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Abstract

We formulate and prove a formula for the constant term for a certain class of
Laurent polynomials, which include the Dyson conjecture and its generalizations by
Bressoud and Goulden. Our method is explicit Combinatorial Nullstellensatz.

Mathematics Subject Classifications: 11B65

We recall the following form of Alon’s Combinatorial Nullstellensatz (appeared recently
in [13, 14, 15], but essentially going back to Jacobi [8], see [9] for a modern exposition).
It proved to be very useful [5, 11, 12, 13] for finding coefficients of polynomials.

Theorem 1. Let f(x1, . . . , xn) be a polynomial over a field F of degree 6 d1 + · · ·+ dn.
Consider the grid G = G1 × · · · × Gn, Gi ⊂ F, #Gi = di + 1. The coefficient of∏n

i=1 x
di
i in f is ∑

(c1,...,cn)∈G

f(c1, . . . , cn)∏n
i=1

∏
z∈Gi\{ci}(ci − z)

.

Let x1, . . . , xn, q be commuting indeterminates. Consider a Laurent polynomial
f(x1, . . . , xn, q) over a field F. Denote its constant term over the function field F(q) as
CT [f ].

Let a1, . . . , an be non-negative integers, a = a1 + · · ·+ an. In a seminal 1962 work [4]
Dyson formulated the following conjecture:

CT

[∏
i 6=j

(1− xi/xj)ai
]

=
a!∏n
i=1 ai!

This was proved by Gunson [unpublished] and Wilson [16] in the same year. The elegant
proof, based on Lagrange interpolation, was given by Good [7]. In [13] another proof based
on the above-stated form of Combinatorial Nullstellensatz is given. It was generalized to
a q-version (proved for the first time in [17] by a different method) in [11].
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Constant term identities with Laurent polynomials (such as this one) often arise in
quantum electrodynamics. They are also closely related to Selberg-type integrals, which
play an important role in random matrix theory, statistical mechanics and special function
theory (see the exposition in [6]).

There are versions of (a particular case of) Dyson’s conjecture for arbitrary root sys-
tems, in which Dyson’s original case corresponds to An. These are famous Macdonald’s
conjectures proved by Cherednik [3] with the help of the so-called double affine Hecke
algebras.

Understanding for which Laurent polynomials such identities do exist is an important
question. The application of Combinatorial Nullstellensatz allowed to make substantial
progress in this area, and our results continue this development.

We start with recalling the proof of q-version of the Dyson conjecture. Define [l, r] =
{l, l+ 1, . . . , r}. Let χ(. . . ) be equal to 1 if the expression in the parentheses is true, and
to 0 otherwise. Also, denote (x)n =

∏n−1
t=0 (1− qtx).

Theorem 2. Let a1, . . . , an be non-negative integers, a = a1 + · · · + an. Consider the
Laurent polynomial

f(x1, . . . , xn, q) =
∏

16i<j6n

(xi/xj)ai(qxj/xi)aj

over a field F. Then

CT [f ] =
(q)a

(q)a1(q)a2 · · · (q)an
.

Proof. We can assume that all ai > 0 (if ai = 0, then each factor of f contains xi only
in non-negative degree. Since we are interested in the constant term of f , we can assume
that f does not depend on xi).

CT [f ] equals to the coefficient of
∏n

i=1 x
a−ai
i in the polynomial h, where

h(x1, . . . , xn, q) =
∏

16i<j6n

(xi/xj)ai(qxj/xi)aj × x
ai
j x

aj
i .

We will calculate this coefficient of h using Theorem 1.
Consider the grid

G = {(qy1 , . . . , qyn) | yi ∈ Ri},
where

Ri = [0, a− ai].
Let us assume that x = (x1, . . . , xn) = (qy1 , . . . , qyn) = qy ∈ G is not a zero of h. Then,

for each i < j,
yj − yi > ai or yi − yj > aj + 1,

otherwise one of the factors in (xi/xj)ai(qxj/xi)aj × x
ai
j x

aj
i equals to zero.

