}_{1}w(T)$.

Suppose that $\tilde{e}_{\bar{1}}w(T) \neq 0$. There exists $1 \leq i \leq N-1$ such that $w_i = 2$ and $w_j \neq 1, 2$ for all $i < j \leq N$, and

$$\widetilde{e}_{\overline{1}}(w_1 \cdots w_{i-1} \, 2 \, w_{i+1} \cdots w_N) = w_1 \cdots w_{i-1} \, 1 \, w_{i+1} \cdots w_N, \tag{14}$$

by the tensor product rule (3). If the w_i -box is not on the main anti-diagonal, then the w_{i+1} -box is placed to the left of the w_i -box. Then the w_{i+1} -box is filled with 1 or 2, which contradicts (14). So the w_i -box is on the main anti-diagonal, and thus $\tilde{f}_{\overline{1}}w(T) = w(T')$ for some $T' \in B_n(\lambda/\delta_r)$. This completes the proof.

Remark 24. The above proposition is a slight generalization of [7, Example 2.10(d)], which considers only the set of semistandard tableaux of shape Y_{λ} with entries in [n] for a strict partition $\lambda \in \mathscr{P}^+$. Here Y_{λ} is the skew diagram having λ_1 boxes on the main anti-diagonal, λ_2 boxes on the second one, etc.

The electronic journal of combinatorics $\mathbf{25(3)}$ (2018), #P3.7

Corollary 25. Under the above hypothesis, the skew Schur function s_{λ/δ_r} is Schur Ppositive.

Proof. Since $B_n(\lambda/\delta_r)$ is a $\mathfrak{q}(n)$ -crystal, the skew Schur polynomial $s_{\lambda/\delta_r}(x_1,\ldots,x_n)$ is a nonnegative integral linear combination of $P_{\nu}(x_1,\ldots,x_n)$. From the fact that $B_n(\lambda/\delta_r)$ lies inside $B(\epsilon_1)^N$ for $N = |\lambda| - |\delta_r|$ we then apply Remark 9.

Definition 26. Let $\lambda \in \mathscr{P}$ be such that $D_{\delta_r} \subseteq D_{\lambda} \subseteq D_{((r+1)^{r+1})}$ and $\nu \in \mathscr{P}^+$. Let $A_{\lambda/\delta_r\nu}$ be the set of tableaux Q such that

- (1) $Q \in SST^+_{[r+1]}(\nu)$ with $c_k(Q) = \lambda_{r-k+2} k + 1$ for $1 \le k \le r+1$,
- (2) for $1 \leq k \leq r$ and $1 \leq i \leq N$,

$$m_k(i) \leqslant m_{k+1}(i) + 1,$$

where $w_{rev}(Q) = w_1 \cdots w_N$ and $m_k(i) = c_k(w_1 \cdots w_i)$.

Then we have the following combinatorial description of $a_{\lambda/\delta_r\nu}$.

Theorem 27. For $\lambda \in \mathscr{P}$ with $D_{\delta_r} \subseteq D_{\lambda} \subseteq D_{((r+1)^{r+1})}$ and $\nu \in \mathscr{P}^+$, we have

$$a_{\lambda/\delta_r \nu} = \left| \mathbf{A}_{\lambda/\delta_r \nu} \right|.$$

Proof. Choose n such that $\lambda, \nu \in \mathscr{P}_n^+$. We may assume that $\lambda_1 = \ell(\lambda) = r + 1$. Let

$$\mathbf{L}_{\lambda/\delta_r\,\nu} = \{ T \in B_n(\lambda/\delta_r) \,|\, T \equiv L^\nu \,\}.$$
(15)

By Proposition 23, we have

$$B_n(\lambda/\delta_r) \cong \bigsqcup_{\nu \in \mathscr{P}_n^+} \mathbf{B}_n(\nu)^{\oplus |\mathbf{L}_{\lambda/\delta_r \nu}|}.$$
 (16)

By linear independence of $P_{\nu}(x_1, \ldots, x_n)$'s for $\nu \in \mathscr{P}_n^+$, we have $a_{\lambda/\delta_r \nu} = |\mathsf{L}_{\lambda/\delta_r \nu}|$.

Let us construct a bijection

$$\begin{array}{cccc} \mathsf{L}_{\lambda/\delta_r\,\nu} & \longrightarrow & \mathsf{A}_{\lambda/\delta_r\,\nu} \\ T & \longmapsto & Q_T \end{array} \tag{17}$$

as follows. Let $T \in L_{\lambda/\delta_r \nu}$ be given. Suppose that $w(T) = u_1 \cdots u_N$, where $N = |\nu|$. By Lemma 7, there exists $\nu^{(m)} \in \mathscr{P}_n^+$ for $1 \leq m \leq N$ such that $u_{N-m+1} \cdots u_N \equiv L^{\nu^{(m)}}$, where $\nu^{(1)} = (1), \ \nu^{(N)} = \nu$, and $\nu^{(m)}$ is obtained by adding a box in the $(n - u_m + 1)$ -st row of $\nu^{(m-1)}$ for $1 \leq m \leq N$ with $\nu^{(0)} = \emptyset$.

