
Generating asymptotics

for factorially divergent sequences

Michael Borinsky∗

Departments of Physics and Mathematics
Humboldt-Universität zu Berlin

Berlin, Germany

borinsky@physik.hu-berlin.de

Submitted: Mar 9, 2016; Accepted: Jul 14, 2018; Published: Oct 5, 2018

c©The author. Released under the CC BY license (International 4.0).

Abstract

The algebraic properties of formal power series, whose coefficients show factorial
growth and admit a certain well-behaved asymptotic expansion, are discussed. It
is shown that these series form a subring of R[[x]]. This subring is also closed
under composition and inversion of power series. An ‘asymptotic derivation’ is
defined which maps a power series to the asymptotic expansion of its coefficients.
Product and chain rules for this derivation are deduced. With these rules asymptotic
expansions of the coefficients of implicitly defined power series can be obtained.
The full asymptotic expansions of the number of connected chord diagrams and the
number of simple permutations are given as examples.

Mathematics Subject Classifications: 05A16

1 Introduction

This article1 is concerned with real sequences fn, which admit an asymptotic expansion
for large n of the form,

fn = αn+βΓ(n+ β)

(
c0 +

c1

α(n+ β − 1)
+

c2

α2(n+ β − 1)(n+ β − 2)
+ . . .

)
, (1)

for some α ∈ R>0, β ∈ R and ck ∈ R. Sequences of this type appear in many enumeration
problems, which deal with coefficients of factorial growth. For instance, certain subclasses
of permutations and graphs of fixed valence show this behaviour [1, 8]. Furthermore,
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1An extended abstract of this article appeared as a contribution to FPSAC 2017 [12].
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there are countless examples where perturbative expansions of physical quantities admit
asymptotic expansions of this kind [5, 24, 17].

The restriction to this specific class of power series is inspired by the work of Bender.
In [7] he analyzed the asymptotic behaviour of the coefficients of the composition of
a power series, which has mildly growing coefficients, with a power series, which has
rapidly growing coefficients. Here, Bender’s results are extended into a complete algebraic
framework. This is achieved by making heavy use of generating functions in the spirit of
the ‘analytic combinatorics’ or ‘symbolic method’ approach [20, 10, 28]. The key step is
to interpret the coefficients of the asymptotic expansion as another power series.

The resulting framework bears many resemblances to the theory of resurgence, which
was established by Jean Ecalle [18]. Resurgence assigns a special role to power series whose
coefficients grow factorially, as they offer themselves to be Borel transformed. For instance,
it can be used to assign a unique function to such a factorially divergent sequence. This
function could be interpreted as the sequence’ generating function. Moreover, resurgence
provides a promising approach to cope with divergent perturbative expansions in physics.
Its application to these problems is an active field of research [2, 17, 3].

During a conversation with David Sauzin it became plausible that the presented meth-
ods can also be derived from resurgence. In fact, the formalism can be seen as a toy model
of resurgence’s calcul différentiel étranger [18, Vol. 1] also called alien calculus [25, II.6].
This toy model is unable to fully reconstruct functions from asymptotic expansions, but
does not rely on analytic properties of Borel transformed functions and therefore offers
itself for combinatorial applications. A detailed and illuminating account on resurgence
theory is given in Sauzin’s review [25, Part II].

1.1 Statement of results

Power series whose coefficients have a well-behaved asymptotic expansion, as in eq. (1),
form a subring of R[[x]], which will be denoted as R[[x]]αβ . This subring is also closed
under composition and inversion of power series. A linear map, Aαβ : R[[x]]αβ → R[[x]],
can be defined which maps a power series to the asymptotic expansion of its coefficients.
A natural way to define such a map is to associate the power series

∑∞
n=0 cnx

n to the
series

∑∞
n=0 fnx

n related as in eq. (1). This map turns out to be a derivation that means
it fulfills a product rule

with f, g ∈ R[[x]]αβ (Aαβ(f · g))(x) = f(x)(Aαβg)(x) + g(x)(Aαβf)(x)

and a chain rule, (Aαβ(f ◦ g))(x) = f ′(g(x))(Aαβg)(x) +

(
x

g(x)

)β
e

1
x−

1
g(x)
α (Aαβf)(g(x)),

where (f · g)(x) = f(x)g(x) and (f ◦ g)(x) = f(g(x)). In the second line it is required
that g0 = 0 and g1 = 1. These statements will be derived from elementary properties of
the Γ function.

Note that the chain rule involves a peculiar correction term if the coefficients fn of the
power series f(x) have a non-trivial asymptotic expansion. It is obvious that the chain
rule cannot be as simple as the ordinary chain rule for differentiation. For general f, g ∈
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R[[x]]αβ : (Aαβ(f ◦ g))(x) 6= f ′(g(x))(Aαβg)(x). Otherwise, the reasonable requirement that
the coefficients of the generating function g(x) = x have a trivial asymptotic expansion,
(Aαβg)(x) = 0, would imply that all f ∈ R[[x]]αβ have trivial asymptotic expansions.

In Sections 2-6 the derivation ring R[[x]]αβ will be described in detail and the main
Theorem 35, which establishes the chain rule for the asymptotic derivation, will be proven.
The formalism can be applied to calculate the asymptotic expansions of the coefficients
of implicitly defined power series. This procedure is similar to the extraction of the
derivative of an implicitly defined function using the implicit function theorem. We will
use it in Section 7 to give the full asymptotic expansions of the number of connected chord
diagrams and the full asymptotic expansions of the number of simple permutations.

1.2 Notation

A (formal) power series f ∈ R[[x]] will be denoted in the usual ‘functional’ notation
f(x) =

∑∞
n=0 fnx

n. The coefficients of a power series f will be expressed by the same
symbol with the index attached as a subscript fn or with the coefficient extraction operator
[xn]f(x) = fn. Ordinary (formal) derivatives are expressed as f ′(x) =

∑∞
n=0 nfnx

n−1. The
(Cauchy) product of two power series f, g will be expressed either as f · g, (f · g)(x) or
f(x)g(x) depending on the context. Correspondingly, we will switch freely between the
different notations f◦g, (f◦g)(x) and f(g(x)) for the composition of two power series. The
ring of power series, restricted to expansions of functions which are analytic at the origin,
or equivalently power series with non-vanishing radius of convergence, will be denoted
as R{x}. The O-notation will be used: O(an) denotes the set of all sequences bn such
that lim supn→∞ | bnan | < ∞ and o(an) denotes all sequences bn such that limn→∞

bn
an

= 0.
Equations of the form an = bn+O(cn) are to be interpreted as statements an−bn ∈ O(cn)
as usual. See [6] for an introduction to this notation. Tuples of non-negative integers will
be denoted by bold letters t = (t1, . . . , tL) ∈ NL

0 . The notation |t| will be used as a short
form for

∑L
l=1 tl. We will consider the binomial coefficient

(
a
n

)
to be defined for all a ∈ R

and n ∈ N0 by
(
a
n

)
:= [xn](1 + x)a.

The only non-standard notation that will be used to improve the readability of lengthy
expressions is the abbreviation Γαβ (n) := αn+βΓ(n+ β).

2 Prerequisites

We will start by defining the subset of power series whose coefficients have well-behaved
asymptotic expansions:

Definition 1. For given α ∈ R>0 and β ∈ R let R[[x]]αβ be the subset of R[[x]], such that

f ∈ R[[x]]αβ if and only if there exists a sequence of real numbers (cfk)k∈N0 , which fulfills

fn =
R−1∑
k=0

cfkΓ
α
β (n− k) +O

(
Γαβ (n−R)

)
∀R ∈ N0, (2)

where Γαβ (n) = αn+βΓ(n+ β).
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Observation 2. R[[x]]αβ is a linear subspace of R[[x]].

Observation 3. The sequence (cfk)k∈N0 is unique for each fixed f ∈ R[[x]]αβ . The coeffi-

cients can be calculated iteratively using the explicit formula cfK = lim
n→∞

fn−
∑K−1
k=0 cfkΓαβ (n−k)

Γαβ (n−K)

for all K ∈ N0.

Both these properties follow immediately from Definition 1.

Remark 4. The expression in eq. (2) represents an asymptotic expansion or Poincaré
expansion with the asymptotic scale αn+βΓ(n+ β) [16, Ch. 1.5].

Remark 5. The subspace R[[x]]αβ includes all (real) power series whose coefficients only
grow exponentially: R{x} ⊂ R[[x]]αβ . These with all other series with coefficients, which
are in o(Γαβ (n−R)) for all R ∈ N0, have an asymptotic expansion of the form in eq. (2)

with all cfk = 0.

Remark 6. Definition 1 implies that if f ∈ R[[x]]αβ , then

fn ∈ O
(
Γαβ (n)

)
= O (αnΓ(n+ β)) .

Accordingly, the power series in R[[x]]αβ are a subset of Gevrey-1 sequences [22, Ch XI-
2]. Being Gevrey-1 is not sufficient for a power series to be in R[[x]]αβ . For instance, a

sequence which behaves for large n as fn = n!(1 + 1√
n

+ O( 1
n
)) is Gevrey-1, but not in

R[[x]]αβ for any pair (α, β).

Remark 7. In resurgence theory further restrictions on the allowed power series are im-
posed, which ensure that the Borel transformations of the sequences have proper analytic
continuations or are ‘endless continuable’ [25, II.6]. These restrictions are analogous to
the requirement that, apart from fn, also the sequence cfk has to have a well-behaved
asymptotic expansion. The coefficients of this asymptotic expansion are also required to
have a well-behaved asymptotic expansion and so on. These kinds of restrictions will not
be necessary for the presented algebraic considerations, which are aimed at combinatorial
applications.

The central theme of this article is to interpret the coefficients cfk of the asymptotic
expansion as another power series. In fact, Definition 1 immediately suggests to define
the following map:

Definition 8. Let Aαβ : R[[x]]αβ → R[[x]] be the map that associates a power series
Aαβf ∈ R[[x]] to every power series f ∈ R[[x]]αβ such that

(Aαβf)(x) =
∞∑
k=0

cfkx
k, (3)

with the coefficients cfk from Definition 1.

Observation 9. Aαβ is linear.
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Remark 10. In Proposition 22 it will be proven that Aαβ is a derivation. We will adopt
the usual notation for derivations and consider Aαβ to act on everything to its right.

Remark 11. In the realm of resurgence such an operator is called alien derivative or alien
operator [25, II.6].

Remark 12. Aαβ is clearly not injective. For instance, R{x} ⊂ kerAαβ .

