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Abstract

For two given finite lattices L and M, we introduce the ideal of lattice ho-
momorphism J(L, M), whose minimal monomial generators correspond to lattice
homomorphisms ¢ : L — M. We show that L is a distributive lattice if and only
if the equidimensinal part of J(L, M) is the same as the equidimensional part of
the ideal of poset homomorphisms I(L, M). Next, we study the minimal primary
decomposition of J(L, M) when L is a distributive lattice and M = [2]. We present
some methods to check if a monomial prime ideal belongs to ass(J(L,[2])), and we
give an upper bound in terms of combinatorial properties of L for the height of
the minimal primes. We also show that if each minimal prime ideal of J(L,[2])
has height at most three, then L is a planar lattice and width(L) < 2. Finally, we
compute the minimal primary decomposition when L = [m] x [n] and M = [2].

Mathematics Subject Classifications: 13C05, 05E40, 13P25.
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1 Introduction

The study of monomial ideals and interaction between their algebraic and combinatorial
properties is an important topic in combinatorial and computational commutative algebra.
Such ideals serve as a useful tool for studying polynomial ideals and also have grown into
an active research area.

Recently, some researchers have focused on some classes of monomial ideals and al-
gebras associated to the ordered algebraic structures. Among them, we can point out to
Hibi rings which is defined by Hibi in 1987 [11]. Corresponding to a distributive lattice
L the joint-meet ideal I, is defined in [3] as a monomial ideal in a specific polynomial
ring which is closely related to Hibi rings. In 2005, Herzog and Hibi [9] associated to a
poset P its so-called Hibi ideal which is again a monomial ideal. In 2011, Ene, Herzog
and Mohammadi [4] considered generalized Hibi ideals and studied some of their algebraic
properties. In 2014 Flgystad et al. [5] introduced a further generalization of such ideals
corresponding to isotone maps between two posets. These ideals are called ideals of poset
homomorphisms and further studied in [10] and [12]. Often, in the above researches,
algebraic properties of mentioned monomial ideals are studied in terms of combinatorial
properties of L or even of the underlying poset P.

In this paper, we consider lattice homomorphisms instead of poset homomorphisms
and introduce the ideals of lattice homomorphisms. Our main goal is to study minimal
primary decomposition of such ideals and carefully relate it to the combinatorial properties
of the corresponding lattices.

Given two finite posets P and @, a map ¢ : P — @ is called isotone (or, poset
homomorphism) if it is order preserving. In other words, ¢ : P — @ is isotone if and only
if ¢(p1) < @(ps) for all py, ps € P with p; < pa. The set of isotone maps P — @ is denoted
by Homps(P, Q). Given two finite lattices L and M, a map ¢ : L — M is called a lattice
homomorphism if for any ly,ly € L, ¢(l1 V12) = ¢(lh) V ¢(l2) and ¢(l3 Als) = ¢(l1) A o(la).
We denote by Homp (L, M) the set of lattice homomorphism L — M. It is clear that
Homy .t (L, M) € Hompes(L, M).

Now, let S be the polynomial ring over a field k with variables x;,, where [ € L and
m € M, ie., S=Kk[x,;l € L,me M]. Asin [5] we associate to any ¢ € Hompes(L, M)

the monomial
Uy = H L1e(1)-
leL

The ideal of poset homomorphisms associated to L and M (as defined in [5] for any
posets P and Q) is the ideal of S whose minimal monomial generators correspond to
poset homomorphisms, i.e.,

I(L,M) = (ug ; ¢ € Hompes(L, M)) C S.

We define the ideal of lattice homomorphisms, in a similar way, as

J(L,M) = (up ; ¢ € Hompa(P,Q)) C S.
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It is clear that J(L,M) C I(L,M). Both ideals J(L, M) and I(L, M) are square-free
monomial ideals and so are radical ideals. Thus ass(J(L,M)) = min(J(L, M)) and
ass(I(L,M)) = min(I(L,M)), where by ass(J) we mean the set of associated prime
ideals of the ideal J and by min(J) we mean the set of minimal prime ideals of it. As

we have pointed out before, we are going to study the minimal primary decomposition of
J(L, M). Note that since J(L, M) is radical, we have

JLM= (] »

peass(J(L,M))

By [5, Proposition 1.5], the height of each p € ass(I(L,M)) is at least |M| and the
associated primes of I(L, M) of the minimum height is of the form

P =Py = (Ty@m)m: m € M), where ¢ € Hompes(M, L). (1)

Proposition 2 shows that each p,, described above belongs to ass(J(L, M)) and Theorem
3 says that any associated prime of J(L, M) of the minimum height is as (1) if and
only if L is a distributive lattice. An immediate consequence of Theorem 3 is that the
equidimensional part of J(L, M) coincides with the equidimensional part of I(L, M) if
and only if L is a distributive lattice (Corollary 4). Moreover, by Theorem 3 and the main
result of [10], we conclude that if L is a distributive lattice, then J(L, M) is an unmixed
ideal if and only if L is a chain and this is the case if and only if I(L, M) = J(L, M)
(Corollary 5).

