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Abstract

In this paper we introduce a way of partitioning the paths of shortest lengths
in the Bruhat graph B(u, v) of a Bruhat interval [u, v] into rank posets Pi in a way
that each Pi has a unique maximal chain that is rising under a reflection order.
In the case where each Pi has rank three, the construction yields a combinatorial
description of some terms of the complete cd-index as a sum of ordinary cd-indices
of Eulerian posets obtained from each of the Pi.

Mathematics Subject Classifications: 20F55, 05E99 , 05E15

1 Introduction

Given a Coxeter group W with u, v ∈ W , the Bruhat graph associated with a Bruhat
interval [u, v] has u-v paths of several lengths (see [9]). The u-v paths of maximum length
correspond to maximal chains of [u, v]. Dyer [10] defined and proved the existence of a
set of total orders on the set of reflections of W , called reflection orders, which were used
to prove algebraic and topological properties of [u, v]. For instance, [u, v] is Eulerian and
Cohen-Macaulay, which was also proved by Björner and Wachs [5] by using a different
labeling. One of the advantages of Dyer’s reflection orders is that they can be used to
label all the paths in the Bruhat graph of [u, v], and not just those of longest length.
However, whenever Björner and Wachs’s labeling is defined on all paths of a certain
length (maximal or not), it has the same descent-set distribution as the any reflection
order (see [6, Theorem 2.11]). Utilizing reflection orders, Billera and Brenti [2] defined
a polynomial in the noncommutative variables c and d, called the complete cd-index,
that encodes the descent-set distribution of any reflection order on the u-v paths. The
complete cd-index can be used to express the Kazhdan-Lusztig polynomials and it extends
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the notion of the cd-index of [u, v] seen as an Eulerian poset. The coefficients of the
complete cd-index have been conjectured to be nonnegative, and this has been proven
in some cases (see [6, 7, 11, 14]). In this paper we propose an algorithm that separates
the u-v paths in the Bruhat graph of [u, v]. In the special case of the shortest-length u-v
paths, this algorithm yields posets in which every subinterval has at most one rising chain
(under any reflection order). Furthermore, when applied to the u-v paths of length two
and three, the corresponding terms of the complete cd-index can be obtained as the sum
of the cd-index of certain Eulerian posets determined by the algorithm. So not only do
we have an alternative proof of the nonnegativity of these terms, but we prove that they
arise from a natural decomposition of posets.

The basic definitions are presented in Section 2. The remaining of the paper is orga-
nized as follows. The Flip algorithm and some of its properties are presented in Section 3.
In Section 4, we apply the Flip algorithm to the maximal chains of the shortest path poset
SP (u, v) of [u, v] to obtain certain subposets, which we call flip posets, and show that
they satisfy properties similar to SP (u, v). In Section 5 we study the special case of
applying the Flip algorithm to B2(u, v) and B3(u, v), the paths of length two and three,
respectively, in the Bruhat graph of [u, v]. We furthermore show that certain terms of
the complete cd-index, those corresponding to u-v paths of length two or three, can be
expressed as a sum of the cd-index of certain Eulerian posets that are obtained from
the Flip algorithm, enabling us to conclude nonnegativity in these cases, as well as a
connection between the two indices.

2 Basic definitions

We follow [12, Section 5.1] and let (W,S) denote an arbitrary Coxeter system. Namely,

W = 〈S | (s, s′)m(s,s′)=e〉,

where e is the identity element of W , and for all s, s′ ∈ S, m(s, s) = 1, and m(s, s′) =
m(s′, s) ∈ Z+∪{∞} if s 6= s′. We let T := {wsw−1 | s ∈ S,w ∈ W} be the corresponding
set of reflections. Dyer [9] defined the Bruhat graph of (W,S) as the directed graph with
vertex set W , and given u, v ∈ W , there is a directed edge between u and v if and only if
v = ut for some t ∈ T . If w = s1s2 . . . sk with si ∈ S for 1 6 i 6 k and k is minimal, then
we say that the length of w is k and write `(w) = k. Given two elements u, v ∈ W , we say
that u 6 v if and only if there exists a u-v path from u to v in the Bruhat graph of (W,S).
The order 6 is called the Bruhat order. Given T ′ ⊆ T , we denote by W ′ be the subgroup
of W generated by T ′. W ′ is called a reflection subgroup of W . Following [12, Section 8.2],
we let N(w) := {t ∈ T | `(wt) < `(w)} and S ′ := {t ∈ T : N(t) ∩W = {t}}. In this case,
(W ′, S ′) is a Coxeter system, and if |S ′| = 2 we say that (W ′, S ′) is a dihedral reflection
subgroup. Dyer [10] proved the existence of linear orders on the set T , called reflection
orders. The total order <T is a reflection order if for any dihedral reflection subgroup
(W ′, {t1, t2}), either t1 <T t1t2t1 <T t1t2t1t2t1 <T · · · <T t2t1t2t1t2 <T t2t1t2 <T t2 or
t2 <T t2t1t2 <T t2t1t2t1t2 <T · · · <T t1t2t1t2t1 <T t1t2t1 <T t1. In the case W = An−1, the
symmetric group generated by the n−1 adjacent transpositions (1 2), (2 3), . . . , (n−1 n),
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it is well-known that the lexicographic order on all transpositions form a reflection order,
and we use this order in our examples. To be more specific, (1 2) <T (1 3) <T (1 4) <T