Example 13. The power series f ∈ R[[x]] associated to the sequence fn = n! clearly
fulfills the requirements of Definition 1 with α = 1 and β = 1. Therefore, f ∈ R[[x]]11 and
(A1

1f)(x) = 1.

The asymptotic expansion in eq. (2) is normalized such that shifts in k, cfk → cfk−m,
can be absorbed by shifts in β, β → β +m. More specifically,

Proposition 14. For all m ∈ N0

f ∈ R[[x]]αβ if and only if f ∈ R[[x]]αβ+m and Aαβ+mf ∈ xmR[[x]].

If either holds, then xm
(
Aαβf

)
(x) =

(
Aαβ+mf

)
(x).

Proof. Because Γαβ (n) = αn−m+β+mΓ(n−m+ β +m) = Γαβ+m (n−m), the following two

relations between fn and cfk are equivalent,

fn =
R−1∑
k=0

cfkΓ
α
β (n− k) +O

(
Γαβ (n−R)

)
∀R ∈ N0 (4)

fn =
R′−1∑
k=m

cfk−mΓαβ+m (n− k) +O
(
Γαβ+m (n−R′)

)
∀R′ > m. (5)

Eq. (4) follows from f ∈ R[[x]]αβ by Definition 1. In that case, eq. (5) implies that

f ∈ R[[x]]αβ+m and that
(
Aαβ+mf

)
(x) =

∑∞
k=m c

f
k−mx

k = xm
(
Aαβf

)
(x) ∈ xmR[[x]] by

Definition 8.
If f ∈ R[[x]]αβ+m and Aαβ+mf ∈ xmR[[x]], then we can write the asymptotic expansion

of f in the form of eq. (5). Eq. (4) implies f ∈ R[[x]]αβ .

By analogous reasoning, we can absorb shifts in n, fn → fn+m, in eq. (2) by shifts in
β, β → β +m.

Proposition 15. For all m ∈ N0

f ∈ R[[x]]αβ ∩ xmR[[x]] if and only if
f(x)

xm
∈ R[[x]]αβ+m.

If either holds, then
(
Aαβf

)
(x) =

(
Aαβ+m

f(x)
xm

)
(x).
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Proof. Because Γαβ (n+m) = αn+m+βΓ(n+m+β) = Γαβ+m (n), the following two relations

between fn and cfk are equivalent,

fn =
R−1∑
k=0

cfkΓ
α
β (n− k) +O

(
Γαβ (n−R)

)
∀R ∈ N0 (6)

fn+m =
R−1∑
k=0

cfkΓ
α
β+m (n− k) +O

(
Γαβ+m (n−R)

)
∀R ∈ N0. (7)

Eq. (6) follows from f ∈ R[[x]]αβ . Because f ∈ xmR[[x]], we have f(x)
xm

=
∑∞

n=0 fn+mx
n ∈

R[[x]]. Eq. (7) then implies that f(x)
xm
∈ R[[x]]αβ+m and by Definition 8,

(
Aαβf

)
(x) =(

Aαβ+m
f(x)
xm

)
(x).

If f(x)
xm
∈ R[[x]]αβ+m ⊂ R[[x]], then f ∈ xmR[[x]] and eq. (7) holds for the coefficients of

f , which implies f ∈ R[[x]]αβ by eq. (6) and Definition 1.

From Proposition 14, it follows that R[[x]]αβ ⊂ R[[x]]αβ+m for all m ∈ N0. It will be
convenient to only work in the spaces R[[x]]αβ with β > 0 and to use Proposition 14
to verify that the subspaces R[[x]]αβ−m inherit all relevant properties from R[[x]]αβ . The
advantage is that, with β > 0, it is easier to express uniform bounds on the remainder
terms in eq. (2). The following definition will provide a convenient notation for these
bounds.

Definition 16. For α, β ∈ R>0 and R ∈ N0, let ραβ,R : R[[x]]αβ → R+ be the map

ραβ,R(f) = max
06K6R

sup
n>K

∣∣∣fn −∑K−1
k=0 c

f
kΓ

α
β (n− k)

∣∣∣
Γαβ (n−K)

, (8)

with the coefficients cfk as in Definition 1.

It follows directly from Definition 1 that the quantity ραβ,R(f) is finite. Eq. (8) can be

translated into bounds for the coefficients fn and the cfk :

Observation 17. If α, β ∈ R>0 and R ∈ N0, then for all f ∈ R[[x]]αβ and n,K ∈ N0 with
K 6 R as well as n > K,∣∣∣∣∣fn −

K−1∑
k=0

cfkΓ
α
β (n− k)

∣∣∣∣∣ 6 ραβ,R(f)Γαβ (n−K) and |cfK | 6 ραβ,R(f). (9)

Remark 18. It can be verified using linearity and the triangle inequality that the maps
ραβ,R form a family of norms on all spaces R[[x]]αβ where β > 0. Moreover, these norms
will turn out to be submultiplicative up to equivalence (see Proposition 26). However, we
will not make direct use of any topological properties of the spaces R[[x]]αβ in this article.
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3 Elementary properties of sums over Γ functions

The following lemma forms the foundation for most of the conclusions that will follow.
It provides an estimate for sums of Γ functions. Moreover, it ensures that the subspace
R[[x]]αβ of formal power series corresponds to a subset of a large class of sequences studied
by Bender [7]. From another perspective the lemma can be seen as an entry point to
resurgence, which bypasses the necessity for analytic continuations and Borel transforma-
tions.

Lemma 19. If α, β ∈ R>0, then

n∑
m=0

Γαβ (m) Γαβ (n−m) 6 (2 + β)Γαβ (0) Γαβ (n) ∀n ∈ N0. (10)

Proof. Recall that Γαβ (n) = αn+βΓ(n + β) and that Γ : R>0 → R>0 is a log-convex
function. If β ∈ R>0, then the functions Γ(m + β) and Γ(n − m + β) are also log-
convex functions in m on the interval [0, n], as log-convexity is preserved under shifts and
reflections. Furthermore, log-convexity is closed under multiplication. This implies that
Γαβ (m) Γαβ (n−m) = αn+2βΓ(m + β)Γ(n −m + β) is a log-convex function in m on the
interval [1, n−1] ⊂ [0, n]. A convex function always attains its maximum on the boundary
of its domain. Accordingly, Γαβ (m) Γαβ (n−m) 6 Γαβ (1) Γαβ (n− 1) for all m ∈ [1, n − 1].
This way, the sum

∑n
m=0 Γαβ (m) Γαβ (n−m) can be estimated after stripping off the two

boundary terms:

n∑
m=0

Γαβ (m) Γαβ (n−m) 6 2Γαβ (0) Γαβ (n) + (n− 1)Γαβ (1) Γαβ (n− 1) ∀n > 1. (11)

It follows from nΓ(n) = Γ(n+1) that Γαβ (1) Γαβ (n− 1) = β
n−1+β

Γαβ (0) Γαβ (n) for all n > 1.

Because n − 1 + β > n − 1, substituting this into eq. (11) implies the inequality in eq.
(10) for all n > 1. The remaining case n = 0 is trivially fulfilled.

Corollary 20. If α, β ∈ R>0 and R ∈ N0 are kept fixed, then there exists a constant
C ∈ R such that

n−R∑
m=R

Γαβ (m) Γαβ (n−m) 6 CΓαβ (n−R) ∀n > 2R. (12)

Proof. Recall that Γαβ (m+R) = Γαβ+R (m). We can shift the summation variable to
rewrite the left hand side of eq. (12) as

n−2R∑
m=0

Γαβ (m+R) Γαβ (n−m−R) =
n−2R∑
m=0

Γαβ+R (m) Γαβ+R (n− 2R−m)

6 (2 + β +R)Γαβ+R (0) Γαβ+R (n− 2R) ,

where we applied Lemma 19 with the substitutions β → β+R and n→ n− 2R. Because
Γαβ+R (n− 2R) = Γαβ (n−R) the statement follows.
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Corollary 21. If α, β ∈ R>0, C ∈ R and P ∈ R[m] is some polynomial in m, then

n∑
m=R

CmP (m)Γαβ (n−m) ∈ O(Γαβ (n−R)) ∀R ∈ N0. (13)

Proof. There is a constant C ′ ∈ R such that |CmP (m)| is bounded by C ′Γαβ (m) for all
m ∈ N0. Therefore, Corollary 20 ensures that

n−R∑
m=R

CmP (m)Γαβ (n−m) 6 C ′
n−R∑
m=R

Γαβ (m) Γαβ (n−m) ∈ O(Γαβ (n−R)).

The remainder
∑n

m=n−R+1 C
mP (m)Γαβ (n−m) =

∑R−1
m=0C

n−mP (n − m)Γαβ (m) is obvi-
ously in O(Γαβ (n−R)).

4 A derivation for asymptotics

Proposition 22. If α ∈ R>0, β ∈ R and f, g ∈ R[[x]]αβ , then

• The product (f · g)(x) = f(x)g(x) belongs to R[[x]]αβ .

• Aαβ is a derivation, that means it respects the product rule

(Aαβ(f · g))(x) = f(x)(Aαβg)(x) + g(x)(Aαβf)(x). (14)

Corollary 23. If g1, . . . , gL ∈ R[[x]]αβ , then
∏L

l=1 g
l(x) ∈ R[[x]]αβ and

(
Aαβ

(
L∏
l=1

gl(x)

))
(x) =

L∑
l=1

 L∏
m=1
m6=l

gm(x)

 (Aαβgl)(x). (15)

Proof. Proof by induction in L using the product rule.

Corollary 24. If g1, . . . , gL ∈ R[[x]]αβ and t = (t1, . . . , tL) ∈ NL
0 , then

∏L
l=1(gl(x))tl ∈

R[[x]]αβ and

(
Aαβ

(
L∏
l=1

(gl(x))tl

))
(x) =

L∑
l=1

tl(g
l(x))tl−1

 L∏
m=1
m 6=l

(gm(x))tm

 (Aαβgl)(x). (16)

Corollary 25. If g1, . . . , gL ∈ R[[x]]αβ and p ∈ R[y1, . . . , yL] is polynomial in L variables,
then p(g1(x), . . . , gL(x)) ∈ R[[x]]αβ and

(Aαβ(p(g1, . . . , gL)))(x) =
L∑
l=1

∂p

∂yl
(g1, . . . , gL)(Aαβgl)(x). (17)
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Although the last three statements are only basic general properties of commutative
derivation rings, they suggest that Aαβ fulfills a simple chain rule. In fact, Corollary 25 can
still be generalized from polynomials to analytic functions (as we will do in Theorem 32),
but, as already mentioned, this intuition turns out to be false in general.