The rest of the paper is devoted to the study of the minimal primes of J(L, [2]) when L
is a distributive lattice. We should point out that in general, finding exactly all associated
prime ideals of J(L, M) seems to be pretty hard even if we restrict ourselves to the case
that M = [2]. Given two nonempty subsets A,B of L, in Lemma 6, we observe that if
A A<V B then

J(L,[2]) Co:=vap = (a1; a € A) + (12, b€ B). (2)

Replacing the chain [2] with an arbitrary chain [n] with n > 2, we can not generalize
Lemma 6 (see Remark 9). So, characterizing prime ideals that containing J(L, M) is more
complicated in the general situation. This is the reason that we assume that M = [2].
The next easy fact is that any associated prime ideal of J(L, [2]) has the form p, 5 for
some non-empty subsets A and B of L (see Lemma 7). Let @ # A C L and @ # B C L,
in Theorem 8, we prove that p, p is an associated prime of J(L, [2]) if and only if the
following statements hold:

(i) ANASVB.

(i) V& #A; C Aand V@ # By C BN A £V Band NA LV By.

In the sequel, we give some interesting corollaries of Theorem 8. It is clear that by
Theorem 3, for any distributive lattice L and any p € ass(J(L, [2])), ht(p) > 2. It would
be nice to find an upper bound for the height of such prime ideals. In Theorem 10 we
prove that if p is an associated prime ideal of J(L, [2]) then ht(p) < m(L)+ M (L) (for the
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definition of m(L) and M (L) see the paragraph just before Theorem 10). While Theorem
3 shows that any minimal prime ideal of J(L, [2]) of height 2 is of the form p,, for some
1 € Homps([2], L), in Corollary 11 we give another method to check when a prime ideal
of height bigger than two belongs to ass(J(L, [2])). Indeed, we prove that if A and B are
two non-empty subsets of L, and |A| > 1 or |B| > 1, then p4 5 € ass(J(L,[2])) if and
only if the following statements hold:

(i) A and B are antichains.
(i) Vae AandVbe B, a £b.

(iii) If a,a’ are two arbitrary distinct elements of A and A" = (A \ {a,d’}) U {a A d'},
then pA’,B € CLSS(J(L, [2]))

(iv) If b,b" are two arbitrary distinct elements of B and B’ = (B \ {b,0'}) U{bV ¥}, then
Pap € ass(J(L,[2])).

Next, we try to describe distributive lattices L in which any minimal prime of J(L, [2])
has height at most 3. As we see in Corollary 17, if any associated prime of J(L, [2]) has
height at most 3 then L should be a planar lattice with width(L) < 2, where by width
we mean the maximum number of elements in an antichain contained in L.

Given the positive integers 1 < m < n, in the last section, we completely find the
minimal primary decomposition of J([m] x [n],[2]) (see Theorem 19).

2 Preliminaries

2.1: Lattices In this section, we present some prerequisites related to the content of
ordered algebraic structures. For more details we refer the reader to [6]. Throughout the
text we assume that all lattices and partially ordered sets are finite.

We say that a partially ordered set P is totally ordered, or a chain, if all elements of
P are comparable under < (that is, x < y or y < z for all elements z,y € P). We denote
by [n] the totally ordered poset {1,...,n} with 1 < --- < n. An antichain is a partially
ordered set in which any two different elements are incomparable, that is, in which x <y
if and only if z = y. A maximum antichain of P is an antichain in P that has cardinality
at least as large as every other antichain. The width of P, denoted by width(P) is the
cardinality of a maximum antichain.

A lattice L is called distributive if, for all a,b, ¢ € L, the distributive laws a A (bV ¢) =
(anb)V(aAc)and aV (bAc)=(aVb)A (aVc) hold.

For every x,y of a partially ordered set P, we say y covers x or x is covered by y if
x <y, but there does not exist a z such that r < z < y. We denote by C(z) the set of all
elements that cover x and by C*(x) the set of elements that are covered by z. Let L be a
lattice. For x € L, the join of all elements that cover x is denoted by z* and the meet of all
elements that are covered by x is denoted by x,. A lattice is called join-distributive (resp.
meet-distributive ) if for any x € L, the interval [x,z*] (resp. [z.,z]) is a distributive
lattice.
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An element of L is called meet-irreducible (resp. join-irreducible) if exactly one
element covers it (resp. exactly one element is covered by it).

