Crystals and Schur \boldsymbol{P}-positive expansions

Seung-Il Choi*
Research Institute of Mathematics
Seoul National University
Seoul, Korea
ignatioschoi@snu.ac.kr

Jae-Hoon Kwon
Department of Mathematical Sciences
Seoul National University
Seoul, Korea
jaehoonkw@snu.ac.kr

Submitted: Dec 20, 2017; Accepted: Jun 5, 2018; Published: Jul 13, 2018
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We give a new characterization of Littlewood-Richardson-Stembridge tableaux for Schur P-functions by using the theory of $\mathfrak{q}(n)$-crystals. We also give alternate proofs of the Schur P-expansion of a skew Schur function due to Ardila and Serrano, and the Schur expansion of a Schur P-function due to Stembridge using the associated crystal structures. Finally we introduce the notion of semistandard decomposition tableaux of a shifted skew shape and discuss its crystal structure.

Mathematics Subject Classifications: 17B37, 22E46, 05E10

1 Introduction

Let \mathscr{P}^{+}be the set of strict partitions and let P_{λ} be the Schur P-function corresponding to $\lambda \in \mathscr{P}^{+}[12]$. The set of Schur P-functions is an important class of symmetric functions, which is closely related with representation theory and algebraic geometry (see [10] and references therein). For example, the Schur P-polynomial $P_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ in n variables is the character of a finite-dimensional irreducible representation $V_{n}(\lambda)$ of the queer Lie superalgebra $\mathfrak{q}(n)$ with highest weight λ up to a power of 2 when the length $\ell(\lambda)$ of λ is no more than n [13].

The set of Schur P-functions forms a basis of a subring of the ring of symmetric functions, and the structure constants with respect to this basis are nonnegative integers, that is, given $\lambda, \mu, \nu \in \mathscr{P}^{+}$,

$$
P_{\mu} P_{\nu}=\sum_{\lambda} f_{\mu \nu}^{\lambda} P_{\lambda}
$$

[^0]for some nonnegative integers $f_{\mu \nu}^{\lambda}$. The first and the most well-known result on a combinatorial description of $f_{\mu \nu}^{\lambda}$ was obtained by Stembridge [16] using shifted Young tableaux, which is a combinatorial model for Schur P - or Q-functions [11, 17]. It is shown that $f_{\mu \nu}^{\lambda}$ is equal to the number of semistandard tableaux with entries in a \mathbb{Z}_{2}-graded set $\mathcal{N}=\left\{1^{\prime}<1<2^{\prime}<2<\cdots\right\}$ of shifted skew shape λ / μ and weight ν such that (i) for each integer $k \geqslant 1$ the southwesternmost entry with value k is unprimed or of even degree and (ii) the reading words satisfy the lattice property. Here we say that the value $|x|$ is k when x is either k or k^{\prime} in a tableau. Let us call these tableaux the Littlewood-Richardson-Stembridge (LRS) tableaux (Definitions 17 and 18).

Recently, two more descriptions of $f_{\mu \nu}^{\lambda}$ were obtained in terms of semistandard decomposition tableaux, which is another combinatorial model for Schur P-functions introduced by Serrano [14]. It is shown by Cho that $f_{\mu \nu}^{\lambda}$ is given by the number of semistandard decomposition tableaux of shifted shape μ and weight $w_{0}(\lambda-\nu)$ whose reading words satisfy the λ-good property (see [3, Corollary 5.14]). Here we assume that $\ell(\lambda), \ell(\mu), \ell(\nu) \leqslant n$, and w_{0} denotes the longest element in the symmetric group \mathfrak{S}_{n}. Another description is given by Grantcharov, Jung, Kang, Kashiwara, and Kim [6] based on their crystal base theory for the quantized enveloping algebra of $\mathfrak{q}(n)[7]$. They realize the crystal $\mathbf{B}_{n}(\lambda)$ associated to $V_{n}(\lambda)$ as the set of semistandard decomposition tableaux of shape λ with entries in $\{1<2<\cdots<n\}$, and describe $f_{\mu \nu}^{\lambda}$ by characterizing the lowest weight vectors of weight $w_{0} \lambda$ in the tensor product $\mathbf{B}_{n}(\mu) \otimes \mathbf{B}_{n}(\nu)$. We also remark that bijections between the above mentioned combinatorial models for $f_{\mu \nu}^{\lambda}$ are studied in [4] using insertion schemes for semistandard decomposition tableaux.

The main result in this paper is to give another new description of $f_{\mu \nu}^{\lambda}$ using the theory of $\mathfrak{q}(n)$-crystals, and show that it is indeed equivalent to that of Stembridge. More precisely, we show that $f_{\mu \nu}^{\lambda}$ is equal to the number of semistandard tableaux with entries in \mathcal{N} of shifted skew shape λ / μ and weight ν such that (i) for each integer $k \geqslant 1$ the southwesternmost entry with value k is unprimed or of even degree and (ii) the reading words satisfy the hook lattice property (see Definitions 12 and 13 and Theorem 14). It is obtained by semistandardizing the standard tableaux which parametrize the lowest weight vectors counting $f_{\mu \nu}^{\lambda}$ in [6], where the hook lattice property naturally arises from the configuration of entries in semistandard decomposition tableaux. We show that these tableaux for $f_{\mu \nu}^{\lambda}$ are equal to LRS tableaux (Theorem 20), and hence obtain a new characterization of LRS tableaux.

We study other Schur P - or Q-positive expansions and their combinatorial descriptions from a viewpoint of crystals. First we consider the Schur P-positive expansion of a skew Schur function

$$
s_{\lambda / \delta_{r}}=\sum_{\nu \in \mathscr{P}^{+}} a_{\lambda / \delta_{r} \nu} P_{\nu}
$$

for a skew diagram λ / δ_{r} contained in a rectangle $\left((r+1)^{r+1}\right)$, where $\delta_{r}=(r, r-1, \ldots, 1)$ [1]. We give a combinatorial description of $a_{\lambda / \delta_{r} \nu}$ (Theorem 27) by considering a $\mathfrak{q}(n)$-crystal structure on the set of usual semistandard tableaux of shape λ / δ_{r} and characterizing the lowest weight vectors corresponding to each $\nu \in \mathscr{P}^{+}$. As a byproduct we also give a simple alternate proof of Ardila-Serrano's description of $a_{\lambda / \delta_{r} \nu}$ [1] (Theorem 31), which
can be viewed as a standardization of our description.
We next consider the Schur expansion of a Schur P-function

$$
P_{\lambda}=\sum_{\mu} g_{\lambda \mu} s_{\mu}
$$

for $\lambda \in \mathscr{P}^{+}$. It is equivalent to the expansion of a symmetric function $S_{\mu}=S_{\mu}(x, x)$ in terms of Schur Q-functions $Q_{\lambda}=2^{\ell(\lambda)} P_{\lambda}$, where $S_{\mu}(x, y)$ is a super Schur function in variables x and y. We give a simple and alternate proof of Stembridge's description of $g_{\lambda \mu}[16]$ (Theorem 33) by characterizing the type A lowest weight vectors of weight $w_{0} \mu$ in the $\mathfrak{q}(n)$-crystal $\mathbf{B}_{n}(\lambda)$ when $\ell(\lambda), \ell(\mu) \leqslant n$.

Finally, based on the characterization of semistandard decomposition tableaux in [6, Proposition 2.3], we introduce the notion of semistandard decomposition tableaux of a shifted skew shape λ / μ. The set of such tableaux, say $\mathbf{B}_{n}(\lambda / \mu)$, naturally admits a $\mathfrak{q}(n)$ crystal structure and we describe its decomposition into $\mathbf{B}_{n}(\nu)$'s generalizing the notion of hook lattice property. We remark that the character of $\mathbf{B}_{n}(\lambda / \mu)$ is not equal to the skew Schur P-function corresponding to λ / μ in general, and it would be interesting to have a more direct representation-theoretic interpretation of $\mathbf{B}_{n}(\lambda / \mu)$.

The paper is organized as follows. In Section 2, we review the notion of $\mathfrak{q}(n)$-crystals and related results. In Section 3, we describe a combinatorial description of $f_{\mu \nu}^{\lambda}$ and show that it is equivalent to that of Stembridge. In Sections 4 and 5, we discuss the Schur P-positive expansion of a skew Schur function and the Schur expansion of a Schur P function, respectively. In Section 6, we discuss semistandard decomposition tableaux of shifted skew shape, and the Schur P-positive expansions of their characters.

2 Crystals for queer Lie superalgebras

2.1 Notation and terminology

In this subsection, we introduce necessary notation and terminologies. Let \mathbb{Z}_{+}be the set of nonnegative integers. We fix a positive integer $n \geqslant 2$ throughout this paper.

Let $\mathscr{P}=\left\{\lambda=\left(\lambda_{i}\right)_{i \geqslant 1} \mid \lambda_{i} \in \mathbb{Z}_{+}, \lambda_{i} \geqslant \lambda_{i+1}(i \geqslant 1), \sum_{i \geqslant 1} \lambda_{i}<\infty\right\}$ be the set of partitions, and let $\mathscr{P}^{+}=\left\{\lambda=\left(\lambda_{i}\right)_{i \geqslant 1} \mid \lambda \in \mathscr{P}, \lambda_{i}=\lambda_{i+1} \Rightarrow \lambda_{i}=0(i \geqslant 1)\right\}$ be the set of strict partitions. For $\lambda \in \mathscr{P}$, let $\ell(\lambda)$ denote the length of λ, and $|\lambda|=\sum_{i \geqslant 1} \lambda_{i}$. Let $\mathscr{P}_{n}=\{\lambda \mid \ell(\lambda) \leqslant n\} \subseteq \mathscr{P}$ and $\mathscr{P}_{n}^{+}=\mathscr{P}^{+} \cap \mathscr{P}_{n}$.

The (unshifted) diagram of $\lambda \in \mathscr{P}$ is defined to be the set

$$
D_{\lambda}=\left\{(i, j) \in \mathbb{N}^{2}: 1 \leqslant j \leqslant \lambda_{i}, 1 \leqslant i \leqslant \ell(\lambda)\right\}
$$

and the shifted diagram of $\lambda \in \mathscr{P}^{+}$is defined to be the set

$$
D_{\lambda}^{+}=\left\{(i, j) \in \mathbb{N}^{2}: i \leqslant j \leqslant \lambda_{i}+i-1,1 \leqslant i \leqslant \ell(\lambda)\right\} .
$$

We identify D_{λ} and D_{λ}^{+}with diagrams where a box is placed at the i-th row from the top and the j-th column from the left for each $(i, j) \in D_{\lambda}$ and D_{λ}^{+}, respectively. For instance,
if $\lambda=(6,4,2,1)$, then

Let \mathcal{A} be a linearly ordered set. We denote by $\mathcal{W}_{\mathcal{A}}$ the set of words of finite length with letters in \mathcal{A}. For $w \in \mathcal{W}_{\mathcal{A}}$ and $a \in \mathcal{A}$, let $c_{a}(w)$ be the number of occurrences of a in w.

For $\lambda, \mu \in \mathscr{P}$ with $D_{\mu} \subseteq D_{\lambda}$, a tableau of shape λ / μ means a filling on the skew diagram $D_{\lambda} \backslash D_{\mu}$ with entries in \mathcal{A}. For $\lambda, \mu \in \mathscr{P}^{+}$with $D_{\mu}^{+} \subseteq D_{\lambda}^{+}$, a tableau of shifted shape λ / μ is defined in a similar way. For a tableau T of (shifted) shape λ / μ, let $w(T)$ be the word given by reading the entries of T row by row from top to bottom, and from right to left in each row. We denote by $T_{i, j}$ the j-th entry (from the left) of the i-th row of T from the top. For $1 \leqslant i \leqslant \ell(\lambda)$, let $T^{(i)}=T_{i, \lambda_{i}} \cdots T_{i, 1}$ be the subword of $w(T)$ corresponding to the i-th row of T. Then we have $w(T)=T^{(1)} \cdots T^{(\ell(\lambda))}$. We also denote by $w_{\text {rev }}(T)$ the word obtained by reading the entries of $w(T)$ from right to left. Note that $T_{i, j}$ is not the entry of T at the (i, j)-position of the (shifted) skew diagram of λ / μ, that is, $(i, j) \in D_{\lambda} \backslash D_{\mu}$ or $(i, j) \in D_{\lambda}^{+} \backslash D_{\mu}^{+}$. For $a \in \mathcal{A}$, let $c_{a}(T)=c_{a}(w(T))$ be the number of occurrences of a in T.

Suppose that \mathcal{A} is a linearly ordered set with a \mathbb{Z}_{2}-grading $\mathcal{A}=\mathcal{A}_{0} \sqcup \mathcal{A}_{1}$. For $\lambda, \mu \in \mathscr{P}$ with $D_{\mu} \subseteq D_{\lambda}$, let $S S T_{\mathcal{A}}(\lambda / \mu)$ be the set of tableaux of shape λ / μ with entries in \mathcal{A} which is semistandard, that is, (i) the entries in each row (resp. column) are weakly increasing from left to right (resp. from top to bottom), (ii) the entries in \mathcal{A}_{0} (resp. \mathcal{A}_{1}) are strictly increasing in each column (resp. row). Similarly, for $\lambda, \mu \in \mathscr{P}^{+}$with $D_{\mu}^{+} \subseteq D_{\lambda}^{+}$, we define $S S T_{\mathcal{A}}^{+}(\lambda / \mu)$ to be the set of semistandard tableaux of shifted shape λ / μ with entries in \mathcal{A}.

Let $\mathcal{N}=\left\{1^{\prime}<1<2^{\prime}<2<\cdots\right\}$ be a linearly ordered set with a \mathbb{Z}_{2}-grading $\mathcal{N}_{0}=\mathbb{N}$ and $\mathcal{N}_{1}=\mathbb{N}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \cdots\right\}$. Put $[n]=\{1, \ldots, n\}$ and $[n]^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$, where the \mathbb{Z}_{2}-grading and linear ordering are induced from \mathcal{N}. For $a \in \mathcal{N}$, we write $|a|=k$ when a is either k or k^{\prime}.