We will prove Proposition 22 alongside with another statement which will be useful
to establish the chain rule:

Proposition 26. If α, β ∈ R>0 and R ∈ N0 are kept fixed, then there exists a constant
C ∈ R such that

ραβ,R(f · g) 6 Cραβ,R(f)ραβ,R(g) ∀f, g ∈ R[[x]]αβ . (18)

Corollary 27. If α, β ∈ R>0, R ∈ N0 and g1, . . . , gL ∈ R[[x]]αβ are kept fixed, then there
exists a constant C ∈ R such that

ραβ,R

(
L∏
l=1

(gl(x))tl

)
6 C |t| ∀t ∈ NL

0 with |t| > 1. (19)

Proof. Iterating eq. (18) gives a constant C ∈ R such that

ραβ,R

(
L∏
l=1

(gl(x))tl

)
6 C |t|−1

L∏
l=1

(
ραβ,R(gl)

)tl ∀t ∈ NL
0 with |t| > 1.

The right hand side is clearly bounded by C ′|t| for all |t| > 1 with an appropriate C ′ ∈ R
which depends on the gl.

We will prove Proposition 22 under the assumption that β > 0. The following lemma
shows that, as a consequence of Proposition 14, we can do so without loss of generality.

Lemma 28. If Proposition 22 holds for β ∈ R>0, then it holds for all β ∈ R.

Proof. For β ∈ R, choose m ∈ N0 such that β + m > 0. If f, g ∈ R[[x]]αβ , then
f, g ∈ R[[x]]αβ+m by Proposition 14. By the requirement f · g ∈ R[[x]]αβ+m and (Aαβ+m(f ·
g))(x) = f(x)(Aαβ+mg)(x) + g(x)(Aαβ+mf)(x). Using (Aαβ+mf)(x) = xm(Aαβf)(x) from

Proposition 14 gives (Aαβ+m(f · g))(x) = xm
(
f(x)(Aαβg)(x) + g(x)(Aαβf)(x)

)
. Because

f · g ∈ R[[x]]αβ+m and Aαβ+m(f · g) ∈ xmR[[x]], it follows that f · g ∈ R[[x]]αβ and
Aαβ(f · g) = f(x)(Aαβg)(x) + g(x)(Aαβf)(x) by Proposition 14.

To prove Propositions 22 and 26, we will use some estimates for the coefficients of the
product of two power series. To establish these estimates, we will require that β > 0.

Lemma 29. If α, β ∈ R>0 and R ∈ N0 are kept fixed, then there exists a constant C ∈ R
such that for all f, g ∈ R[[x]]αβ and n,K ∈ N0 with K 6 R as well as n > K,∣∣∣∣∣

n∑
m=0

fn−mgm −
K−1∑
m=0

fn−mgm −
K−1∑
m=0

fmgn−m

∣∣∣∣∣ 6 Cραβ,R(f)ραβ,R(g)Γαβ (n−K) . (20)
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Proof. Observation 17 with K = 0 states that |fn| 6 ραβ,R(f)Γαβ (n) for all f ∈ R[[x]]αβ and
n ∈ N0. We can use this to estimate the expression

hn :=

∣∣∣∣∣
n∑

m=0

fn−mgm −
K−1∑
m=0

fn−mgm −
K−1∑
m=0

fmgn−m

∣∣∣∣∣
in different ranges for n,

2K > n > K ⇒ hn =

∣∣∣∣∣
K−1∑

m=n−K+1

fn−mgm

∣∣∣∣∣ 6 ραβ,R(f)ραβ,R(g)
K−1∑

m=n−K+1

Γαβ (n−m) Γαβ (m)

n > 2K ⇒ hn =

∣∣∣∣∣
n−K∑
m=K

fn−mgm

∣∣∣∣∣ 6 ραβ,R(f)ραβ,R(g)
n−K∑
m=K

Γαβ (n−m) Γαβ (m) .

It is trivial to find a constant C such that
∑K−1

m=n−K+1 Γαβ (n−m) Γαβ (m) 6 CΓαβ (n−K)
for all K 6 R and 2K > n > K, because R is fixed and only finitely many inequalities
need to be fulfilled. Corollary 20 guarantees that we can also find a constant C for the
second case.

Lemma 30. If α, β ∈ R>0 and R ∈ N0 are kept fixed, then there exists a constant C ∈ R
such that for all f, g ∈ R[[x]]αβ and n,K ∈ N0 with K 6 R as well as n > K,∣∣∣∣∣

K−1∑
m=0

fn−mgm −
K−1∑
k=0

df,gk Γαβ (n− k)

∣∣∣∣∣ 6 Cραβ,R(f)ραβ,R(g)Γαβ (n−K) , (21)

where df,gk := [xk]g(x)(Aαβf)(x).

Proof. Observation 17 with the substitutions n→ n−m and K → K −m implies that∣∣∣∣∣fn−m −
K−m−1∑
k=0

cfkΓ
α
β (n−m− k)

∣∣∣∣∣ 6 ραβ,R(f)Γαβ (n−K) ,

for all f ∈ R[[x]]αβ and n,K,m ∈ N0 with m 6 K 6 R as well as n > K where

cfk = [xk](Aαβf)(x). It also follows from Observation 17 that |gm| 6 ραβ,R(g)Γαβ (m) for all

g ∈ R[[x]]αβ and m ∈ N0. Because df,gk =
∑k

m=0 c
f
k−mgm,∣∣∣∣∣

K−1∑
m=0

fn−mgm −
K−1∑
k=0

df,gk Γαβ (n− k)

∣∣∣∣∣ =

∣∣∣∣∣
K−1∑
m=0

fn−mgm −
K−1∑
k=0

k∑
m=0

cfk−mgmΓαβ (n− k)

∣∣∣∣∣
=

∣∣∣∣∣
K−1∑
m=0

(
fn−m −

K−1∑
k=m

cfk−mΓαβ (n− k)

)
gm

∣∣∣∣∣ 6
K−1∑
m=0

∣∣∣∣∣fn−m −
K−m−1∑
k=0

cfkΓ
α
β (n−m− k)

∣∣∣∣∣ |gm|
6 ραβ,R(f)ραβ,R(g)Γαβ (n−K)

K−1∑
m=0

Γαβ (m) ∀n > K.

Setting C =
∑R−1

m=0 Γαβ (m) results in the statement.
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Lemma 31. If α, β ∈ R>0 and R ∈ N0 are kept fixed, then there exists a constant C ∈ R
such that for all f, g ∈ R[[x]]αβ and n,K ∈ N0 with K 6 R as well as n > K,∣∣∣∣∣

n∑
m=0

fn−mgm −
K−1∑
k=0

cf ·gk Γαβ (n− k)

∣∣∣∣∣ 6 Cραβ,R(f)ραβ,R(g)Γαβ (n−K) , (22)

where cf ·gk := [xk]
(
f(x)(Aαβg)(x) + g(x)(Aαβf)(x)

)
.

Proof. Note that cf ·gk = df,gk + dg,fk with df,gk from Lemma 30 and dg,fk respectively with
the roles of f and g switched. We can use the triangle inequality to deduce that∣∣∣∣∣

n∑
m=0

fn−mgm −
K−1∑
k=0

cf ·gk Γαβ (n− k)

∣∣∣∣∣ 6
∣∣∣∣∣
n∑

m=0

fn−mgm −
K−1∑
m=0

fn−mgm −
K−1∑
m=0

fmgn−m

∣∣∣∣∣
+

∣∣∣∣∣
K−1∑
m=0

fn−mgm −
K−1∑
k=0

df,gk Γαβ (n− k)

∣∣∣∣∣+

∣∣∣∣∣
K−1∑
m=0

fmgn−m −
K−1∑
k=0

dg,fk Γαβ (n− k)

∣∣∣∣∣ .
Using Lemmas 29 and 30 on the respective terms on the right hand side of this inequality
results in the statement.

Proof of Proposition 22. By Lemma 28, it is sufficient to prove Proposition 22 for β > 0.
Therefore, we can apply Lemma 31 for f, g ∈ R[[x]]αβ . Eq. (22) with K = R directly
implies that

[xn]f(x)g(x) =
n∑

m=0

fn−mgm =
R−1∑
k=0

cf ·gk Γαβ (n− k) +O
(
Γαβ (n−R)

)
∀R ∈ N0,

with cf ·gk = [xk]
(
f(x)(Aαβg)(x) + g(x)(Aαβf)(x)

)
. By Definition 1, it follows that f · g ∈

R[[x]]αβ and from Definition 8 follows eq. (14).

Proof of Proposition 26. If f, g ∈ R[[x]]αβ , then f · g ∈ R[[x]]αβ by Proposition 22. Because
β > 0, we have by Definition 16

ραβ,R(f · g) = max
06K6R

sup
n>K

∣∣∣∑n
m=0 fn−mgm −

∑K−1
k=0 c

f ·g
k Γαβ (n− k)

∣∣∣
Γαβ (n−K)

∀f, g ∈ R[[x]]αβ ,

which is bounded by Cραβ,R(f)ραβ,R(g) with some fixed C ∈ R as follows directly from
Lemma 31.

5 Composition

5.1 Composition by analytic functions

Theorem 32. If α ∈ R>0, β ∈ R, f ∈ R{y1, . . . , yL} is a function in L variables, which
is analytic at the origin, and g1, . . . , gL ∈ R[[x]]αβ ∩ xR[[x]], then
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• The composition f
(
g1(x), . . . , gL(x)

)
is in R[[x]]αβ .

• Aαβ fulfills a multivariate chain rule for the composition with analytic functions,

(
Aαβf

(
g1, . . . , gL

))
(x) =

L∑
l=1

∂f

∂yl

(
g1, . . . , gL

)
(Aαβgl)(x). (23)

In [7] Edward Bender established this theorem for the case L = 1 in a less ‘generat-
ingfunctionology’ based notation. If, for example, g ∈ R[[x]]αβ and f ∈ R{x, y}, then his
Theorem 1 allows us to calculate the asymptotic expansion of the coefficients of the power
series f(g(x), x). In fact, Bender analyzed more general power series including series with
coefficients which grow even more rapidly than factorially.

The following proof of Theorem 32 is a straightforward generalization of Bender’s
Lemma 2 and Theorem 1 in [7] to the multivariate case f ∈ R{y1, . . . , yL}.

Again, we will start by verifying that we may assume β > 0 during the proof of
Theorem 23.

Lemma 33. If Theorem 32 holds for β ∈ R>0, then it also holds for all β ∈ R.