A decomposition y = ¢; A--- A gy, of an element y € L in to a meet of meet-irreducible
elements is said to be irredundant if V1 <i < m, y < /\#i q;- In this case, ¢;s are called
the meet-irreducible components of y. The notion of irredundant join-decomposition is
defined in a similar way. A well-known result of Dilworth says that every element of L has
a unique irredundant meet-decomposition (resp. unique irredundant join-decomposition)
if and only if L is a join-distributive lattice (resp. meet-distributive lattice), see [1] and
also [7, Theorem 5-2.1]. It is clear that by the above result in each distributive lattice
L every element has both the unique irredundant join-decomposition and the unique
irredundant meet-decomposition.

The next corollary ([1, Corollary 1.3]) is useful in our investigation.

Corollary 1. Let L be a join-distributive lattice. Then the number of meet-irreducible
components of an element x € L, is equal to the number of distinct elements that cover x.

Finally we recall a property of distributive lattices that we use it several times in the
sequel:

If L is a distributive lattice and a,b € L with a < b, then there exists a lattice
homomorphism ¢ : L — [2] such that ¢(a) =1 and ¢(b) = 2 ( see [6, Corollary 2.1.20]).

2.2: Monomial ideals For the concepts of primary decomposition of ideals and
associated prime ideals of a given ideal in commutative rings we refer the reader to the
standard texts of commutative algebra like [2]. Here, we recall some notions of monomial
ideals. For more details see [8, Chapter 1].

In the following, let k be a field and R = k[xy, ..., x,] be the polynomial ring over k.
Any product 7" - - - 20" with «; € Z is called a monomial and an ideal I C R which is
generated by monomials is called a monomzial ideal. We notice that each monomial ideal
I of R has a unique minimal monomial set of generators (see [8, Proposition 1.1.6]) which
is denoted by G(I). If p is an associated prime ideal of a monomial ideal I, then, by [8,
Corollary 1.3.9], p is generated by a subset of {z1,...,z,}.

A monomial 27" -- - 2% is called squarefree if for each 1 <i < n, a; € {0,1}. A mono-
mial ideal [ is called squarefree monomial ideal if it is generated by squarefree monomials.
If I C R is a squarefree monomial ideal, then, by [8, Corollary 1.2.5], I is a radical ideal
and if I = p;N---Np, is the minimal primary decomposition of I, then the Alezander dual
of I, denoted by IV, is a squarefree monomial ideal generated by monomials uq, ..., u,,
where each u; is the product of the variables that generate the monomial prime ideal p;.
The ideals I and IY are closely related via the theory of simplicial complexes (see 8,
Section 1.5]).

For a given ideal I of an arbitrary Noetherian ring R, if [ = Q1 N---NQ, is a
minimal primary decomposition of I, then the equidimensional part of I is defined as the
intersection of all primary ideals @;, with dim(R/I) = dim(R/Q);), where by dim we mean
the Krull dimension (for definition and basis properties of Krull dimension see [2, Part II
Chapter 8]).
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3 Equidimensional part of ideal of lattice homomorphisms

Let L and M be two lattices with |L| > 1 and |M| > 1. We are going to study ass(J(L, M))
and relate it to ass(I(L,M)). We remark that all pairs of posets P, Q for which I(P,Q)
is an unmixed ideal characterized in [10] (recall that an ideal is called unmixed if all of its
associated prime ideals have the same height). For each ¢ € Homp,s(M, L), we consider
the prime ideal

Py = (Ty(mym; m € M) C S,

we also define monomial ufp as
= T =vemm
meM
By using [5, Proposition 1.5], we immediately get the first result.

Proposition 2. Let L and M be two lattices. Then the following statements hold.

1) Ifp € ass(J(L, M)) then ht(p) > | M]|.

(1)
(2) For each v € Hompes(M, L), p, € ass(J(L, M)).

(3) I(M,L)” € J(L,M)", where I(M,L)" := (uj; 1 € Hompes(M, L)).
(4) h

t(J(L, M)) = [M].

Proof. (1). Let p = (T, my» - - - » Tip.my) € ass(J(L, M)). For any m € M, let ¢, : L — M
be the constant lattice homomorphism with ¢,,(l) = m for each [ € L. It is clear that
Ug,, = HleL Zym € P. So, for some 1 < 7 < n, we should have m; = m which shows that
n > |M|.

(2) and (3). Let v € Hompos(M, L). By [5, Proposition 1.5], J(L, M) C I(L, M) C p,.
Now part (1), shows that p,, € ass(J(L,M)) and the conclusion follows.