2.2 Semistandard decomposition tableaux and Schur \boldsymbol{P}-functions

Let us recall the notion of semistandard decomposition tableaux [6, 14], which is our main combinatorial object.

Definition 1.

(1) A word $u=u_{1} \cdots u_{s}$ in $\mathcal{W}_{\mathbb{N}}$ is called a hook word if it satisfies $u_{1} \geqslant u_{2} \geqslant \cdots \geqslant u_{k}<$ $u_{k+1}<\cdots<u_{s}$ for some $1 \leqslant k \leqslant s$. In this case, let $u \downarrow=u_{1} \cdots u_{k}$ be the weakly decreasing subword of maximal length and $u \uparrow=u_{k+1} \cdots u_{s}$ the remaining strictly increasing subword in u.
(2) For $\lambda \in \mathscr{P}^{+}$, let T be a tableau of shifted shape λ with entries in \mathbb{N}. Then T is called a semistandard decomposition tableau of shape λ if
(i) $T^{(i)}$ is a hook word of length λ_{i} for $1 \leqslant i \leqslant \ell(\lambda)$,
(ii) $T^{(i)}$ is a hook subword of maximal length in $T^{(i+1)} T^{(i)}$, the concatenation of $T^{(i+1)}$ and $T^{(i)}$, for $1 \leqslant i<\ell(\lambda)$.

For any hook word u, the decreasing part $u \downarrow$ is always nonempty by definition.
For $\lambda \in \mathscr{P}^{+}$, let $S S D T(\lambda)$ be the set of semistandard decomposition tableaux of shape λ. Let $x=\left\{x_{1}, x_{2}, \ldots\right\}$ be a set of formal commuting variables, and let $P_{\lambda}=P_{\lambda}(x)$ be the Schur P-function in x corresponding to $\lambda \in \mathscr{P}^{+}$(see [10]). It is shown in [14] that P_{λ} is given by the weight generating function of $\operatorname{SSDT}(\lambda)$:

$$
\begin{equation*}
P_{\lambda}=\sum_{T \in S S D T(\lambda)} x^{T}, \tag{1}
\end{equation*}
$$

where $x^{T}=\prod_{i \geqslant 1} x_{i}^{c_{i}(T)}$.
Remark 2. Recall that the Schur P-function P_{λ} can be realized as the character of tableaux $T \in S S T_{\mathcal{N}}^{+}(\lambda)$ with no primed entry or entry of odd degree on the main diagonal (cf. $[10,11,17])$. The notion of semistandard decomposition tableaux was introduced in [14] to give a plactic monoid model for Schur P-functions. In this paper, we follow its modified version (Definition 1) introduced in [6], by which it is easier to describe $\mathfrak{q}(n)$-crystals [6, Remark 2.6]. We also refer the reader to [4] for more details on relation between the combinatorics of these two models.

The following is a useful criterion for a tableau to be a semistandard decomposition one, which plays an important role in this paper.

Proposition 3. ([6, Proposition 2.3]) For $\lambda \in \mathscr{P}^{+}$, let T be a tableau of shifted shape λ with entries in \mathbb{N}. Then $T \in S S D T(\lambda)$ if and only if $T^{(k)}$ is a hook word for $1 \leqslant k \leqslant \ell(\lambda)$, and none of the following conditions holds for each $1 \leqslant k<\ell(\lambda)$:
(1) $T_{k, 1} \leqslant T_{k+1, i}$ for some $1 \leqslant i \leqslant \lambda_{k+1}$,
(2) $T_{k+1, i} \geqslant T_{k+1, j} \geqslant T_{k, i+1}$ for some $1 \leqslant i<j \leqslant \lambda_{k+1}$,
(3) $T_{k+1, j}<T_{k, i}<T_{k, j+1}$ for some $1 \leqslant i \leqslant j \leqslant \lambda_{k+1}$.

Equivalently, $T \in S S D T(\lambda)$ if and only if $T^{(k)}$ is a hook word for $1 \leqslant k \leqslant \ell(\lambda)$, and the following conditions hold for $1 \leqslant k<\ell(\lambda)$:
(a) if $T_{k, i} \leqslant T_{k+1, j}$ for $1 \leqslant i \leqslant j \leqslant \lambda_{k+1}$, then $i \neq 1$ and $T_{k+1, i-1}<T_{k+1, j}$,
(b) if $T_{k, i}>T_{k+1, j}$ for $1 \leqslant i \leqslant j \leqslant \lambda_{k+1}$, then $T_{k, i} \geqslant T_{k, j+1}$.

For $\lambda \in \mathscr{P}^{+}$, let $S S D T_{n}(\lambda)$ be the set of tableaux $T \in S S D T(\lambda)$ with entries in $[n]$. By Proposition 3(1), we see that $S S D T_{n}(\lambda) \neq \varnothing$ if and only if $\lambda \in \mathscr{P}_{n}^{+}$. We denote by $P_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ the Schur P-polynomial in x_{1}, \ldots, x_{n} given by specializing P_{λ} at $x_{n+1}=x_{n+2}=\cdots=0$. Then we have $P_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{T \in S S D T_{n}(\lambda)} x^{T}$.

For $\lambda \in \mathscr{P}_{n}^{+}$, let H_{n}^{λ} be the element in $\operatorname{SSD}_{n}(\lambda)$ where the subtableau with entry $\ell(\lambda)-i+1$ is a connected border strip of size $\lambda_{\ell(\lambda)-i+1}$ starting at $(i, i) \in D_{\lambda}^{+}$for each $i=1, \ldots, \ell(\lambda)$, and let L_{n}^{λ} be the one where the subtableau with entry $n-i+1$ is a connected horizontal strip of size λ_{i} starting at $(i, i) \in D_{\lambda}^{+}$for each $i=1, \ldots, \ell(\lambda)$. For example, when $n=4$ and $\lambda=(4,3,1)$, we have

$$
H_{n}^{\lambda}=\begin{array}{|l|l|l|l}
\hline 3 & 2 & 2 & 1 \\
\hline & 2 & 1 & 1 \\
\hline & & 1
\end{array} \quad L_{n}^{\lambda}=\begin{array}{|l|l|l|l}
\hline 4 & 4 & 4 & 4 \\
\hline & 3 & 3 & 3 \\
\hline & & 2
\end{array} .
$$

Indeed, H_{n}^{λ} and L_{n}^{λ} are the unique tableaux in $S S D T_{n}(\lambda)$ such that

$$
\left(c_{1}\left(H_{n}^{\lambda}\right), \ldots, c_{n}\left(H_{n}^{\lambda}\right)\right)=\lambda, \quad\left(c_{1}\left(L_{n}^{\lambda}\right), \ldots, c_{n}\left(L_{n}^{\lambda}\right)\right)=w_{0} \lambda
$$

Here we assume that $\mathscr{P}_{n}^{+} \subset \mathbb{Z}_{+}^{n}$ and the symmetric group \mathfrak{S}_{n} acts on \mathbb{Z}_{+}^{n} by permutation, where w_{0} is the longest element in \mathfrak{S}_{n}.

2.3 Crystals

Let us first review the crystals for the general linear Lie algebra $\mathfrak{g l}(n)$ in [8, 9].
Let $P^{\vee}=\bigoplus_{i=1}^{n} \mathbb{Z} e_{i}$ be the dual weight lattice and $P=\operatorname{Hom}_{\mathbb{Z}}\left(P^{\vee}, \mathbb{Z}\right)=\bigoplus_{i=1}^{n} \mathbb{Z} \epsilon_{i}$ the weight lattice with $\left\langle\epsilon_{i}, e_{j}\right\rangle=\delta_{i j}$ for $1 \leqslant i, j \leqslant n$. Define a symmetric bilinear form $(\cdot \mid \cdot)$ on P by $\left(\epsilon_{i} \mid \epsilon_{j}\right)=\delta_{i j}$ for $1 \leqslant i, j \leqslant n$. Let $\left\{\alpha_{i}=\epsilon_{i}-\epsilon_{i+1}(i=1, \ldots, n-1)\right\}$ be the set of simple roots, and $\left\{h_{i}=e_{i}-e_{i+1}(i=1, \ldots, n-1)\right\}$ the set of simple coroots of $\mathfrak{g l}(n)$. Let $P^{+}=\left\{\lambda \mid \lambda \in P,\left\langle\lambda, h_{i}\right\rangle \geqslant 0(i=1, \ldots, n-1)\right\}$ be the set of dominant integral weights.

A $\mathfrak{g l}(n)$-crystal is a set B together with the maps wt : $B \rightarrow P, \varepsilon_{i}, \varphi_{i}: B \rightarrow \mathbb{Z} \cup\{-\infty\}$ and $\widetilde{e}_{i}, \widetilde{f}_{i}: B \rightarrow B \cup\{\mathbf{0}\}$ for $i=1, \ldots, n-1$ satisfying the following conditions: for $b \in B$ and $i=1, \ldots, n-1$,
(1) $\varphi_{i}(b)=\left\langle\mathrm{wt}(b), h_{i}\right\rangle+\varepsilon_{i}(b)$,
(2) $\varepsilon_{i}\left(\widetilde{e}_{i} b\right)=\varepsilon_{i}(b)-1, \varphi_{i}\left(\widetilde{e}_{i} b\right)=\varphi_{i}(b)+1, \operatorname{wt}\left(\widetilde{e}_{i} b\right)=\operatorname{wt}(b)+\alpha_{i}$ if $\widetilde{e}_{i} b \in B$,
(3) $\varepsilon_{i}\left(\widetilde{f}_{i} b\right)=\varepsilon_{i}(b)+1, \varphi_{i}\left(\widetilde{f}_{i} b\right)=\varphi_{i}(b)-1, \operatorname{wt}\left(\widetilde{f}_{i} b\right)=\operatorname{wt}(b)-\alpha_{i}$ if $\widetilde{f}_{i} b \in B$,
(4) $\widetilde{f}_{i} b=b^{\prime}$ if and only if $b=\widetilde{e}_{i} b^{\prime}$ for $b^{\prime} \in B$,
(5) $\widetilde{e}_{i} b=\widetilde{f}_{i} b=\mathbf{0}$ when $\varphi_{i}(b)=-\infty$.

Here $\mathbf{0}$ is a formal symbol and $-\infty$ is the smallest element in $\mathbb{Z} \cup\{-\infty\}$ such that $-\infty+n=-\infty$ for all $n \in \mathbb{Z}$. For $\mu \in P$, let $B_{\mu}=\{b \in B \mid \operatorname{wt}(b)=\mu\}$. When B_{μ} is finite for all μ, we define the character of B by $\operatorname{ch} B=\sum_{\mu \in P}\left|B_{\mu}\right| e^{\mu}$, where e^{μ} is a basis element of the group algebra $\mathbb{Q}[P]$.

Let B_{1} and B_{2} be $\mathfrak{g l}(n)$-crystals. A tensor product $B_{1} \otimes B_{2}$ is a $\mathfrak{g l}(n)$-crystal, which is defined to be $B_{1} \times B_{2}$ as a set with elements denoted by $b_{1} \otimes b_{2}$, where

$$
\begin{align*}
& \mathrm{wt}\left(b_{1} \otimes b_{2}\right)=\mathrm{wt}\left(b_{1}\right)+\mathrm{wt}\left(b_{2}\right), \\
& \varepsilon_{i}\left(b_{1} \otimes b_{2}\right)=\max \left\{\varepsilon_{i}\left(b_{1}\right), \varepsilon_{i}\left(b_{2}\right)-\left\langle\operatorname{wt}\left(b_{1}\right), h_{i}\right\rangle\right\}, \\
& \varphi_{i}\left(b_{1} \otimes b_{2}\right)=\max \left\{\varphi_{i}\left(b_{1}\right)+\left\langle\operatorname{wt}\left(b_{2}\right), h_{i}\right\rangle, \varphi_{i}\left(b_{2}\right)\right\}, \\
& \widetilde{e}_{i}\left(b_{1} \otimes b_{2}\right)= \begin{cases}\widetilde{e}_{i} b_{1} \otimes b_{2}, & \text { if } \varphi_{i}\left(b_{1}\right) \geqslant \varepsilon_{i}\left(b_{2}\right), \\
b_{1} \otimes \widetilde{e}_{i} b_{2}, & \text { if } \varphi_{i}\left(b_{1}\right)<\varepsilon_{i}\left(b_{2}\right),\end{cases} \tag{2}\\
& \widetilde{f}_{i}\left(b_{1} \otimes b_{2}\right)= \begin{cases}\widetilde{f}_{i} b_{1} \otimes b_{2}, & \text { if } \varphi_{i}\left(b_{1}\right)>\varepsilon_{i}\left(b_{2}\right), \\
b_{1} \otimes \widetilde{f_{i}} b_{2}, & \text { if } \varphi_{i}\left(b_{1}\right) \leqslant \varepsilon_{i}\left(b_{2}\right),\end{cases}
\end{align*}
$$

for $i=1, \ldots, n-1$. Here we assume that $\mathbf{0} \otimes b_{2}=b_{1} \otimes \mathbf{0}=\mathbf{0}$.
For $\lambda \in \mathscr{P}_{n}$, let $B_{n}(\lambda)$ be the crystal associated to an irreducible $\mathfrak{g l}(n)$-module with highest weight λ, where we regard λ as $\sum_{i=1}^{n} \lambda_{i} \epsilon_{i} \in P^{+}$. We may regard [n] as the set of vertices in $B_{n}\left(\epsilon_{1}\right)$, where $\operatorname{wt}(k)=\epsilon_{k}$ for $k \in[n]$, and hence $\mathcal{W}_{[n]}$ as a $\mathfrak{g l}(n)$-crystal where we identify $w=w_{1} \ldots w_{r}$ with $w_{1} \otimes \cdots \otimes w_{r} \in B_{n}\left(\epsilon_{1}\right)^{\otimes r}$. The crystal structure on $\mathcal{W}_{[n]}$ is easily described by the so-called signature rule (cf. [9, Section 2.1]). For $\lambda \in \mathscr{P}_{n}$, the set $S S T_{[n]}(\lambda)$ becomes a $\mathfrak{g l}(n)$-crystal under the identification of T with $w(T) \in \mathcal{W}_{[n]}$, and it is isomorphic to $B_{n}(\lambda)[9]$. In general, one can define a $\mathfrak{g l}(n)$-crystal structure on $S S T_{[n]}(\lambda / \mu)$ for a skew diagram λ / μ. By abuse of notation, we set $B_{n}(\lambda / \mu):=S S T_{[n]}(\lambda / \mu)$.