Note that $w_{\text{rev}}(T) = T^{(r+1)} \cdots T^{(1)}$, where $T^{(l)} = T_{l,1} \cdots T_{l,\lambda_l-r-1+l}$ is a weakly increasing word corresponding to the *l*-th row of *T* for $1 \leq l \leq r+1$. Let Q_T be a tableau of shifted shape ν with entries in \mathbb{N} , where $\nu^{(m)}/\nu^{(m-1)}$ is filled with r+2-l if u_m occurs

in $T^{(l)}$, for some $1 \leq l \leq r+1$. Note that the boxes in Q_T corresponding to $T^{(l)}$ are filled with r+2-l as a horizontal strip. So Q_T satisfies the condition Definition 26(1).

For each $k \ge 1$, let us enumerate the letter k's in Q_T from southwest to northeast by k_1, k_2, \ldots . Since $T \in SST_n(\lambda/\delta_r)$, we see that the entry k_i in Q_T corresponds to $T_{l,i}$ for $i \ge 1$, where l = r + 2 - k, and moreover $(k + 1)_i$ is located in the southwest of k_{i+1} for $i \ge 2$. This implies the condition Definition 26(2), and hence $Q_T \in A_{\lambda/\delta_r\nu}$.

Finally, one can check that correspondence $T \mapsto Q_T$ is a bijection.

Example 28. Let $\lambda = (6, 5, 5, 4, 4, 2)$ with $D_{\lambda} \subseteq D_{(6^6)}$ and n = 7. For $\nu = (5, 4, 2)$, we have $L_{\lambda/\delta_5\nu} = \{T_1, T_2\}$ and $A_{\lambda/\delta_5\nu} = \{Q_{T_1}, Q_{T_2}\}$ as follows.

Moreover, we have

$$s_{(6,5,5,4,4,2)/\delta_5} = 2P_{(5,3,2,1)} + 2P_{(5,4,2)} + P_{(6,3,2)} + P_{(6,4,1)}.$$

Remark 29. For $\lambda \in \mathscr{P}$ with $D_{\delta_r} \subseteq D_{\lambda} \subseteq D_{((r+1)^{r+1})}$, let $\lambda^{\natural} = (\lambda_1^{\natural}, \ldots, \lambda_{r+1}^{\natural})$ such that λ_i^{\natural} is the number of boxes on the *i*-th anti-diagonal from the main anti-diagonal, which is obviously a strict partition. One can see that there is a unique tableau of shape λ/δ_r with weight λ^{\natural} satisfying the condition in Lemma 7. Moreover, if $a_{\lambda/\delta_r\nu} \neq 0$, then ν is less than or equal to λ^{\natural} with respect to the dominance ordering. So we have

$$s_{\lambda/\delta_r} = P_{\lambda^{\natural}} + \sum_{\nu < \lambda^{\natural}} a_{\lambda/\delta_r,\nu} P_{\nu}.$$

4.2 Ardila–Serrano's expansion of $s_{\delta_{r+1}/\mu}$

We fix a nonnegative integer r. For $\mu \in \mathscr{P}$ with $D_{\mu} \subseteq D_{\delta_{r+1}}$, let us recall the result on the Schur P-expansion of he skew Schur function $s_{\delta_{r+1}/\mu}$ by Ardila and Serrano [1].

Let $N = |\delta_{r+1}| - |\mu|$, and let $T_{\delta_{r+1}/\mu}$ be the tableau obtained by filling δ_{r+1}/μ with $1, 2, \ldots, N$ subsequently, starting from the bottom row to top, and from left to right in each row. For instance,

For $\nu \in \mathscr{P}^+$ with $|\nu| = N$, let $\mathsf{B}_{\delta_{r+1}/\mu\nu}$ be the set of tableaux Q such that

The electronic journal of combinatorics 25(3) (2018), #P3.7

- (1) $Q \in SST^+_{[N]}(\nu)$ where each entry $i \in [N]$ occurs exactly once,
- (2) if j is directly above i in $T_{\delta_{r+1}/\mu}$, then j is placed strictly to the right of i in Q,
- (3) if i+1 is placed to the right of i in $T_{\delta_{r+1}/\mu}$, then i+1 is strictly below i in Q.