(4). Tt is followed by parts (1) and (2). O

4

In the next theorem, we detect when each associated prime ideal p of J(L, M) with
ht(p) = |M| is of the form p, for some ¢» € Hompes(L, M).

Theorem 3. Let L and M be two lattices. Then
{p: peass(J(L,M)),ht(p) < |M|} = {py; ¥ € Hompys(M, L)}
if and only if L is a distributive lattice.

Proof. First, assume that L is a distributive lattice. Let p be any minimal prime ideal
of J(L, M) with ht(p) = |M|. Since J(L, M) C p, it follows that for each m € M there
exists an element 1)(m) € L such that xym)m, € p. Then p = (Tyunym; m € M). It
remains to be shown that ¢ : M — L is isotone. Suppose this is not the case. Then
there exist m, m’ € M such that m < m’ and ¢(m) £ (m’). So, (m') < Y(m)V(m').
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Thus, there exists ¢ € Hompu (L, {m < m'}) C Homp.(L, M) such that ¢(p(m’)) = m
and ¢(¢(m) V p(m')) = m’ (see the last paragraph in Section 2.1). This shows that
o(Y(m’)) = m and ¢(yp(m)) =m'. So u, ¢ p which is a contradiction.

Conversely, assume that L is not a distributive lattice. Then it contains a sublattice
isomorphic to the Diamond lattice or the Pentagon lattice.

e e
d
b d b
c
a a
Diamond lattice Pentagon lattice
Ms N

Case 1: L has a sublattice isomorphic to the Diamond lattice. Let m; be the least
element of M and my € M covers m;. Let

p= (xe,m; m e M \ {mQ}) + ('rdmw)'

It is clear that ht(p) = |M|. We show that p € ass(J(L, M)). To see it, we prove that
J(L,M) C p. Let ¢ € Homp,e (L, M). If () # ma, then x. 4()|uy and z. 4. € p. So
ugs € p. So we just need to check the case that ¢(e) = msy. In this situation we discuss
about ¢(d). We claim that ¢(d) = my. If this is not the case, then ¢(d) = m;. Therefore,
by the fact that ¢(e) = ¢(c) V ¢(d) = ¢(b) V ¢(d), we have ¢(c) = ¢(b) = msy. But we
should also have ¢(a) = ¢(b) A ¢(c) = ¢(c) A ¢(d) that implies that my; = my which is a
contradiction. So ¢(d) = my and since x4,,, € p, we conclude uys € p. Now to complete
the argument, it is enough to note that the map ¢ : M — L corresponding to p is not an
isotone map.

Case 2: L has a sublattice isomorphic to the Pentagon lattice. Let m; and my be as
in the first case. Let

P = (Tam; m € M\ {ma}) + (Tcm,)-

Again we prove that J(L, M) C p. Let ¢ € Homya (L, M). In order to show that uy € p,
as the previous paragraph, we just need to discuss the case that ¢(d) = my. We claim
that in this situation ¢(c) = mo. If it is not the case, then ¢(c) = ¢(a) = my. So

o(e) = ¢(b) V ¢(c) = ¢(b). So, ¢p(d) = ma < ¢(e) = ¢(b). By this equality we have
my = ¢(c) A ¢(b) = ¢(a) = &(d) A d(b) = my

which is a contradiction. So ¢(c¢) = mq and J(L, M) C p. Again, the map ¢ : M — L
corresponding to p is not an isotone map. ]

Theorem 3 yields the following.
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Corollary 4. Let L and M be two lattices. Then I(L, M) and J(L, M) have the same
equidimensional part if and only if L is a distributive lattice.

Now, the question of when for a distributive lattice L, J(L, M) is an unmixed ideal is
easy to answer.

Corollary 5. For a given distributive lattice L and a lattice M the following conditions
are equivalent.

(1) J(L, M) = I(L, M).
(2) L is a chain.
(3) J(L, M) is unmized.

Proof. (1) = (2). Assume that L is not a chain. So, there exist two incomparable elements
ly,ls € L. Let my,my be the unique minimal element and the unique maximal element
of M respectively. We define ¢ : L — M by ¢(l) = my if | < I3 Aly and ¢(1) = mey if
I £ 1y ANly. One can easily see that

¢ € Hompes(L, M) \ Homy . (L, M).

So J(L, M) C I(L, M).

2) = ( If L is a chain, it is clear that Homp.s(L, M) = Homyp. (L, M). So
J(L,M) = I(L,M) and, by [10, Corollary 1.5], it should be an unmixed ideal.
(3) = (1). Now assume that J(L, M) is unmixed. So, by Theorem 3,

C
3).

