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Abstract

We study matching polynomials of uniform hypergraph and spectral radii of uni-
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Li and Feng’s results on grafting operations on graphs to supertrees. Using the
methods of grafting operations on supertrees and comparing matching polynomi-
als of supertrees, we determine the first bd2c + 1 largest spectral radii of r-uniform
supertrees with size m and diameter d. In addition, the first two smallest spectral
radii of supertrees with size m are determined.

Keywords: Hypergraph; Adjacency tensor; Eigenvalues; Matching polynomial;
Supertree

Mathematics Subject Classifications: 15A18, 05C65, 05C31

∗Research was partially supported by the National Nature Science Foundation of China (grant numbers
11871329, 11561032).
†Corresponding authors.
‡The author was also supported by the Jiangxi Science Fund for Distinguished Young Scholars (No.

20171BCB23032) and the funds of the Education Department of Jiangxi Province (No. GJJ150345).
§Corresponding authors. The author was supported by the NSFC (No. 11571222).

the electronic journal of combinatorics 25(4) (2018), #P4.13 1



1 Introduction

The ordering of graphs by spectral radius was proposed by Collatz and Sinogowitz [7] in
1957. Lovász and Pelikán [21] investigated the spectral radius of trees and determined
the first two largest and smallest spectral radii of trees with given order. Brualdi and
Solheid [2] proposed the problem of bounding the spectral radius of some class of graphs
and characterizing the corresponding extremal graphs. Since then, many authors studied
the spectral radius of trees with some given parameters, such as degree, diameter, etc.

A hypergraph H is a pair (V,E), where E ⊆ P(V ) and P(V ) stands for the power
set of V . The elements of V = V (H) are referred to as vertices and the elements of
E = E(H) are called hyperedges or edges. A hypergraph H is r-uniform if every edge
e ∈ E(H) contains precisely r vertices. For a vertex v ∈ V , we denote by Ev the set of
edges containing v. The cardinality |Ev| is the degree of v, denoted by deg(v). A vertex
with degree one is called a core vertex, and a vertex with degree larger than one is called
an intersection vertex. If any two edges in H share at most one vertex, then H is said to
be a linear hypergraph. In this paper we assume that hypergraphs are r-uniform.

In a hypergraphH, two vertices u and v are adjacent if there is an edge e ofH such that
{u, v} ⊆ e. A vertex v is said to be incident to an edge e if v ∈ e. A walk of hypergraph H
is defined to be an alternating sequence of vertices and edges v1e1v2e2 · · · v`e`v`+1 satisfying
that both vi and vi+1 are incident to ei for 1 6 i 6 `. A walk is called a path if all vertices
and edges in the walk are distinct. The length of a path is the number of edges in it.
The walk is closed if vl+1 = v1. A closed walk is called a cycle if all vertices and edges in
the walk are distinct. A hypergraph H is called connected if any two of its vertices are
linked by a path in H. The distance between two vertices is the length of a shortest path
connecting them. The diameter of a connected r-uniform hypergraph H is the maximum
distance among all vertices of H. A hypergraph H is called acyclic or a superforest if it
contains no cycle. A connected superforest is called a supertree. A supertree is called
nontrivial if it has at least one edge.

In [16] some transformations on hypergraphs such as moving edges and edge-releasing
were introduced and the first two spectral radii of supertrees on n vertices were char-
acterized. Yuan et al. [33] further determined the first eight uniform supertrees on n
vertices with the largest spectral radii. Xiao et al. [27] characterized the unique uniform
supertree with the maximum spectral radius among all uniform supertrees with a given
degree sequence. Recently, the first two largest spectral radii of uniform supertrees with
given diameter were characterized in [28].

In this paper, we determine the first bd
2
c+ 1 largest spectral radii of supertrees among

all r-uniform supertrees with size m and diameter d and the first two smallest spectral
radii of supertrees with size m. The structure of the remaining part of the paper is as
follows: In Section 2, we give some basic definitions and results for tensor and spectra
of hypergraphs. Section 3 extends the theory of matching polynomial from graphs to
supertrees. By comparing the matching polynomial of supertrees, we generalize Li and
Feng’s results on grafting operations on graphs to supertrees in Section 4. By using
the method of grafting operations on supertrees and comparing matching polynomial of
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supertrees, we determine the first bd
2
c+ 1 spectral radii of supertrees among all r-uniform

supertrees with size m and diameter d in Section 5. In Section 6, the first two smallest
spectral radii of supertrees are determined. We give closing remarks in the last section.

2 Preliminaries

Let H = (V,E) be an r-uniform hypergraph on n vertices. A partial hypergraph H′ =
(V ′, E ′) of H is a hypergraph with V ′ ⊆ V and E ′ ⊆ E. A proper partial hypergraph
H′ of H is partial hypergraph of H with H′ 6= H. For a vertex subset S ⊂ V , let
H − S = (V ′′, E ′′) be the partial hypergraph of H satisfying that V ′′ = V \ S, and for
any e ∈ E, if e ⊆ V ′′, then e ∈ E ′′. When S = {v}, H − S is simply written as H − v.
For an edge e = {v1, . . . , vt} ∈ E(H), let H \ e stand for the partial hypergraph of H
obtained by deletion of the edge e from H, i.e. H \ e = (V,E \ {e}), and H− V (e) stand
for the partial hypergraph of H − {v1, . . . , vt}. Denote by Nk the hypergraph consisting
of k isolated vertices.

Let G and H be two r-uniform hypergraphs, and u a vertex of G and v a vertex of
H. Denote by G · H the coalescence of G and H, obtained from G ∪ H by identifying u
of G and v of H (as a new vertex w). That is, V (G · H) = V (G − u) ∪ V (H − v) ∪ {w}
and E(G · H) = E(G − u) ∪ E(H − v) ∪ {e′| e′ = e \ {u} ∪ {w}, e ∈ Eu} ∪ {e′| e′ =
e \ {v} ∪ {w}, e ∈ Ev}. H is also called an attached hypergraph at w of G · H.

Let G = (V,E) be an ordinary graph. For every r > 3, the rth power of G, denoted
by Gr, is an r-uniform hypergraph with vertex set V (Gr) = V ∪ (∪e∈E{ie,1, . . . , ie,r−2})
and edge set E(Gr) = {e ∪ {ie,1, . . . , ie,r−2, }| e ∈ E}. The rth power of an ordinary tree
is called a hypertree (see [13]). Note that all hypertrees are supertrees by the definition.
Let Pm and Sm denote the path and the star with m edges, respectively. The rth power
of Pm and Sm, denoted by P r

m and Srm, are called loose path and hyperstar, respectively.
Let H = (V,E) be an r-uniform hypergraph. An edge e is called a pendent edge if e

contains exactly r − 1 core vertices. If e is not a pendent edge, it is called a non-pendent
edge. A path P = (v0, e1, v1, . . . , vp−1, ep, vp) of H is called a pendent path (attached at
v0), if all of the vertices v1, . . . , vp−1 are of degree two, the vertex vp and all the r − 2
vertices in the set ei \ {vi−1, vi} are core vertices in H (i = 1, . . . , p).

For positive integers r and n, a real tensor A = (ai1i2···ir) of order r and dimension n
refers to a multidimensional array (also called hypermatrix) with entries ai1i2···ir such that
ai1i2···ir ∈ R for all i1, i2, . . ., ir ∈ [n].