· · · <T (n− 1 n) is a reflection order, and it is customary to refer to these reflections in
the order in which they appear. So (1 2) is labeled with a “1,” (1 3) is labeled with a
“2,” and so forth. Any reflection order produces an EL-labeling of a Bruhat interval [u, v]
(see [10, Section 4]) and this EL-labeling was used to prove topological properties such as
[u, v] being Cohen-Macaulay, which was also proved by Björner and Wachs [5].

The maximal-length u-v paths form the maximal chains in the Bruhat interval [u, v].
Furthermore, the set of u-v paths (u0 = u < u1 < u2 < · · · < uk = v) of length k is
denoted by Bk(u, v). Sometimes we will denote a path (u0 = u < u1 < u2 < · · · < uk =
v) ∈ Bk(u, v) by the k-tuple (λ(u0, u1), λ(u1, u2), . . . , λ(uk−1, uk)) where λ(ui−1, ui) ∈ T is
the unique reflection such that ui = ui−1λ(ui−1, ui). So sometimes we refer to a u-v path
in terms of the vertices that are in the path, and sometimes we refer to it in terms of the
edges, which are labeled by reflections. Furthermore, we denote by B(u, v) the set of all
u-v paths; that is, B(u, v) = ∪kBk(u, v).

To every path ∆ = (λ(u0, u1), λ(u1, u2), . . . , λ(uk−1, uk)) ∈ Bk(u, v) we can associate a
monomial w(∆) := x1x2 . . . xk−1 on the variables a and b as follows:

xi :=

{
a if λ(ui−1, ui) <T λ(ui, ui+1)

b if λ(ui, ui+1) <T λ(ui−1, ui)

The complete ab-index is the polynomial
∑

∆∈B(u,v) w(∆) in the noncommutative vari-

ables a and b. Billera and Brenti [2] showed that the complete ab-index can be expressed

as a polynomial ψ̃u,v(c,d) in the noncommutative variables c and d, where c = a+b and

d = ab + ba. The polynomial ψ̃u,v(c,d) is called the complete cd-index of [u, v], where
[u, v] denotes the Bruhat interval {x ∈ W | u 6 x 6 v}. Furthermore, it was shown in [2,

Proposition 2.5] that the highest-degree terms of ψ̃u,v(c,d) correspond to the cd-index of
[u, v] seen as an Eulerian poset, which was studied by Reading in [15]. The cd-index was
first defined in [1] as a way of encoding the linear relations on flag vectors of polytopes.
Let P be a finite graded poset of rank d + 1 with partial order �, rank function r and
smallest and largest elements 0̂ and 1̂, respectively. For any S = {s1, . . . , sk} ⊆ [d], with
s1 < · · · < sk, define

fS(P ) := |{0̂ ≺ x0 ≺ x1 ≺ · · · ≺ xk+1 = 1̂ : r(xi) = si}|,

where 0̂ ≺ x0 ≺ x1 ≺ · · · ≺ xk+1 = 1̂ denotes a maximal chain of P .
The vector (fS(P ))S⊆[d] is called the flag f -vector of P . A closely related object, and

sometimes more useful, is the flag h-vector. Each of the components of the flag h-vector
is defined from the flag f -vector as follows.

hS =
∑
T⊆S

(−1)|S\T |fT .

Furthermore, let a and b be non-commutative variables. For S ⊆ [d], let w(S) =
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x1x2 · · ·xd, where

xi =

{
a if i 6∈ S
b if i ∈ S.

The polynomial
∑

S⊆[d] hSw(S) is called the ab-index of P . Bayer and Klapper [1]
proved that, when P is Eulerian, the ab-index can be rewritten as a homogeneous poly-
nomial in the noncommutative variables c and d, where c = a+b and d = ab+ba. This
polynomial is called the cd-index of P , and we denote it by ψ(P ).

Given ∆ = (t1, t2, . . . , tk) ∈ Bk(u, v), we define the descent set D(∆) of ∆ as

D(∆) := {i ∈ [k − 1] : ti+1 <T ti}.