JL,My= [ »

weHomPos(M’L)

Therefore, J(L, M) = I(L,M). O

4 Primary decomposition of J(L, [2])

In this section, we assume that M = [2] and we study ass(J(L, [2])) when L is a distributive
lattice. Note that by the results of the previous section if p € ass(J(L, [2])) and ht(p) = 2
then p = p,, for some 1) € Hompy([2], L). So, we are going to determine p € ass(.J(L, [2]))
with ht(p) > 2. We start with the following easy lemma.

Lemma 6. Let L be a lattice. If A and B are nonempty subsets of L such that \ A <\/ B,
then
J(L,[2]) Cpap = (Ta1; a € A)+ (x2; bE B).

Proof. Consider ¢ € Homyp,(L,[2]). If ¢(\/ B) = 2, then there exists b € B such that
¢(b) = 2, which implies that
To2 = Tpg(0) [Ug-
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Hence, uy € pa . If ¢(\/ B) = 1, then ¢(/\ A) = 1, which follows that there exists a € A
such that ¢(a) = 1. Thus,
L1 = wa,¢(a)‘u¢7

it implies that uy € p4 p. Therefore, J(L, [2]) C p4 5. O

Lemma 7. Let L be a lattice, and A, B be subsets of L. If pyp € ass(J(L,[2])), then
A# 2 and B # O.

Proof. 1t is enough to follow the proof of Proposition 2. n

Now, let L be an arbitrary distributive lattice. It is clear that each minimal prime
ideal of J(L, [2]) is of the form p4 p for some A C L and B C L. Which ones of the prime
ideals presented in this form are the minimal prime ideals of J(L, M)? The following
results help to find them.

Theorem 8. Let L be a distributive lattice, and A, B be nonempty subsets of L. Then
pap € ass(J(L,[2])) if and only if the following statements hold:

(1) NAA<SVB.
(2) For every @ # Ay C A and for every @ # By C B, NA1 £ \/ B and NA L\ By.

Proof. First assume that (1) and (2) hold. By Lemma 6, J(L,[2]) € pap. So, there
exists a prime ideal p; € ass(J(L,[2])) such that J(L,[2]) € p; € pusp. Hence, by
Lemma 7, we can assume that there exist @ # A; C A and @ # B; C B such that
PL =P, - A =Aand By = B, then py p =4, p, € ass(J(L,[2])) and the proof is
now complete. Now assume that A; C A or By C B. By (2), A A1 £ \/ Bi, which follows
that \/ By < A\ A1 V' B;. Thus, there exists a lattice homomorphism ¢ : L — [2] such
that ¢(\/ B1) =1 and ¢(A\ A1 V  By) = 2. It implies that

Va € Ay, ¢(a) =2 and Vb € By, ¢(b) = 1,

which follows that z,1 1 u, for every a € Ay and w2 { uy for every b € B;. Therefore,
uy € P4, g, and this is a contradiction, which proves A = A; and B = B,.

Conversely, suppose that p, 5 € ass(J(L, [2])). f ANAL\ B, then \/ B < AAVV B.
Thus, there exists a lattice homomorphism ¢ : L — [2] such that ¢(\/ B) = 1 and
d(NAVV A) =2 It implies that

Va € A, ¢(a) =2 and Vb € B, ¢(b) = 1,

which follows that =, 1 uy for every a € A and x5 1 uy for every b € B. Therefore,
uy & P4 p and again we get a contradiction. Thus, the statement (1) holds.
Now, suppose that @ # A; C A and A A; < \/ B. By Lemma 6,

J(L, [2]) C payp S Pap € ass(J(L, [2])) = min(J(L, [2])),

and so, A = A;. By a similar argument, we can show that if @ # B; C Band A A </ By
then B = Bj. Thus, the statement (2) holds. O
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Remark 9. Let L be a distributive lattice, n > 2 and p C k[z;m; | € L,m € [n]] be a
monomial prime ideal. If J(L,[n]) C p then, by the proof of Proposition 2, there exist
nonempty subsets Ay, ..., A, of L such that

=1

By a similar argument as the proof of Theorem 8, one can see that if J(L,[n]) C pa, _a,
for some nonempty subsets A, ... A, of L then

vi<i<j<n, A<\ A4 (3)

But it may happen that (3) holds and J(L,[n]) € 4, a,. For example, let n =3 and L
be the following lattice:

L
Put A; = {e}, Ay = {a,c} and A3 = {b}. Then (3) holds for A;, Ay, A3 but J(L,[3]) €
Pa, A,.4,- Becauseif ¢ : L — [3] is the lattice homomorphism with ¢(d) = ¢(e) = ¢(b) = 2,
¢(a) =3 and ¢(c) = 1, then ug ¢ Pa, 4, 4, = (Te1s Ta2, Te2, To3).
We are going to apply Theorem 8 and find an upper bound for the height of minimal
prime ideals of J(L, [2]). In the following theorem

m(L) = max{|C(z)|; x € L}

and
M(L) = max{|C*(x)|; = € L}.