Theorem 30. ([1, Theorem 4.10]) For $\mu \in \mathscr{P}$ with $D_{\mu} \subseteq D_{\delta_{r+1}}$, the skew Schur function $s_{\delta_{r+1}/\mu}$ is given by a nonnegative integral linear combination of Schur P-functions

$$s_{\delta_{r+1}/\mu} = \sum_{\nu \in \mathscr{P}^+} b_{\delta_{r+1}/\mu\nu} P_{\nu},$$

where $b_{\delta_{r+1}/\mu\nu} = |\mathbf{B}_{\delta_{r+1}/\mu\nu}|.$

Now we show that Theorem 27 (after a little modification of its proof) implies Theorem 30. Let $\lambda \in \mathscr{P}$ be such that $D_{\delta_r} \subseteq D_{\lambda} \subseteq D_{((r+1)^{r+1})}$.

Let $\nu \in \mathscr{P}^+$ with $|\nu| = N = |\lambda| - |\delta_r|$, and let $\mathcal{L}_{\lambda/\delta_r\nu}$ be as in (15). Then $|\mathcal{L}_{\lambda/\delta_r\nu}| = a_{\lambda/\delta_r\nu}$ by (16). Let $T \in \mathcal{L}_{\lambda/\delta_r\nu}$ be given with $w(T) = u_1 \cdots u_N$. Recall by Lemma 7 that there exists a sequence of strict partitions $\nu^{(m)} \in \mathscr{P}^+_n$ for $1 \leq m \leq N$ such that $u_{N-m+1} \cdots u_N \equiv L^{\nu^{(m)}}$, where $\nu^{(1)} = (1)$, $\nu^{(N)} = \nu$, and $\nu^{(m)}$ is obtained by adding a box in the $(n - u_m + 1)$ -st row of $\nu^{(m-1)}$ with $\nu^{(0)} = \varnothing$.

We define Q'_T to be the tableau of shifted shape ν such that $\nu^{(m)}/\nu^{(m-1)}$ is filled with m for $1 \leq m \leq N$. Then we have the following.

Theorem 31. Let $\lambda \in \mathscr{P}$ be such that $D_{\delta_r} \subseteq D_{\lambda} \subseteq D_{((r+1)^{r+1})}$ and $\nu \in \mathscr{P}^+$. Then we have a bijection

$$\begin{array}{ccc} \mathbf{L}_{\lambda/\delta_{r}\,\nu} & \longrightarrow & \mathbf{B}_{\delta_{r+1}/(\lambda^{\mathbf{c}})'\,\nu} \\ T & \longmapsto & Q'_{T} \end{array}$$

where $\lambda^{\mathsf{c}} := (r+1-\lambda_{r+1}, r+1-\lambda_r, \dots, r+1-\lambda_1)$ is the complement of λ in $((r+1)^{r+1})$.

Proof. Let T'_{λ/δ_r} be the tableau obtained by filling λ/δ_r with $1, 2, \ldots, N$ subsequently, starting from the leftmost column to rightmost, and from bottom to top in each column. For instance, when $\lambda = (5, 4, 4, 4, 2)$ and r = 4, we have

By definition of Q'_T , we can check that

- (1) $Q'_T \in SST^+_{[N]}(\nu)$ where each entry $i \in [N]$ occurs exactly once,
- (2) if j is directly above i in T'_{λ/δ_r} , then then j is strictly below i in Q'_T ,

(3) if i + 1 is placed to the right of i in T'_{λ/δ_r} , then i + 1 is placed strictly to the right of i in Q'_T .

We see that $T_{\delta_{r+1}/(\lambda^c)'}$ is obtained from T'_{λ/δ_r} by flipping with respect to the main anti-diagonal. This implies that $Q'_T \in \mathsf{B}_{\delta_{r+1}/(\lambda^c)'\nu}$. Since the correspondence $T \mapsto Q'_T$ is reversible, it is a bijection.

Corollary 32. Under the above hypothesis, we have a bijection

$$\begin{array}{ccc} \mathbf{A}_{\lambda/\delta_{r}\,\nu} & \longrightarrow & \mathbf{B}_{\delta_{r+1}/(\lambda^{\mathbf{c}})'\,\nu} \\ Q_{T} & \longmapsto & Q_{T}' \end{array}$$

for $T \in L_{\lambda/\delta_r \nu}$.

Recall that for a skew shape η/ζ , we have $s_{\eta/\zeta} = s_{(\eta/\zeta)^{\pi}}$, where $(\eta/\zeta)^{\pi}$ is the (skew) diagram obtained from η/ζ by rotating 180 degree (which can be seen for example by reversing the linear ordering on N in [2]). Also if $s_{\eta/\zeta}$ has a Schur *P*-expansion, then we have $s_{\eta/\zeta} = s_{\eta'/\zeta'}$ by applying the involution ω on the ring symmetric function sending s_{η} to $s_{\eta'}$ since $\omega(P_{\nu}) = P_{\nu}$ for $\nu \in \mathscr{P}^+$ (see [10, p. 259, Exercise 3.(a)]).