The following product of tensors, defined by Shao [26], is a generalization of the matrix
product. Let A and B be dimension n, order r > 2 and order k > 1 tensors, respectively.
Define the product AB to be the tensor C of dimension n and order (r − 1)(k − 1) + 1
with entries as

ciα1···αr−1 =
n∑

i2,...,ir=1

aii2···irbi2α1 · · · birαr−1 , (1)

where i ∈ [n], α1, . . . , αr−1 ∈ [n]k−1.
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From the above definition, if x = (x1, x2, . . . , xn)T ∈ Cn is a complex column vector
of dimension n, then by (1) Ax is a vector in Cn whose ith component is given by

(Ax)i =
n∑

i2,...,ir=1

aii2···irxi2 · · · xir , for each i ∈ [n].

In 2005, Qi [24] and Lim [18] independently introduced the concepts of tensor eigen-
values and the spectra of tensors.

Let A be an order r dimension n tensor, x = (x1, x2, . . . , xn)T ∈ Cn a column vector
of dimension n. If there exists a number λ ∈ C and a nonzero vector x ∈ Cn such that

Ax = λx[r−1],

where x[r−1] is a vector with i-th entry xr−1i , then λ is called an eigenvalue of A, x is
called an eigenvector of A corresponding to the eigenvalue λ. The spectral radius of A is
the maximum modulus of the eigenvalues of A.

In 2012, Cooper and Dutle [8] defined the adjacency tensors for r-uniform hypergraphs.

Definition 1. ([8]) Let H = (V,E) be an r-uniform hypergraph on n vertices. The
adjacency tensor of H is defined as the order r and dimension n tensor A(H) = (ai1i2···ir),
whose (i1i2 · · · ir)-entry is

ai1i2···ir =

{
1

(r−1)! , if {i1, i2, . . . , ir} ∈ E,
0, otherwise.

The spectral radius of hypergraphH is defined as spectral radius of its adjacency tensor,
denoted by ρ(H). In [9] the weak irreducibility of nonnegative tensors was defined. It was
proved that an r-uniform hypergraph H is connected if and only if its adjacency tensor
A(H) is weakly irreducible (see [9] and [32]). Part of the Perron-Frobenius theorem for
nonnegative tensors is stated in the following for reference.

Theorem 2. ([25]) Let A be a nonnegative tensor of order r and dimension n, where
r, n > 2. Then ρ(A) is an eigenvalue of A with a nonnegative eigenvector corresponding
to it. If A is weakly irreducible, then ρ(A) is a positive eigenvalue of A with a positive
eigenvector x. Furthermore, ρ(A) is the unique eigenvalue of A with a positive eigenvec-
tor, and x is the unique positive eigenvector associated with ρ(A), up to a multiplicative
constant.

The unique positive eigenvector x with
∑n

i=1 x
r
i = 1 corresponding to ρ(H) is called

the principal eigenvector of H.
The following result can be found in [8, 15] and will be often used in the sequel.

Theorem 3. ([8],[15]) Suppose that G is a uniform hypergraph, and G ′ is a partial hyper-
graph of G. Then ρ(G ′) 6 ρ(G). Furthermore, if in addition G is connected and G ′ is a
proper partial hypergraph, we have ρ(G ′) < ρ(G).
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An operation of moving edges on hypergraphs was introduced by Li et al. in [16].
Let H = (V,E) be a hypergraph with u ∈ V and e1, . . . , ek ∈ E, such that u /∈ ei for
i = 1, . . . , k. Suppose that vi ∈ ei and write e′i = (ei \ {vi}) ∪ {u} (i = 1, . . . , k). Let
H′ = (V,E ′) be the hypergraph with E ′ = (E \ {e1, . . . , ek}) ∪ {e′1, . . . , e′k}. Then we say
that H′ is obtained from H by moving edges (e1, . . . , ek) from (v1, . . . , vk) to u.

Theorem 4. ([16]) Let H be a connected and uniform hypergraph, H′ be the hypergraph
obtained from H by moving edges (e1, . . . , ek) from (v1, . . . , vk) to u, and H′ contain no
multiple edges. If x is the principal eigenvector of H corresponding to ρ(H), and suppose
that xu > max16i6k{xvi}, then ρ(H′) > ρ(H).

The following edge-releasing operation on linear hypergraphs was given in [16].
Let H be an r-uniform linear hypergraph, e be a non-pendent edge of H and u ∈ e.

Let e1, e2, . . . , ek be all edges of G adjacent to e but not containing u, and suppose that
ei∩e = {vi} for i = 1, . . . , k. Let H′ be the hypergraph obtained from H by moving edges
(e1, . . . , ek) from (v1, . . . , vk) to u. Then H′ is said to be obtained by an edge-releasing
operation on e at u.

By the above definition we see that if H′ and H′′ are the hypergraphs obtained from
an r-uniform linear hypergraph H by an edge-releasing operation on some e at u and at
v, respectively. Then H′ and H′′ are isomorphic. So we simply say H′ is obtained from
H by an edge-releasing operation on e.

The following result was obtained by Zhou et al. [35], we will use it in the sequel.

Theorem 5. ([35]) If λ 6= 0 is an eigenvalue of a graph G, then λ
2
r is an eigenvalue of

Gr. Moreover, ρ(Gr) = ρ(G)
2
r .

3 The matching polynomial of hypergraphs

Let H = (V,E) be an r-uniform hypergraph of order n and size m. A matching of H is a
set of pairwise nonadjacent edges in E. A k-matching is a matching consisting of k edges.
We denote by m(H, k) the number of k-matchings of H. The matching number ν(H) of
H is the maximum cardinality of a matching.

Recently, Zhang et al. [34] obtained the following result.

Theorem 6. ([34]) λ is a nonzero eigenvalue of a supertree H with the corresponding
eigenvector x having all elements nonzero if and only if it is a root of the polynomial

ϕ(H, x) =

ν(H)∑

k=0

(−1)km(H, k)x(ν(H)−k)r.

Based on the result above, Clark and Cooper [6] called the polynomial in Theorem 6
as matching polynomial of H. Set m(H, 0) = 1. We redefine the matching polynomial of
H as

ϕ(H, x) =
∑

k>0

(−1)km(H, k)xn−kr.
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For exmaple, the matching polynomial of Nk is ϕ(Nk, x) = xk, rather than 1 by Zhang’s
definition. The definition here seems more appropriate as it guarantees that matching
polynomials of hypergraphs of the same order have the same degree and the result in
Theorem 6 is still valid.

Some classical results on matching polynomial of a graph can be extended to a hyper-
graph as well. However, the matching polynomial of a hypergraph has its own flavour,
e.g. as shown in [6], the roots of matching polynomial of an r-uniform hypergraph with
r > 2 need not necessarily be real.

Theorem 7. Let G and H be two r-uniform hypergraphs. Then the following statements
hold.

(a) ϕ(G ∪ H, x) = ϕ(G, x)ϕ(H, x).

(b) ϕ(G, x) = ϕ(G \ e, x)− ϕ(G − V (e), x) if e is an edge of G.