Proof. For β ∈ R, choose an m ∈ N0 such that β+m > 0. If g1, . . . , gL ∈ R[[x]]αβ∩xR[[x]],

then by Proposition 14, g1, . . . , gL ∈ R[[x]]αβ+m∩xR[[x]], (Aαβ+mg
l)(x) = xm(Aαβgl)(x) and

by the requirement h(x) := f(g1(x), . . . , gL(x)) ∈ R[[x]]αβ+m as well as

(Aαβ+mh)(x) =
L∑
l=1

∂f

∂yl
(g1, . . . , gL)(Aαβ+mg

l)(x) = xm
L∑
l=1

∂f

∂yl
(g1, . . . , gL)(Aαβgl)(x).

Due to Proposition 14, h ∈ R[[x]]αβ and (Aαβh)(x) =
∑L

l=1
∂f
∂yl

(g1, . . . , gL)(Aαβgl)(x).

As before, we will use our freedom to assume that β > 0 to establish an estimate on
the coefficients of products of power series in xR[[x]]αβ .

Lemma 34. If α, β ∈ R>0 and g1, . . . , gL ∈ R[[x]]αβ ∩ xR[[x]] are kept fixed, then there
exists a constant C ∈ R such that∣∣∣∣∣[xn]

L∏
l=1

(
gl(x)

)tl∣∣∣∣∣ 6 C |t|Γαβ (n− |t|+ 1) ∀t ∈ NL
0 , n ∈ N0 with n > |t| > 1. (24)

Proof. By Proposition 15, it follows from gl ∈ R[[x]]αβ ∩ xR[[x]] that gl(x)
x
∈ R[[x]]αβ+1 and

therefore by Corollary 24 that
∏L

l=1

(
gl(x)
x

)tl
∈ R[[x]]αβ+1 for all t ∈ NL

0 . We can apply

Observation 17 with R = K = 0 to obtain for all n > |t|,∣∣∣∣∣[xn]
L∏
l=1

(
gl(x)

)tl∣∣∣∣∣ =

∣∣∣∣∣[xn−|t|]
L∏
l=1

(
gl(x)

x

)tl∣∣∣∣∣ 6 ραβ+1,0

(
L∏
l=1

(
gl(x)

x

)tl)
Γαβ+1 (n− |t|) .

The statement follows from Corollary 27 and Γαβ+1 (n− |t|) = Γαβ (n− |t|+ 1).
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Proof of Theorem 32. The composition f(g1(x), . . . , gL(x)) can be expressed as the sum∑
t∈NL0

ft1,...,tL
∏L

l=1

(
gl(x)

)tl , which can be split in preparation for the extraction of the

coefficients and their asymptotics:

f(g1(x), . . . , gL(x)) =
∑
t∈NL0
|t|6R

ft1,...,tL

L∏
l=1

(
gl(x)

)tl +
∑
t∈NL0
|t|>R

ft1,...,tL

L∏
l=1

(
gl(x)

)tl ∀R ∈ N0.

The first sum is just the composition by a polynomial. Corollary 25 asserts that this sum
is in R[[x]]αβ . It has the asymptotic expansion given in eq. (17) which agrees, as a series
in x, with the right hand side of eq. (23) up to order R− 1, because the partial derivative
reduces the order of a polynomial by one and gl0 = 0.

It is left to prove that the coefficients of the power series given by the remaining sum
over |t| > R are in O(Γαβ (n−R)). Because of Lemma 33, we may assume that β > 0
without loss of generality and apply Lemma 34. Together with the fact that there is a
constant C, such that |ft1,...,tL| 6 C |t| for all t ∈ NL

0 , due to the analyticity of f , Lemma 34
ensures that there is a constant C ′ ∈ R such that∣∣∣∣∣∣∣∣[x

n]
∑
t∈NL0
|t|>R

ft1,...,tL

L∏
l=1

(
gl(x)

)tl
∣∣∣∣∣∣∣∣ 6

∑
t∈NL0

n>|t|>R

|ft1,...,tL|

∣∣∣∣∣[xn]
L∏
l=1

(
gl(x)

)tl∣∣∣∣∣
6

n∑
t=R+1

C ′
t
Γαβ (n− t+ 1)

∑
t∈NL0
|t|=t

1,

for all n > R + 1. Because the last sum |{t1, . . . , tL ∈ N0|t1 + . . . + tL = t}| =
(
t+L−1
L−1

)
is

a polynomial in t, Corollary 21 asserts that this is in O
(
Γαβ (n−R)

)
.

5.2 Proof of the main theorem: Composition of power series in R[[x]]αβ

Despite the fact that Bender’s theorem applies to a broader range of compositions f ◦ g,
where f does not need to be analytic and g does not need to be an element of R[[x]]αβ ,
it cannot be used in the case f, g ∈ R[[x]]αβ , where f /∈ kerAαβ . The problem is that

we cannot truncate the sum
∑∞

k=0 fkg(x)k without losing significant information. In this
section, we will confront this problem and prove the general chain rule for the asymptotic
derivative:

Theorem 35. If α ∈ R>0, β ∈ R and f, g ∈ R[[x]]αβ with g0 = 0 and g1 = 1, then

• The composition f ◦ g and the inverse g−1 belong to R[[x]]αβ .
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• Aαβ fulfills a chain rule and there is a formula for the Aαβ-derivative of the composi-
tional inverse:

(Aαβ(f ◦ g))(x) = f ′(g(x))(Aαβg)(x) +

(
x

g(x)

)β
e

1
x−

1
g(x)
α (Aαβf)(g(x)), (25)

(Aαβg−1)(x) = −(g−1)
′
(x)

(
x

g−1(x)

)β
e

1
x−

1
g−1(x)
α (Aαβg)(g−1(x)). (26)

Corollary 36. If f ∈ R[[x]], g ∈ R[[x]]αβ with g0 = 0, g1 = 1 and f ◦ g ∈ R[[x]]αβ , then
f ∈ R[[x]]αβ .

Proof. Theorem 35 guarantees that g−1 ∈ R[[x]]αβ and therefore also f = (f ◦ g) ◦ g−1 ∈
R[[x]]αβ .

As before, we will assume that β > 0 while proving Theorem 35. The following lemma
establishes that we can do so.

Lemma 37. If Theorem 35 holds for β ∈ R>0, then it holds for all β ∈ R.

Proof. For β ∈ R, choosem ∈ N0 such that β+m > 0. If f, g ∈ R[[x]]αβ with g0 = 0, g1 = 1,
then f, g ∈ R[[x]]αβ+m by Proposition 14. Because of (Aαβ+mf)(x) = xm(Aαβf)(x) and by
the requirement

(Aαβ+m(f ◦ g))(x) = f ′(g(x))(Aαβ+mg)(x) +

(
x

g(x)

)β+m

e
1
x−

1
g(x)
α (Aαβ+mf)(g(x))

= xm

(
f ′(g(x))(Aαβg)(x) +

(
x

g(x)

)β
e

1
x−

1
g(x)
α (Aαβf)(g(x))

)
.

Applying Proposition 14 again results in f ◦ g ∈ R[[x]]αβ and eq. (25). Eq. (26) and
g−1 ∈ R[[x]]αβ follow analogously.

Obviously, x ∈ R[[x]]αβ . We will use this basic fact to prove Theorem 35 by ensuring
that from f, g ∈ R[[x]]αβ follows f ◦ g−1 ∈ R[[x]]αβ and by constructing the asymptotic
expansion of the coefficients of (f ◦g−1)(x). To prove that f ◦g−1 ∈ R[[x]]αβ , the Lagrange
inversion formula, which involves the usual derivative of a power series, will be used. To
handle this derivative, the following proposition will become necessary:

Proposition 38. If f ∈ R[[x]]αβ , then f ′(x) ∈ R[[x]]αβ+2 and

(Aαβ+2f
′)(x) =

(
α−1 − xβ + x2 ∂

∂x

)
(Aαβf)(x). (27)

Proof. Recall that f ′(x) =
∑∞

n=0 nfnx
n−1 =

∑∞
n=0(n + 1)fn+1x

n. If f ∈ R[[x]]αβ , then by
Definition 1,

(n+ 1)fn+1 =
R−1∑
k=0

cfk(n+ 1)Γαβ (n+ 1− k) + (n+ 1)O
(
Γαβ (n+ 1−R)

)
∀R ∈ N0.
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Observe that because xΓ(x) = Γ(x+ 1) and Γαβ (n) = αn+βΓ(n+ β),

(n+ 1)Γαβ (n+ 1− k)

= αn+1−k+β ((n+ 1− k + β)Γ(n+ 1− k + β) + (k − β)Γ(n+ 1− k + β))

= α−1Γαβ+2 (n− k) + (k − β)Γαβ+2 (n− k − 1) .

Therefore, for all R ∈ N0

(n+ 1)fn+1 =
R−1∑
k=0

cfk
(
α−1Γαβ+2 (n− k) + (k − β)Γαβ+2 (n− k − 1)

)
+O

(
Γαβ+2 (n−R)

)
,

and it follows from Definition 1 that f ′ ∈ R[[x]]αβ+2. Moreover, by Definition 8,

(Aαβ+2f
′)(x) =

∞∑
k=0

cf
′

k x
k =

∞∑
k=0

cfk
(
α−1xk + (k − β)xk+1

)
=

(
α−1 − xβ + x2 ∂

∂x

)
(Aαβf)(x).

While using the Lagrange inversion formula to establish f ◦ g−1 ∈ R[[x]]αβ , it will be
convenient to work in the rings R[[x]]αβ+1 and R[[x]]αβ+2, which contain R[[x]]αβ as a subring.
Therefore, we will start with some observations on intermediate quantities in R[[x]]αβ+1

and R[[x]]αβ+2. The following three lemmas are basic applications of the chain rule for
the composition with analytic functions and the product rule, but we will prove them in
detail to get acquainted to the new notions from the last sections.