Hence we have

$$s_{\lambda/\delta_r} = s_{\delta_{r+1}/\lambda^{\mathsf{c}}} = s_{\delta_{r+1}/(\lambda^{\mathsf{c}})'},$$

for $\lambda \in \mathscr{P}$ such that $D_{\delta_r} \subseteq D_\lambda \subseteq D_{((r+1)^{r+1})}$. This implies that

$$a_{\lambda/\delta_r\,\nu} = b_{\delta_{r+1}/\lambda^c\,\nu} = b_{\delta_{r+1}/(\lambda^c)'\,\nu},\tag{18}$$

for $\nu \in \mathscr{P}^+$, where $a_{\lambda/\delta_r\nu}$ are given in (13). Equivalently, we have

$$a_{(\mu^{c})'/\delta_{r}\nu} = b_{\delta_{r+1}/\mu'\nu} = b_{\delta_{r+1}/\mu\nu}, \tag{19}$$

for $\mu \in \mathscr{P}$ with $D_{\mu} \subseteq D_{\delta_{r+1}}$. Therefore Theorem 30 follows from Theorem 27, Corollary 32, and (18) (or (19)).

5 Schur expansion of Schur *P*-function

For $\lambda \in \mathscr{P}^+$ and $\mu \in \mathscr{P}$, let $g_{\lambda\mu}$ be the coefficient of s_{μ} in the Schur expansion of P_{λ} , that is,

$$P_{\lambda} = \sum_{\mu} g_{\lambda\mu} s_{\mu}. \tag{20}$$

The purpose of this section is to give an alternate proof of the following combinatorial description of $g_{\lambda\mu}$ due to Stembridge.

Theorem 33. ([16, Theorem 9.3]) For $\lambda \in \mathscr{P}^+$ and $\mu \in \mathscr{P}$, we have

 $g_{\lambda\mu} = \left| \mathsf{G}_{\lambda\mu} \right|,$

where $G_{\lambda\mu}$ is the set of tableaux Q such that

THE ELECTRONIC JOURNAL OF COMBINATORICS 25(3) (2018), #P3.7

- (1) $Q \in SST_{\mathbb{N}}(\mu)$ with $c_k(Q) + c_{k'}(Q) = \lambda_k$ for $k \ge 1$,
- (2) for $k \ge 1$, if x is the rightmost letter in w(Q) with |x| = k, then x = k,
- (3) w(Q) satisfies the lattice property.

Proof. The proof is similar to that of Theorem 14. Choose n such that $\lambda \in \mathscr{P}_n^+$ and $\mu \in \mathscr{P}_n$. Let

$$\mathbf{L}_{\lambda\mu} = \{ T \mid T \in \mathbf{B}_n(\lambda), \ \tilde{f}_i T = \mathbf{0} \ (1 \leqslant i \leqslant n-1), \ \mathrm{wt}(T) = w_0 \mu \}.$$

Then we have as a $\mathfrak{gl}(n)$ -crystal

$$\mathbf{B}_{n}(\lambda) \cong \bigsqcup_{\mu} B_{n}(\mu)^{\oplus |\mathbf{L}_{\lambda\mu}|},\tag{21}$$

and hence $g_{\lambda\mu} = |\mathbf{L}_{\lambda\mu}|$ by linear independence of Schur polynomials. Let us define a map

$$\begin{array}{cccc} \mathbf{L}_{\lambda\mu} & \longrightarrow & \mathbf{G}_{\lambda\mu} \\ T & \longmapsto & Q_T \end{array}$$

as follows. Let $T \in \mathbf{L}_{\lambda\mu}$ be given. Assume that $w_{\text{rev}}(T) = u_1 \cdots u_N$ where $N = |\lambda|$. Since T is a $\mathfrak{gl}(n)$ -lowest weight vector, we have by (2) that $u_{N-m+1} \otimes \cdots \otimes u_N \in \mathbf{B}_n^{\otimes m}$ is a $\mathfrak{gl}(n)$ -lowest weight element for $1 \leq m \leq N$. This implies that there exists $\mu^{(m)} \in \mathscr{P}_n$ for $1 \leq m \leq N$ such that $u_{N-m+1} \cdots u_N$ is equivalent as an element of $\mathfrak{gl}(n)$ -crystal to a $\mathfrak{gl}(n)$ -lowest weight element in $B_n(\mu^{(m)})$, where $\mu^{(N)} = \mu$ and $\mu^{(m)}$ is obtained by adding a box in the $(n - u_m + 1)$ -st row of $\mu^{(m-1)}$ with $\mu^{(0)} = \emptyset$.