(c) If u ∈ V (G) and I = {i|ei ∈ Eu}, for any J ⊆ I, we have

ϕ(G, x) = ϕ(G \ {ei : i ∈ J}, x)−
∑

i∈J

ϕ(G − V (ei), x)

and

ϕ(G, x) = xϕ(G − u, x)−
∑

e∈Eu

ϕ(G − V (e), x).

(d)
∑

u∈V (G) ϕ(G − u, x) = d
dx
ϕ(G, x).

Proof. (a) From the fact that each k-matching in G ∪ H consists of an s-matching in G
combined with a (k − s)-matching from H for some s, the result follows immediately.

(b) In order to compute the matching polynomial, we count the number of k-matching
in G according to the edge e being contained or not. The number of k-matching not
containing e is equal to m(G \ e, k). The number of k-matching containing e is equal to
m(G − V (e), k − 1). Thus we have

m(G, k) = m(G \ e, k) +m(G − V (e), k − 1).

By comparing the coefficients of the corresponding matching polynomial in two sides of
(b), the result follows.

(c) Assume that {ei}i∈J = {e1, . . . , es}. Applying (b) of Theorem 7, we have

ϕ(G, x) = ϕ(G \ e1, x)− ϕ(G − V (e1), x)

= ϕ(G \ {e1, e2}, x)− ϕ(G − V (e2), x)− ϕ(G − V (e1), x).
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Repeatedly using (b) of Theorem 7, we get

ϕ(G, x) = ϕ(G \ {e1, e2, . . . , es}, x)−
s∑

i=1

ϕ(G − V (ei), x)

= ϕ(G \ {ei : i ∈ J}, x)−
∑

i∈J

ϕ(G − V (ei), x). (2)

Note that u is an isolated vertex of G \ {ei : i ∈ I}, it follows directly from (2) that

ϕ(G, x) = xϕ(G − u, x)−
∑

ei∈Eu(G)

ϕ(G − V (ei), x).

(d) Consider the ordered pairs (u,M), where M is a k-matching in G and u is a vertex
of G not covered by M . Counting the number of the ordered pairs, we obtain that the
number of such ordered pairs is equal to m(G, k)(n− rk), which is just the absolute value
of the coefficient of xn−rk−1 in d

dx
ϕ(G, x). On the other hand, if we choose a vertex first,

say u, then the number of k-matching not covering u is equal to m(G − u, k). Then, the
number of such ordered pairs is equal to

∑
u∈V (G)m(G −u, k), which is the absolute value

of the coefficient of xn−rk−1 in
∑

u∈V (G) ϕ(G − u, x). The desired result follows.

Proposition 8. Let T be a nontrivial r-uniform supertree. Then the spectral radius ρ(T )
of T is a simple root of the matching polynomial ϕ(T , x) of T .

Proof. First by Theorem 6, ρ(T ) is indeed a root of ϕ(T , x). Suppose, by contradiction,
ρ(T ) is a multiple root of ϕ(T , x). Then ρ(T ) must be a root of d

dx
ϕ(T , x), that is,

d
dx
ϕ(T , ρ(T )) = 0. However, by (d) of Theorem 7, d

dx
ϕ(T , x) =

∑
u∈V (T ) ϕ(T − u, x),

and for any u ∈ V (T ), ϕ(T − u, ρ(T )) > 0 due to ρ(T ) > ρ(T − u) by Theorem 3.
Thus d

dx
ϕ(T , ρ(T )) > 0, a contradiction. Consequently, ρ(T ) must be a simple root of

ϕ(T , x).

Proposition 9. Let T be an ordinary tree on n vertices, r (r > 3) a positive integer.
Then the matching polynomials of T and its rth power T r satisfy the following relation:

ϕ(T r, x) = x
(n−2)(r−2)

2 ϕ(T, x
r
2 ).

Proof. It is easy to see that m(T, k) = m(T r, k) for any k. Let n′ denote the order of T r.
Then n′ = n+ (n− 1)(r − 2). So we have

ϕ(T r, x) =
∑

k>0

(−1)km(T r, k)xn
′−kr =

∑

k>0

(−1)km(T, k)(y
2
r )n

′−kr

= y
2n′
r
−n
∑

k>0

(−1)km(T, k)yn−2k = x
(n−2)(r−2)

2 ϕ(T, x
r
2 ),

where a new variable y = x
r
2 is used in the second and third equations.
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The ordering on forests has been introduced by Lovász and Pelikán in [21]. Now we
extend the ordering on forests to superforests. Let T and T ′ be superforests of n vertices.
We call T ′ � T if ϕ(T ′, x) > ϕ(T , x) for every x > ρ(T ); call T ′ ≺ T if T ′ � T and the
polynomial ϕ(T ′, x)− ϕ(T , x) does not vanish at the point x = ρ(T ). Note that T ′ ≺ T
(T ′ � T , resp.) implies ρ(T ′) < ρ(T ) (ρ(T ′) 6 ρ(T ), resp.) by Proposition 8.

From (a) of Theorem 7, we have the following observation.

Remark 10. For r-uniform superforests T , T ′, Ti and T ′i , where i = 1, 2,

• if T ′ � T , then T ′ ∪H � T ∪H for any r-uniform superforest H;

• if for i = 1, 2, T ′i ≺ Ti, then T ′1 ∪ T ′2 ≺ T1 ∪ T2.

4 Grafting transformations on uniform supertrees

Li and Feng [17] investigated how the spectral radius change when a certain transformation
is applied to the graph, and obtained the following result.

Theorem 11. ([17]) Let u, v be two vertices of G such that d(u, v) = m. Let G(u, v; p, q)
denote the graph obtained from G by attaching a path of length p at u and a path of length
q at v. Then ρ(G(u, v; p, q)) > ρ(G(u, v; p+1, q−1)) under any of the following conditions

1. m = 0, deg(u) > 1, and p > q > 1;

2. m = 1, deg(u) > 2, deg(v) > 2 and p > q > 1;

3. m > 1, deg(u) > 2, deg(v) > 2, p− q > m and q > 1.

Since then, the result has been extensively used in spectral perturbation and proved to
be efficient in ordering graphs by spectral radius. The result above is proved by compar-
ing characteristic polynomials of graphs. The characteristic polynomial of a hypergraph
is complicated and very little is known about it up to now. However the result of Theo-
rem 6 makes it feasible to compare the spectral radii of supertrees by using the matching
polynomials of supertrees.

It is known that for any forest, its matching polynomial and characteristic polynomial
coincide. Following a similar proof of Lemma 4 in [21], the following result can be obtained.

Proposition 12. If a+ b = c+ d, a < c 6 d, then Pa ∪ Pb ≺ Pc ∪ Pd.

Based on Propositions 9 and 12, the corresponding result for hypertree can be easily
obtained.

Proposition 13. If a+b = c+d, a < c 6 d, r(r > 3) is an integer, then P r
a∪P r

b ≺ P r
c ∪P r

d .

Theorem 14. If T is an uniform supertree, and T ′ is a proper partial hypergraph of T
with V (T ′) = V (T ), then for any x > ρ(T ), ϕ(T , x) < ϕ(T ′, x). In particular, T ′ ≺ T .
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Proof. Without loss of generality, we assume that T ′ = T \e for some e in T . If x > ρ(T ),
then x > ρ(T − V (e)) by Theorem 3. So ϕ(T − V (e), x) > 0. Further by Theorem 7,

ϕ(T , x) = ϕ(T ′, x)− ϕ(T − V (e), x) < ϕ(T ′, x),

the desired result follows.