Next, let us review the notion of crystals associated to polynomial representations of the queer Lie superalgebra $\mathfrak{q}(n)$ developed in $[6,7]$.

Definition 4. A $\mathfrak{q}(n)$-crystal is a set B together with the maps wt : $B \rightarrow P, \varepsilon_{i}, \varphi_{i}: B \rightarrow$ $\mathbb{Z} \cup\{-\infty\}$ and $\widetilde{e}_{i}, \widetilde{f}_{i}: B \rightarrow B \cup\{\mathbf{0}\}$ for $i \in I:=\{1, \ldots, n-1, \overline{1}\}$ satisfying the following conditions:
(1) B is a $\mathfrak{g l}(n)$-crystal with respect to wt, $\varepsilon_{i}, \varphi_{i}, \widetilde{e}_{i}, \widetilde{f}_{i}$ for $i=1, \ldots, n-1$,
(2) $\operatorname{wt}(b) \in \bigoplus_{i \in[n]} \mathbb{Z}_{+} \epsilon_{i}$ for $b \in B$,
(3) $\operatorname{wt}\left(\widetilde{e}_{\overline{1}} b\right)=\mathrm{wt}(b)+\alpha_{1}, \operatorname{wt}\left(\widetilde{f}_{\overline{1}} b\right)=\mathrm{wt}(b)-\alpha_{1}$ for $b \in B$,
(4) $\widetilde{f}_{\overline{1}} b=b^{\prime}$ if and only if $b=\widetilde{e}_{\overline{1}} b^{\prime}$ for all $b, b^{\prime} \in B$,
(5) for $3 \leqslant i \leqslant n-1$, we have
(i) the operators $\widetilde{e}_{\overline{1}}$ and $\widetilde{f}_{\overline{1}}$ commute with $\widetilde{e}_{i}, \widetilde{f}_{i}$,
(ii) if $\widetilde{e}_{\overline{1}} b \in B$, then $\varepsilon_{i}\left(\widetilde{e}_{\overline{1}} b\right)=\varepsilon_{i}(b)$ and $\varphi_{i}\left(\widetilde{e}_{\overline{1}} b\right)=\varphi_{i}(b)$.

Let \mathbf{B}_{n} be a $\mathfrak{q}(n)$-crystal which is the $\mathfrak{g l}(n)$-crystal $B_{n}\left(\epsilon_{1}\right)$ together with $\tilde{f}_{\overline{1}} 1=2$ (in dashed arrow):

Here we write $b \xrightarrow{i} b^{\prime}$ if $\widetilde{f_{i}} b=b^{\prime}$ for $b, b^{\prime} \in B$ and $i \in I \backslash\{\overline{1}\}$ as usual, and $b \xrightarrow{\overline{1}} b^{\prime}$ if $\widetilde{f}_{\overline{1}} b=b^{\prime}$.

For $\mathfrak{q}(n)$-crystals B_{1} and B_{2}, the tensor product $B_{1} \otimes B_{2}$ is the $\mathfrak{g l}(n)$-crystal $B_{1} \otimes B_{2}$ where the actions of $\widetilde{e}_{\overline{1}}$ and $\widetilde{f}_{\overline{1}}$ are given by

$$
\begin{align*}
& \widetilde{e}_{\overline{1}}\left(b_{1} \otimes b_{2}\right)= \begin{cases}\widetilde{e}_{\overline{1}} b_{1} \otimes b_{2}, & \text { if }\left\langle\epsilon_{1}, \mathrm{wt}\left(b_{2}\right)\right\rangle=\left\langle\epsilon_{2}, \mathrm{wt}\left(b_{2}\right)\right\rangle=0, \\
b_{1} \otimes \widetilde{e}_{\overline{1}} b_{2}, & \text { otherwise },\end{cases} \\
& \widetilde{f}_{\overline{1}}\left(b_{1} \otimes b_{2}\right)= \begin{cases}\widetilde{f}_{\overline{1}} b_{1} \otimes b_{2}, & \text { if }\left\langle\epsilon_{1}, \operatorname{wt}\left(b_{2}\right)\right\rangle=\left\langle\epsilon_{2}, \operatorname{wt}\left(b_{2}\right)\right\rangle=0, \\
b_{1} \otimes \widetilde{f}_{\overline{1}} b_{2}, & \text { otherwise }\end{cases} \tag{3}
\end{align*}
$$

Then it is easy to see that $B_{1} \otimes B_{2}$ is a $\mathfrak{q}(n)$-crystal. In particular, $\mathcal{W}_{[n]}$ is also a $\mathfrak{q}(n)$ crystal.

Let B be a $\mathfrak{q}(n)$-crystal. Suppose that B is a regular $\mathfrak{g l}(n)$-crystal, that is, each connected component in B is isomorphic to $B_{n}(\lambda)$ for some $\lambda \in \mathscr{P}_{n}$. Let $W=\mathfrak{S}_{n}$ be the Weyl group of $\mathfrak{g l}(n)$ which is generated by the simple reflection r_{i} corresponding to α_{i} for $i=1, \ldots, n-1$. We have a group action of W on B denoted by S such that

$$
S_{r_{i}}(b)= \begin{cases}\tilde{f}_{i}^{\left\langle\mathrm{wt}(b), h_{i}\right\rangle} b, & \text { if }\left\langle\mathrm{wt}(b), h_{i}\right\rangle \geqslant 0, \\ \widetilde{e}_{i}^{-\left\langle\mathrm{wt}(b), h_{i}\right\rangle} b, & \text { if }\left\langle\operatorname{wt}(b), h_{i}\right\rangle \leqslant 0,\end{cases}
$$

for $b \in B$ and $i=1, \ldots, n-1$. For $2 \leqslant i \leqslant n-1$, let $w_{i} \in W$ be such that $w_{i}\left(\alpha_{i}\right)=\alpha_{1}$, and let

$$
\begin{equation*}
\widetilde{e}_{\bar{i}}=S_{w_{i}^{-1}} \widetilde{e}_{\overline{1}} S_{w_{i}}, \quad \widetilde{f}_{\bar{i}}=S_{w_{i}^{-1}} \widetilde{f}_{\overline{1}} S_{w_{i}} . \tag{4}
\end{equation*}
$$

For $b \in B$, we say that b is a $\mathfrak{q}(n)$-highest weight vector if $\widetilde{e}_{i} b=\widetilde{e}_{\bar{i}} b=\mathbf{0}$ for $1 \leqslant i \leqslant n-1$, and b is a $\mathfrak{q}(n)$-lowest weight vector if $S_{w_{0}} b$ is a $\mathfrak{q}(n)$-highest weight vector.

For $\lambda \in \mathscr{P}^{+}$, let $\mathbf{B}_{n}(\lambda)=S S D T_{n}(\lambda)$, and consider an injective map

$$
\begin{align*}
\mathbf{B}_{n}(\lambda) & \longleftrightarrow \mathcal{W}_{[n]} \tag{5}\\
T & \longmapsto w_{\text {rev }}(T) .
\end{align*}
$$

Then we have the following.
Theorem 5. ([6, Theorem 2.5]) Let $\lambda \in \mathscr{P}_{n}^{+}$be given.
(a) The image of $\mathbf{B}_{n}(\lambda)$ in (5) together with $\{\mathbf{0}\}$ is invariant under the action of \widetilde{e}_{i} and \widetilde{f}_{i} for $i \in I$, and hence $\mathbf{B}_{n}(\lambda)$ is a $\mathfrak{q}(n)$-crystal.
(b) The $\mathfrak{q}(n)$-crystal $\mathbf{B}_{n}(\lambda)$ is connected where H_{n}^{λ} is a unique $\mathfrak{q}(n)$-highest weight vector and L_{n}^{λ} is a unique $\mathfrak{q}(n)$-lowest weight vector.

Remark 6. In [7], a semisimple tensor category over the quantum superalgebra $U_{q}(\mathfrak{q}(n))$ is introduced, and it is shown that each irreducible highest weight module $V_{n}(\lambda)$ in this category, parametrized by $\lambda \in \mathscr{P}_{n}^{+}$, has a crystal base. Furthermore, it is shown in [6, Theorem 2.5(c)] that the crystal of $V_{n}(\lambda)$ is isomorphic to $\mathbf{B}_{n}(\lambda)$.

Figure 1: The $\mathfrak{q}(3)$-crystal $\mathbf{B}_{3}(3,1)$

Let B_{1} and B_{2} be $\mathfrak{q}(n)$-crystals. For $b_{1} \in B_{1}$ and $b_{2} \in B_{2}$, let us say that b_{1} and b_{2} are equivalent and write $b_{1} \equiv b_{2}$ if there exists an isomorphism of $\mathfrak{q}(n)$-crystals ψ : $C\left(b_{1}\right) \longrightarrow C\left(b_{2}\right)$ such that $\psi\left(b_{1}\right)=b_{2}$ where $C\left(b_{i}\right)$ denotes the connected component of $b_{i} \in B_{i}(i=1,2)$ as a $\mathfrak{q}(n)$-crystal.

By [7, Theorem 4.6], each connected component in $\mathbf{B}_{n}^{\otimes N}(N \geqslant 1)$ is isomorphic to $\mathbf{B}_{n}(\lambda)$ for some $\lambda \in \mathscr{P}_{n}^{+}$with $|\lambda|=N$. Indeed, for $b=b_{1} \otimes \cdots \otimes b_{N} \in \mathbf{B}_{n}^{\otimes N}$, there exists a unique $\lambda \in \mathscr{P}_{n}^{+}$and $T \in \mathbf{B}_{n}(\lambda)$ such that $b \equiv T$. In particular, b is a $\mathfrak{q}(n)$-lowest (resp. $\mathfrak{q}(n)$-highest) weight vector if and only if $b \equiv L_{n}^{\lambda}$ (resp. H_{n}^{λ}).

The following lemma plays a crucial role in characterization of $\mathfrak{q}(n)$-lowest weight vectors in $\mathbf{B}_{n}^{\otimes N}$ and hence describing the decompositions of $\mathbf{B}_{n}^{\otimes N}$ and $\mathbf{B}_{n}(\mu) \otimes \mathbf{B}_{n}(\nu)$ ($\mu, \nu \in \mathscr{P}_{n}^{+}$) into connected components in [6].

Lemma 7. ([6, Lemma 1.15, Corollary 1.16]) For $b=b_{1} \otimes \cdots \otimes b_{N} \in \mathbf{B}_{n}^{\otimes N}$, the following are equivalent:
(1) b is $a \mathfrak{q}(n)$-lowest weight vector,
(2) $b^{\prime}=b_{2} \otimes \cdots \otimes b_{N}$ is a $\mathfrak{q}(n)$-lowest weight vector and $\epsilon_{b_{1}}+\mathrm{wt}\left(b^{\prime}\right) \in w_{0} \mathscr{P}_{n}^{+}$,
(3) $\operatorname{wt}\left(b_{M} \otimes \cdots \otimes b_{N}\right) \in w_{0} \mathscr{P}_{n}^{+}$for all $1 \leqslant M \leqslant N$.

Hence, we have the following immediately by Lemma 7.
Corollary 8. For $\lambda^{(1)}, \ldots, \lambda^{(s)} \in \mathscr{P}_{n}^{+}$and $T_{1} \otimes \cdots \otimes T_{s} \in \mathbf{B}_{n}\left(\lambda^{(1)}\right) \otimes \cdots \otimes \mathbf{B}_{n}\left(\lambda^{(s)}\right)$, the following are equivalent:
(1) $T_{1} \otimes \cdots \otimes T_{s}$ is a $\mathfrak{q}(n)$-lowest weight vector,
(2) $T_{r} \otimes \cdots \otimes T_{s} \in \mathbf{B}_{n}\left(\lambda^{(s)}\right) \otimes \cdots \otimes \mathbf{B}_{n}\left(\lambda^{(r)}\right)$ is a $\mathfrak{q}(n)$-lowest weight vector for all $1 \leqslant r \leqslant s$.

Note that we do not have an analogue of Lemma 7 for $\mathfrak{q}(n)$-highest weight vectors.
Remark 9. Let $m \geqslant n$ be a positive integer, and put $t=m-n$. For $N \geqslant 1$, let $\psi_{t}: \mathbf{B}_{n}^{\otimes N} \longrightarrow \mathbf{B}_{m}^{\otimes N}$ be the map given by $\psi_{t}\left(u_{1} \otimes \cdots \otimes u_{N}\right)=\left(u_{1}+t\right) \otimes \cdots \otimes\left(u_{N}+t\right)$. Then for $\lambda \in \mathscr{P}_{n}^{+}$and $u \in \mathbf{B}_{n}^{\otimes N}$ we have $u \equiv L_{n}^{\lambda}$ if and only if $\psi_{t}(u) \equiv L_{m}^{\lambda}$. This implies that the multiplicity of $\mathbf{B}_{n}(\lambda)$ in $\mathbf{B}_{n}^{\otimes N}$ is equal to that of $\mathbf{B}_{m}(\lambda)$ in $\mathbf{B}_{m}^{\otimes N}$ for $\lambda \in \mathscr{P}_{n}^{+}$.

3 Littlewood-Richardson rule for Schur \boldsymbol{P}-functions

For $\lambda, \mu, \nu \in \mathscr{P}^{+}$, the shifted Littlewood-Richardson coefficients $f_{\mu \nu}^{\lambda}$ are the coefficients given by

$$
\begin{equation*}
P_{\mu} P_{\nu}=\sum_{\lambda} f_{\mu \nu}^{\lambda} P_{\lambda} . \tag{6}
\end{equation*}
$$

In this section we give a new combinatorial description of $f_{\mu \nu}^{\lambda}$ using the theory of $\mathfrak{q}(n)$ crystals. We also show that our description of $f_{\mu \nu}^{\lambda}$ is equivalent to Stembridge's description [16].