We define Q_T to be a tableau of shape μ with entries in \mathcal{N} , where $\mu^{(m)}/\mu^{(m-1)}$ is filled with

$$\begin{cases} k', & \text{if } u_m \text{ belongs to } T^{(k)} \uparrow, \\ k, & \text{if } u_m \text{ belongs to } T^{(k)} \downarrow, \end{cases}$$

for some $1 \leq k \leq \ell(\lambda)$. By almost the same arguments as in the proof of Theorem 14, we see that Q_T satisfies the conditions (1) and (2) for $\mathsf{G}_{\lambda\mu}$, and $w(Q_T)$ satisfies the hook lattice property, which implies that it satisfies the lattice property by Corollary 21. (We leave the details to the reader.) Finally the correspondence $T \mapsto Q_T$ is a well-defined bijection.

Example 34. Let $\lambda = (3, 1)$. From Figure 1 we get three $\mathfrak{gl}(3)$ -lowest weight vectors in $\mathbf{B}_3(\lambda)$

By applying the mapping $T \mapsto Q_T$ in the proof of Theorem 33 to these tableaux we have

The electronic journal of combinatorics $\mathbf{25(3)}$ (2018), $\#\mathrm{P3.7}$

Thus $P_{(3,1)} = s_{(3,1)} + s_{(2,2)} + s_{(2,1,1)}$.

Remark 35. Let $\lambda \in \mathscr{P}^+$ be such that $D_{\lambda}^+ \subseteq D_{\delta_{r+1}}^+$ for some $r \ge 0$. Let λ^{c+} be a strict partition obtained by counting complementary boxes $D_{\delta_{r+1}}^+ \setminus D_{\lambda}^+$ in each column from right to left. It is shown in [5] that

$$s_{\delta_{r+1}/\lambda} = \sum_{\substack{\nu \in \mathscr{P}^+ \\ |\nu| = |\lambda|}} g_{\nu\lambda} P_{\nu^{\mathsf{c}+}}.$$

By (18) or (19), we have $g_{\nu\lambda} = a_{\lambda^c/\delta_r (\nu^{c+})'}$. One may expect that there is a natural bijection between $G_{\nu\lambda}$ and $A_{\lambda^c/\delta_r (\nu^{c+})'}$ that we have not yet make explicit.

6 Semistandard decomposition tableaux of skew shapes

Let λ/μ be a shifted skew diagram for $\lambda, \mu \in \mathscr{P}^+$ with $D^+_{\mu} \subseteq D^+_{\lambda}$. Without loss of generality, we assume in this section that $\lambda_1 > \mu_1$ and $\ell(\lambda) > \ell(\mu)$.

Let T be a tableau of shifted skew shape λ/μ . For $p,q \ge 1$, let T(p,q) denote the entry of T at the p-th row and the q-th diagonal from the main diagonal in D_{λ}^+ (that is, $\{(i,i) | i \ge 1\} \cap D_{\lambda}^+$) whenever it is defined. Note that T(p,q) is not necessarily equal to $T_{p,q}$ if μ is nonempty.

For example, when $\lambda/\mu = (5, 4, 2)/(3, 1)$, we have

	T(1, 4)	T(1, 5)				$T_{1,1}$	$T_{1,2}$
T(2,2)	T(2, 3)	T(2, 4)	=		$T_{2,1}$	$T_{2,2}$	$T_{2,3}$
T(3, 1)	T(3, 2)				$T_{3,1}$	$T_{3,2}$	

Definition 36. For $\lambda, \mu \in \mathscr{P}^+$ with $D^+_{\mu} \subseteq D^+_{\lambda}$, a skew semistandard decomposition tableau T of shape λ/μ is a tableau of shifted shape λ/μ with entries in \mathbb{N} such that $T^{(k)}$ is a hook word for $1 \leq k \leq \ell(\lambda)$ and the following holds for $1 \leq k < \ell(\lambda)$ and $1 \leq i \leq j \leq \lambda_{k+1}$:

(S1) if $T(k,i) \leq T(k+1,j)$, then $i \neq 1$ and T(k+1,i-1) < T(k+1,j),

(S2) if T(k,i) > T(k+1,j), then $T(k,i) \ge T(k,j+1)$,

where we assume that T(p,q) for $p,q \ge 1$ is empty if it is not defined.

Let $SSDT(\lambda/\mu)$ be the set consisting of skew semistandard decomposition tableaux of shape λ/μ . Note that when μ is empty, the set $SSDT(\lambda/\mu)$ is equal to $SSDT(\lambda)$ by Proposition 3.