Lemma 39. If g ∈ R[[x]]αβ with g0 = 0, g1 = 1 and γ ∈ R, then
(
g(x)
x

)γ
∈ R[[x]]αβ+1 and(

Aαβ+1

(
g(x)

x

)γ)
= γ

(
g(x)

x

)γ−1 (
Aαβg

)
(x). (28)

Proof. Observe that F (x) := (1− x)γ ∈ R{x} and F ′(x) = −γ(1− x)γ−1. Proposition 15

implies that g(x)
x
∈ R[[x]]αβ+1, because g ∈ R[[x]]αβ ∩ xR[[x]]. As g1 = 1, we additionally

have 1− g(x)
x
∈ R[[x]]αβ+1 ∩ xR[[x]]. Using Theorem 32 results in(

g(x)

x

)γ
= F

(
1− g(x)

x

)
∈ R[[x]]αβ+1,

and by the chain rule for the composition with analytic functions from eq. (23),(
Aαβ+1

(
g(x)

x

)γ)
= F ′

(
1− g(x)

x

)(
Aαβ+1

(
1− g(x)

x

))
(x)

= −γ
(
g(x)

x

)γ−1(
Aαβ+1

(
−g(x)

x

))
(x) = γ

(
g(x)

x

)γ−1 (
Aαβg

)
(x),

where we used the linearity of Aαβ+1 and
(
Aαβ+1

g(x)
x

)
(x) =

(
Aαβg

)
(x) due to Proposi-

tion 15.
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Lemma 40. If g ∈ R[[x]]αβ with g0 = 0, g1 = 1, then

A(x) :=
1

g(x)
− 1

x
∈ R[[x]]αβ+2, e

A(x)
α ∈ R[[x]]αβ+2 and (29)(

Aαβ+2e
A(x)
α

)
(x) = −α−1

(
x

g(x)

)2

e
A(x)
α

(
Aαβg

)
(x). (30)

Proof. From Lemma 39 with γ = −1, it follows that x
g(x)
∈ R[[x]]αβ+1 and(

Aαβ+1

x

g(x)

)
= −

(
x

g(x)

)2 (
Aαβg

)
(x).

Because g1 = 1, x
g(x)
− 1 ∈ R[[x]]αβ+1 ∩ xR[[x]]. Moreover, by Proposition 15, A(x) =

x
g(x)
−1

x
∈ R[[x]]αβ+2 and

(
Aαβ+2A

)
(x) =

(
Aαβ+1

(
x

g(x)
− 1

))
(x) = −

(
x

g(x)

)2 (
Aαβg

)
(x). (31)

Observe that A(x)−A(0)
α

∈ R[[x]]αβ+2∩xR[[x]]. Because ex ∈ R{x}, we can apply Theorem 32

to conclude that e
A(x)−A(0)

α ∈ R[[x]]αβ+2 and by linearity that also e
A(x)
α ∈ R[[x]]αβ+2. Finally,

we can use the chain rule for the composition with analytic functions to write the left
hand side of eq. (30) as

e
A(0)
α

(
Aαβ+2e

A(x)−A(0)
α

)
(x) = e

A(0)
α e

A(x)−A(0)
α

(
Aαβ+2

A(x)− A(0)

α

)
(x)

= e
A(x)
α

(
Aαβ+2

A(x)

α

)
(x) = α−1e

A(x)
α

(
Aαβ+2A

)
(x).

The statement in eq. (30) follows after substitution of
(
Aαβ+2A

)
(x) from eq. (31).

Lemma 41. If f, g ∈ R[[x]]αβ with g0 = 0, g1 = 1 and γ ∈ R, then

Bγ(x) := f(x)g′(x)

(
g(x)

x

)γ
∈ R[[x]]αβ+2 and (32)(

Aαβ+2Bγ

)
(x) =(

g(x)

x

)γ (
x2g′(x)

(
Aαβf

)
(x) + f(x)

(
γxg′(x)

x

g(x)
+ α−1 − βx+ x2 ∂

∂x

)
(Aαβg)(x)

)
.

(33)

Proof. Recall that due to Proposition 14, f ∈ R[[x]]αβ ⊂ R[[x]]αβ+2 and (Aαβ+2f)(x) =
x2(Aαβf)(x). Proposition 38 guarantees that g′ ∈ R[[x]]αβ+2 and

(Aαβ+2g
′)(x)f =

(
α−1 − xβ + x2 ∂

∂x

)
(Aαβg)(x).
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Because of Lemma 39 and Proposition 14, we have
(
g(x)
x

)γ
∈ R[[x]]αβ+2 and(

Aαβ+2

(
g(x)

x

)γ)
(x) = xγ

(
g(x)

x

)γ−1 (
Aαβg

)
(x).

Putting all this together we can use Corollary 23 with g1(x) = f(x), g2(x) = g′(x) and

g3(x) =
(
g(x)
x

)γ
to obtain eqs. (32) and (33).

Lemma 42. If α, β ∈ R>0, R ∈ N0 and A,Bγ as defined in eqs. (29) and (32) are kept
fixed, then there exists a constant C ∈ R such that

ραβ+2,R (Bγ(x)A(x)m) 6 Cm+1 ∀m ∈ N0. (34)

Proof. Apply Corollary 24 with g1(x) = Bγ(x), g2(x) = A(x), t1 = 1 and t2 = m to
verify that Bγ(x)A(x)m ∈ R[[x]]αβ+2 for all m ∈ N0. Apply Corollary 27 with the same
parameters.

Corollary 43. If α, β ∈ R>0, R ∈ N0 and A,Bγ as defined in eqs. (29) and (32) are kept
fixed, then there exists a constant C ∈ R such that∣∣∣∣∣[xn]Bγ(x)A(x)m −

R−1∑
k=0

ck,mΓαβ+2 (n− k)

∣∣∣∣∣ 6 Cm+1Γαβ+2 (n−R) ∀n > R and m ∈ N0

where ck,m = [xk]
(
Aαβ+2Bγ(x)A(x)m

)
(x).

Proof. Additionally to Lemma 42, apply Observation 17 with K = R.

The key to the extraction of the large n asymptotics of [xn](f ◦ g−1)(x) is a variant of
the Chu-Vandermonde identity. We will prove this identity using elementary power series
techniques.

Lemma 44. For all a ∈ R and m, k ∈ N0(
a

m

)
=

m∑
l=0

(
k + l − 1

l

)(
a− k − l
m− l

)
. (35)

Proof. Recall that
(
a
n

)
= [xn](1 + x)a for all a ∈ R and n ∈ N0. By standard generating

function arguments it follows that [xn] 1
(1−x)k

=
(
k+n−1
n

)
for all n, k ∈ N0. Observe that for

all a ∈ R and k ∈ N0, we have the following identities in R[[x]]:

(1 + x)a = (1 + x)k(1 + x)a−k =
1(

1− x
1+x

)k (1 + x)a−k

=
∞∑
l=0

(
k + l − 1

l

)(
x

1 + x

)l
(1 + x)a−k =

∞∑
l=0

(
k + l − 1

l

)
xl(1 + x)a−k−l.

Extracting coefficients from the first and the last expression results in the Chu-Vander-
monde-type identity in eq. (35).
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Corollary 45. For all α, β ∈ R>0 and n,R, k ∈ N0 with n > R > k, we have the identity
in R[x]

n−R∑
m=0

(
n+ β + 1

m

)
Γαβ+2 (n−m− k)xm =

n−R∑
l=0

(
l + k − 1

l

)
Γαβ+2 (n− l − k)xl

n−R−l∑
m=0

(
x
α

)m
m!

.

(36)

Proof. Observe that
(
a
n

)
= 1

n!
Γ(a+1)

Γ(a−n+1)
for all a ∈ R and n ∈ N0 as long as n < a + 1. By

writing the second binomial coefficient on the right hand side of eq. (35) in this form and
setting a = n+ β + 1, we get for all n,m, k ∈ N0 with m+ k < n+ β + 2(

n+ β + 1

m

)
Γ(n−m− k + β + 2) =

m∑
l=0

(
k + l − 1

l

)
Γ(n− k − l + β + 2)

(m− l)!
.

Multiplying by xmαn−m−k+β+2, summing over m and using Γαβ (n) = αn+βΓ(n+ β) gives,

n−R∑
m=0

(
n+ β + 1

m

)
Γαβ+2 (n−m− k)xm =

n−R∑
m=0

m∑
l=0

(
k + l − 1

l

)
αl−mΓαβ+2 (n− k − l)

(m− l)!
xm.

Note that k 6 R and m 6 n − R imply m + k 6 n < n + β + 2. The statement follows
after changing the order of summation and a shift of the summation variable m→ m+ l
both on the right hand side of this equation.

We are now equipped with the necessary tools to tackle the asymptotic analysis of
the coefficients of (f ◦ g−1)(x). The first step is to express (f ◦ g−1)(x) in terms of the
intermediate power series A(x) and Bγ(x). We will do so using a variant of the Lagrange
inversion theorem.

Lemma 46. If p, q ∈ R[[x]] with q0 = 0 and q1 = 1, then

[xn]p
(
q−1(x)

)
= [xn]p(x)q′(x)

(
x

q(x)

)n+1

∀n ∈ N0. (37)

Proof. Note that the identity holds for n = 0, because q0 = 0 and q1 = 1. It follows from
the Lagrange inversion theorem [20, A.6] for n > 1 that

[xn]p
(
q−1(x)

)
=

1

n
[xn−1]p′(x)

(
x

q(x)

)n
=

1

n
[xn−1]

∂

∂x

(
p(x)

(
x

q(x)

)n)
− 1

n
[xn−1]p(x)

(
∂

∂x

(
x

q(x)

)n)
.

Using 1
n
[xn−1] ∂

∂x
= [xn] and evaluating the derivative in the second term result in the

statement.
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Corollary 47. If α, β ∈ R>0, f, g ∈ R[[x]]αβ and A,Bγ as defined in eqs. (29) and (32),
then

[xn]f(g−1(x)) =
n∑

m=0

(
n+ β + 1

m

)
[xn−m]Bβ(x)A(x)m ∀n ∈ N0. (38)

Proof. By Lemma 46,

[xn]f(g−1(x)) = [xn]f(x)g′(x)

(
x

g(x)

)n+1

= [xn]f(x)g′(x)

(
g(x)

x

)β (
x

g(x)

)n+β+1

.

Using the definitions of A and Bγ gives [xn]f(g−1(x)) = [xn]Bβ(x) (1 + xA(x))n+β+1.
Expanding with the generalized binomial theorem results in eq. (38).

Corollary 48. If α, β ∈ R>0, f, g ∈ R[[x]]αβ and A,Bγ as defined in eqs. (29) and (32),
then

[xn]f(g−1(x)) =
n−R∑
m=0

(
n+ β + 1

m

)
[xn−m]Bβ(x)A(x)m +O

(
Γαβ+2 (n−R)

)
∀R ∈ N0.