3.1 Shifted Littlewood-Richardson rule

Definition 10. Let $w=w_{1} \cdots w_{N}$ be a word in $\mathcal{W}_{\mathcal{N}}$. Let $m_{k}=c_{k}(w)+c_{k^{\prime}}(w)$ for $k \geqslant 1$. We define $w^{*}=w_{1}^{*} \cdots w_{N}^{*}$ to be the word obtained from w after applying the following steps for each $k \geqslant 1$:
(1) Consider the letters w_{i}^{\prime} 's with $\left|w_{i}\right|=k$. Label them with $1,2, \ldots, m_{k}$ (as subscripts), first enumerating the w_{p} 's with $w_{p}=k$ from left to right, and then the w_{q} 's with $w_{q}=k^{\prime}$ from right to left.
(2) After the step (1), remove all ' in each labeled letter k_{j}^{\prime}, that is, replace any k_{j}^{\prime} by k_{j} for $c_{k}(w)<j \leqslant m_{k}$.

Example 11.

$$
\begin{aligned}
& w=11^{\prime} 11^{\prime} 1 \quad \longrightarrow \quad 1_{1} 1_{5}^{\prime} 1_{2} 1_{4}^{\prime} 1_{3} \quad \longrightarrow \quad w^{*}=1_{1} 1_{5} 1_{2} 1_{4} 1_{3} \\
& w=21^{\prime} 12^{\prime} 2^{\prime} 121 \quad \longrightarrow \quad 2_{1} 1_{4}^{\prime} 1_{1} 2_{4}^{\prime} 2_{3}^{\prime} 1_{2} 2_{2} 1_{3} \quad \longrightarrow \quad w^{*}=2_{1} 1_{4} 1_{1} 2_{4} 2_{3} 1_{2} 2_{2} 1_{3}
\end{aligned}
$$

Definition 12. Let $w=w_{1} \cdots w_{N} \in \mathcal{W}_{\mathcal{N}}$ be given. We say that w satisfies the hook lattice property if the word $w^{*}=w_{1}^{*} \cdots w_{N}^{*}$ associated to w given in Definition 10 satisfies the following for $k \geqslant 1$:
(L1) if $w_{i}^{*}=k_{1}$, then no $k+1_{j}$ for $j \geqslant 1$ occurs in $w_{1}^{*} \cdots w_{i-1}^{*}$,
(L2) if $\left(w_{s}^{*}, w_{t}^{*}\right)=\left(k+1_{i}, k_{i+1}\right)$ for some $s<t$ and $i \geqslant 1$, then no $k+1_{j}$ for $i<j$ occurs in $w_{s}^{*} \cdots w_{t}^{*}$,
(L3) if $\left(w_{s}^{*}, w_{t}^{*}\right)=\left(k_{j+1}, k+1_{j}\right)$ for some $s<t$ and $j \geqslant 1$, then no k_{i} for $i \leqslant j$ occurs in $w_{s}^{*} \cdots w_{t}^{*}$.
Definition 13. For $\lambda, \mu, \nu \in \mathscr{P}^{+}$, let $\mathrm{F}_{\mu \nu}^{\lambda}$ be the set of tableaux Q such that
(1) $Q \in S S T_{\mathcal{N}}^{+}(\lambda / \mu)$ with $c_{k}(Q)+c_{k^{\prime}}(Q)=\nu_{k}$ for $k \geqslant 1$,
(2) for $k \geqslant 1$, if x is the rightmost letter in $w(Q)$ with $|x|=k$, then $x=k$,
(3) $w(Q)$ satisfies the hook lattice property in Definition 12.

Then we have the following characterization of $f_{\mu \nu}^{\lambda}$.
Theorem 14. For $\lambda, \mu, \nu \in \mathscr{P}^{+}$, we have

$$
f_{\mu \nu}^{\lambda}=\left|\mathrm{F}_{\mu \nu}^{\lambda}\right|,
$$

that is, the shifted $L R$ coefficient $f_{\mu \nu}^{\lambda}$ is equal to the number of tableaux in $\mathrm{F}_{\mu \nu}^{\lambda}$.
Proof. Choose n such that $\lambda, \mu, \nu \in \mathscr{P}_{n}^{+}$. Put

$$
\begin{equation*}
\mathrm{L}_{\mu \nu}^{\lambda}=\left\{T \mid T \in \mathbf{B}_{n}(\nu), T \otimes L_{n}^{\mu} \equiv L_{n}^{\lambda}\right\} . \tag{7}
\end{equation*}
$$

By Corollary 8, we have

$$
\begin{equation*}
\mathbf{B}_{n}(\nu) \otimes \mathbf{B}_{n}(\mu) \cong \bigsqcup_{\lambda \in \mathscr{P}_{n}^{+}} \mathbf{B}_{n}(\lambda)^{\oplus\left|\mathrm{L}_{\mu \nu}\right|} \tag{8}
\end{equation*}
$$

Hence we have $\left|\mathrm{L}_{\mu \nu}^{\lambda}\right|=f_{\mu \nu}^{\lambda}=f_{\nu \mu}^{\lambda}$ from (1) and the linear independence of Schur $P_{\text {- }}$ polynomials $P_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$'s.

Let us prove $f_{\mu \nu}^{\lambda}=\left|\mathrm{F}_{\mu \nu}^{\lambda}\right|$ by constructing a bijection

$$
\begin{align*}
\mathrm{L}_{\mu \nu}^{\lambda} & \longrightarrow \mathrm{F}_{\mu \nu}^{\lambda} \tag{9}\\
T & \longrightarrow Q_{T} .
\end{align*}
$$

Let $T \in \mathrm{~L}_{\mu \nu}^{\lambda}$ be given. Assume that $w_{\mathrm{rev}}(T)=u_{1} \cdots u_{N}$ where $N=|\nu|$. By Lemma 7 , there exists $\mu^{(m)} \in \mathscr{P}_{n}^{+}$for $1 \leqslant m \leqslant N$ such that
(i) $\left(u_{N-m+1} \cdots u_{N}\right) \otimes L_{n}^{\mu} \equiv L_{n}^{\mu^{(m)}}$ and $\mu^{(N)}=\lambda$,
(ii) $\mu^{(m)}$ is obtained by adding a box in the $\left(n-u_{m}+1\right)$-st row of $\mu^{(m-1)}$.

Here we assume that $\mu^{(0)}=\mu$. Recall that

$$
w_{\mathrm{rev}}(T)=T^{(\ell(\nu))} \cdots T^{(1)},
$$

where $T^{(k)}=T_{k, 1} \cdots T_{k, \lambda_{k}}$ is a hook word for $1 \leqslant k \leqslant \ell(\nu)$. We define Q_{T} to be a tableau of shifted shape λ / μ with entries in \mathcal{N}, where $\mu^{(m)} / \mu^{(m-1)}$ is filled with

$$
\begin{cases}k^{\prime}, & \text { if } u_{m} \text { belongs to } T^{(k)} \uparrow, \tag{10}\\ k, & \text { if } u_{m} \text { belongs to } T^{(k)} \downarrow,\end{cases}
$$

for some $1 \leqslant k \leqslant \ell(\nu)$. In other words, the boxes in Q_{T} corresponding to $T^{(k)} \uparrow$ are filled with k^{\prime} from right to left as a vertical strip and then those corresponding to $T^{(k)} \downarrow$ are filled with k from left to right as a horizontal strip.

By construction, it is clear that $Q_{T} \in S S T_{\mathcal{N}}^{+}(\lambda / \mu)$ with $c_{k^{\prime}}\left(Q_{T}\right)+c_{k}\left(Q_{T}\right)=\nu_{k}$ for $1 \leqslant k \leqslant \ell(\nu)$. Let $w\left(Q_{T}\right)=w_{1} \cdots w_{N}$. Since $T^{(k)}$ is a hook word for each k and the rightmost letter, say u_{m}, in $T^{(k)} \downarrow$ is strictly smaller than the leftmost letter u_{m+1} in $T^{(k) \uparrow, ~}$ the entry k in Q_{T} corresponding to u_{m} is located to the southeast of all k^{\prime} 's in Q_{T}. So the conditions Definition 13(1) and (2) are satisfied.

It remains to check that $w\left(Q_{T}\right)$ satisfies the hook lattice property. Note that if we label k and k^{\prime} in (10) as k_{j} and k_{j}^{\prime}, respectively when $u_{m}=T_{k, j}$, then it coincides with the labeling on the letters in $w\left(Q_{T}\right)$ given in Definition 10(1). Now it is not difficult to see that the conditions Proposition 3(1), (2), and (3) on T implies the conditions Definition 12 (L1), (L2), and (L3), respectively. Therefore, $Q_{T} \in \mathrm{~F}_{\mu \nu}^{\lambda}$.

If $T, T^{\prime} \in \mathrm{L}_{\mu \nu}^{\lambda}$ with $T^{(i)} \neq T^{\prime(i)}$ for some $i \geqslant 1$, then it follows from (10) that $Q_{T} \neq Q_{T^{\prime}}$, so the correspondence $T \mapsto Q_{T}$ is injective. Moreover, this correspondence is reversible, and hence the map (9) is a bijection. This completes the proof.

Remark 15. We see from Remark 9 that $\left|\mathrm{L}_{\mu \nu}^{\lambda}\right|$ does not depend on n for all sufficiently large n. Hence (8) also implies the Schur P-positivity of the product $P_{\mu} P_{\nu}$.
Remark 16. For $T \in \mathrm{~L}_{\mu \nu}^{\lambda}$, let \widehat{Q}_{T} be the tableau of shifted shape λ / μ, which is defined in the same way as Q_{T} in the proof of Theorem 14 except that we fill $\mu^{(m)} / \mu^{(m-1)}$ with m in (10) for $1 \leqslant m \leqslant N$. Then the set $\left\{\widehat{Q}_{T} \mid T \in \mathrm{~L}_{\mu \nu}^{\lambda}\right\}$ is equal to the one given in $[6$, Theorem 4.13] to describe $f_{\mu \nu}^{\lambda}$. For example,

$$
\begin{aligned}
& T_{1}=\begin{array}{|l|l|l}
\hline 3 & 3 & 4 \\
\hline 2
\end{array} \in \mathrm{~L}_{(3,1)(3,1)}^{(4,3,1)} \quad \widehat{Q}_{T_{1}}=\begin{array}{|c|c|}
\hline 2 & 3 \\
\hline 4 \\
\hline
\end{array} \\
& T_{2}=\begin{array}{|l|l|}
\hline 4 & 2 \\
\hline & 3 \\
\hline
\end{array} \in \mathrm{~L}_{(3,1)(3,1)}^{(4,3,1)} \quad \widehat{Q}_{T_{2}}=\begin{array}{|}
\begin{array}{|c|c|}
\hline 1 & 4 \\
\hline 2
\end{array} \\
\hline
\end{array} \\
& Q_{T_{1}}=\begin{array}{|l|l|}
\hline 1 & 1^{\prime} \\
\hline 1 & 1 \\
\hline 2 & \\
\hline
\end{array} \\
& Q_{T_{2}}=\begin{array}{|c|c}
& \begin{array}{|c}
1 \\
1^{\prime} \\
\hline 1
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

3.2 Stembridge's description of $f_{\mu \nu}^{\lambda}$

Definition 17. Let $w=w_{1} \cdots w_{N}$ be a word in $\mathcal{W}_{\mathcal{N}}$ and $w_{\text {rev }}$ be the reverse word of w. Let \widehat{w} be the word obtained from w by replacing k by $(k+1)^{\prime}$ and k^{\prime} by k for each $k \geqslant 1$. Suppose that $w \widehat{w}_{\text {rev }}=a_{1} \cdots a_{2 N}$, and let $m_{k}(i)=c_{k}\left(a_{1} \cdots a_{i}\right)$ for $k \geqslant 1$ and $0 \leqslant i \leqslant 2 N$. Then we say that w satisfies the lattice property if

$$
\begin{equation*}
m_{k+1}(i)=m_{k}(i) \text { implies }\left|a_{i+1}\right| \neq k+1 \text { for } k \geqslant 1 \text { and } i \geqslant 0 . \tag{11}
\end{equation*}
$$

Here we assume that $m_{k}(0)=0$.
Definition 18. For $\lambda, \mu, \nu \in \mathscr{P}^{+}$, let $\operatorname{LRS}_{\mu \nu}^{\lambda}$ be the set of tableaux Q such that
(1) $Q \in S S T_{\mathcal{N}}^{+}(\lambda / \mu)$ with $c_{k}(Q)+c_{k^{\prime}}(Q)=\nu_{k}$ for $k \geqslant 1$,
(2) for $k \geqslant 1$, if x is the rightmost letter in $w(Q)$ with $|x|=k$, then $x=k$,
(3) $w(Q)$ satisfies the lattice property in Definition 17.

We call $\mathrm{LRS}_{\mu \nu}^{\lambda}$ the set of Littlewood-Richardson-Stembridge tableaux.
Theorem 19. ([16, Theorem 8.3]) For $\lambda, \mu, \nu \in \mathscr{P}^{+}$, we have

$$
f_{\mu \nu}^{\lambda}=\left|\operatorname{LRS}_{\mu \nu}^{\lambda}\right|,
$$

that is, the shifted LR coefficient $f_{\mu \nu}^{\lambda}$ is equal to the number of tableaux in $\operatorname{LRS}_{\mu \nu}^{\lambda}$.
Theorem 20. For $\lambda, \mu, \nu \in \mathscr{P}^{+}$, we have

$$
\mathrm{F}_{\mu \nu}^{\lambda}=\mathrm{LRS}_{\mu \nu}^{\lambda} .
$$

Proof. Since Definition 13(1) and (2) are the same as Definition 18(1) and (2), respectively, it suffices to show that for any $Q \in S S T_{\mathcal{N}}^{+}(\lambda / \mu), w:=w(Q)$ satisfies the hook lattice property in Definition 12 if and only if w satisfies the lattice property in Definition 17. We assume that $N=|\nu|, w=w_{1} \cdots w_{N}, w^{*}=w_{1}^{*} \cdots w_{N}^{*}$, and $w \widehat{w}_{\text {rev }}=a_{1} \cdots a_{2 N}$.