In particular, it means that all yi are pairwise distinct. Let π ∈ Sn be such a permu-
tation that

yπ1 < yπ2 < · · · < yπn .
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We know that
yπi+1

− yπi > aπi + χ(πi+1 < πi).

Adding up these inequalities and taking into account that yπ1 > 0, we get

yπn − yπ1 > a− aπn +
n−1∑
i=1

χ(πi+1 < πi).

But yπn 6 a− aπn , so πi < πi+1 for all i, which means that π = id.
Let us note that all intermediate inequalities have to become equalities, so the only

point on the grid which is not a zero of h is qy, where yi = a1 + a2 + · · ·+ ai−1.
Define for convenience yn+1 = a. By Theorem 1,

CT [f ] =

( ∏
16i<j6n

(qyi−yj)ai(q
yj+1−yi)aj × qyjaiqyiaj

)
/

 n∏
i=1

∏
z∈[0,a−ai]\{yi}

(qyi − qz)


=

(∏
16i<j6n

(∏ai−1
k=0 (qyj − qyi+k)×

∏aj−1
k=0 (qyi − qyj+1+k)

))
(∏n

i=1(−1)yi
(∏yi−1

t=0 qt
)

(q)yiq
yi(a−ai−yi)(q)a−ai−yi

)
=

(∏
16i<j6n

(
(−1)ai

(∏yi+1−1
t=yi

qt
)

(q)yj−yi
(q)yj−yi+1

× qyiaj (q)yj+1−yi
(q)yj−yi

))
(∏n

i=1(−1)yi
(∏yi−1

t=0 qt
)

(q)yi−y1q
yi(a−ai−yi)(q)yn+1−yi+1

)
= (q)yn+1−y1 /

(
n∏
i=1

(q)yi+1−yi

)
=

(q)a
(q)a1 · · · (q)an

.

Next we give simple proofs of the master theorem and its transitive analogue from [2]
using a similar technique. A similar proof in a different context can be found in [10] (see
Theorems 1.2 and 3.5), though our proof is more direct.

A tournament T on n vertices is a set of ordered pairs (i, j) such that 1 6 i 6= j 6 n
and (i, j) ∈ T if and only if (j, i) /∈ T . One way of interpreting a tournament is as a
relation on a set [1, n]: i→ j if and only if (i, j) ∈ T .

A tournament T is transitive if the relation→ is transitive. For a transitive tournament
T , a winner permutation σ ∈ Sn is such a permutation that σi → σj if and only if i < j.
Note that every transitive tournament T has a unique winner permutation σ = σ(T ).

Theorem 3. Let T be a tournament on n vertices. Let a1, . . . , an be positive integers,
a = a1 + · · ·+ an. Consider the Laurent polynomial

f(x1, . . . , xn, q) =
∏

(i,j)∈T

(xi/xj)ai(qxj/xi)aj−1

over a field F. If T is nontransitive, then CT [f ] = 0. If T is transitive with a winner
permutation σ, then

CT [f ] =
(q)a

(q)a1(q)a2 · · · (q)an
×

n∏
i=1

1− qaσi
1− qaσ1+···+aσi

.
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Proof. Let deg(i) = #{j | (i, j) ∈ T}. Consider a permutation δ ∈ Sn such that for each
1 6 i < j 6 n deg(δi) > deg(δj), and deg(δi) = deg(δj) only when δi < δj. Note that
σ = δ in the case when T is transitive.

CT [f ] equals to the coefficient of
∏n

i=1 x
a−ai−deg(i)
i in the polynomial h, where

h(x1, . . . , xn, q) =
∏

(i,j)∈T

(xi/xj)ai(qxj/xi)aj−1 × x
ai
j x

aj−1
i .

Once again, we will calculate this coefficient using Theorem 1.
Consider the grid

G = {(qy1 , . . . , qyn) | yi ∈ Ri},

where
Ri = [0, a− ai] \ Si,

Sδi = {a− aδi −
n∑
v=j

aδv | n+ 1− deg(δi) < j 6 n+ 1}.