Theorem 10. Let L be a distributive lattice and p € ass(J(L,[2])). Then ht(p) < m(L)+
M(L).

Proof. Let A = {ai,...,a,} and B = {by,...,b} be two subsets of L and pyp €
ass(J(L,[2])). Consider

n

a:/\A:/\ai. (4)

i=1

Assume that for each 1 < ¢ < n, ay = /\Zz1 age is the unique irredundant meet-
decomposition of a,. If in Equation (4) we replace each a, with its irredundant meet-
decomposition, we get a decomposition of a as a meet of meet-irreducible elements. We
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can refine this decomposition to produce the unique one in which no terms is redundant.
So each meet-irreducible component of a is one of the ags.

Let 1 < ¢ < n. By Theorem 8, a < /\Z.# a;. So, one can see that there exists
1 < k < my such that ay is a meet-irreducible component of both a, and a while it is
not a meet-irreducible component of any of the remaining a;s. So the number of meet-
irreducible components of a is at least n. Therefore, by Corollary 1, |C(a)| > n.

By a similar method, we can decompose b =\/ B = \/;:1 b; as a join of join-irreducible
elements and see that C*(b) > t. Now, we have

ht(p) = n+t < C(a) + C*(b) < m(L) + M(L). O

Note that in some distributive lattices, the bound proposed in Theorem 10 is sharp
and in some others is not. For example if L = [2] x [n], n > 1, this bound is not sharp. In
this case, the minimal prime ideals of J(L, [2]) are of height 2 or 3 while m(L)+M (L) = 4.
But, if we consider the lattices described in Lemma 18 the given bound is sharp.

The next corollary is followed by Theorem 8. It suggests a recursive method to check
if a monomial prime ideal belongs to ass(J(L, [2])) or not.

Corollary 11. Let L be a distributive lattice and A, B be two nonempty subsets of L where
|A| > 1 or |B| > 1. Then pap € ass(J(L,[2])) if and only if the following statements
hold.

(1) Both A and B are antichains in L.
(2) for everya € A and every b € B, a £ b.

(3) If a,d’ are two arbitrary distinct elements of A and A’ = (A \ {a,d'}) U{a Ad'},
then p p € ass(J(L,[2])).

(4) If b,V are two arbitrary distinct elements of B and B' = (B\ {b,b'})U{bV ¥}, then
b € ass(J(L,[2).

Proof. If p, p € ass(J(L, [2])), it is easy to see that (1),(2),(3) and (4) hold.

Conversely, assume that the monomial prime ideal p,4 5 satisfies the given conditions.
We show that the necessary conditions of Theorem 8 hold for A and B. We suppose
that |A| > 1 (the case |B| > 1 can be discussed similarly). Choose two distinct elements
a,a’ € Aand let A" = A\ {a,d'}. By the statement (3), py p € ass(J(L,[2])). So, by
applying Theorem 8 for p 4 g,

NAa=/\4<\/B.

and for every @ # B; C B we have A A £ \/ B;.

We prove that for every @ # A; C A, A A1 € \/ B. By contrary assume that there
exists A; C A with |A;| = |A|—1 such that A A; </ B. We conclude from the statement
(2) that |A| > 2 or |B| > 1.
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Assume that |A] > 2. Choose two distinct elements aj,as € A;. Let A" = (A
{a1,a2})U{a1Aas} and A} = (A1 \{a1, as})U{a1Aas}. Tt is clear that A Ay = A A <V B.
Now by Lemma 6 and condition (3) we have:

J(L,[2]) C by  par s € ass(JT(L, [2))) = min(J(L [2])

which shows that py 5 = pa p and so A" = A}. But, by statement (1), A7 C A’ so we
get a contradiction.

Assume that |B| > 1. Choose two distinct elements b,0' € B and let B’ = (B '\
{b,0'})u{bVv'}. By the statement (4), py p € ass(J(L, [2])). Since ANA; <\ B=\5,
by applying Theorem 8 for p4 5/, we get a contradiction. ]

The next result is an immediate consequence of Corollary 11 and shows that the
Alexander dual of J(L,[2]) is generated in successive degrees.

Corollary 12. Let L be a distributive lattice and
s = max{deg(u); v € G(J(L,[2]))"}.
Then for each 2 < i < s, G(J(L,[2]))Y has an element of degree i.