H1

e

vu

H2H

· · ·

··· ·· ·

T
··
·

· ·
·

T

qp

qp

2

1 1

2
2

2

1 1

v

(a) (b)

Figure 1: Supertrees (a) T (v; p, q); (b) T (1)(u, v; p, q).

Suppose that T is an r-uniform supertree and v is a vertex in T . Let T (v; p, q) be
obtained by attaching two pendent paths of length p and q at v (see Fig. 1(a)).

Theorem 15. If T is a nontrivial r-uniform supertree and p > q > 1, then T (v; p, q) �
T (v; p+ 1, q − 1). In particular, ρ(T (v; p, q)) > ρ(T (v; p+ 1, q − 1)).

Proof. We first consider the case that p > q = 1. Applying (b) of Theorem 7 on T (v; p, 1)
and the pendent edge attached at v, we have

ϕ(T (v; p, 1), x) =xr−1ϕ(T (v; p, 0), x)− xr−2ϕ((T − v) ∪ P r
p−1, x). (3)

Similarly, applying (b) of Theorem 7 on T (v; p+1, 0) and the pendent edge of the pendent
path of length p+ 1 attached at v, we have

ϕ(T (v; p+ 1, 0), x) =xr−1ϕ(T (v; p, 0), x)− xr−2ϕ(T (v; p− 1, 0), x). (4)

By (3) and (4), we deduce that

ϕ(T (v; p, 1), x)− ϕ(T (v; p+ 1, 0), x) = x(r−2)(ϕ(T (v; p− 1, 0), x)− ϕ((T − v) ∪ P r
p−1, x)).

Note that (T − v) ∪ P r
p−1 is a proper partial hypergraph of T (v; p − 1, 0). By Theorems

3 and 14, the desired result follows.
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When p > q > 2, applying (b) of Theorem 7 on T (v; p, q) and the pendent edge of the
pendent path of length q attached at v, we have

ϕ(T (v; p, q), x) =xr−1ϕ(T (v; p, q − 1), x)− xr−2ϕ(T (v; p, q − 2), x). (5)

Similarly,

ϕ(T (v; p+ 1, q − 1), x) =xr−1ϕ(T (v; p, q − 1), x)− xr−2ϕ(T (v; p− 1, q − 1), x). (6)

By (5) and (6), we deduce that

ϕ(T (v; p, q), x)− ϕ(T (v; p+ 1, q − 1), x)

= xr−2(ϕ(T (v; p− 1, q − 1), x)− ϕ(T (v; p, q − 2), x)).

Continue this process, we get

ϕ(T (v; p, q), x)− ϕ(T (v; p+ 1, q − 1), x)

= x(r−2)(q−1)(ϕ(T (v; p− q + 1, 1), x)− ϕ(T (v; p− q + 2, 0), x)). (7)

Applying Theorem 7 once more, we have

ϕ(T (v; p− q + 1, 1), x) =xr−1ϕ(T (v; p− q + 1, 0), x)− xr−2ϕ((T − v) ∪ P r
p−q, x) (8)

and

ϕ(T (v; p− q + 2, 0), x) =xr−1ϕ(T (v; p− q + 1, 0), x)− xr−2ϕ(T (v; p− q, 0), x). (9)

Substituting (8) and (9) into (7), we obtain

ϕ(T (v; p, q), x)− ϕ(T (v; p+ 1, q − 1), x)

= xq(r−2)(ϕ(T (v; p− q, 0), x)− ϕ((T − v) ∪ P r
p−q, x)).

Note that (T − v) ∪ P r
p−q is a proper partial hypergraph of T (v; p − q, 0). Applying

Theorems 3 and 14, we get the desired result.

It should be pointed out that the result in Theorem 15 has been proved in [29] for
general r-uniform hypergraph.

Suppose that T is an r-uniform supertree (with at least two edges) and u and v are
two vertices incident with an edge e in T . Let T (1)(u, v; p, q) (see Fig. 1(b)) be obtained
by attaching two pendent paths of length p and q at u and v, respectively.

Theorem 16. Let T be the supertree defined as above, and further satisfy that one vertex
in e \ {u} is of degree at least 2. If p > q > 1, then

T (1)(u, v; p, q) � T (1)(u, v; p+ 1, q − 1).

In particularly,

ρ(T (1)(u, v; p, q)) > ρ(T (1)(u, v; p+ 1, q − 1)).
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Proof. Using the similar argument as in the proof of Theorem 15, we have

ϕ(T (1)(u, v; p, q), x)− ϕ(T (1)(u, v; p+ 1, q − 1), x)

= x(r−2)(q−1)(ϕ(T (1)(u, v; p− q + 1, 1), x)− ϕ(T (1)(u, v; p− q + 2, 0), x))

= x(r−2)(q−1)(xr−2ϕ(T (u; p− q, 0), x)− ϕ((T − v)(u; p− q + 1, 0), x)). (10)

Let H1 and H2 be the components of T \ e containing vertex u and v respectively, and
H be the union of the remaining components. We denote H ′ as the partial hypergraph
of H obtained from H by removing r − 2 vertices contained in e.

When p = q > 1, applying (b) of Theorem 7 to T (u; 0, 0) and edge e, we have

ϕ(T (u; 0, 0), x) = ϕ(H1 ∪H ∪H2, x)− ϕ((H1 − u) ∪H ′ ∪ (H2 − v), x). (11)

Similarly, applying (b) of Theorem 7 to (T −v)(u; 1, 0) and the pendent edge attached
at u, we have

ϕ((T − v)(u; 1, 0), x)

= xr−1ϕ(H1 ∪H ∪ (H2 − v), x)− ϕ((H1 − u) ∪H ∪ (H2 − v), x). (12)

Substituting (11) and (12) into (10), we obtain

ϕ(T (1)(u, v; p, q), x)− ϕ(T (1)(u, v; p+ 1, q − 1), x)

= xq(r−2)[ϕ(H1 ∪H ∪H2, x)− xϕ(H1 ∪H ∪ (H2 − v), x)]

+ x(q−1)(r−2)[ϕ((H1 − u) ∪H ∪ (H2 − v), x)− xr−2ϕ((H1 − u) ∪H ′ ∪ (H2 − v), x)]

= xq(r−2)[ϕ(H1 ∪H ∪H2, x)− ϕ(H1 ∪H ∪ (H2 − v) ∪ {v}, x)] + x(q−1)(r−2)[ϕ((H1 − u)

∪H ∪ (H2 − v), x)− ϕ((H1 − u) ∪H ′ ∪ (V (e)− {u, v}) ∪ (H2 − v), x)]. (13)

Observe that E(H) ∪ E(H2) 6= ∅ follows from the assumption that one vertex in
e \ {u} is of degree at least 2. Since E(H)∪E(H2) 6= ∅, either (H2− v)∪{v} is a proper
partial hypergraph of H2, or H ′∪ (V (e)−{u, v}) is a proper partial hypergraph of H. By
Theorems 3, 14 and (13), the result follows.