(39)

Proof. Eq. (39) follows from eq. (38) and∣∣∣∣∣
n∑

m=n−R+1

(
n+ β + 1

m

)
[xn−m]Bβ(x)A(x)m

∣∣∣∣∣ =

∣∣∣∣∣
R−1∑
m=0

(
n+ β + 1

n−m

)
[xm]Bβ(x)A(x)n−m

∣∣∣∣∣
6

R−1∑
m=0

(
n+ β + 1

n−m

)
Cn−m+1Γαβ+2 (m) ∈ O

(
Γαβ+2 (n−R)

)
∀R ∈ N0,

where the second step, together with the existence of an appropriate C ∈ R, follows from
Corollary 43 with R = 0 and the inclusion holds, because

(
n+β+1
n−m

)
= Γ(n+β+2)

Γ(n−m+1)Γ(β+m+2)
∼

nβ+m+1

Γ(β+m+2)
by elementary properties of the Γ function.

Lemma 49. If α, β ∈ R>0, f, g ∈ R[[x]]αβ and A,Bγ as defined in eqs. (29) and (32), then

[xn]f(g−1(x)) =
R−1∑
k=0

n−R∑
l=0

n−R−l∑
m=0

ck,l,m

(
l + k − 1

l

)
Γαβ+2 (n− l − k) +O

(
Γαβ+2 (n−R)

)
∀R ∈ N0, (40)

where ck,l,m := [xk]

(
Aαβ+2Bβ(x)A(x)l

(A(x)
α )

m

m!

)
(x).

Note that the terms of the triple sum in eq. (40) where k = 0 are not all trivial,
because

(−1
0

)
= 1 by the definition of the binomial coefficients with negative arguments.
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Proof. For all n,m ∈ N0 with n−m > R set

Rn,m := [xn−m]Bβ(x)A(x)m −
R−1∑
k=0

ck,mΓαβ+2 (n−m− k) ,

where ck,m = [xk]
(
Aαβ+2Bβ(x)A(x)m

)
(x). Substituting Rn,m into eq. (39) gives

[xn]f(g−1(x)) =
n−R∑
m=0

(
n+ β + 1

m

) R−1∑
k=0

ck,mΓαβ+2 (n−m− k)

+
n−R∑
m=0

(
n+ β + 1

m

)
Rn,m +O

(
Γαβ+2 (n−R)

)
∀R ∈ N0,

(41)

By Corollary 43 with n → n − m, we can find a constant C ∈ R such that |Rn,m| 6
Cm+1Γαβ+2 (n−m−R) for all n−m > R. Therefore,

Rn :=

∣∣∣∣∣
n−R∑
m=0

(
n+ β + 1

m

)
Rn,m

∣∣∣∣∣ 6
n−R∑
m=0

(
n+ β + 1

m

)
Cm+1Γαβ+2 (n−m−R) ∀n > R.

Applying Corollary 45 with x→ C and k = R results in

Rn 6 C
n−R∑
l=0

(
l +R− 1

l

)
Γαβ+2 (n− l −R)C l

n−R−l∑
m=0

(
C
α

)m
m!

∀n > R

6 C
n∑
l=R

(
l − 1

l −R

)
Γαβ+2 (n− l)C l−R

n−R∑
m=0

(
C
α

)m
m!

∀n > R.

From
∑n−R

m=0

(Cα )
m

m!
6 e

C
α and Corollary 21, it follows that Rn ∈ O

(
Γαβ+2 (n−R)

)
, because(

l−1
l−R

)
is a polynomial in l. Therefore, for all R ∈ N0

[xn]f(g−1(x)) =
n−R∑
m=0

(
n+ β + 1

m

) R−1∑
k=0

ck,mΓαβ+2 (n−m− k) +O
(
Γαβ+2 (n−R)

)
=

R−1∑
k=0

[xk]

(
Aαβ+2Bβ(x)

n−R∑
m=0

(
n+ β + 1

m

)
A(x)mΓαβ+2 (n−m− k)

)
+O

(
Γαβ+2 (n−R)

)
,

where Aαβ+2 acts on everything on its right. Applying Corollary 45 with x→ A(x) to the
inner sum and reordering result in the statement.

Lemma 50. If α, β ∈ R>0, R ∈ N0 and A,Bγ as defined in eqs. (29) and (32), then

[xn]f(g−1(x)) =
R−1∑
k=0

R−1−k∑
l=0

c′k,l

(
l + k − 1

l

)
Γαβ+2 (n− l − k) +O

(
Γαβ+2 (n−R)

)
∀R ∈ N0,

(42)

where c′k,l := [xk]
(
Aαβ+2Bβ(x)A(x)le

A(x)
α

)
(x).
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Proof. Set ck,l,m as in Lemma 49. By Lemma 42 there exists a constant C ∈ R such that
ραβ+2,R

(
Bβ(x)A(x)l+m

)
6 C l+m+1 for all l,m ∈ N0. It follows from the second part of

Observation 17 that

|ck,l,m| =
α−m

m!

∣∣[xk] (Aαβ+2Bβ(x)A(x)l+m
)

(x)
∣∣ 6 α−m

m!
C l+m+1 ∀k, l,m ∈ N0 with k 6 R.

(43)

Therefore, for all k 6 R and n > 2R− k,∣∣∣∣∣
n−R∑
l=R−k

n−R−l∑
m=0

ck,l,m

(
l + k − 1

l

)
Γαβ+2 (n− l − k)

∣∣∣∣∣
6

n−R∑
l=R−k

n−R−l∑
m=0

α−mC l+m+1

m!

(
l + k − 1

l

)
Γαβ+2 (n− l − k)

which is in O
(
Γαβ+2 (n−R)

)
, because

∑n−R−l
m=0

α−mCm

m!
6 e

C
α and by Corollary 21. Ap-

plying this to truncate the summation over l in eq. (40) from Lemma 49 gives for all
R ∈ N0

[xn]f(g−1(x)) =
R−1∑
k=0

R−k−1∑
l=0

n−R−l∑
m=0

ck,l,m

(
l + k − 1

l

)
Γαβ+2 (n− l − k) +O

(
Γαβ+2 (n−R)

)
.

(44)

Note that
(
n+m
n

)
> 1⇒ (n+m)! > n!m! and therefore

∞∑
m=n

Cm

m!
=

∞∑
m=0

Cn+m

(n+m)!
6
Cn

n!

∞∑
m=0

Cm

m!
= eC

Cn

n!
.

It follows from this and eq. (43) that for all n > R− l + 1 and k + l 6 R∣∣∣∣∣
∞∑

m=n−R−l+1

ck,l,mΓαβ+2 (n− l − k)

∣∣∣∣∣ 6 C l+1

∞∑
m=n−R−l+1

(
C
α

)m
m!

Γαβ+2 (n− l − k)

6 e
C
αC l+1

(
C

α

)n−l−R+1 Γαβ+2 (n− l − k)

(n−R− l + 1)!
,

which is in O
(
Γαβ+2 (n−R)

)
as long as k and l are bounded, because Γ(n−l−k+β+2)

Γ(n−R−l+2)
∼

nR−k+β. Applying this to complete the summation over m in eq. (44) and noting that
c′k,l =

∑∞
m=0 ck,l,m results in eq. (42).

Corollary 51. If α, β ∈ R>0, R ∈ N0 and A,Bγ as defined in eqs. (29) and (32), then
f ◦ g−1 ∈ R[[x]]αβ+2 and

[xk]
(
Aαβ+2f ◦ g−1

)
(x) = [xk]

(
Aαβ+2Bβ−k+1(x)e

A(x)
α

)
(x) ∀k ∈ N0. (45)
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Proof. After the change of summation variables k → k + l, eq. (42) becomes

[xn]f(g−1(x)) =
R−1∑
k=0

k∑
l=0

c′k−l,l

(
k − 1

l

)
Γαβ+2 (n− k) +O

(
Γαβ+2 (n−R)

)
∀R ∈ N0.

By Definition 1, this equation states that f ◦ g−1 ∈ R[[x]]αβ+2 and that the coefficients of
the asymptotic expansion are

cf◦g
−1

k =
k∑
l=0

c′k−l,l

(
k − 1

l

)
=

k∑
l=0

[xk−l]

(
Aαβ+2Bβ(x)A(x)l

(
k − 1

l

)
e
A(x)
α

)
(x)

= [xk]
∞∑
l=0

xl
(
Aαβ+2Bβ(x)A(x)l

(
k − 1

l

)
e
A(x)
α

)
(x)

= [xk]

(
Aαβ+2Bβ(x)

∞∑
l=0

(xA(x))l
(
k − 1

l

)
e
A(x)
α

)
(x),

where xl
(
Aαβ+2f(x)

)
(x) =

(
Aαβ+2x

lf(x)
)

(x) for all f ∈ R[[x]]αβ+2 was used, which fol-

lows from the product rule (Proposition 22). Because of
∑∞

l=0

(
k−1
l

)
(xA(x))l = (1 +

xA(x))k−1 =
(

x
g(x)

)k−1

and the definition of Bγ in Lemma 41, the statement follows.

Proof of Theorem 35. Because of Lemma 37, we may assume that β ∈ R>0 and start with
the expression from Corollary 51 for [xk]

(
Aαβ+2f ◦ g−1

)
(x). We will use Lemmas 40 and

41 to expand this expression. By Corollary 51 and the product rule (Proposition 22), we
have for all k ∈ N0

[xk]
(
Aαβ+2f ◦ g−1

)
(x) = [xk]

(
e
A(x)
α

(
Aαβ+2Bβ−k+1

)
(x) +Bβ−k+1(x)

(
Aαβ+2e

A(x)
α

)
(x)
)
.