Suppose that w satisfies the hook lattice property in Definition 12. We use induction on $1 \leqslant i \leqslant 2 N$ to show that $a_{1} \cdots a_{2 N}$ satisfies (11). We first observe from (L1) that $a_{1}=$ 1 or 1^{\prime}, and a_{1} satisfies (11) since $m_{k}(0)=0$ for all $k \geqslant 1$.

We now assume that $a_{1} \cdots a_{i}$ for some $1 \leqslant i<2 N$ satisfies (11). Suppose for the sake of contradiction that $m_{k+1}(i)=m_{k}(i)=m$ and $\left|a_{i+1}\right|=k+1$ for some $k \geqslant 1$. Here $m>0$ by (L1). By induction hypothesis, there exist $s<t \leqslant i$ such that $a_{s}=k$ with $m_{k}(s)=m$ and $a_{t}=k+1$ with $m_{k+1}(t)=m$. Note that for each $k \geqslant 1$

$$
\begin{equation*}
c_{k}(w)+c_{k^{\prime}}(w)>c_{k+1}(w)+c_{(k+1)^{\prime}}(w), \tag{12}
\end{equation*}
$$

which implies that the number of k 's in $w \widehat{w}_{\text {rev }}$ is greater than the number of $k+1$'s in $w \widehat{w}_{\text {rev }}$. So we can choose an integer $u>i+1$ such that $a_{u}=k$ and $m_{k}(u)=m+1$. We now consider the following four cases:

Case 1. Let $1 \leqslant s<t<i+1 \leqslant N$. In this case $w_{s}^{*}=k_{m}, w_{t}^{*}=k+1_{m}$ and $w_{i+1}^{*}=k+$ 1_{M} for some $M \geqslant m+1$. (i) If $u \leqslant N$, then we have $\left(w_{t}^{*}, w_{i+1}^{*}, w_{u}^{*}\right)=\left(k+1_{m}, k+1_{M}, k_{m+1}\right)$, which contradicts (L2). (ii) If $N<u<2 N-s+1$, then $a_{2 N-u+1}=w_{2 N-u+1}=k^{\prime}$ ($s<2 N-u+1 \leqslant N$) but no k occurs in $w_{s+1} \cdots w_{N}$ which contradicts Definition 13(2). (iii) If $2 N-s+1<u \leqslant 2 N$, then we have $\left(w_{2 N-u+1}^{*}, w_{s}^{*}, w_{t}^{*}\right)=\left(k_{m+1}, k_{m}, k+1_{m}\right)$, which contradicts (L3).

Case 2. Let $1 \leqslant s<t \leqslant N<i+1 \leqslant 2 N$. In this case $w_{s}^{*}=k_{m}$ and $w_{t}^{*}=k+1_{m}$. Since $w_{2 N-u+1}=k^{\prime}(2 N-u+1<N)$, we have $s \neq 2 N-u+1$. (i) If $s<2 N-u+1$, then we have $w_{2 N-u+1}=k^{\prime}$ but no k in $w_{s+1} \cdots w_{n}$ since $m_{k}(i)=m$, which contradicts Definition 13(2). (ii) If $2 N-u+1<s$, then we have $\left(w_{2 N-u+1}^{*}, w_{s}^{*}, w_{t}^{*}\right)=\left(k_{m+1}, k_{m}, k+1_{m}\right)$, which contradicts (L3).

Case 3. Let $1 \leqslant s \leqslant N<t<i+1 \leqslant 2 N$. In this case $w_{s}^{*}=k_{m}, w_{2 N-t+1}^{*}=k+1_{m}$. If $a_{i+1}=(k+1)^{\prime}$, then $a_{2 N-i}=k$ but it is impossible from the assumption $m_{k}(i)=m$. So $a_{i+1}=k+1$ and $w_{2 N-i}^{*}=k+1_{m+1}$. (i) If $s<2 N-t+1$, then we have $w_{2 N-t+1}=(k+1)^{\prime}$ $(2 N-t+1 \leqslant N)$ but no $k+1$ in $w_{2 N-t+2} \cdots w_{N}$ since $m_{k+1}(i)=m$, which contradicts Definition 13(2). (ii) If $2 N-t+1<s$, then by (12) there is an integer $v>u$ such that $a_{v}=$ k and $m_{k}(v)=m+2$. So we have $\left(w_{2 N-v+1}^{*}, w_{2 N-u+1}^{*}, w_{2 N-i}^{*}\right)=\left(k_{m+2}, k_{m+1}, k+1_{m+1}\right)$, which contradicts (L3).

Case 4. Let $N<s<t<i+1 \leqslant 2 N$. In this case $w_{2 N-s+1}^{*}=k_{m}$ and $w_{2 N-t+1}^{*}=k+1_{m}$. (i) If $a_{i+1}=k+1$, then $w_{2 N-i}=(k+1)^{\prime}$ and $w_{2 N-i}^{*}=k+1_{m+1}$. By (12) there is an integer $v>u$ such that $a_{v}=k$ and $m_{k}(v)=m+2$. So we have $\left(w_{2 N-v+1}^{*}, w_{2 N-u+1}^{*}, w_{2 N-i}^{*}\right)=$ $\left(k_{m+2}, k_{m+1}, k+1_{m+1}\right)$, which contradicts (L3). (ii) If $a_{i+1}=(k+1)^{\prime}$, then $w_{2 N-i}=k$ and $w_{2 N-i}^{*}=k_{M}$ for some $M<m$. So we have $\left(w_{2 N-u+1}^{*}, w_{2 N-i}^{*}, w_{2 N-t+1}^{*}\right)=\left(k_{m+1}, k_{M}, k+\right.$ 1_{m}), which contradicts (L3).

Conversely, we assume that w satisfies the lattice property in Definition 17. We first claim that w satisfies (L1). Given $k \geqslant 1$, let $w_{i}^{*}=k_{1}$ for some $1 \leqslant i \leqslant N$. If $w_{j}^{*}=k+1_{1}$ for some $1 \leqslant j<i$, then it follows that $m_{k}(j-1)=m_{k+1}(j-1)=0$ and $a_{j}=k+1$, which contradicts (11). Hence w satisfies (L1).

Next, we claim that w satisfies (L2). Suppose that there is a triple $\left(w_{s}^{*}, w_{u}^{*}, w_{t}^{*}\right)=$ $\left(k+1_{i}, k+1_{j}, k_{i+1}\right)$ for some $k \geqslant 1, i<j$, and $1 \leqslant s<u<t \leqslant N$. We may assume that $j=i+1$. Since $w_{s}^{*}=k+1_{i}$ is placed to the left of $w_{u}^{*}=k+1_{i+1}$, it follows from Definition 10 that $a_{s}=k+1$, and from Definition 18(2) that $a_{u}=k+1$. Since w satisfies the lattice property, there is a positive integer $v<s$ such that $w_{v}^{*}=k_{i}$, i.e., $a_{v}=k$ and $m_{k}(v)=i$ for some $v<s$. We have $m_{k+1}(u-1)=m_{k}(u-1)=i$ and $a_{u}=k+1$, a contradiction. So w satisfies (L2).

Finally, we claim that w satisfies (L3). Suppose for the sake of contradiction that $\left(w_{s}^{*}, w_{u}^{*}, w_{t}^{*}\right)=\left(k_{j+1}, k_{i}, k+1_{j}\right)$ for some $k \geqslant 1, i \leqslant j$, and $1 \leqslant s<u<t \leqslant N$. We may assume that $i=j$. Since $w_{s}^{*}=k_{j+1}$ is placed to the left of $w_{u}^{*}=k_{j}$, it follows that $a_{s}=k^{\prime}$. We consider four cases depending whether a_{u} and a_{t} are primed or not as follows:

Case 1. Let $a_{u}=k^{\prime}$ and $a_{t}=(k+1)^{\prime}$. It follows that $a_{2 N-u+1}=k\left(m_{k}(2 N-u+1)=j\right)$ and $a_{2 N-t+1}=k+1\left(m_{k}(2 N-u+1)=j\right)$. So we have $m_{k+1}(2 N-t)=m_{k}(2 N-t)=j-1$ and $a_{2 N-t+1}=k+1$, as desired.

Case 2. Let $a_{u}=k^{\prime}$ and $a_{t}=k+1$. It follows that $a_{2 N-u+1}=k, m_{k}(2 N-u+1)=j$ and $m_{k+1}(t)=j$. Since $t<2 N-u+1$, we have $m_{k}(t)<m_{k+1}(t)$. So there is an integer $0 \leqslant \hat{t}<t$ such that $m_{k}(\hat{t})=m_{k+1}(\hat{t})<j$ and $a_{\hat{t}+1}=k+1$, as desired.

Case 3. Let $a_{u}=k$ and $a_{t}=(k+1)^{\prime}$. It follows that $a_{2 N-t+1}=k+1$ and $m_{k+1}(2 N-$ $t+1)=j$. From $m_{k}(2 N-s+1)=j+1$ and $2 N-t+1<2 N-s+1$ we have $m_{k}(2 N-t+1)=m_{k+1}(2 N-t+1)=j$. If there is another $k+1$ between w_{t}^{*} and w_{u}^{*}, then we obtain the desired contradiction. Otherwise, $m_{k}(2 N-u)=m_{k+1}(2 N-u)$ and $a_{2 N-u+1}=(k+1)^{\prime}$, as desired.

Case 4. Let $a_{u}=k$ and $a_{t}=k+1$. From $a_{s}=k^{\prime}\left(w_{s}^{*}=k_{j+1}\right)$ it follows that $m_{k}(2 N-u)=j$. If $m_{k+1}(2 N-u)=j$, from $a_{2 N-u+1}=(k+1)^{\prime}$ we get a contradiction. If $m_{k+1}(2 N-u)>j$, by choosing the smallest integer $\hat{t}>t$ such that $m_{k+1}(\hat{t})=j+1$ this leads to a contradiction.

Indeed, we have shown in the proof of Theorem 20 that
Corollary 21. Let $w \in \mathcal{W}_{\mathcal{N}}$ be such that
(1) $\left(c_{k}(Q)+c_{k^{\prime}}(Q)\right)_{k \geqslant 1} \in \mathscr{P}^{+}$,
(2) for $k \geqslant 1$, if x is the rightmost letter in w with $|x|=k$, then $x=k$.

Then w satisfies the hook lattice property in Definition 12 if and only if w satisfies the lattice property in Definition 17.

Remark 22. A bijection from $\operatorname{LRS}_{\mu \nu}^{\lambda}$ to $\mathrm{L}_{\mu \nu}^{\lambda}$ is also given in [4, Theorem 4.7], which coincides with the inverse of the map $T \mapsto Q_{T}$ in (9) (see also the remarks in [4, p.82]). The proof of [4, Theorem 4.7] use insertion schemes for two versions of semistandard decomposition tableaux and another combinatorial model for $f_{\mu \nu}^{\lambda}$ by Cho [3] as an intermediate object between $\operatorname{LRS}_{\mu \nu}^{\lambda}$ and $\mathrm{L}_{\mu \nu}^{\lambda}$.

On the other hand, we prove more directly that the map $T \mapsto Q_{T}$ in (9) is a bijection from $\mathrm{L}_{\mu \nu}^{\lambda}$ to $\mathrm{LRS}_{\mu \nu}^{\lambda}$ by using a new characterization of the lattice property in Theorem 20.

4 Schur P-expansions of skew Schur functions

4.1 The Schur P-expansion of $s_{\lambda / \delta_{r}}$

For $r \geqslant 0$, let us denote by δ_{r} the partition $(r, r-1, \ldots, 1)$ if $r \geqslant 1$, and (0) if $r=0$. We fix a nonnegative integer r.

Let $\lambda \in \mathscr{P}$ be such that $D_{\delta_{r}} \subseteq D_{\lambda} \subseteq D_{\left((r+1)^{r+1}\right)}$. Here $\left((r+1)^{r+1}\right)$ means the rectangular partition $(r+1, \ldots, r+1)$ with length $r+1$. For instance, the diagram

is contained in $D_{\left(5^{5}\right)}$.
It is shown in $[1,5]$ that the skew Schur function $s_{\lambda / \delta_{k}}$ has a nonnegative integral expansion in terms of Schur P-functions

$$
\begin{equation*}
s_{\lambda / \delta_{r}}=\sum_{\nu \in \mathscr{P}^{+}} a_{\lambda / \delta_{r} \nu} P_{\nu} \tag{13}
\end{equation*}
$$

together with a combinatorial description of $a_{\lambda / \delta_{r} \nu}$. Moreover it is shown that these skew Schur functions are the only ones (up to rotation of shape by 180°), which have Schur P-positivity. In this section, we give a new simple description of $a_{\lambda / \delta_{r} \nu}$ using $\mathfrak{q}(n)$-crystals.

First we consider a $\mathfrak{q}(n)$-crystal structure on $B_{n}\left(\lambda / \delta_{r}\right)$.
Proposition 23. Let $\lambda \in \mathscr{P}_{n}$ be such that $D_{\delta_{r}} \subseteq D_{\lambda} \subseteq D_{(r+1)^{r+1}}$. Then the $\mathfrak{g l}(n)$-crystal $B_{n}\left(\lambda / \delta_{r}\right)$, regarded as a subset of $\mathcal{W}_{[n]}$ together with $\mathbf{0}$ is invariant under $\widetilde{e}_{\overline{1}}$ and $\widetilde{f}_{\overline{1}}$. Hence $B_{n}\left(\lambda / \delta_{r}\right)$ is a $\mathfrak{q}(n)$-crystal.

Proof. Let $N=|\lambda|-\left|\delta_{r}\right|$. For $T \in B_{n}\left(\lambda / \delta_{r}\right)$, let $w(T)=w_{1} \cdots w_{N}$. Recall that T is identified with $w(T)$ in $\mathcal{W}_{[n]}$. Here we call the box in $D_{\lambda / \delta_{r}}$ containing w_{i} the w_{i}-box, and call the set of boxes $(x, r-x+2) \in D_{\lambda / \delta_{r}}$ for $1 \leqslant x \leqslant r+1$ the main anti-diagonal of $D_{\lambda / \delta_{r}}$.