Suppose that $\ell(\lambda) \leq n$. Let $\mathbf{B}_n(\lambda/\mu)$ be the set of $T \in SSDT(\lambda/\mu)$ with entries in [n]. As in (5), consider the injective map

$$\mathbf{B}_{n}(\lambda/\mu) \longleftrightarrow \mathcal{W}_{[n]} \tag{22}
 T \longmapsto w_{\mathrm{rev}}(T).$$

Proposition 37. Under the above hypothesis, the image of $\mathbf{B}_n(\lambda/\mu)$ in (22) together with $\{\mathbf{0}\}$ is invariant under the action of \tilde{e}_i and \tilde{f}_i for $i \in I$, and hence $\mathbf{B}_n(\lambda/\mu)$ is a $\mathfrak{q}(n)$ -crystal.

Proof. Choose a sufficiently large M such that all the entries in L_M^{μ} are greater than n. For a tableau T of shifted shape λ/μ with entries in [n], let $\widetilde{T} := L_M^{\mu} * T$ be the tableau of shifted shape λ , that is, the subtableau of shape shifted μ in \widetilde{T} is L_M^{μ} and its complement in \widetilde{T} is T. By definition of $SSDT(\lambda/\mu)$ and Proposition 3, we have

$$T \in \mathbf{B}_n(\lambda/\mu)$$
 if and only if $T \in \mathbf{B}_M(\lambda)$. (23)

Let $T \in \mathbf{B}_n(\lambda/\mu)$ and $i \in I$ be given. If $\tilde{x}_i \tilde{T} \neq \mathbf{0}$ (x = e, f), then we have by (23) that $\tilde{x}_i \tilde{T} = L_M^{\mu} * T'$ for some $T' \in \mathbf{B}_n(\lambda/\mu)$. This implies that $\tilde{x}_i w_{\text{rev}}(T) = w_{\text{rev}}(T')$. Therefore, the image of $\mathbf{B}_n(\lambda/\mu)$ in (22) together with $\{\mathbf{0}\}$ is invariant under the action of \tilde{e}_i and \tilde{f}_i for $i \in I$.

Since $\mathbf{B}_n(\lambda/\mu)$ is a subcrystal of $\mathbf{B}_n^{\otimes N}$ with $N = |\lambda| - |\mu|$, we have

$$\mathbf{B}_{n}(\lambda/\mu) \cong \bigsqcup_{\substack{\nu \in \mathscr{P}_{n}^{h} \\ |\nu|=N}} \mathbf{B}_{n}(\nu)^{\oplus f_{\nu}^{\lambda/\mu}(n)}$$
(24)

for some $f_{\nu}^{\lambda/\mu}(n) \in \mathbb{Z}_+$. Moreover by Remark 9, we have

$$f_{\nu}^{\lambda/\mu} := f_{\nu}^{\lambda/\mu}(m) = f_{\nu}^{\lambda/\mu}(n) \quad (m \ge n).$$
 (25)

If we put

$$P^{\circ}_{\lambda/\mu} = \sum_{T \in SSDT(\lambda/\mu)} x^{T}$$

then we have from (24) and (25)

$$P^{\circ}_{\lambda/\mu} = \sum_{\nu \in \mathscr{P}^+} f^{\lambda/\mu}_{\nu} P_{\nu}.$$
 (26)

The electronic journal of combinatorics 25(3) (2018), #P3.7

23

Example 38. For $\eta \in \mathscr{P}_n^+$ with $\ell(\eta) = \ell$, let $\lambda = \eta + L\delta_\ell$ and $\mu = L\delta_\ell \in \mathscr{P}_n^+$, where $L \ge \eta_1$. Since each column in λ/μ has at most one box, we have

$$\mathbf{B}_n(\lambda/\mu)\cong\mathbf{B}_n(\eta_1)\otimes\cdots\otimes\mathbf{B}_n(\eta_\ell).$$

By applying Theorem 14 repeatedly, we see that $f_{\nu}^{\lambda/\mu}$ for $\nu \in \mathscr{P}_n^+$ in this case is equal to the number of tableaux Q such that

- (1) $Q \in SST^+_{\mathcal{N}}(\nu)$ with $c_k(Q) + c_{k'}(Q) = \eta_k$ for $k \ge 1$,
- (2) for each $k \ge 1$, if x is the rightmost in w(Q) with |x| = k, then x = k.

One can generalize the notion of hook lattice property in Definition 12 to describe the coefficient $f_{\nu}^{\lambda/\mu}$.