(46)

Applying Lemma 41 on the first term of this expression gives after a straightforward but
lengthy calculation,

[xk]e
A(x)
α

(
Aαβ+2Bβ−k+1

)
(x) = [xk]e

A(x)
α

(
g(x)

x

)β−k+1
(
x2g′(x)

(
Aαβf

)
(x)

+f(x)

(
x(β − k + 1)g′(x)

x

g(x)
+ α−1 − βx+ x2 ∂

∂x

)
(Aαβg)(x)

)

= [xk]e
A(x)
α

(
g(x)

x

)β−k+1
(
x2g′(x)

(
Aαβf

)
(x)

+

(
−x2f ′(x) + α−1f(x)g′(x)

(
x

g(x)

)2
)

(Aαβg)(x)

)
,

(47)
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where the identity [xk]xp′(x)q(x) = k[xk]p(x)q(x)− [xk]xp(x)q′(x) for all p, q ∈ R[[x]] was
used to eliminate the summand which contains the ∂

∂x
(Aαβg)(x) factor. By Lemma 40, the

second term on the right hand side of eq. (46) is

[xk]Bβ−k+1(x)
(
Aαβ+2e

A(x)
α

)
(x) = −[xk]α−1Bβ−k+1(x)

(
x

g(x)

)2

e
A(x)
α

(
Aαβg

)
(x)

= −[xk]α−1f(x)g′(x)

(
g(x)

x

)β−k+1(
x

g(x)

)2

e
A(x)
α

(
Aαβg

)
(x),

(48)

where the definition of Bβ−k+1(x) from Lemma 41 was substituted. Summing both ex-
pressions for the terms in eq. (46) from eqs. (47) and (48) and substituting the definition
of A(x) from Lemma 40 results in

[xk]
(
Aαβ+2f ◦ g−1

)
(x) = [xk]x2e

1
g(x)

− 1
x

α

(
g(x)

x

)β−k+1 (
g′(x)(Aαβf)(x)− f ′(x)(Aαβg)(x)

)
,

for all k ∈ N0. By Proposition 14, the x2 prefactor indicates that f ◦ g−1 is actually in
the subspace R[[x]]αβ ⊂ R[[x]]αβ+2 and

[xk]
(
Aαβf ◦ g−1

)
(x) = [xk]e

1
g(x)

− 1
x

α

(
g(x)

x

)β−k−1 (
g′(x)(Aαβf)(x)− f ′(x)(Aαβg)(x)

)
.

If we set p(x) := e
1

g(x)
− 1
x

α

(
g(x)
x

)β (
(Aαβf)(x)− f ′(x)

g′(x)
(Aαβg)(x)

)
and q(x) := g(x), we obtain

[xk]
(
Aαβf ◦ g−1

)
(x) = [xk]p(x)q′(x)

(
x

q(x)

)k+1

= [xk]p(q−1(x)) ∀k ∈ N0,

by Lemma 46. After replacing p and q by their expressions, we obtain

(Aαβf ◦ g−1)(x) = e

1
x−

1
g−1(x)
α

(
x

g−1(x)

)β (
(Aαβf)(g−1(x))− f ′(g−1(x))

g′(g−1(x))
(Aαβg)(g−1(x))

)
.

(49)

The special case f(x) = x with an application of the identity g′(g−1(x)) = 1
(g−1)′(x)

results

in eq. (26). Solving eq. (26) for (Aαβg)(g−1(x)) and substituting the result into eq. (49)
gives eq. (25) with the substitution g → g−1.

Remark 52. Bender and Richmond [9] established that [xn](1 + g(x))γn+δ = nγe
γg1
α gn +

O(gn) if gn ∼ αngn−1 and g0 = 0. Using Lagrange inversion, the first coefficient in the
expansion of the compositional inverse in eq. (26) can be obtained from this. In this
respect, Theorem 35 is a generalization of Bender and Richmond’s result.

In the same article Bender and Richmond proved a theorem similar to Theorem 35
for the class of power series f whose coefficients grow more rapidly than factorially such
that nfn−1 ∈ o(fn). Theorem 35 establishes a link to the excluded case nfn−1 = O(fn).
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Remark 53. The restriction g1 = 1 ensures that our power series actually have composi-
tional inverses and that we do not leave the ring R[[x]]αβ . We might also allow a non-zero
positive value for g1. To do this it is sufficient to allow composition with the family of
power series hγ(x) = γx ∈ R[[x]] where γ ∈ R>0. Right composition with hγ, f 7→ f ◦ hγ
is a trivial isomorphisms of vector spaces R[[x]]αβ → R[[x]]γαβ , which follows immediately
from Definition 1. Every power series g(x) ∈ R[[x]]αβ with g0 = 0 and g1 > 0 can be

decomposed into g = g̃ ◦ hg1 such that g̃1 = 1 and g̃ ∈ R[[x]]
α/g1
β . The asymptotics of the

coefficients of the composition f ◦ g = f ◦ g̃ ◦ hg1 can be calculated using Theorem 35 if
f, g̃ ∈ R[[x]]α

′

β for some α′ > α
g1

.

Remark 54. The chain rule in eq. (25) exposes a peculiar algebraic structure. It would

be useful to have a combinatorial interpretation of the e
1
x−

1
g(x)
α term.

6 Some remarks on differential equations

Differential equations arising from physical systems form an active field of research in the
scope of resurgence [21, 3]. Unfortunately, the exact calculation of an overall factor of
the asymptotic expansion of a solution of an ODE, called Stokes constant, turns out to
be difficult for many problems. This fact severely limits the utility of the method for
enumeration problems, as the dominant factor of the asymptotic expansion is of most
interest and the detailed structure of the asymptotic expansion is secondary.

In this section it will be sketched, for the sake of completeness, how the presented
combinatorial framework fits into the realm of differential equations. The given elementary
properties each have their counterpart in resurgence’s alien calculus [25, II.6].

Corollary 25 serves as a good starting point to analyze differential equations with power
series solutions in R[[x]]αβ . Given a polynomial F ∈ R[x, y0, . . . , yL], the Aαβ -derivation can
be applied to the ordinary differential equation

0 = F (x, f(x), f ′(x), f ′′(x), . . . , f (L)(x)).

Applying the A-derivation naively to both sides of this equation and using the chain
rule for the composition with polynomials results in a linear equation for the asymptotic
expansions of the derivatives f (l). Proposition 38 tells us, how the asymptotic expansions
of the f (l) relate to each other. We will follow this line of thought in detail in

Proposition 55. If F ∈ R[x, y0, . . . , yL] and f ∈ R[[x]]αβ is a solution of the differential
equation

0 = F
(
x, f(x), f ′(x), f ′′(x), . . . , f (L)(x)

)
, (50)

then (Aαβf)(x) is a solution of the linear differential equation

0 =
L∑
l=0

x2L−2l∂F

∂yl

(
x, f (0), . . . , f (L)

)( l−1∏
j=0

(
α−1 − x(β + 2j) + x2 ∂

∂x

))
(Aαβf)(x). (51)
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Proof. From Proposition 38, Proposition 14 and f ∈ R[[x]]αβ , it follows that f (l) ∈
R[[x]]αβ+2l ⊂ R[[x]]αβ+2L for all L > l. By Corollary 25, we can apply Aαβ+2L to both
sides of eq. (50) and use Proposition 14,

0 =
L∑
l=0

∂F

∂yl

(
x, f (0), . . . , f (L)

) (
Aαβ+2Lf

(l)
)

(x)

=
L∑
l=0

∂F

∂yl

(
x, f (0), . . . , f (L)

)
x2(L−l) (Aαβ+2lf

(l)
)

(x).

(52)

Iterating Proposition 38 gives(
Aαβ+2lf

(l)
)

(x) =

(
α−1 − x(β + 2(l − 1)) + x2 ∂

∂x

)(
Aαβ+2(l−1)f

(l−1)
)

(x)

=

(
l−1∏
j=0

(
α−1 − x(β + 2j) + x2 ∂

∂x

))
(Aαβf)(x).

Substituting this into eq. (52) results in eq. (51).

Remark 56. Even if it is known that the coefficients of the power series solution of a
differential equation have a well-behaved asymptotic expansion, Proposition 55 provides
this asymptotic expansion only up to the initial values for the linear differential equation
(51). Note that the form of the asymptotic expansion can still depend non-trivially on
the initial values of the solution f of a non-linear differential equation.

Remark 57. The linear differential equation (51) only has a non-trivial solution in R[[x]]
if α−1 is the root of a certain polynomial. More specifically, making a power series ansatz
for (Aαβf)(x) in eq. (51) gives

0 = [xm]
L∑
l=0

x2L−2lα−l
∂F

∂yl

(
x, f (0), . . . , f (L)

)
,

where m is the smallest integer such that the equation is not trivially fulfilled. If this
root is not real or if two roots have the same modulus, the present formalism has to be
generalized to complex and multiple α to express the asymptotic expansion of a general
solution. This generalization is straightforward. We merely need to generalize Definition 1
of suitable sequences to:

Definition 58. For given β ∈ R and α1, . . . , αL ∈ C with |α1| = |α2| = . . . = |αL| =:
α > 0 let C[[x]]α1,...,αL

β ⊂ C[[x]] be the subspace of complex power series, such that

f ∈ C[[x]]α1,...,αL
β if and only if there exist sequences of complex numbers (cfk,l)k∈N0,l∈[1,L],

which fulfill

fn =
R−1∑
k=0

L∑
l=1

cfk,lΓ
αl
β (n− k) +O

(
Γαβ (n− k)

)
∀R ∈ N0. (53)

the electronic journal of combinatorics 25(4) (2018), #P4.1 25



7 Applications

7.1 Connected chord diagrams

A chord diagram with n chords is a circle with 2n points, which are labeled by integers
1, . . . , 2n and connected in disjoint pairs by n chords. There are (2n− 1)!! such diagrams.

A chord diagram is connected if no set of chords can be separated from the remaining
chords by a line which does not cross any chords. Let I(x) =

∑
n=0(2n − 1)!!xn, the

ordinary generating function of all chord diagrams, and C(x) =
∑

n=0 Cnx
n, where Cn is

the number of connected chord diagrams with n chords. Following [19], the power series
I(x) and C(x) are related by,

I(x) = 1 + C
(
xI(x)2

)
. (54)

This functional equation can be solved for the coefficients of C(x) by basic iterative
methods. The first coefficients are

C(x) = x+ x2 + 4x3 + 27x4 + 248x5 + . . . (55)

This sequence is entry A000699 in Neil Sloane’s integer sequence on-line encyclopedia [26].

Because (2n − 1)!! = 2n+
1
2√

2π
Γ(n + 1

2
) = 1√

2π
Γ2

1
2

(n), the power series I is in R[[x]]21
2

and
(
A2

1
2

I
)

(x) = 1√
2π

as a direct consequence of Definitions 1 and 8. From eq. (54),

it also follows that C(xI(x)2) ∈ R[[x]]21
2

. Because xI(x)2 ∈ R[[x]]21
2

by the product rule

(Proposition 22), we know from Corollary 36 with f(x) = C(x) and g(x) = xI(x)2 that
C ∈ R[[x]]21

2

.

Applications of the general chain rule from Theorem 35 and the product rule on the
functional eq. (54) result in(

A2
1
2
I
)

(x) =
(
A2

1
2

(
1 + C

(
xI(x)2

)))
(x) =

(
A2

1
2
C
(
xI(x)2

))
(x)

= 2xI(x)C ′
(
xI(x)2

)
(A2

1
2
I)(x) +

(
x

xI(x)2

) 1
2

e
xI(x)2−x
2x2I(x)2

(
A2

1
2
C
) (
xI(x)2

)
.