Assume that x = (x1, . . . , xn) = (qy1 , . . . , qyn) = qy ∈ G is not a zero of h. For each
(i, j) ∈ T ,

yj − yi > ai or yi − yj > aj,

otherwise one of the factors in (xi/xj)ai(qxj/xi)aj−1 × x
ai
j x

aj−1
i equals to zero.

It follows that all yi are pairwise distinct. Let π ∈ Sn be such a permutation that

yπ1 < yπ2 < · · · < yπn .

We know that
yπi+1

− yπi > aπi .

Adding up these inequalities and taking into account that yπ1 > 0, we get

yπn − yπ1 > a− aπn .

But yπn 6 a− aπn , so all intermediate inequalities have to become equalities, and

yπi = a−
n∑
j=i

aπj .

Since yπn /∈ Sπn , from definition of Sπn it follows that deg(πn) = 0. But T is a
tournament, so deg(i) = 0 for at most one i. Since qy is not a zero of h, such i exists (and
equals to δn), so deg(δn) = 0 and πn = δn.

Assume that we have already showed that πk = δk and deg(δk) = n− k for j < k 6 n.
Note that these conditions on deg imply that (δi, δk) ∈ T for all 1 6 i < k, j < k 6 n.
Then deg(δi) > n− j for all 1 6 i 6 j, and, since T is a tournament, deg(δi) > n− j for
all 1 6 i < j.
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yπj /∈ Sπj , so deg(πj) 6 n − j. The only case in which it is possible is when πj = δj
and deg(δj) = n− j.

Finally, either all elements of G are zeros of h and CT [f ] = 0 or π = δ and deg(δi) =
n− i for all i. If the latter is the case, obviously T is transitive and π = δ = σ.

The only thing left is to calculate the coefficient in the case of transitive T . We
will omit the calculations here since they are given in a more general case in the next
theorem.

The main result is the following theorem.

Theorem 4. Let k, {li}ki=1, {mi}ki=1, {ri}ki=1 be integers such that 1 6 l1 6 m1 6 r1 <
l2 6 . . . 6 rk−1 < lk 6 mk 6 rk 6 n. Let

Ci =

ri⋃
j=mi+1

[li, j − 2]× {j}, Bi ⊆ Ci,

Ui =

(
Bi ∪ ([li,mi − 1]× {mi}) ∪

ri−1⋃
j=mi

(j, j + 1)

)
,

U =
k⋃
i=1

Ui.

Let a1, . . . , an be positive integers, a = a1 + · · ·+ an. Consider the Laurent polynomial

f(x1, . . . , xn, q) =
∏

16i<j6n

(xi/xj)ai(qxj/xi)aj−χ((i,j)∈U)

over a field F. Then

CT [f ] =
(q)a

(q)a1(q)a2 · · · (q)an
×

k∏
i=1

ri∏
j=mi

1− qaj
1− qali+···+aj

.

Remark 5. The statement of the theorem is long and cumbersome, therefore we provide
an illustration that can help to understand the idea behind the formal definitions.

Consider the correspondence between a Laurent polynomial

f(x1, . . . , xn, q) =
∏

16i<j6n

(xi/xj)ai,j(qxj/xi)aj,i

and a square matrix of non-negative integers with zeroes on the main diagonal A =
{ai,j}16i,j6n.

The polynomial from Theorem 2 corresponds to the matrix
0 a1 a1 . . . a1
a2 0 a2 . . . a2
a3 a3 0 . . . a3
. . . . . . . . . . . . . . .
an an . . . an 0

 .
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The polynomial from transitive part of Theorem 3 (for winner permutation σ = id)
corresponds to the matrix

0 a1 a1 . . . a1
a2 − 1 0 a2 . . . a2
a3 − 1 a3 − 1 0 . . . a3
. . . . . . . . . . . . . . .

an − 1 an − 1 . . . an − 1 0

 .