Definition 39. Let $w = w_1 \cdots w_N \in \mathcal{W}_N$ be given and let $w^* = w_1^* \cdots w_N^*$ be the word associated to w given in Definition 10. For $\mu \in \mathscr{P}^+$, we say that w satisfies the hook μ -lattice property if w^* satisfies the following for each $k \ge 1$:

- (L1) if $k > \ell(\mu)$ and $w_i^* = k_1$, then no $k + 1_j$ for $j \ge 1$ occurs in $w_1^* \cdots w_{i-1}^*$,
- (L2) if $(w_s^*, w_t^*) = (k + 1_i, k_{i+1-\alpha_k})$ for some s < t and $\alpha_k < i$, then no $k + 1_j$ for i < j occurs in $w_s^* \cdots w_t^*$,
- (L3) if $(w_s^*, w_t^*) = (k_{j+1-\alpha_k}, k+1_j)$ for some s < t and $\alpha_k < j$, then no k_i for $i \leq j \alpha_k$ occurs in $w_s^* \cdots w_t^*$,

where $\alpha_k = \mu_k - \mu_{k+1}$.

Theorem 40. For $\lambda, \mu, \nu \in \mathscr{P}^+$, we have

$$f_{\nu}^{\lambda/\mu} = \left| \mathbf{F}_{\nu}^{\lambda/\mu} \right|,$$

where $\mathbf{F}_{\nu}^{\lambda/\mu}$ is the set of tableaux Q such that

- (1) $Q \in SST_{\mathcal{N}}^+(\nu)$ with $c_k(Q) + c_{k'}(Q) = \lambda_k \mu_k$ for $k \ge 1$,
- (2) for $k \ge 1$, if x is the rightmost letter in w(Q) with |x| = k, then x = k,
- (3) w(Q) satisfies the hook μ -lattice property.

Proof. The proof is similar to that of Theorem 14. Choose n such that $\lambda, \mu, \nu \in \mathscr{P}_n^+$. Put

$$\mathbf{L}_{\nu}^{\lambda/\mu} = \{ T \mid T \in \mathbf{B}_n(\lambda/\mu), \ T \equiv L^{\nu} \}.$$

From (24) and (25), we have $|\mathbf{L}_{\nu}^{\lambda/\mu}| = f_{\nu}^{\lambda/\mu}$. Let us define a map

$$\begin{array}{ccc} \mathbf{L}_{\nu}^{\lambda/\mu} & \longrightarrow & \mathbf{F}_{\nu}^{\lambda/\mu} \\ T & \longmapsto & Q_T \end{array}$$

The electronic journal of combinatorics 25(3) (2018), #P3.7

as follows. Let $N = |\lambda| - |\mu|$. Suppose that $T \in L_{\nu}^{\lambda/\mu}$ is given with $w_{\text{rev}}(T) = u_1 \cdots u_N$. By Lemma 7 there exists $\nu^{(m)} \in \mathscr{P}_n^+$ for $1 \leq m \leq N$ such that $u_{N-m+1} \cdots u_N \equiv L^{\nu^{(m)}}$ where $\nu^{(N)} = \nu$ and $\nu^{(m)}$ is obtained by adding a box in the $(n - u_m + 1)$ -st row of $\nu^{(m-1)}$ with $\nu^{(0)} = \emptyset$.

Note that $w_{\text{rev}}(T) = T^{(\ell(\lambda))} \cdots T^{(1)}$, where $T^{(k)}$ is a hook word for $1 \leq k \leq \ell(\lambda)$. Then we define Q_T to be a tableau of shifted shape ν with entries in \mathcal{N} , where $\nu^{(m)}/\nu^{(m-1)}$ is filled with

$$\begin{cases} k', & \text{if } u_m \text{ belongs to } T^{(k)\uparrow}, \\ k, & \text{if } u_m \text{ belongs to } T^{(k)\downarrow}, \end{cases}$$
(27)

for some $1 \leq k \leq \ell(\lambda)$.

First, by the same argument as in the proof of Theorem 14, we see that Q_T satisfies the condition (2) for $\mathbf{F}_{\nu}^{\lambda/\mu}$ by the same argument as in the proof of Theorem 14.

Let us check that $w(Q_T)$ satisfies the hook μ -lattice property. If we label k and k' in (27) as k_j and k'_j , respectively, when $u_m = T_{k,j}$, then it coincides with the labeling on the letters in $w(Q_T)$ given in Definition 10(1).

Choose a sufficiently large M such that all the entries in L_M^{μ} are greater than n. Let $S = L_M^{\mu} * T$ (see the proof of Proposition 37). Since $S \in \mathbf{B}_M(\lambda)$, the conditions Proposition 3(1), (2), and (3) on S and hence on T (cf. (23)) imply the conditions Definition 39(L1), (L2), and (L3), respectively. Therefore, $Q_T \in \mathbf{F}_{\nu}^{\lambda/\mu}$.