When p > q > 1, applying (b) of Theorem 7 to T (u; p− q, 0) and the edge e, we have

ϕ(T (u; p− q, 0), x) =ϕ(H1(u; p− q, 0) ∪H ∪H2)

− xr−2ϕ((H1 − u) ∪ P r
p−q−1 ∪H ′ ∪ (H2 − v)). (14)

Similarly, applying (b) of Theorem 7 to (T − v)(u; p− q + 1, 0) and the pendent edge of
the pendent path of length p− q + 1 attached at u, we have

ϕ((T − v)(u; p− q + 1, 0), x) =xr−1ϕ(H1(u; p− q, 0) ∪H ∪ (H2 − v), x)

− xr−2ϕ(H1(u; p− q − 1, 0) ∪H ∪ (H2 − v), x). (15)
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Substituting (14) and (15) into (10) yields

ϕ(T (1)(u, v; p, q), x)− ϕ(T (1)(u, v; p+ 1, q − 1), x)

= xq(r−1)ϕ(H1(u; p− q, 0), x)ϕ(H, x)[ϕ(H2, x)− xϕ(H2 − v), x)] (16)

+ xq(r−1)ϕ(H2 − v, x)[ϕ(H1(u; p− q − 1, 0) ∪H, x)− ϕ((H1 − u)

∪ P r
p−q−1 ∪H ′ ∪Nr−2, x)].

We consider the following two cases depending on whether or not E(H1) ∪ E(H2) is
empty.
Case 1. E(H1)∪E(H2) 6= ∅. Without loss of generality, we assume that E(H1) 6= ∅. It
is easily seen that (H1− u)∪P r

p−q−1 is a proper partial hypergraph of H1(u; p− q− 1, 0).
By Theorems 3, 14 and (16), we prove the desired result.
Case 2. E(H1)∪E(H2) = ∅. Since E(H1) is empty, H1(u; p−q−1, 0) and (H1−u)∪P r

p−q−1
are equal to P r

p−q−1. Since E(H2) = ∅, ϕ(H2, x)−xϕ(H2−v), x) = 0. Then (16) becomes

ϕ(T (1)(u, v; p, q), x)− ϕ(T (1)(u, v; p+ 1, q − 1), x)

= xq(r−1)ϕ(H2 − v, x)ϕ(P r
p−q−1, x)[ϕ(H, x)− ϕ(H ′ ∪Nr−2, x)].

Note that E(H) 6= ∅ in this case. So H ′ ∪ Nr−2 is proper partial hypergraph of H. By
Theorems 3, 14 and (16), desired result follows.

Tu

v

u Tv
ws−1

w1

es

Figure 2: Supertree T (s)(u, v; 6, 3).

Suppose that T is an r-uniform supertree and u and v are two vertices connected by a
path P of length s in T , say P = (u, e1, w1, e2, w2, . . . , es−1, ws−1, es, v), and all the r − 2
vertices in the set ei \ {wi−1, wi} are of degree one in T for i = 2, . . . , s, where ws = v.
Let T (s)(u, v; p, q) be obtained by attaching two pendent paths of length p and q at u and
v respectively (see Fig. 2).
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Theorem 17. Let T be the supertree defined as above, and further satisfy that P is not
a pendent path attached at u. If p− q > s > 1 and q > 1, then

T (s)(u, v; p, q) � T (s)(u, v; p+ 1, q − 1).

In particular,

ρ(T (s)(u, v; p, q)) > ρ(T (s)(u, v; p+ 1, q − 1)).

Proof. We proceed by induction on s. For the case s = 1, the assertion holds by Theorem
16. Let Tu and Tv denote the components of T \es containing u and v, respectively. Using
the similar argument as in the proof of Theorem 16, we have

ϕ(T (s)(u, v; p, q), x)− ϕ(T (s)(u, v; p+ 1, q − 1), x)

= x(q−1)(r−2)[ϕ(T (s)(u, v; p− q + 1, 1), x)− ϕ(T (u; p− q + 2, 0), x)]

= x(q−1)(r−2)[xr−2ϕ(T (u; p− q, 0), x)− ϕ((T − v)(u; p− q + 1, 0), x)]

= xq(r−2)[ϕ(T (u; p− q, 0), x)− ϕ(T (s−1)
u (u,ws−1; p− q + 1, 0) ∪ (Tv − v), x)], (17)

where the last equality follows from (T −v)(u; p−q+1, 0) ∼= T (s−1)
u (u,ws−1; p−q+1, 0)∪

(Tv − v) ∪Nr−2.
Applying (c) of Theorem 7 to T (u; p− q, 0) and the edges incident to v in Tv, we have

ϕ(T (u; p− q, 0), x) =ϕ(Tv − v, x)ϕ(T (s−1)
u (u,ws−1; p− q, 1), x)−

xr−2ϕ(Tu(u; p− q, 0), x)
∑

e∈Ev∩E(Tv)

ϕ(Tv − V (e), x). (18)

Substituting (18) into (17), we obtain

ϕ(T (s)(u, v; p, q), x)− ϕ(T (s)(u, v; p+ 1, q − 1), x)

= xq(r−2)ϕ(Tv − v, x)[ϕ(T (s−1)
u (u,ws−1; p− q, 1), x)− ϕ(T (s−1)

u (u,ws−1; p− q + 1, 0), x)]

− x(q+1)(r−2)ϕ(Tu(u; p− q, 0), x)
∑

e∈Ev∩E(Tv)

ϕ(Tv − V (e), x). (19)

By induction hypothesis, T (s−1)
u (u,ws−1; p−q, 1) � T (s−1)

u (u,ws−1; p−q+1, 0). Combining
this with Theorems 3 and 14, we prove the theorem.

Lemma 18. Let T be an r-uniform supertree with e as a non-pendent edge, and T ′ be
obtained by edge-releasing e of T . Then T ′ is a uniform supertree and T ≺ T ′.

Proof. That T ′ is a uniform supertree has been proved in [16]. T may be regarded as
one consisting of s > 2 supertrees, say H1, . . . , Hs, attached at vertices v1, . . . , vs of e,
respectively. It suffices to prove the assertion for s = 2. Let H1 ·H2 be the coalescence of
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H1 and H2 obtained by identifying v1 of H1 and v2 of H2. It is not difficult to verify that
T ′ \ e ∼= H1 ·H2 ∪Nr−1 and T ′ − V (e) ∼= (H1 − v1) ∪ (H2 − v2). By Theorem 7, we have

ϕ(T , x) = ϕ(T \ e, x)− ϕ(T − V (e), x)

= xr−2ϕ(H1 ∪H2, x)− ϕ((H1 − v1) ∪ (H2 − v2), x). (20)

and

ϕ(T ′, x) = ϕ(T ′ \ e, x)− ϕ(T ′ − V (e), x)

= xr−1ϕ(H1 ·H2, x)− ϕ((H1 − v1) ∪ (H2 − v2), x). (21)

By (20) and (21), we deduce that

ϕ(T , x)− ϕ(T ′, x) = xr−2[ϕ(H1 ∪H2, x)− xϕ(H1 ·H2, x)]. (22)

Applying (c) of Theorem 7 to H1 ∪H2 and edges in H1 incident to v1, we have

ϕ(H1 ∪H2, x) = xϕ((H1 − v1) ∪H2, x)− ϕ(H2, x)
∑

ei∈Ev1∩E(H1)

ϕ(H1 − V (ei), x). (23)

Similarly,

ϕ(H1 ·H2, x) = ϕ((H1 − v1) ∪H2, x)− ϕ(H2 − v2, x)
∑

ei∈Ev1∩E(H1)

ϕ(H1 − V (ei), x). (24)

Substituting (23) and (24) into (22), we obtain

ϕ(T , x)− ϕ(T ′, x) = xr−2
∑

ei∈Ev1∩E(H1)

ϕ(H1 − V (ei), x)[xϕ(H2 − v2, x)− ϕ(H2, x)].