The polynomial from Theorem 4 in the case n = 9, k = 1, l1 = 2, m1 = 5, r1 = 8,
B1 = {(2, 6), (4, 6), (3, 7), (4, 7), (2, 8), (4, 8)} corresponds to the matrix

0 a1 a1 a1 a1 a1 a1 a1 a1
a2 0 a2 a2 a2 a2 a2 a2 a2
a3 a3 0 a3 a3 a3 a3 a3 a3
a4 a4 a4 0 a4 a4 a4 a4 a4
a5 a5 − 1 a5 − 1 a5 − 1 0 a5 a5 a5 a5
a6 a6 − 1 a6 a6 − 1 a6 − 1 0 a6 a6 a6
a7 a7 a7 − 1 a7 − 1 a7 a7 − 1 0 a7 a7
a8 a8 − 1 a8 a8 − 1 a8 a8 a8 − 1 0 a8
a9 a9 a9 a9 a9 a9 a9 a9 0


.

As we can see, this matrix is the deformed version of the matrix from Theorem 2, with
some coefficients decreased. Decreased coefficients are grouped into k blocks. Each block
consists of a segment of some row ([li,mi − 1] × {mi}), a segment of the diagonal (the

one under the main diagonal,
ri−1⋃
j=mi

(j, j + 1)) and an arbitrary subset of elements “under”

them (Bi is an arbitrary subset of Ci).

Remark 6. This theorem gives Theorem 2 when k = 0. It also gives transitive part of
Theorem 3 (for winner permutation σ = id) when k = 1, l1 = m1 = 1, r1 = n, B1 = C1.

Remark 7. This is a generalization of Theorem 2.5 from [2]. Specifically, it gives the said
theorem when Bi = Ci for all i.

Proof. CT [f ] equals to the coefficient of

n∏
i=1

x
a−ai−

∑n
j=1 χ((i,j)∈U)

i

in the polynomial h, where

h(x1, . . . , xn, q) =
∏

16i<j6n

(xi/xj)ai(qxj/xi)aj−χ((i,j)∈U) × xaij x
aj−χ((i,j)∈U)
i .

We will use Theorem 1 again. Consider the grid

G = {(qy1 , . . . , qyn) | yi ∈ Ri},
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where
Ri = [0, a− ai] \ Si,

Si = {a− ai −
n∑

v=rt+1

av} ∪ {a− ai −
n∑
v=j

av | (i, j) ∈ Bt},

if there is a t such that i ∈ [lt, rt − 1], Si = ∅ otherwise.
Denote AoB = {(i, j) ∈ A×B | i < j}.
Consider

N = [1, n] o [1, n], Vi = [li, ri] o [mi, ri], V =
k⋃
i=1

Vi.

Note that Ui ⊆ Vi, and thus U ⊆ V . Also note that Ci \Bi = Vi \ Ui.
We replace the linear factors of h

(xi − qajxj), where (i, j) ∈ V \ U

by
(xi − qajxj − (qa−ai−

∑n
v=j av − qa−

∑n
v=j av)),

and call the modified polynomial h′. The coefficient of h we are interested in coincides
with the corresponding coefficient of h′ because it has the maximal sum of degrees of xi,
and the polynomials differ only by constants in linear factors.

Assume that h′ does not vanish at x = qy ∈ G. Let

χ1(i, j) = χ

(
(i, j) ∈ V \ U and yi = a− ai −

n∑
v=j

av and yj = a−
n∑
v=j

av

)
.

For each i < j either yj−yi > ai+χ1(i, j) or yi−yj > aj +χ((i, j) ∈ N \V ) (otherwise
one of the linear factors of h′ is zero).

It follows that all yi are pairwise distinct. Let π ∈ Sn be such a permutation that

yπ1 < yπ2 < · · · < yπn .

Since U ⊆ V , we know that

yπi+1
− yπi > aπi + χ((πi+1, πi) ∈ N \ V ) + χ1(πi, πi+1).

Adding up these inequalities and taking into account that yπ1 > 0, we get

yπn > a− aπn +
n−1∑
i=1

(
χ((πi+1, πi) ∈ N \ V ) + χ1(πi, πi+1)

)
.