Finally the correspondence $T \mapsto Q_T$ is injective and also reversible. Hence it is a bijection.

Example 41. Let $\lambda/\mu = (3, 1)/(1)$. Then

$$P_{(3,1)/(1)}^{\circ} = P_{(3)} + P_{(2,1)},$$

since we have for $\nu \in \{(3), (2, 1)\}$ and n = 4

Remark 42. Recall that for $\lambda, \mu \in \mathscr{P}^+$ with $D^+_{\mu} \subseteq D^+_{\lambda}$, the skew Schur *P*-function $P_{\lambda/\mu}$ is given by the weight generating function

$$P_{\lambda/\mu} = \sum_{T} x^{T},$$

where the sum is over all tableaux in $SST_{N}^{+}(\lambda/\mu)$ with no primed entry or entry of odd degree on the main diagonal (cf. [10, 11, 17]). Then it is well-known that

$$P_{\lambda/\mu} = \sum_{\nu \in \mathscr{P}^+} 2^{\ell(\mu) + \ell(\nu) - \ell(\lambda)} f^{\lambda}_{\mu\nu} P_{\nu}.$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 25(3) (2018), #P3.7

We should remark that $P_{\lambda/\mu}^{\circ}$ is not in general equal to $P_{\lambda/\mu}$, that is, $f_{\nu}^{\lambda/\mu}$ is not necessarily equal to $2^{\ell(\mu)+\ell(\nu)-\ell(\lambda)}f_{\mu\nu}^{\lambda}$. For example, we have

$$P_{(3,1)/(1)} = P_{(3)} + 2P_{(2,1)},$$

which is not equal to $P_{(3,1)/(1)}^{\circ}$ in Example 41. It would be also interesting to have a more direct representation-theoretic interpretation of $\mathbf{B}_n(\lambda/\mu)$.

Acknowledgements

The authors would like to thank the anonymous reviewer for careful reading and helpful comments. They are also grateful to Myungho Kim for stimulating discussion on this subject.

References

- F. Ardila, L. Serrano. Staircase skew Schur functions are Schur P-positive. J. Algebraic Combin., 36:409–423, 2012.
- [2] G. Benkart, F. Sottile, J. Stroomer. Tableau switching: algorithms and applications. J. Combin. Theory Ser. A, 76:11–43, 1996.
- [3] S. Cho, Littlewood-Richardson rule for Schur P-functions. Trans. Amer. Math. Soc., 365:939-972, 2013.
- [4] S.-I. Choi, S.-Y. Nam, Y.-T. Oh. Bijections among combinatorial models for shifted Littlewood–Richardson coefficients. J. Combin. Theory Ser. A, 128:56–83, 2014.
- [5] E. Dewitt. Identities relating Schur *s*-functions and *Q*-functions. Ph.D. Thesis, University of Michigan, 2012.
- [6] D. Grantcharov, J. H. Jung, S.-J. Kang, M. Kashiwara, M. H. Kim. Crystal bases for the quantum queer superalgebra and semistandard decomposition tableaux. *Trans. Amer. Math. Soc.*, 366(1):457–489, (2014.
- [7] D. Grantcharov, J. H. Jung, S.-J. Kang, M. Kashiwara, M. H. Kim. Crystal bases for the quantum queer superalgebra. *Eur. Math. Soc.*, 17:1593–1627, 2015.
- [8] M. Kashiwara. On crystal bases. Representations of groups, CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI. 155–197, 1995.
- [9] M. Kashiwara, T. Nakashima. Crystal graphs for representations of the q-analogue of classical Lie algebras. J. Algebra, 165:295–345, 1994.
- [10] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs, second ed., Clarendon Press, Oxford University Press, New York, 1995.
- [11] B E. Sagan. Shifted tableaux, Schur Q-functions and a conjecture of R. Stanley. J. Combin. Theory Ser.A, 45:62–103, 1987.

- [12] I. Schur. Uber die darstellung der symmetrischen und der alternierenden gruppe durch gebrochene lineare substitutionen. J. Reine Angew. Math., 139:155–250, 1911.
- [13] A. N. Sergeev. Tensor algebra of the identity representation as a module over the Lie superalgebras Gl(n,m) and Q(n). Mat. Sb. (N.S.), 123:422–430, 1984.
- [14] L. Serrano. The shifted plactic monoid. Math. Z., 266:363–392, 2010.
- [15] K. M. Shaw, S. van Willigenburg. Multiplicity free expansions of Schur P-functions. Ann. Combin., 11:69–77, 2007.
- [16] J. R. Stembridge. Shifted tableaux and the projective representations of symmetric groups. Adv. Math., 74:87–134, 1989.
- [17] D. R. Worley. A theory of shifted Young tableaux. Ph.D. thesis, MIT, 1984.