By Theorems 3 and 14, we have ϕ(T , x)−ϕ(T ′, x) > 0 if x > ρ(T ′), so T ≺ T ′ holds.

As an application of Theorems 15 and 16, the minimal supertree can be characterized
as follows. Note that the upper bound and the extremal supertree have been obtained in
[16], and they are listed here for completeness.

Theorem 19. ([16]) If T is an r-uniform supertree with m edges, then

P r
m � T � Srm (25)

and (
2 cos

π

m+ 2

)2/r

6 ρ(T ) 6 m1/r, (26)

with left equality in Eq. (25) and Eq. (26) if and only if T ∼= P r
m and right equality in

Eq. (25) and Eq. (26) if and only if T ∼= Srm.
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1
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· · ·

1

m
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v Tv
� �H H

H(v)T

Figure 3: Supertree H(v)T , T with m edges.

Actually, using Theorems 15, 16 and Lemma 18, we can deduce the following more
general result.

Theorem 20. Let H be an r-uniform supertree, and v a non-isolated vertex of H. Let
H(v)T denote the supertree obtained from H together with an attached supertree T at v
of H, see Fig. 3. Then

H(v)P r
m � H(v)T � H(v)Srm,

where the left–hand side equality holds if and only if T ∼= P r
m with v as its end vertex

whereas the right–hand side equality holds if and only if T ∼= Srm with v as its center .

5 Extremal supertrees with given diameter

Let S(m, d, r) be the set of r-uniform supertrees with m edges and diameter d. Xiao et
al. [28] determined the first two largest spectral radii of supertrees in S(m, d, r). In this
section, we determine the first bd

2
c+ 1 largest spectral radii of supertrees in S(m, d, r) by

using edge-grafting operations and comparing matching polynomials of supertrees.
Let H be an r-uniform hypergraph and u a vertex of H. Let P r

d = (v1, e1, v2, e2, . . . , ed,
vd+1) be a loose path of length d. Denote by P r

d (vi, u)H and P r
d (ej, u)H the hypergraphs

obtained by identifying vertex u of H with vertex vi of P r
d and a core vertex of P r

d in ej
respectively (see Fig. 4).

As an immediate application of Theorems 15 and 16, we have the following result.

Theorem 21. Let T be an r-uniform supertree, r > 3. Then

(a) P r
d (vi, u)T � P r

d (vj, u)T , if 2 6 j < i 6 bd/2c+ 1;

(b) P r
d (ei, u)T � P r

d (ej, u)T , if 2 6 j < i 6 dd/2e.
Proof. Note that P r

d (vi, u)T and P r
d (ei, u)T can be depicted as T (u; i− 1, d− i+ 1) and

(T ′)(1)(vi, vi+1; i− 1, d− i) respectively, where T ′ denotes the supertree consists of T and
ei. The assertions follow directly from Theorem 15 and Theorem 16 respectively.
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· · ·

H
u

· · ·
e1 e2 ei−1 ei eded−1

(a)
vi

· · ·

H
u
· · ·

e1 e2 ej eded−1

(b)

Figure 4: Supertrees (a) P r
d (vi, u)H; (b) P r

d (ej, u)H.

Theorem 22. Let T be an r-uniform supertree and P r
d be a loose path of length d, with

d > 3 and r > 3. Then for any 2 6 i 6 d, we have

P r
d (ed d

2
e, u)T ≺ P r

d (vi, u)T .

Proof. Suppose that e1, e2, . . . , es are all edges incident with vertex u in T . Applying (c)
of Theorem 7 to P r

d (ed d
2
e, u)T and edges e1, e2, . . . , es, we have

ϕ(P r
d (ed d2 e, u)T , x) =ϕ(P r

d , x)ϕ(T − u, x)− xr−3ϕ(P r
b d2 c

, x)ϕ(P r
d d2 e−1

, x)

s∑

j=1

ϕ(T − V (ej), x).

Similarly,

ϕ(P r
d (vi, u)T , x) =ϕ(P r

d , x)ϕ(T − u, x)− x2r−4ϕ(P r
i−2, x)ϕ(P r

d−i, x)
s∑

j=1

ϕ(T − V (ej), x).

Then

ϕ(P r
d (ed d

2
e, u)T , x)− ϕ(P r

d (vi, u)T , x)

= xr−3
s∑

j=1

ϕ(T − V (ej), x)[xr−1ϕ(P r
i−2 ∪ P r

d−i, x)− ϕ(P r
b d
2
c ∪ P

r
d d
2
e−1, x)]. (27)

Since

xr−1ϕ(P r
i−2 ∪ P r

d−i, x)− ϕ(P r
b d
2
c ∪ P

r
d d
2
e−1, x)

= ϕ(P r
d−i, x)[ϕ(P r

i−2 ∪Nr−1, x)− ϕ(P r
i−1, x)]

+ ϕ(P r
i−1 ∪ P r

d−i, x)− ϕ(P r
b d
2
c ∪ P

r
d d
2
e−1, x),

and P r
i−1 ∪ P r

d−i � P r
b d
2
c ∪ P

r
d d
2
e−1 by Proposition 13, we have if x > ρ(P r

d (vi, u)T ), then

by Theorems 3, 14, ϕ(P r
i−2 ∪Nr−1, x)− ϕ(P r

i−1, x) > 0 and ϕ(P r
i−1 ∪ P r

d−i, x)− ϕ(P r
b d
2
c ∪
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P r
d d
2
e−1, x) > 0. Thus by (27), we have ϕ(P r

d (ed d
2
e, u)T , x) − ϕ(P r

d (vi, u)T , x) > 0 if x >

ρ(P r
d (vi, u)T ). The proof is finished.

The following result follows as an immediate consequence of the above two theorems.

Corollary 23. Let T be an r-uniform supertree, r > 3. Then

(a) P r
d (ei, u)T ≺ P r

d (vi, u)T , if i = 2, 3, . . . , d;

(b) P r
d (ei, u)T ≺ P r

d (vi+1, u)T , if i = 2, 3, . . . , d− 1.

For convenience, we adopt the notation from [10]. Let m, d, i be integers with 2 6
i 6 d 6 m − 1, and Tm,d be the set of trees of size m and diameter d. We use P =
(v1, e1, v2, e2, . . . , vd, ed, vd+1) to denote the path of length d.

Let T(m,d)(i) be the tree on m edges (with diameter d) obtained from the path P

by attaching m − d new pendent edges to the vertex vi. Let T́(m,d) = {T(m,d)(i) : i =
2, 3, . . . , d}.

Let m, d, i, j be integers with 2 6 i 6= j 6 d 6 m− 2. Let T(m,d)(i, j) be the tree on m
edges (with diameter d) obtained from the path P by attachingm−d−1 new pendent edges
to the vertex vi and a new pendent edge to vj, respectively. Let T ′′ = T(m,d)(dd2e, dd2e+ 1).