Suppose that $\widetilde{f}_{\overline{1}} w(T) \neq 0$. There exists $1 \leqslant i \leqslant N-1$ such that $w_{i}=1$ and $w_{j} \neq 1,2$ for all $i<j \leqslant N$, and

$$
\tilde{f}_{\overline{1}}\left(w_{1} \cdots w_{i-1} 1 w_{i+1} \cdots w_{N}\right)=w_{1} \cdots w_{i-1} 2 w_{i+1} \cdots w_{N}
$$

by the tensor product rule (3). We first observe that the entry 1 in T can be placed only on the main anti-diagonal in $D_{\lambda / \delta_{r}}$. If there is a box in $D_{\lambda / \delta_{r}}$ below the w_{i}-box, then it corresponds to w_{j} for some $j>i$, and hence its entry is greater than 2 . Moreover, if there is a box in $D_{\lambda / \delta_{r}}$ to the right of the w_{i}-box, then its entry is greater than 1 since it is not on the main anti-diagonal. So we conclude that there exists $T^{\prime} \in S S T_{[n]}\left(\lambda / \delta_{r}\right)$ such that $w\left(T^{\prime}\right)=\widetilde{f}_{\overline{1}} w(T)$.

Suppose that $\widetilde{e}_{\overline{1}} w(T) \neq 0$. There exists $1 \leqslant i \leqslant N-1$ such that $w_{i}=2$ and $w_{j} \neq 1,2$ for all $i<j \leqslant N$, and

$$
\begin{equation*}
\widetilde{e}_{\overline{1}}\left(w_{1} \cdots w_{i-1} 2 w_{i+1} \cdots w_{N}\right)=w_{1} \cdots w_{i-1} 1 w_{i+1} \cdots w_{N}, \tag{14}
\end{equation*}
$$

by the tensor product rule (3). If the w_{i}-box is not on the main anti-diagonal, then the w_{i+1}-box is placed to the left of the w_{i}-box. Then the w_{i+1}-box is filled with 1 or 2 , which contradicts (14). So the w_{i}-box is on the main anti-diagonal, and thus $\tilde{f}_{\overline{1}} w(T)=w\left(T^{\prime}\right)$ for some $T^{\prime} \in B_{n}\left(\lambda / \delta_{r}\right)$. This completes the proof.

Remark 24. The above proposition is a slight generalization of [7, Example 2.10(d)], which considers only the set of semistandard tableaux of shape Y_{λ} with entries in $[n]$ for a strict partition $\lambda \in \mathscr{P}^{+}$. Here Y_{λ} is the skew diagram having λ_{1} boxes on the main anti-diagonal, λ_{2} boxes on the second one, etc.

Corollary 25. Under the above hypothesis, the skew Schur function $s_{\lambda / \delta_{r}}$ is Schur Ppositive.

Proof. Since $B_{n}\left(\lambda / \delta_{r}\right)$ is a $\mathfrak{q}(n)$-crystal, the skew Schur polynomial $s_{\lambda / \delta_{r}}\left(x_{1}, \ldots, x_{n}\right)$ is a nonnegative integral linear combination of $P_{\nu}\left(x_{1}, \ldots, x_{n}\right)$. From the fact that $B_{n}\left(\lambda / \delta_{r}\right)$ lies inside $B\left(\epsilon_{1}\right)^{N}$ for $N=|\lambda|-\left|\delta_{r}\right|$ we then apply Remark 9 .

Definition 26. Let $\lambda \in \mathscr{P}$ be such that $D_{\delta_{r}} \subseteq D_{\lambda} \subseteq D_{\left((r+1)^{r+1}\right)}$ and $\nu \in \mathscr{P}^{+}$. Let $\mathrm{A}_{\lambda / \delta_{r} \nu}$ be the set of tableaux Q such that
(1) $Q \in S S T_{[r+1]}^{+}(\nu)$ with $c_{k}(Q)=\lambda_{r-k+2}-k+1$ for $1 \leqslant k \leqslant r+1$,
(2) for $1 \leqslant k \leqslant r$ and $1 \leqslant i \leqslant N$,

$$
m_{k}(i) \leqslant m_{k+1}(i)+1,
$$

where $w_{\text {rev }}(Q)=w_{1} \cdots w_{N}$ and $m_{k}(i)=c_{k}\left(w_{1} \cdots w_{i}\right)$.
Then we have the following combinatorial description of $a_{\lambda / \delta_{r} \nu}$.
Theorem 27. For $\lambda \in \mathscr{P}$ with $D_{\delta_{r}} \subseteq D_{\lambda} \subseteq D_{\left((r+1)^{r+1}\right)}$ and $\nu \in \mathscr{P}^{+}$, we have

$$
a_{\lambda / \delta_{r} \nu}=\left|\mathrm{A}_{\lambda / \delta_{r} \nu}\right| .
$$

Proof. Choose n such that $\lambda, \nu \in \mathscr{P}_{n}^{+}$. We may assume that $\lambda_{1}=\ell(\lambda)=r+1$. Let

$$
\begin{equation*}
\mathrm{L}_{\lambda / \delta_{r} \nu}=\left\{T \in B_{n}\left(\lambda / \delta_{r}\right) \mid T \equiv L^{\nu}\right\} . \tag{15}
\end{equation*}
$$

By Proposition 23, we have

$$
\begin{equation*}
B_{n}\left(\lambda / \delta_{r}\right) \cong \bigsqcup_{\nu \in \mathscr{P}_{n}^{+}} \mathbf{B}_{n}(\nu)^{\oplus\left|\mathrm{L}_{\lambda / \delta_{r} \nu}\right|} \tag{16}
\end{equation*}
$$

By linear independence of $P_{\nu}\left(x_{1}, \ldots, x_{n}\right)$'s for $\nu \in \mathscr{P}_{n}^{+}$, we have $a_{\lambda / \delta_{r} \nu}=\left|\mathrm{L}_{\lambda / \delta_{r} \nu}\right|$.
Let us construct a bijection

$$
\begin{align*}
\mathrm{L}_{\lambda / \delta_{r} \nu} & \longrightarrow \mathrm{~A}_{\lambda / \delta_{r} \nu} \tag{17}\\
T & \longmapsto Q_{T}
\end{align*}
$$

as follows. Let $T \in \mathrm{~L}_{\lambda / \delta_{r} \nu}$ be given. Suppose that $w(T)=u_{1} \cdots u_{N}$, where $N=|\nu|$. By Lemma 7, there exists $\nu^{(m)} \in \mathscr{P}_{n}^{+}$for $1 \leqslant m \leqslant N$ such that $u_{N-m+1} \cdots u_{N} \equiv L^{\nu^{(m)}}$, where $\nu^{(1)}=(1), \nu^{(N)}=\nu$, and $\nu^{(m)}$ is obtained by adding a box in the $\left(n-u_{m}+1\right)$-st row of $\nu^{(m-1)}$ for $1 \leqslant m \leqslant N$ with $\nu^{(0)}=\varnothing$.

Note that $w_{\mathrm{rev}}(T)=T^{(r+1)} \cdots T^{(1)}$, where $T^{(l)}=T_{l, 1} \cdots T_{l, \lambda_{l}-r-1+l}$ is a weakly increasing word corresponding to the l-th row of T for $1 \leqslant l \leqslant r+1$. Let Q_{T} be a tableau of shifted shape ν with entries in \mathbb{N}, where $\nu^{(m)} / \nu^{(m-1)}$ is filled with $r+2-l$ if u_{m} occurs
in $T^{(l)}$, for some $1 \leqslant l \leqslant r+1$. Note that the boxes in Q_{T} corresponding to $T^{(l)}$ are filled with $r+2-l$ as a horizontal strip. So Q_{T} satisfies the condition Definition 26(1).

For each $k \geqslant 1$, let us enumerate the letter k 's in Q_{T} from southwest to northeast by k_{1}, k_{2}, \ldots. Since $T \in S S T_{n}\left(\lambda / \delta_{r}\right)$, we see that the entry k_{i} in Q_{T} corresponds to $T_{l, i}$ for $i \geqslant 1$, where $l=r+2-k$, and moreover $(k+1)_{i}$ is located in the southwest of k_{i+1} for $i \geqslant 2$. This implies the condition Definition 26(2), and hence $Q_{T} \in \mathrm{~A}_{\lambda / \delta_{r} \nu}$.

Finally, one can check that correspondence $T \mapsto Q_{T}$ is a bijection.
Example 28. Let $\lambda=(6,5,5,4,4,2)$ with $D_{\lambda} \subseteq D_{\left(6^{6}\right)}$ and $n=7$. For $\nu=(5,4,2)$, we have $\mathrm{L}_{\lambda / \delta_{5} \nu}=\left\{T_{1}, T_{2}\right\}$ and $\mathrm{A}_{\lambda / \delta_{5} \nu}=\left\{Q_{T_{1}}, Q_{T_{2}}\right\}$ as follows.

Moreover, we have

$$
s_{(6,5,5,4,4,2) / \delta_{5}}=2 P_{(5,3,2,1)}+2 P_{(5,4,2)}+P_{(6,3,2)}+P_{(6,4,1)} .
$$

Remark 29. For $\lambda \in \mathscr{P}$ with $D_{\delta_{r}} \subseteq D_{\lambda} \subseteq D_{\left((r+1)^{r+1}\right)}$, let $\lambda^{\natural}=\left(\lambda_{1}^{\natural}, \ldots, \lambda_{r+1}^{\natural}\right)$ such that λ_{i}^{\natural} is the number of boxes on the i-th anti-diagonal from the main anti-diagonal, which is obviously a strict partition. One can see that there is a unique tableau of shape λ / δ_{r} with weight λ^{\natural} satisfying the condition in Lemma 7 . Moreover, if $a_{\lambda / \delta_{r} \nu} \neq 0$, then ν is less than or equal to λ^{\natural} with respect to the dominance ordering. So we have

$$
s_{\lambda / \delta_{r}}=P_{\lambda^{\natural}}+\sum_{\nu<\lambda^{\natural}} a_{\lambda / \delta_{r}, \nu} P_{\nu} .
$$

4.2 Ardila-Serrano's expansion of $s_{\delta_{r+1} / \mu}$

We fix a nonnegative integer r. For $\mu \in \mathscr{P}$ with $D_{\mu} \subseteq D_{\delta_{r+1}}$, let us recall the result on the Schur P-expansion of he skew Schur function $s_{\delta_{r+1} / \mu}$ by Ardila and Serrano [1].

Let $N=\left|\delta_{r+1}\right|-|\mu|$, and let $T_{\delta_{r+1} / \mu}$ be the tableau obtained by filling δ_{r+1} / μ with $1,2, \ldots, N$ subsequently, starting from the bottom row to top, and from left to right in each row. For instance,

$$
T_{\delta_{5} /(4,1,1)}=\begin{array}{|l|l|l|}
\hline 6 & 7 & 8 \\
\hline 4 & 5 & \\
\hline 2 & 3 & \\
\hline 1 & & \\
\hline 2
\end{array}
$$

For $\nu \in \mathscr{P}^{+}$with $|\nu|=N$, let $\mathrm{B}_{\delta_{r+1} / \mu \nu}$ be the set of tableaux Q such that
(1) $Q \in S S T_{[N]}^{+}(\nu)$ where each entry $i \in[N]$ occurs exactly once,
(2) if j is directly above i in $T_{\delta_{r+1} / \mu}$, then j is placed strictly to the right of i in Q,
(3) if $i+1$ is placed to the right of i in $T_{\delta_{r+1} / \mu}$, then $i+1$ is strictly below i in Q.

Theorem 30. ([1, Theorem 4.10]) For $\mu \in \mathscr{P}$ with $D_{\mu} \subseteq D_{\delta_{r+1}}$, the skew Schur function $s_{\delta_{r+1} / \mu}$ is given by a nonnegative integral linear combination of Schur P-functions

$$
s_{\delta_{r+1} / \mu}=\sum_{\nu \in \mathscr{P}^{+}} b_{\delta_{r+1} / \mu \nu} P_{\nu},
$$

where $b_{\delta_{r+1} / \mu \nu}=\left|\mathrm{B}_{\delta_{r+1} / \mu \nu}\right|$.
Now we show that Theorem 27 (after a little modification of its proof) implies Theorem 30. Let $\lambda \in \mathscr{P}$ be such that $D_{\delta_{r}} \subseteq D_{\lambda} \subseteq D_{\left((r+1)^{r+1}\right)}$.

Let $\nu \in \mathscr{P}^{+}$with $|\nu|=N=|\lambda|-\left|\delta_{r}\right|$, and let $\mathrm{L}_{\lambda / \delta_{r} \nu}$ be as in (15). Then $\left|\mathrm{L}_{\lambda / \delta_{r} \nu}\right|=$ $a_{\lambda / \delta_{r} \nu}$ by (16). Let $T \in \mathrm{~L}_{\lambda / \delta_{r} \nu}$ be given with $w(T)=u_{1} \cdots u_{N}$. Recall by Lemma 7 that there exists a sequence of strict partitions $\nu^{(m)} \in \mathscr{P}_{n}^{+}$for $1 \leqslant m \leqslant N$ such that $u_{N-m+1} \cdots u_{N} \equiv L^{\nu^{(m)}}$, where $\nu^{(1)}=(1), \nu^{(N)}=\nu$, and $\nu^{(m)}$ is obtained by adding a box in the $\left(n-u_{m}+1\right)$-st row of $\nu^{(m-1)}$ with $\nu^{(0)}=\varnothing$.

We define Q_{T}^{\prime} to be the tableau of shifted shape ν such that $\nu^{(m)} / \nu^{(m-1)}$ is filled with m for $1 \leqslant m \leqslant N$. Then we have the following.