But yπn 6 a− aπn , so (πi+1, πi) /∈ N \ V and χ1(πi, πi+1) = 0 for all i.
Note that all intermediate inequalities have to become equalities, so

yπi = a−
n∑
j=i

aπj .
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Let us denote the event πi+1 < πi as the descent. The descent is possible only when
(πi+1, πi) ∈ V . From the definition of V it follows that descents happen only if πi, πi+1 ∈
[lt, rt] for some t. Then for each t all elements of π in the range [lt, rt] should go in a
row, all elements less than them should go before them, and all elements bigger should
go after.

We will show that elements from [lt, rt] go not just in a row, but in the ascending
order. Therefore the only possible choice for π is id, and there is only one point on the
grid at which h′ does not vanish.

If πrt ∈ [lt, rt − 1], then

yπrt = a− aπrt −
n∑

j=rt+1

aπj = a− aπrt −
n∑

j=rt+1

aj,

which contradicts the definition of Rπrt
. So, πrt = rt.

Consider s > mt, and we have already showed that πs+1 = s+ 1, . . . , πrt = rt. Let us
assume that πs < s.

χ1(πs, πs+1) = χ1(πs, s+ 1) = 0. Additionally,

yπs = a− aπs −
n∑

j=s+1

aj, ys+1 = a−
n∑

j=s+1

aj

and (πs, s+ 1) ∈ V , then from the definition of χ1 it follows that (πs, s+ 1) ∈ U . πs < s,
so (πs, s+ 1) ∈ Bt. But

yπs = a− aπs −
n∑

j=s+1

aj,

which contradicts the definition of Rπs . So, πs = s.
We proved that πmt = mt, . . . , πrt = rt. By the definition of V , no descents are possible

when πi, πi+1 ∈ [lt,mt − 1], so all elements of [lt,mt − 1] also go in the ascending order.
So, π = id, the only element of G which is not a zero of h′ is x = qy, where y =

(0, a1, a1 + a2, . . . , a1 + · · ·+ an−1).
Let us see what changes happen to the calculation of the coefficient compared to

Theorem 2. For convenience denote yn+1 = a.
Fix 1 6 t 6 k.
Firstly, elements of Si (lt 6 i < rt) disappear from Ri, so the coefficient increases by

a factor of (
rt−1∏
i=lt

(
qyi − qa−ai−

∑n
v=rt+1 av

))
×

∏
(i,j)∈Bt

(
qyi − qa−ai−

∑n
v=j av

)
.

Secondly, we add linear factor

(xi − qajxj − (qa−ai−
∑n
v=j av − qa−

∑n
s=j av))
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for all (i, j) ∈ Vt \ Ut = Ct \Bt, so the coefficient increases by a factor of∏
(i,j)∈Ct\Bt

(
qyi − qyj+1 − (qa−ai−

∑n
v=j av − qa−

∑n
v=j av)

)
=

∏
(i,j)∈Ct\Bt

(
qyi − qa−ai−

∑n
v=j av

)
.

Thirdly, we remove linear factor (xi − qajxj) for all (i, j) ∈ Vt, so the coefficient
decreases by a factor of ∏

(i,j)∈Vt

(qyi − qyj+1).

In total, the coefficient increases by a factor of

rt−1∏
i=lt

(
qyi − qa−ai−

∑n
v=rt+1 av

)
×

∏
(i,j)∈Ct

(
qyi − qa−ai−

∑n
v=j av

)
/

 ∏
(i,j)∈Vt

(qyi − qyj+1)


=

rt∏
j=mt

j−1∏
i=lt

(
qyi − qa−ai−

∑n
v=j+1 av

)
/

(
rt∏

j=mt

j−1∏
i=lt

(qyi − qyj+1)

)

=
rt∏

j=mt

j−1∏
i=lt

(
1− qai+1+···+aj

)
/

(
rt∏

j=mt

j−1∏
i=lt

(1− qai+···+aj)

)

=
rt∏

j=mt

j∏
i=lt+1

(
1− qai+···+aj

)
/

(
rt∏

j=mt

j−1∏
i=lt

(1− qai+···+aj)

)

=
rt∏

j=mt

1− qaj
1− qalt+···+aj

.

All that remains is to multiply the results for 1 6 t 6 k.
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