Lemma 24. ([10]) For any tree T ∈ Tm,d \ {T́(m,d) ∪ T ′′} with m > d + 3 > 6, we have
ρ(T ) < ρ(T ′′).

The following results were obtained in [10] and we shall extend these results from trees
to supertrees in this section.

Theorem 25. ([10]) (a) The first bd
2
c + 1 spectral radii of trees in the set T(m,d) with

m > d+ 3 and d > 3 are T(m,d)(bd2c+ 1), T(m,d)(bd2c), . . . , T(m,d)(3), T(m,d)(2), T ′′.
(b) The first bd

2
c − 1 spectral radii of trees in the set T(m,d) with m = d+ 2 and d > 4

are T(m,d)(bd2c+ 1), T(m,d)(bd2c), . . . , T(m,d)(3).

· · · · · ·v1 v2 vd+1
vdd2e vdd2e+1

m−d−1︷ ︸︸ ︷

· · · · · · · · · · · ·vdd2e−1 vd

Figure 5: Supertree T ′′ = T r(m,d)(dd/2e, dd/2e+ 1).

Let m, d, i be integers with 2 6 i 6 d − 1 6 m. Let T(m,d,r)(i) be a supertree
P r
d (ei, u)T , where T is a hyperstar with m − d edges and u as its center. Note that
T(m,d,r)(i) ∼= T(m,d,r)(d− i+ 1) (2 6 i 6 d− 1).

Let T́ r(m,d) = {T r(m,d)(i) : i = 2, 3, . . . , d} consisting of the rth power of T(m,d)(i) for

i = 2, 3, . . . , d, and let T ′′ := T r(m,d)(dd2e, dd2e+ 1) (see Fig. 5).
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Lemma 26. For any m > d+ 2 > 5 and r > 3, we have T ′′ � T(m,d,r)(dd/2e).

Proof. For simplicity, let a = m − d − 1 and b = dd
2
e. Applying (c) of Theorem 7 to T ′′

and m− d− 1 pendent edges attached at vd d
2
e, we have

ϕ(T ′′, x) = xa(r−1)ϕ(T r(d+1,d)(b+ 1), x)− ax(a+1)(r−1)−2ϕ(P r
b−2 ∪ P r

d−b+1, x). (28)

Applying (c) of Theorem 7 to T r(d+1,d)(b+ 1) and the pendent edge attached at vd d
2
e+1, we

get

ϕ(T r(d+1,d)(b+ 1), x) = xr−1ϕ(P r
d , x)− x2(r−2)ϕ(P r

b−1 ∪ P r
d−b−1, x) (29)

Substituting (29) into (28), we deduce

ϕ(T ′′, x) = xa(r−1)ϕ(T r(d+1,d)(b+ 1), x)− ax(a+1)(r−1)−2ϕ(P r
b−2 ∪ P r

d−b+1, x)

= x(a+1)(r−1)ϕ(P r
d , x)− x(a+2)(r−1)−2ϕ(P r

b−1 ∪ P r
d−b−1, x)

− ax(a+1)(r−1)−2ϕ(P r
b−2 ∪ P r

d−b+1, x). (30)

Similarly,

ϕ(T(m,d,r)(dd/2e), x) = x(a+1)(r−1)ϕ(P r
d , x)− (a+ 1)x(a+1)(r−1)−2ϕ(P r

b−1 ∪ P r
d−b, x). (31)

By (30) and (31), we have

ϕ(T ′′, x)− ϕ(T(m,d,r)(dd/2e), x)

= x(a+1)(r−1)−2ϕ(P r
b−1, x)[ϕ(P r

d−b, x)− ϕ(P r
d−b−1 ∪Nr−1, x)]

+ ax(a+1)(r−1)−2[ϕ(P r
b−1 ∪ P r

d−b, x)− ϕ(P r
b−2 ∪ P r

d−b+1, x)]. (32)

Obviously, P r
d−b � P r

d−b−1 ∪Nr−1 as P r
d−b−1 ∪Nr−1 is a proper partial hypergraph of P r

d−b.
Meantime, by Proposition 13, we have

P r
b−1 ∪ P r

d−b = P r
d d
2
e−1 ∪ P

r
b d
2
c � P r

d d
2
e−2 ∪ P

r
b d
2
c+1

= P r
b−2 ∪ P r

d−b+1.

Therefore, by Theorems 3, 14 and (32), ϕ(T ′′, x) < ϕ(T(m,d,r)(dd/2e), x) if x > ρ(T ′′).
Consequently, T ′′ � T(m,d,r)(dd/2e).

Lemma 27. For any T ∈ S(m, d, r) \ {T́ r(m,d) ∪ T ′′} with m > d+ 3 and d > 3, we have

ρ(T ) < ρ(T ′′).

Proof. Choose a supertree T ∈ S(m, d, r) \ {T́ r(m,d) ∪ T ′′} with the maximum spectral

radius. Let P r
d = (v1, e1, v2, e2, . . . , vd, ed, vd+1) be the diametral path in T . Then T \

{e1, . . . , ed} is disconnected. Let T1, . . . , Tk be the connected components of T \{e1, . . . , ed}
which are not isolated vertex. Then Tj and P r

d share a unique common vertex, say wj,
for j = 1, . . . , k. By Theorem 20 and the maximality of T , we have
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(1) either every Tj is a hyperstar with wj as its center, for j = 1, . . . , k.

(2) or there is one of T1, . . . , Tk, say T1, such that if T1 is a hyperstar with center w1, T
will then become T ′′ or a maximal one in T́ r(m,d).

(1) First consider the former case, that is, every Tj is a hyperstar with wj as its center,
for j = 1, . . . , k. We distinguish two cases according to wi (i = 1, . . . , k) are contained in
{v2, . . . , vd} or not.
Case 1. {w1, . . . , wk} ⊆ {v2, . . . , vd}.
Then T must be an rth power of a tree T of diameter d and size m, and T ∈ Tm,d \
{T́(m,d) ∪ T ′′}. From Lemma 24 and Lemma 5, it follows immediately that

ρ(T ) = ρ(T )2/r < ρ(T ′′)2/r = ρ(T ′′).

Case 2. {w1, . . . , wk} 6⊆ {v2, . . . , vd}.
If k = 1, then w1 is a vertex of an edge ei, and w1 6∈ {vi, vi+1}, where 2 6 i 6 d− 1. Then
T ∼= T(m,d,r)(i). By Theorem 21 and Lemma 26, we have

ρ(T ) 6 ρ(T(m,d,r)(dd/2e)) < ρ(T ′′).

If k > 2, without loss of generality, we may assume w1 is a vertex of edge ei and
w1 6∈ {vi, vi+1}. Denote by H1 and H2 the supertrees obtained from T by moving all
edges in Ew1 ∩ E(T1) from w1 to vi and vi+1, respectively. By Corollary 23, ρ(T ) <
min{ρ(H1), ρ(H2)}. The maximality of ρ(T ) implies that H1, H2 ∈ {T́ r(m,d) ∪T ′′} and one

of them is T ′′. So ρ(T ) < ρ(T ′′).
(2) In the latter case, clearly either T = P r

d (vbd/2c+1, w1)T1 or T = P̃ r
d (vdd/2e, w1)T1,

where P̃ r
d denotes the one obtained from P r

d by attaching a pendent edge at vertex vdd/2e+1.