Theorem 31. Let $\lambda \in \mathscr{P}$ be such that $D_{\delta_{r}} \subseteq D_{\lambda} \subseteq D_{\left((r+1)^{r+1}\right)}$ and $\nu \in \mathscr{P}^{+}$. Then we have a bijection

$$
\begin{aligned}
\mathrm{L}_{\lambda / \delta_{r} \nu} & \longrightarrow \mathrm{~B}_{\delta_{r+1} /\left(\lambda^{c}\right)^{\prime} \nu} \\
T & \longmapsto Q_{T}^{\prime}
\end{aligned}
$$

where $\lambda^{c}:=\left(r+1-\lambda_{r+1}, r+1-\lambda_{r}, \ldots, r+1-\lambda_{1}\right)$ is the complement of λ in $\left((r+1)^{r+1}\right)$.
Proof. Let $T_{\lambda / \delta_{r}}^{\prime}$ be the tableau obtained by filling λ / δ_{r} with $1,2, \ldots, N$ subsequently, starting from the leftmost column to rightmost, and from bottom to top in each column. For instance, when $\lambda=(5,4,4,4,2)$ and $r=4$, we have

By definition of Q_{T}^{\prime}, we can check that
(1) $Q_{T}^{\prime} \in S S T_{[N]}^{+}(\nu)$ where each entry $i \in[N]$ occurs exactly once,
(2) if j is directly above i in $T_{\lambda / \delta_{r}}^{\prime}$, then then j is strictly below i in Q_{T}^{\prime},
(3) if $i+1$ is placed to the right of i in $T_{\lambda / \delta_{r}}^{\prime}$, then $i+1$ is placed strictly to the right of i in Q_{T}^{\prime}.

We see that $T_{\delta_{r+1} /\left(\lambda^{c}\right)^{\prime}}$ is obtained from $T_{\lambda / \delta_{r}}^{\prime}$ by flipping with respect to the main anti-diagonal. This implies that $Q_{T}^{\prime} \in \mathrm{B}_{\delta_{r+1} /\left(\lambda^{c}\right)^{\prime} \nu}$. Since the correspondence $T \mapsto Q_{T}^{\prime}$ is reversible, it is a bijection.

Corollary 32. Under the above hypothesis, we have a bijection

$$
\begin{aligned}
\mathrm{A}_{\lambda / \delta_{r} \nu} & \longrightarrow \mathrm{~B}_{\delta_{r+1} /\left(\lambda^{c}\right)^{\prime} \nu} \\
Q_{T} & \longmapsto Q_{T}^{\prime}
\end{aligned}
$$

for $T \in \mathrm{~L}_{\lambda / \delta_{r} \nu}$.
Recall that for a skew shape η / ζ, we have $s_{\eta / \zeta}=s_{(\eta / \zeta)^{\pi}}$, where $(\eta / \zeta)^{\pi}$ is the (skew) diagram obtained from η / ζ by rotating 180 degree (which can be seen for example by reversing the linear ordering on \mathbb{N} in [2]). Also if $s_{\eta / \zeta}$ has a Schur P-expansion, then we have $s_{\eta / \zeta}=s_{\eta^{\prime} / \zeta^{\prime}}$ by applying the involution ω on the ring symmetric function sending s_{η} to $s_{\eta^{\prime}}$ since $\omega\left(P_{\nu}\right)=P_{\nu}$ for $\nu \in \mathscr{P}^{+}$(see [10, p. 259, Exercise 3.(a)]).

Hence we have

$$
s_{\lambda / \delta_{r}}=s_{\delta_{r+1} / \lambda^{\mathrm{c}}}=s_{\delta_{r+1} /\left(\lambda^{c}\right)^{\prime}},
$$

for $\lambda \in \mathscr{P}$ such that $D_{\delta_{r}} \subseteq D_{\lambda} \subseteq D_{\left((r+1)^{r+1}\right)}$. This implies that

$$
\begin{equation*}
a_{\lambda / \delta_{r} \nu}=b_{\delta_{r+1} / \lambda^{c} \nu}=b_{\delta_{r+1} /\left(\lambda^{c}\right)^{\prime} \nu}, \tag{18}
\end{equation*}
$$

for $\nu \in \mathscr{P}^{+}$, where $a_{\lambda / \delta_{r} \nu}$ are given in (13). Equivalently, we have

$$
\begin{equation*}
a_{\left(\mu^{c}\right)^{\prime} / \delta_{r} \nu}=b_{\delta_{r+1} / \mu^{\prime} \nu}=b_{\delta_{r+1} / \mu \nu}, \tag{19}
\end{equation*}
$$

for $\mu \in \mathscr{P}$ with $D_{\mu} \subseteq D_{\delta_{r+1}}$. Therefore Theorem 30 follows from Theorem 27, Corollary 32 , and (18) (or (19)).

5 Schur expansion of Schur \boldsymbol{P}-function

For $\lambda \in \mathscr{P}^{+}$and $\mu \in \mathscr{P}$, let $g_{\lambda \mu}$ be the coefficient of s_{μ} in the Schur expansion of P_{λ}, that is,

$$
\begin{equation*}
P_{\lambda}=\sum_{\mu} g_{\lambda \mu} s_{\mu} . \tag{20}
\end{equation*}
$$

The purpose of this section is to give an alternate proof of the following combinatorial description of $g_{\lambda \mu}$ due to Stembridge.

Theorem 33. ([16, Theorem 9.3]) For $\lambda \in \mathscr{P}^{+}$and $\mu \in \mathscr{P}$, we have

$$
g_{\lambda \mu}=\left|\mathrm{G}_{\lambda \mu}\right|,
$$

where $\mathrm{G}_{\lambda \mu}$ is the set of tableaux Q such that
(1) $Q \in S S T_{\mathcal{N}}(\mu)$ with $c_{k}(Q)+c_{k^{\prime}}(Q)=\lambda_{k}$ for $k \geqslant 1$,
(2) for $k \geqslant 1$, if x is the rightmost letter in $w(Q)$ with $|x|=k$, then $x=k$,
(3) $w(Q)$ satisfies the lattice property.

Proof. The proof is similar to that of Theorem 14. Choose n such that $\lambda \in \mathscr{P}_{n}^{+}$and $\mu \in \mathscr{P}_{n}$. Let

$$
\mathbf{L}_{\lambda \mu}=\left\{T \mid T \in \mathbf{B}_{n}(\lambda), \widetilde{f}_{i} T=\mathbf{0}(1 \leqslant i \leqslant n-1), \operatorname{wt}(T)=w_{0} \mu\right\}
$$

Then we have as a $\mathfrak{g l}(n)$-crystal

$$
\begin{equation*}
\mathbf{B}_{n}(\lambda) \cong \bigsqcup_{\mu} B_{n}(\mu)^{\oplus\left|\mathbf{L}_{\lambda \mu}\right|} \tag{21}
\end{equation*}
$$

and hence $g_{\lambda \mu}=\left|\mathbf{L}_{\lambda \mu}\right|$ by linear independence of Schur polynomials. Let us define a map

$$
\begin{aligned}
\mathbf{L}_{\lambda \mu} & \longrightarrow \mathrm{G}_{\lambda \mu} \\
T & \longmapsto Q_{T}
\end{aligned}
$$

as follows. Let $T \in \mathbf{L}_{\lambda \mu}$ be given. Assume that $w_{\mathrm{rev}}(T)=u_{1} \cdots u_{N}$ where $N=|\lambda|$. Since T is a $\mathfrak{g l}(n)$-lowest weight vector, we have by (2) that $u_{N-m+1} \otimes \cdots \otimes u_{N} \in \mathbf{B}_{n}^{\otimes m}$ is a $\mathfrak{g l}(n)$-lowest weight element for $1 \leqslant m \leqslant N$. This implies that there exists $\mu^{(m)} \in \mathscr{P}_{n}$ for $1 \leqslant m \leqslant N$ such that $u_{N-m+1} \cdots u_{N}$ is equivalent as an element of $\mathfrak{g l}(n)$-crystal to a $\mathfrak{g l}(n)$-lowest weight element in $B_{n}\left(\mu^{(m)}\right)$, where $\mu^{(N)}=\mu$ and $\mu^{(m)}$ is obtained by adding a box in the $\left(n-u_{m}+1\right)$-st row of $\mu^{(m-1)}$ with $\mu^{(0)}=\varnothing$.

We define Q_{T} to be a tableau of shape μ with entries in \mathcal{N}, where $\mu^{(m)} / \mu^{(m-1)}$ is filled with

$$
\begin{cases}k^{\prime}, & \text { if } u_{m} \text { belongs to } T^{(k)} \uparrow \\ k, & \text { if } u_{m} \text { belongs to } T^{(k)} \downarrow\end{cases}
$$

for some $1 \leqslant k \leqslant \ell(\lambda)$. By almost the same arguments as in the proof of Theorem 14, we see that Q_{T} satisfies the conditions (1) and (2) for $\mathrm{G}_{\lambda \mu}$, and $w\left(Q_{T}\right)$ satisfies the hook lattice property, which implies that it satisfies the lattice property by Corollary 21. (We leave the details to the reader.) Finally the correspondence $T \mapsto Q_{T}$ is a well-defined bijection.

Example 34. Let $\lambda=(3,1)$. From Figure 1 we get three $\mathfrak{g l}(3)$-lowest weight vectors in $\mathbf{B}_{3}(\lambda)$

By applying the mapping $T \mapsto Q_{T}$ in the proof of Theorem 33 to these tableaux we have

1	1	1	
2		1^{\prime} 1 1 2	1^{\prime} 1 1 2

Thus $P_{(3,1)}=s_{(3,1)}+s_{(2,2)}+s_{(2,1,1)}$.
Remark 35. Let $\lambda \in \mathscr{P}^{+}$be such that $D_{\lambda}^{+} \subseteq D_{\delta_{r+1}}^{+}$for some $r \geqslant 0$. Let $\lambda^{\text {c+ }}$ be a strict partition obtained by counting complementary boxes $D_{\delta_{r+1}}^{+} \backslash D_{\lambda}^{+}$in each column from right to left. It is shown in [5] that

$$
s_{\delta_{r+1} / \lambda}=\sum_{\substack{\nu \mathscr{P} \mathscr{P}^{+} \\|\nu|=|\lambda|}} g_{\nu \lambda} P_{\nu^{c}} .
$$

By (18) or (19), we have $g_{\nu \lambda}=a_{\lambda^{c} / \delta_{r}\left(\nu^{c}+\right)^{\prime}}$. One may expect that there is a natural bijection between $\mathrm{G}_{\nu \lambda}$ and $\mathrm{A}_{\lambda^{c} / \delta_{r}\left(\nu^{c+}\right)^{\prime}}$ that we have not yet make explicit.

6 Semistandard decomposition tableaux of skew shapes

Let λ / μ be a shifted skew diagram for $\lambda, \mu \in \mathscr{P}^{+}$with $D_{\mu}^{+} \subseteq D_{\lambda}^{+}$. Without loss of generality, we assume in this section that $\lambda_{1}>\mu_{1}$ and $\ell(\lambda)>\ell(\mu)$.

Let T be a tableau of shifted skew shape λ / μ. For $p, q \geqslant 1$, let $T(p, q)$ denote the entry of T at the p-th row and the q-th diagonal from the main diagonal in D_{λ}^{+}(that is, $\left.\{(i, i) \mid i \geqslant 1\} \cap D_{\lambda}^{+}\right)$whenever it is defined. Note that $T(p, q)$ is not necessarily equal to $T_{p, q}$ if μ is nonempty.

For example, when $\lambda / \mu=(5,4,2) /(3,1)$, we have

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline & T(1,4) & T(1,5) \\
\hline T(2,2) & T(2,3) & T(2,4) \\
\hline T(3,1) & T(3,2) & & \\
\hline
\end{array}
$$

Definition 36. For $\lambda, \mu \in \mathscr{P}^{+}$with $D_{\mu}^{+} \subseteq D_{\lambda}^{+}$, a skew semistandard decomposition tableau T of shape λ / μ is a tableau of shifted shape λ / μ with entries in \mathbb{N} such that $T^{(k)}$ is a hook word for $1 \leqslant k \leqslant \ell(\lambda)$ and the following holds for $1 \leqslant k<\ell(\lambda)$ and $1 \leqslant i \leqslant j \leqslant \lambda_{k+1}$:
(S1) if $T(k, i) \leqslant T(k+1, j)$, then $i \neq 1$ and $T(k+1, i-1)<T(k+1, j)$,
(S2) if $T(k, i)>T(k+1, j)$, then $T(k, i) \geqslant T(k, j+1)$,
where we assume that $T(p, q)$ for $p, q \geqslant 1$ is empty if it is not defined.

Let $S S D T(\lambda / \mu)$ be the set consisting of skew semistandard decomposition tableaux of shape λ / μ. Note that when μ is empty, the set $\operatorname{SSDT}(\lambda / \mu)$ is equal to $\operatorname{SSDT}(\lambda)$ by Proposition 3.

Suppose that $\ell(\lambda) \leqslant n$. Let $\mathbf{B}_{n}(\lambda / \mu)$ be the set of $T \in S S D T(\lambda / \mu)$ with entries in $[n]$. As in (5), consider the injective map

$$
\begin{align*}
\mathbf{B}_{n}(\lambda / \mu) & \longrightarrow \mathcal{W}_{[n]} \tag{22}\\
T & \longmapsto w_{\mathrm{rev}}(T) .
\end{align*}
$$

Proposition 37. Under the above hypothesis, the image of $\mathbf{B}_{n}(\lambda / \mu)$ in (22) together with $\{\mathbf{0}\}$ is invariant under the action of \widetilde{e}_{i} and \widetilde{f}_{i} for $i \in I$, and hence $\mathbf{B}_{n}(\lambda / \mu)$ is a $\mathfrak{q}(n)$-crystal.