In the following we are trying to detect when each element of ass(J(L, [2])) has height
at most 3. First, note that by Theorem 8, we have:

Corollary 13. Let L be a distributive lattice. A monomial prime ideal p C S of height 3
is an associated prime of J(L,[2]) if and only if p has one of the following shapes:

P = (a1, oy 2, Toy2), where a L by,a L by, a < by V by and {by,bs} is an antichain,
or
P = (Tay 1, Tap1s To2), where ay L b,as L b,a1 AN as <b and {ay,as} is an antichain.

To proceed our goal we see that if L has an antichain with 3 elements, then J(L, [2])
has an associated prime of height 4. For this, we need the following lemmas.

Lemma 14. Assume that {a,b,c} is an antichain contained in a distributive lattice L.
Then the following statements hold.

(1) Ifanb=aAc then{aVbbVec,aVc} isan antichain.

(2) Ifavb=aVcthen{aANb,bAc,aAc} is an antichain.
Proof. (1). From a A b= a A ¢, we infer that

b=bV(anb)=bV(aNc)=(bVa)A(DVec)

Now, if bV a and bV ¢ are comparable then b = bV a or b = bV ¢, which shows that
b, c are comparable or b,a are comparable which is a contradiction. So bV a and bV ¢
are incomparable. Similarly, we can see that a V ¢ and bV ¢ are incomparable. Now, if
aVb<aVcthenaVbVe=aVc which shows that bV ¢ < a V ¢ which is again a
contradiction. So {a V b,bV ¢,a V b} is an antichain.

The proof of (2) is similar. O
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Lemma 15. Assume that {a,b,c} is an antichain contained in a distributive lattice L. If
a/Nb, a/Nc and bAc are three different elements of L and a ANb < a A ¢ then the following
statements hold.

(1) aAc andbAc are incomparable and a ANb < b A c.

(2) {aVb,aVe, bV} is an antichain or, aV ¢ and bV ¢ are incomparable, aN b > aV ¢
and aVb>"bVec.

Proof. (1). From a Ab < a A ¢, we conclude that a A b A ¢ = a A b, which implies that
a/Nb < bAc. On the other hand, if for example we have bAc < aActhen aAbAc=0bAc,
which follows that a A b = b A ¢ and this is a contradiction.

(2). Note that, by Lemma 14(2), aV ¢, bV c and a Vb are three different elements of L.
Now, if {aVb,aV ¢, bV c} is not an antichain, then similar to the proof of (1), one can see
that one of the a V b,a V ¢,bV c is bigger than the others and the other two elements are
incomparable. We show that the case that aVe>b0Ve,aVe>aVband, bVe,aVbare
incomparable does not happen (by a similar argument one can show that the case that
bVe>aVe,bVe>aVband, aVcand aVb are incomparable does not happen).

Assume that aVe>bVeand aVe>aVb. Since

b= (aVe)ANb= (bVe)ANb=D,
we conclude from (1) that
b=(aANb)V(cAb)=cAb<c,
which is a contradiction. ]

Using the above lemmas, next we show that if width(L) > 2 then ass(J(L,[2])) has
an element of height 4.

Theorem 16. Assume that {a,b,c} is an antichain contained in a distributive lattice L.
Then J(L,[2]) has a minimal prime of height 4.

Proof. Case 1: Assume that {a Ab,a Ac,bAc} is an antichain. If we let A = {a, b, c} and
B = {aNbAc}, then by Theorem 8, p4 5 € ass(J(L, [2])).

Case 2: Assume that a Ab = a A c. Then, by Lemma 14(1), {a V b,a V ¢,b V ¢}
is an antichain. If we let A = {a VbV ¢} and B = {a,b,c}, then by Theorem 8,
b € ass(J(L, [2])).

Case 3: Assume that a A b, a A ¢ and b A ¢ are three different elements of L and
aNb<aAc. If{aVb,aVc,bVc}isan antichain, then, if we define A, B as the case 2, we
get pap € ass(J(L,[2])). If {aVb,aVe,bVc}isnot an antichain, then, by Lemma 15(1),
a A ¢ and b A ¢ are incomparable and a A b < b A ¢. Also, by Lemma 15(2), a Vb > a V¢,
aVb>bVcandaVc bV are incomparable. So we have

(anc)V(bAc)=(aVb)Ac=(aVbVec)ANc=c
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and
(ave)AN(bVe)=(aAb)Ve=(aNbAc)Ve=c.

Thus, if we put A = {a V¢, bV c} and B = {a Ac,bA c}, then by Theorem 8, py 5 €
ass(J(L, [2])). O

We recall that a distributive lattice is planar if and only if it is a sublattice of a direct
product of two chains if and only if no element covers more than two elements (See [13,
page 3]). The next corollary is an immediate consequence of Theorem 16 and shows that
if J(L,[2])" does not have any generator of degree 4, then L must be a planar lattice of
width at most 2.