Assume that T1 has m1 edges. By Theorem 20, ρ(P̃ r
d (vdd/2e, w1)T1) < ρ(P̃ r

d (vdd/2e, w1)S
r
m1

),

where Srm1
has w1 as its center and P̃ r

d (vdd/2e, w1)S
r
m1

) ∼= T ′′.
Now it remains to consider the case that T = P r

d (vbd/2c+1, w1)T1. Since T1 is not
a hyperstar with center w1, there exists some edge e ∈ Ew1(T1) such that e is a non-
pendent edge. Assume that e has intersection vertices w1, w2, . . . , wl (l > 2), and T1 (see
Fig. 6) has T ′i as the attached supertree at wi, for i = 1, . . . , l. Assume that T ′1 has
m′1 edges. Let H1 (see Fig. 6) denote the supertree obtained by replacing each T ′i with
a hyperstar of the same size centered at wi for i = 1, . . . , l. By Theorem 20, we have
ρ(T ) 6 ρ(H1), with equality only if T has been the form of H1. Let H2 (see Fig. 6)
denote the supertree obtained by moving all pendent edges attached at w2, . . . , wl to a
vertex, say w2. By Theorem 4, ρ(H1) 6 ρ(H2), with equality only if l = 2. Let Ṫ and
T̈ (see Fig. 6) denote the supertrees obtained by moving all pendent edges from w1 to
w2 and moving all but one pendent edges from w2 to w1, respectively. By Theorem 4, we
have ρ(H2) 6 max{ρ(Ṫ ), ρ(T̈ )}. By the maximality of T in S(m, d, r) \ {T́ r(m,d) ∪ T ′′}, T
should be Ṫ or T̈ . However, both Ṫ and T̈ are rth power of respective trees of diameter
d and size m. Similarly as in Case 1, we have max{ρ(Ṫ ), ρ(T̈ )} < ρ(T ′′). The proof is
finished.
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Figure 6: Supertrees T , H1, H2, Ṫ and T̈ .

By Theorems 5, 25 and Lemma 27, we have the following results.

Theorem 28. The first bd
2
c + 1 largest spectral radii of supertrees in the set S(m, d, r)

with m > d+ 3 and d > 3 are T r(m,d)(bd/2c+ 1), T r(m,d)(bd/2c), . . . , T r(m,d)(3), T r(m,d)(2), T ′′.

Theorem 29. The first bd
2
c − 1 largest spectral radii of supertrees in the set S(m, d, r)

with m = d+ 2 and d > 4 are T r(m,d)(bd/2c+ 1), T r(m,d)(bd/2c), . . . , T r(m,d)(3).

6 The second minimal supertree

Let P r
m−1 = (v1, e1, v2, e2, . . . , em−1, vm) be a loose path of length m− 1. Denote by Dm,r

the supertree obtained from P r
m−1 by attaching a pendent edge at a core vertex of e2 (see

Fig. 7(a)). Let P̀ r
m be the supertree obtained from P r

m−1 by attaching a pendent edge at
the vertex v2 (see Fig. 7(b)). We use S(m, r) to denote the set of r-uniform supertrees
with m edges.

Theorem 30. Any r-uniform supertree T with m (m > 4) edges different from P r
m

satisfies T � Dm,r.

Proof. Choose a supertree T0 from S(m, r)\{P r
m} such that T0 � T for any T ∈ S(m, r)\

{P r
m}. Then T0 either has a vertex of degree more than two or has an edge with at least

three intersection vertices. We consider the two cases as follows.
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(a) · · ·
e1 e2 e3 em−2 em−1

em

(b) · · ·
e1 e2 e3 em−2 em−1

em

Figure 7: Supertrees (a) Dm,r; (b) P̀ r
m.

Case 1. There exists a vertex of degree greater than two, say v ∈ V (T0) with deg(v) > 3.
Thus T0 can be described as a supertree in the form of some supertrees, say T1, . . . , Ts
(s > 3), attached at a single vertex v. Denote T0 by T1(v)T2(v) · · · (v)Ts (see Fig. 8(a)).
Assume that Ti has mi edges for i = 1, . . . , s. Let m′ = m− (m1 +m2). By Theorems 20
and 15, we have

T1(v)T2(v) · · · (v)Ts � P r
m1

(v)P r
m2

(v) · · · (v)P r
ms
� P r

m1
(v)P t

m2
(v)P r

m′ � P r
1 (v)P r

1 (v)P r
m−2,

where all loose paths P r
m′ , P

r
m−2 and P r

mj
(j = 1, . . . , s) have v as its end vertex. By the

minimality of T0, T0 = P r
1 (v)P r

1 (v)P r
m−2 = P̀ r

m.

T1
v

T2

Ts

T 1

e

T2 Ts

· · ·

(b)(a)

· · ·

T 1T 1T 1T 1T 1

v1 v2 vs

Figure 8: Supertrees (a) and (b).

Case 2. There exists an edge e of T0 with at least three intersection vertices. Without loss
of generality, assume that e = {v1, . . . , vr} and deg(vi) > 2 for i = 1, . . . , s (3 6 s 6 r),
and other vertices in e (if any) are core vertices (see Fig. 8(b)). Then T0 may be viewed
as having been obtained by attaching supertrees, say T1, . . . , Ts, at v1, . . . , vs respectively.

By Theorems 16, 20 and the minimality of T0, the following conclusions hold.
(1) T1, . . . , Ts are pendent paths attached at v1, . . . , vs respectively.
(2) s = 3.
(3) Two of T1, T2, T3 are of length one.
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Therefore, T0 = Dm,r.

Combining two cases above, we have shown that T0 ∈ {P̀ r
m, Dm,r}. Further by (a)

of Corollary 23, we have P̀ r
m � Dm,r. So T0 = Dm,r. Thus we conclude that for any

T ∈ S(m, r) \ {P r
m}, T � Dm,r.

Theorem 31. The first two smallest spectral radii of supertrees with m (m > 4) edges
are P r

m, Dm,r.

7 Closing remarks

We conclude this section with some remarks on matching polynomial of a supertree. The
work in this paper is based on the relation between the roots of matching polynomial of a
supertree and its spectrum developed in [34]. Using the recurrence relations of matching
polynomial of supertrees, the effect on the spectral perturbation of supertree by grafting
edges in various situations can be explained. The methods are initially used to compare
spectral radii of supertrees in this paper. The methods are shown to be efficient in dealing
with extremal supertrees with respect to their spectral radii, such as in finding the first
two smallest supertrees and the first several largest supertrees with given diameter.

For the corresponding problem on a hypergraph, the characteristic polynomial of ad-
jacency tensor of a hypergraph might be used to compare spectral radii of hypergraphs.
However, the degree of characteristic polynomial of a hypergraph is very high relative to
its order, and very little is known about it up to now. Finally, we pose the following
problem.

Problem 32. What kind of polynomial should be associated with a hypergraph satisfying
the following conditions:

(1) The roots of the associated polynomial consist of the eigenvalues, especially the
spectral radius of the hypergraph.

(2) The coefficients of the polynomial reflect certain structural information of the
hypergraph, such as matching, cyclic structure or something more complicated.
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