Proof. Choose a sufficiently large M such that all the entries in L_{M}^{μ} are greater than n. For a tableau T of shifted shape λ / μ with entries in $[n]$, let $\widetilde{T}:=L_{M}^{\mu} * T$ be the tableau of shifted shape λ, that is, the subtableau of shape shifted μ in \widetilde{T} is L_{M}^{μ} and its complement in \widetilde{T} is T. By definition of $\operatorname{SSDT}(\lambda / \mu)$ and Proposition 3, we have

$$
\begin{equation*}
T \in \mathbf{B}_{n}(\lambda / \mu) \text { if and only if } \widetilde{T} \in \mathbf{B}_{M}(\lambda) \tag{23}
\end{equation*}
$$

Let $T \in \mathbf{B}_{n}(\lambda / \mu)$ and $i \in I$ be given. If $\tilde{x}_{i} \widetilde{T} \neq \mathbf{0}(x=e, f)$, then we have by (23) that $\tilde{x}_{i} \widetilde{T}=L_{M}^{\mu} * T^{\prime}$ for some $T^{\prime} \in \mathbf{B}_{n}(\lambda / \mu)$. This implies that $\tilde{x}_{i} w_{\mathrm{rev}}(T)=w_{\mathrm{rev}}\left(T^{\prime}\right)$. Therefore, the image of $\mathbf{B}_{n}(\lambda / \mu)$ in (22) together with $\{\mathbf{0}\}$ is invariant under the action of \widetilde{e}_{i} and \widetilde{f}_{i} for $i \in I$.

Since $\mathbf{B}_{n}(\lambda / \mu)$ is a subcrystal of $\mathbf{B}_{n}^{\otimes N}$ with $N=|\lambda|-|\mu|$, we have

$$
\begin{equation*}
\mathbf{B}_{n}(\lambda / \mu) \cong \bigsqcup_{\substack{\nu \in \mathscr{P}_{n}^{+} \\|\nu|=N}} \mathbf{B}_{n}(\nu)^{\oplus f_{\nu}^{\lambda / \mu}(n)} \tag{24}
\end{equation*}
$$

for some $f_{\nu}^{\lambda / \mu}(n) \in \mathbb{Z}_{+}$. Moreover by Remark 9, we have

$$
\begin{equation*}
f_{\nu}^{\lambda / \mu}:=f_{\nu}^{\lambda / \mu}(m)=f_{\nu}^{\lambda / \mu}(n) \quad(m \geqslant n) . \tag{25}
\end{equation*}
$$

If we put

$$
P_{\lambda / \mu}^{\circ}=\sum_{T \in S S D T(\lambda / \mu)} x^{T},
$$

then we have from (24) and (25)

$$
\begin{equation*}
P_{\lambda / \mu}^{\circ}=\sum_{\nu \in \mathscr{P}^{+}} f_{\nu}^{\lambda / \mu} P_{\nu} . \tag{26}
\end{equation*}
$$

Example 38. For $\eta \in \mathscr{P}_{n}^{+}$with $\ell(\eta)=\ell$, let $\lambda=\eta+L \delta_{\ell}$ and $\mu=L \delta_{\ell} \in \mathscr{P}_{n}^{+}$, where $L \geqslant \eta_{1}$. Since each column in λ / μ has at most one box, we have

$$
\mathbf{B}_{n}(\lambda / \mu) \cong \mathbf{B}_{n}\left(\eta_{1}\right) \otimes \cdots \otimes \mathbf{B}_{n}\left(\eta_{\ell}\right) .
$$

By applying Theorem 14 repeatedly, we see that $f_{\nu}^{\lambda / \mu}$ for $\nu \in \mathscr{P}_{n}^{+}$in this case is equal to the number of tableaux Q such that
(1) $Q \in S S T_{\mathcal{N}}^{+}(\nu)$ with $c_{k}(Q)+c_{k^{\prime}}(Q)=\eta_{k}$ for $k \geqslant 1$,
(2) for each $k \geqslant 1$, if x is the rightmost in $w(Q)$ with $|x|=k$, then $x=k$.

One can generalize the notion of hook lattice property in Definition 12 to describe the coefficient $f_{\nu}^{\lambda / \mu}$.

Definition 39. Let $w=w_{1} \cdots w_{N} \in \mathcal{W}_{\mathcal{N}}$ be given and let $w^{*}=w_{1}^{*} \cdots w_{N}^{*}$ be the word associated to w given in Definition 10. For $\mu \in \mathscr{P}^{+}$, we say that w satisfies the hook μ-lattice property if w^{*} satisfies the following for each $k \geqslant 1$:
(L1) if $k>\ell(\mu)$ and $w_{i}^{*}=k_{1}$, then no $k+1_{j}$ for $j \geqslant 1$ occurs in $w_{1}^{*} \cdots w_{i-1}^{*}$,
(L2) if $\left(w_{s}^{*}, w_{t}^{*}\right)=\left(k+1_{i}, k_{i+1-\alpha_{k}}\right)$ for some $s<t$ and $\alpha_{k}<i$, then no $k+1_{j}$ for $i<j$ occurs in $w_{s}^{*} \cdots w_{t}^{*}$,
(L3) if $\left(w_{s}^{*}, w_{t}^{*}\right)=\left(k_{j+1-\alpha_{k}}, k+1_{j}\right)$ for some $s<t$ and $\alpha_{k}<j$, then no k_{i} for $i \leqslant j-\alpha_{k}$ occurs in $w_{s}^{*} \cdots w_{t}^{*}$,
where $\alpha_{k}=\mu_{k}-\mu_{k+1}$.
Theorem 40. For $\lambda, \mu, \nu \in \mathscr{P}^{+}$, we have

$$
f_{\nu}^{\lambda / \mu}=\left|\mathrm{F}_{\nu}^{\lambda / \mu}\right|,
$$

where $\mathrm{F}_{\nu}^{\lambda / \mu}$ is the set of tableaux Q such that
(1) $Q \in S S T_{\mathcal{N}}^{+}(\nu)$ with $c_{k}(Q)+c_{k^{\prime}}(Q)=\lambda_{k}-\mu_{k}$ for $k \geqslant 1$,
(2) for $k \geqslant 1$, if x is the rightmost letter in $w(Q)$ with $|x|=k$, then $x=k$,
(3) $w(Q)$ satisfies the hook μ-lattice property.

Proof. The proof is similar to that of Theorem 14. Choose n such that $\lambda, \mu, \nu \in \mathscr{P}_{n}^{+}$. Put

$$
\mathbf{L}_{\nu}^{\lambda / \mu}=\left\{T \mid T \in \mathbf{B}_{n}(\lambda / \mu), T \equiv L^{\nu}\right\} .
$$

From (24) and (25), we have $\left|\mathbf{L}_{\nu}^{\lambda / \mu}\right|=f_{\nu}^{\lambda / \mu}$. Let us define a map

$$
\begin{aligned}
\mathbf{L}_{\nu}^{\lambda / \mu} & \longrightarrow \mathrm{F}_{\nu}^{\lambda / \mu} \\
T & \longmapsto Q_{T}
\end{aligned}
$$

as follows. Let $N=|\lambda|-|\mu|$. Suppose that $T \in \mathrm{~L}_{\nu}^{\lambda / \mu}$ is given with $w_{\mathrm{rev}}(T)=u_{1} \cdots u_{N}$. By Lemma 7 there exists $\nu^{(m)} \in \mathscr{P}_{n}^{+}$for $1 \leqslant m \leqslant N$ such that $u_{N-m+1} \cdots u_{N} \equiv L^{\nu^{(m)}}$ where $\nu^{(N)}=\nu$ and $\nu^{(m)}$ is obtained by adding a box in the $\left(n-u_{m}+1\right)$-st row of $\nu^{(m-1)}$ with $\nu^{(0)}=\varnothing$.

Note that $w_{\mathrm{rev}}(T)=T^{(\ell(\lambda))} \cdots T^{(1)}$, where $T^{(k)}$ is a hook word for $1 \leqslant k \leqslant \ell(\lambda)$. Then we define Q_{T} to be a tableau of shifted shape ν with entries in \mathcal{N}, where $\nu^{(m)} / \nu^{(m-1)}$ is filled with

$$
\begin{cases}k^{\prime}, & \text { if } u_{m} \text { belongs to } T^{(k)} \uparrow, \tag{27}\\ k, & \text { if } u_{m} \text { belongs to } T^{(k)} \downarrow,\end{cases}
$$

for some $1 \leqslant k \leqslant \ell(\lambda)$.
First, by the same argument as in the proof of Theorem 14, we see that Q_{T} satisfies the condition (2) for $\mathrm{F}_{\nu}^{\lambda / \mu}$ by the same argument as in the proof of Theorem 14.

Let us check that $w\left(Q_{T}\right)$ satisfies the hook μ-lattice property. If we label k and k^{\prime} in (27) as k_{j} and k_{j}^{\prime}, respectively, when $u_{m}=T_{k, j}$, then it coincides with the labeling on the letters in $w\left(Q_{T}\right)$ given in Definition 10(1).

Choose a sufficiently large M such that all the entries in L_{M}^{μ} are greater than n. Let $S=L_{M}^{\mu} * T$ (see the proof of Proposition 37). Since $S \in \mathbf{B}_{M}(\lambda)$, the conditions Proposition 3(1), (2), and (3) on S and hence on T (cf. (23)) imply the conditions Definition 39(L1), (L2), and (L3), respectively. Therefore, $Q_{T} \in \mathrm{~F}_{\nu}^{\lambda / \mu}$.

Finally the correspondence $T \mapsto Q_{T}$ is injective and also reversible. Hence it is a bijection.

Example 41. Let $\lambda / \mu=(3,1) /(1)$. Then

$$
P_{(3,1) /(1)}^{\circ}=P_{(3)}+P_{(2,1)},
$$

since we have for $\nu \in\{(3),(2,1)\}$ and $n=4$

$$
\begin{array}{ll}
T_{1}=\begin{array}{|l|l|}
\hline 4 & 4 \\
4 & \mathrm{~L}_{\nu}^{\lambda / \mu}
\end{array} & Q_{T_{1}}=1122 \in \mathrm{~F}_{\nu}^{\lambda / \mu} \\
T_{2}=\begin{array}{|l|l|}
\hline 4 & 4 \\
\hline 3 & \mathrm{~L}_{\nu}^{\lambda / \mu}
\end{array} & Q_{T_{2}}=\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline
\end{array}
\end{array}
$$

Remark 42. Recall that for $\lambda, \mu \in \mathscr{P}^{+}$with $D_{\mu}^{+} \subseteq D_{\lambda}^{+}$, the skew Schur P-function $P_{\lambda / \mu}$ is given by the weight generating function

$$
P_{\lambda / \mu}=\sum_{T} x^{T},
$$

where the sum is over all tableaux in $S S T_{\mathcal{N}}^{+}(\lambda / \mu)$ with no primed entry or entry of odd degree on the main diagonal (cf. [10, 11, 17]). Then it is well-known that

$$
P_{\lambda / \mu}=\sum_{\nu \in \mathscr{P}^{+}} 2^{\ell(\mu)+\ell(\nu)-\ell(\lambda)} f_{\mu \nu}^{\lambda} P_{\nu} .
$$

We should remark that $P_{\lambda / \mu}^{\circ}$ is not in general equal to $P_{\lambda / \mu}$, that is, $f_{\nu}^{\lambda / \mu}$ is not necessarily equal to $2^{\ell(\mu)+\ell(\nu)-\ell(\lambda)} f_{\mu \nu}^{\lambda}$. For example, we have

$$
P_{(3,1) /(1)}=P_{(3)}+2 P_{(2,1)},
$$

which is not equal to $P_{(3,1) /(1)}^{\circ}$ in Example 41. It would be also interesting to have a more direct representation-theoretic interpretation of $\mathbf{B}_{n}(\lambda / \mu)$.

Acknowledgements

The authors would like to thank the anonymous reviewer for careful reading and helpful comments. They are also grateful to Myungho Kim for stimulating discussion on this subject.

References

[1] F. Ardila, L. Serrano. Staircase skew Schur functions are Schur P-positive. J. Algebraic Combin., 36:409-423, 2012.
[2] G. Benkart, F. Sottile, J. Stroomer. Tableau switching: algorithms and applications. J. Combin. Theory Ser. A, 76:11-43, 1996.
[3] S. Cho, Littlewood-Richardson rule for Schur P-functions. Trans. Amer. Math. Soc., 365:939-972, 2013.
[4] S.-I. Choi, S.-Y. Nam, Y.-T. Oh. Bijections among combinatorial models for shifted Littlewood-Richardson coefficients. J. Combin. Theory Ser. A, 128:56-83, 2014.
[5] E. Dewitt. Identities relating Schur s-functions and Q-functions. Ph.D. Thesis, University of Michigan, 2012.
[6] D. Grantcharov, J. H. Jung, S.-J. Kang, M. Kashiwara, M. H. Kim. Crystal bases for the quantum queer superalgebra and semistandard decomposition tableaux. Trans. Amer. Math. Soc., 366(1):457-489, (2014.
[7] D. Grantcharov, J. H. Jung, S.-J. Kang, M. Kashiwara, M. H. Kim. Crystal bases for the quantum queer superalgebra. Eur. Math. Soc., 17:1593-1627, 2015.
[8] M. Kashiwara. On crystal bases. Representations of groups, CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI. 155-197, 1995.
[9] M. Kashiwara, T. Nakashima. Crystal graphs for representations of the q-analogue of classical Lie algebras. J. Algebra, 165:295-345, 1994.
[10] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs, second ed., Clarendon Press, Oxford University Press, New York, 1995.
[11] B E. Sagan. Shifted tableaux, Schur Q-functions and a conjecture of R. Stanley. J. Combin. Theory Ser.A, 45:62-103, 1987.
[12] I. Schur. Über die darstellung der symmetrischen und der alternierenden gruppe durch gebrochene lineare substitutionen. J. Reine Angew. Math., 139:155-250, 1911.
[13] A. N. Sergeev. Tensor algebra of the identity representation as a module over the Lie superalgebras $G l(n, m)$ and $Q(n)$. Mat. Sb. (N.S.), 123:422-430, 1984.
[14] L. Serrano. The shifted plactic monoid. Math. Z., 266:363-392, 2010.
[15] K. M. Shaw, S. van Willigenburg. Multiplicity free expansions of Schur P-functions. Ann. Combin., 11:69-77, 2007.
[16] J. R. Stembridge. Shifted tableaux and the projective representations of symmetric groups. Adv. Math., 74:87-134, 1989.
[17] D. R. Worley. A theory of shifted Young tableaux. Ph.D. thesis, MIT, 1984.

[^0]: *This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1501-01.