(56)

which can be solved for
(
A2

1
2

C
)

(xI(x)2),

(
A2

1
2
C
) (
xI(x)2

)
=
I(x)− 2xI(x)2C ′ (xI(x)2)√

2π
e

1−I(x)2

2xI(x)2 ,

where
(
A2

1
2

I
)

(x) = 1√
2π

was used. This can be composed with the unique y ∈ R[[x]]

which solves y(x)I(y(x))2 = x,(
A2

1
2
C
)

(x) =
I(y(x))− 2xC ′(x)√

2π
e

1−I(y(x))2
2x .
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sequence 0 1 2 3 4 5 6 7 8
√

2π

e−1 (A2
1
2

C) 1 − 5
2

− 43
8

− 579
16

− 44477
128

− 5326191
1280

− 180306541
3072

− 203331297947
215040

− 58726239094693
3440640

√
2π

e−1 (A2
1
2

M) 1 −4 −6 − 154
3

− 1610
3

− 34588
5

− 4666292
45

− 553625626
315

− 1158735422
35

Table 1: First coefficients of the asymptotic expansions of Cn and Mn.

From eq. (54), it follows that I(y(x)) = 1 + C(x), therefore(
A2

1
2
C
)

(x) =
1 + C(x)− 2xC ′(x)√

2π
e−

1
2x

(2C(x)+C(x)2). (57)

It can be verified, using the closed form of its coefficients, that the power series I(x)
fulfills the differential equation 2x2I ′(x) + xI(x) + 1 = I(x). From this and eq. (54), the

non-linear differential equation C ′(x) = C(x)(1+C(x))−x
2xC(x)

[19] for C(x) can be deduced. Using

this on the expression for (A2
1
2

C)(x) from eq. (57) results in the simplification,

(
A2

1
2
C
)

(x) =
1√
2π

x

C(x)
e−

1
2x

(2C(x)+C(x)2). (58)

This is the generating function of the full asymptotic expansion of Cn. The first coefficients
are,(
A2

1
2
C
)

(x) =
e−1

√
2π

(
1− 5

2
x− 43

8
x2 − 579

16
x3 − 44477

128
x4 − 5326191

1280
x5 + . . .

)
. (59)

By Definitions 1 and 8 as well as 1√
2π

Γ2
1
2

(n) = (2n − 1)!!, we get the two equivalent

expressions for the asymptotic expansion of the coefficients Cn:

Cn =
R−1∑
k=0

Γ2
1
2

(n− k) [xk]
(
A2

1
2
C
)

(x) +O
(

Γ2
1
2

(n−R)
)

∀R ∈ N0

Cn =
√

2π
R−1∑
k=0

(2(n− k)− 1)!![xk]
(
A2

1
2
C
)

(x) +O ((2(n−R)− 1)!!) ∀R ∈ N0.

The first terms of this large n expansion are

Cn = e−1

(
(2n− 1)!!− 5

2
(2n− 3)!!− 43

8
(2n− 5)!!− 579

16
(2n− 7)!! + . . .

)
.

The first term, e−1, of this expansion has been computed by Kleitman [23], Stein and Ev-
erett [27] and Bender and Richmond [9] each using different methods. With the presented
method an arbitrary number of coefficients can be computed. Some additional coefficients
are given in Table 1.

The probability of a random chord diagram with n chords to be connected is therefore
e−1(1− 5

4n
) +O( 1

n2 ).
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7.2 Monolithic chord diagrams

A chord diagram is called monolithic if it consists only of a connected component and of
isolated chords which do not ‘contain’ each other [19]. That means with (a, b) and (c, d)
the labels of two chords, it is not allowed that a < c < d < b nor c < a < b < d. Let
M(x) =

∑
n=0 Mnx

n be the generating function of monolithic chord diagrams. Following
[19], M(x) fulfills

M(x) = C

(
x

(1− x)2

)
. (60)

Clearly, Theorem 35 implies that M ∈ R[[x]]21
2

, because C ∈ R[[x]]21
2

and x
(1−x)2

∈ R{x} ⊂
R[[x]]21

2

. Using the A2
1
2

-derivation on both sides of this equation together with the result

for
(
A2

1
2

C
)

(x) in eq. (58) gives

(
A2

1
2
M
)

(x) =
1√
2π

1

(1− x)

x

M(x)
e1−x

2
− (1−x)2

2x
(2M(x)+M(x)2)

=
1√
2π

(
1− 4x− 6x2 − 154

3
x3 − 1610

3
x4 − 34588

5
x5 + . . .

)
.

(61)

Some additional coefficients are given in Table 1. The probability of a random chord
diagram with n chords to be non-monolithic is therefore 1 −

(
1− 4

2n−1
+O( 1

n2 )
)

= 2
n

+

O( 1
n2 ).

7.3 Simple permutations

A permutation is called simple if it does not map a non-trivial interval to another interval.
Expressed formally, the permutation π ∈ Ssimple

n ⊂ Sn if and only if π([i, j]) 6= [k, l] for
all i, j, k, l ∈ [1, n] with 2 6 |[i, j]| 6 n − 1. See Albert, Atkinson and Klazar [1] for a
detailed exposition of simple permutations. Set S(x) =

∑∞
n=4 |Ssimple

n |xn, the generating
function of simple permutations2, and F (x) =

∑∞
n=1 n!xn, the generating function of all

permutations. Following [1], S(x) and F (x) are related by the equation

F (x)− F (x)2

1 + F (x)
= x+ S(F (x)), (62)

which can be solved iteratively for the coefficients of S(x):

S(x) = 2x4 + 6x5 + 46x6 + 338x7 + 2926x8 + · · · (63)

This sequence is entry A111111 of the OEIS [26] with the different convention, A111111 =
x+ 2x2 + S(x).

2We adopt the convention of Albert, Atkinson and Klazar and do not consider permutations below
order 4 as simple.
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As n! = Γ1
1 (n), F (x) ∈ R[[x]]11 and (A1

1F ) = 1 by Definitions 1 and 8. Therefore,
the full asymptotic expansion of S(x) can be obtained by applying the general chain rule
to both sides of eq. (62). Alternatively, eq. (62) implies x−x2

1+x
= F−1(x) + S(x) with

F−1(F (x)) = x. By Theorem 35, it follows from F ∈ R[[x]]11, F0 = 0 and F1 = 1 that
F−1 ∈ R[[x]]11. By linearity and x−x2

1+x
∈ R{x} ⊂ R[[x]]11, we also have S ∈ R[[x]]11. The

expression for the asymptotic expansion of F−1(x) in terms of (A1
1F ) (x) from eq. (26)

gives

(
A1

1S
)

(x) =

(
A1

1

x− x2

1 + x

)
(x)−

(
A1

1F
−1
)

(x) = (F−1)′(x)
x

F−1(x)
e

1
x
− 1
F−1(x) , (64)

where x−x2
1+x

∈ kerA1
1 was used. Observe that F (x) fulfills the differential equation

x2F ′(x) + (x− 1)F (x) + x = 0, from which a non-linear differential equation for F−1(x)
can be deduced, because F ′(F−1(x))(F−1)′(x) = 1:

(F−1)′(x) =
1

F ′(F−1(x))
=

F−1(x)2

(1− F−1(x))x− F−1(x)
.

Using this together with x−x2
1+x

= F−1(x) + S(x) gives

(
A1

1S
)

(x) =
xF−1(x)

x− (1 + x)F−1(x)
e

1
x
− 1
F−1(x) =

1

1 + x

1− x− (1 + x)S(x)
x

1 + (1 + x)S(x)
x2

e
−

2+(1+x)
S(x)

x2

1−x−(1+x)
S(x)
x .

(65)

The coefficients of (A1
1S) (x) can be computed iteratively. The first coefficients are

(
A1

1S
)

(x) = e−2

(
1− 4x+ 2x2 − 40

3
x3 − 182

3
x4 − 7624

15
x5 + · · ·

)
. (66)

By Definitions 1 and 8, this is an expression for the asymptotics of the number of simple
permutations

|Ssimple
n | =

R−1∑
k=0

(n− k)![xk]
(
A1

1S
)

(x) +O ((n−R)!) ∀R ∈ N0. (67)

Therefore, the asymptotic expansion starts with

|Ssimple
n | = e−2

(
n!− 4(n− 1)! + 2(n− 2)!− 40

3
(n− 3)!− 182

3
(n− 4)! + · · ·

)
.

Albert, Atkinson and Klazar [1] calculated the first three terms of this expansion. With the
presented methods the calculation of the asymptotic expansions (A1

1S) (x) or (A1
1F
−1) (x)

up to order n is as easy as calculating the expansion of S(x) or F−1(x) up to order n+ 2.
Some additional coefficients are given in Table 2.
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sequence 0 1 2 3 4 5 6 7 8 9

1
e−2 (A1

1S) 1 −4 2 − 40
3

− 182
3

− 7624
15

− 202652
45

− 14115088
315

− 30800534
63

− 16435427656
2835

Table 2: First coefficients of the asymptotic expansion of |Ssimple
n |.

Remark 59. The examples above are chosen to demonstrate that given a (functional)
equation which relates two power series in R[[x]]αβ , it is often an easy task to calculate the
full asymptotic expansion of one of the power series from the asymptotic expansion of the
other power series. Applications include functional equations for ‘irreducible combinato-
rial objects’. The two examples fall into this category. Irreducible combinatorial objects
were studied in general by Beissinger [4].

Remark 60. Eqs. (58), (61) and (65) expose another interesting algebraic property. Propo-
sition 15 and the chain rule imply that (A2

1
2

C)(x) ∈ R[[x]]23
2

, (A2
1
2

M)(x) ∈ R[[x]]23
2

and

(A1
1S)(x) ∈ R[[x]]13. This way, the ‘higher-order’ asymptotics of the asymptotic sequence

can be calculated by iterating the application of the A map. With resurgence, it might
be possible to construct convergent large-order expansions for these cases. The fact that
the asymptotics of each sequence may be expressed as a combination of polynomial and
exponential expressions of the original sequence can be seen as an avatar of resurgence.

Remark 61. In quantum field theory the coupling, an expansion parameter, needs to be re-
parametrized in the process of renormalization [15]. Those reparametrizations are merely
compositions of power series which are believed to be Gevrey-1. Theorem 35 might be
useful for the resummation of renormalized quantities in quantum field theory. Dyson-
Schwinger equations in quantum field theory can be stated as functional equations of a
form similar to the above [14, 11]. These considerations were the subject of the publication
[13], where the presented formalism was applied to zero-dimensional quantum field theory
and the enumeration of graphs.
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