Corollary 17. If L is a distributive lattice and any associated prime of J(L,[2]) is of
height at most 3, then L is a planar lattice and width(L) < 2.

Proof. First note that if L has an antichain with 3 elements then, by Theorem 16,
ass(J(L,[2])) has an element of the height 4. So width(L) < 2. It is clear that in
this case, no element of L covers more than two other elements. So L should be a planar
lattice. O

Note that the converse of Corollary 17 does not hold. For example if L is the lattice
of Remark 9, then width(L) = 2 and (241, Zp 1, Te2, Ta2) € ass(J(L, [2])).

5 The case J([m] X [n],[2])

In this section, we are going to study J([m] x [n],[2]) more carefully. We assume that
m < n and describe ass(J([m] x [n],[2])). We first need the following lemma.

Lemma 18. Let L = [my] X - -+ X [my], where £ > 2 and each m; is at least 3. Then

max{deg(u); u € G(J(L,[2])V)} = 2¢.

Proof. For each 1 < ¢ < {, let a3 = (a;1,- -, ai), where a;; = { 3, i 7&2 and let

2, ifj=1
1, ifj#£i . .
b; = (b, - ,bi), where b;; = 5 ifj—i Using Theorem 8, one can easily see
that psp € ass(J(L,[2])) where A = {ay,...,a;} and B = {by,...,bs}. Note that
ht(pa p) = 20.
On the other hand, if a = (ay,...,as),b = (b1, ...,b;) € L, then a covers b if and only
if there exists 1 < 7 < £ such that a; = b; + 1 and for each j # ¢, a; = b;. This shows that

m(L) + M (L) = 2¢ and the conclusion follows by Theorem 10. O

Note that by Lemma 18, each minimal prime of J([m] x [n], [2]) has height at most 4.
Theorem 19. Let L = [m] X [n] and p is a monomial prime ideal of S. Then p €
ass(J(L,[2])) if and only if one of the following conditions hold:
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(1) p= py for some ¢ € Hompy([2], [m] x [n]).
(2) P = (T(ir.40),15 iz o), 2) Liaga) 2), where

I1<iy<iny<iz<mandl < j3<j1 <js < n.

(3) » = (T(iy.j1),1> Tlinga) 15 T(is js),2), Where

1<21<13<12<mand1<32<33<j1<n

(4) P = (T4, 15 Tz ), 15 L o) 2 lingn).2), where
1<i3<i1<i4<i2<mand1 ]4<]2 j3<j1<n

Proof. First note that if p € ass(J(L,[2])), then 2 < ht(p) < 4. If ht(p) = 2 then, by
Theorem 3, p € ass(J([m] x [n], [2])) if and only if p = p,, for some 1) € Hompes([2], [m] x

[n]).

If ht(p) = 3 or 4, and p is of the form described in the parts 2, 3 or 4 of theorem, then
one can check that by Theorem 8, p € ass(J(L, [2])).

Now, assume that p € ass(J(L, [2])) and ht(p) = 3. Then

P = (Ll o)1 i o) 20 Lis i) 2)
or

P = (Z(i1,51),1> Tlia,ga) 15 Tlia,ja) 2)
for some (i1, j1), (2, j2), (43, js) € [m] x [n]. Actually, in the first case, p = p,p for
A = {(i1,j1)} and B = {(i2,2), (i3,43)}. By Corollary 13, B is an antichain. So,

without loss of generality, we can assume that is < i3 and j3 < js. Again, by Corollary
13, (i1, j1) < (i2,02) V (i3,53) = (is,2), (i1,51) £ (i2,j2) and (i1, 1) £ (i3,J3). So
1<ig<ip <ig<mand 1< j3<j; <J2<n and so p satisfies the condition (2). By a
similar argument we can see that in the second case p satisfies the condition (3).

If ht(p) = 4, then p has the following shape:

P = (Z(i1g0).1 Tnaga) 1 Liz.ga) 2> Liaia).2)
for some (ilajl)v (7;27j2)7 (i37j3)7 (i47j4) € [m] X [n]> i'e'7
P="Pap for some A = {(ihjl)? (i27j2>} and B = {(i37j3>7 (Z4vj4>}

Because otherwise one of A or B has three elements and we immediately get a contradic-
tion with statement 2 of Theorem 8.

Since, by Corollary 11, A and B are two antichains, without loss of generality, we can
assume that i < is, jo < J1, 13 < 74 and j4 < j3. Also, again by Theorem 8,

(i1, J2) = (i1, J1) A (@2, J2) < (43, 3) V (ia, Ja) = (ia, J3)-

So i1 < ig and js < j3. Now, by Theorem 8, we see that 1 < i3 < 11 <14 < 79 < m and
I<j<je<jz<ji<n O
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