Notice that the complete cd-index provides a way of encoding the distribution of the
descent sets of all paths in B(u, v). If a given path Γ ∈ B(u, v) has empty descent set,
that is, D(Γ) = ∅, then Γ is said to be a rising path. Similarly, if a path Γ ∈ Bk(u, v)
has descent set D(Γ) = [k − 1], then Γ is called a falling path. It is known that the

coefficient of cm in ψ̃u,v(c,d) gives the number of rising (and falling) paths in Bm+1(u, v)
for 0 6 m 6 `(v) − `(u) − 1 (see [2, Corollary 2.10]). We denote the coefficient of cm in

ψ̃u,v(c,d) by [cm]u,v.
The shortest path poset of [u, v] was defined in [7]. To construct it, one takes the

subgraph of B(u, v) formed by the minimal-length u-v paths, and considers this to be

the Hasse diagram of a poset, denoted by SP (u, v). The lowest-degree terms of ψ̃u,v(c,d)
correspond to the shortest u-v paths of B(u, v). When SP (u, v) has only one rising chain,
SP (u, v) is a Gorenstein* poset ; that is, SP (u, v) is Eulerian and Cohen Macaulay (see [7,
Theorem 5]). Moreover, under the assumption that SP (u, v) has only one rising chain,
SP (u, v) is an EL-labelable poset (the reflection order is an EL-labeling) and therefore

the coefficients of the ψ̃u,v(c,d) corresponding to the maximal chains in SP (u, v) coincide
with ψ(SP (u, v)) (see [3, Theorem 2.2]) and are nonnegative (see [13]).

3 Flip algorithm

In this section we propose an algorithm to divide the elements of Bk(u, v) into a graph
with [ck−1]u,v components so that each component has exactly one u-v path that is rising
under <T .

Following [2, Section 6] we now define the flip of Γ ∈ B2(u, v) and we use 6lex to
denote the lexicographic order. Let (t1, t2) and (r1, r2) be in B2(u, v). We say that
(t1, t2) 6lex (r1, r2) if and only if t1 <T r1, or if t1 = r1 and t2 6T r2. The existence of
the complete cd-index implies that there are as many paths with empty descent set in
B2(u, v) as those with descent set {1}. Order all the paths in B2(u, v) lexicographically
and let

r(Γ) := |{∆ ∈ B2(u, v) | D(∆) = D(Γ),∆ 6lex Γ}|.

The flip of Γ is the r(Γ)-th Bruhat path in {∆ ∈ B2(u, v) | D(∆) 6= D(Γ)} ordered by
6lex, and we denote the flip of a path Γ by flip(Γ).
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The following proposition was proved in [2, Proposition 6.2] for affine and finite Cox-
eter groups, and then proved to hold for general Coxeter groups in [6, Proposition 3.8].
The proof of the general case also follows as a consequence of Dyer’s proof of Cellini’s
conjecture [8].

Proposition 1. Let W be a Coxeter group, and let u, v ∈ W , u < v, (u < y < v) ∈
B2(u, v) be such that D((u < y < v)) = ∅ and (u < x < v) := flip((u < y < v)). Then
u−1y <T u

−1x and x−1v <T y
−1v for any reflection order <T .

In fact, it turns out that the lexicographically first element in Bk(u, v) is rising.

Proposition 2 (Proposition 3.9, [6]). Let ∆ be the lexicographically-first path in Bk(u, v).
Then D(∆) = ∅, i.e., ∆ is rising.

We now define the operation Flipi. In a few words, given a path

∆ = (u = x0 < x1 < · · · < xk = v) ∈ Bk(u, v),

we construct a path ∆′ by taking (xi−1 < xi < xi+1) ∈ B2(xi, xi+1) and replacing this
part of ∆ by its flip, flip((xi−1 < xi < xi+1)). If i ∈ D(∆) then i 6∈ D(∆′) and vice-versa.
The pseudocode is given in Algorithm 1 below.

Algorithm 1: Flipi(∆) flips a path ∆ ∈ Bk(u, v) at position i.

Input: ∆ = (u = x0 < x1 < · · · < xk = v) ∈ Bk(u, v) and i ∈ [k − 1]
1: (xi−1 < x′i < xi+1) := flip((xi−1 < xi < xi+1))
2: ∆′ := (x0 < x1 < · · · < xi−1 < x′i < xi+1 < · · · < xk)
3: return ∆′

For the remainder of the paper, it will be convenient for us to refer to the elements in
Bk(u, v) by utilizing the labels of their edges instead of listing the vertices in the path.

We use Flipi to define Flip. Flip(∆) transforms ∆, with D(∆) 6= ∅, to a path
such that D(Flip(∆)) = D(∆) \ {min(D(∆))}, where min(D(∆)) denotes the smallest
element in D(∆). In other words, Flip transforms a path ∆ to one that removes the first
descent, from bottom to top, of ∆. The pseudocode is written in Algorithm 2.

Algorithm 2: Flip(∆), where ∆ ∈ Bk(u, v)

Input: A path ∆ ∈ Bk(u, v)
1: Flip(∆) := ∆
2: if D(∆) 6= ∅ then
3: i := min(D(∆))
4: Flip(∆) := Flipi(∆)
5: end if
6: return Flip(∆)
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We write Flipj(∆), with j > 1, to denote the path obtained after applying Flip j
times; that is, Flipj(∆) := Flip ◦ · · · ◦ Flip︸ ︷︷ ︸

j

(∆).

The Flip algorithm constructs a directed graph FG(u, v; k) with vertex set, Bk(u, v)
and the Flip operator is used to determine the edges. To each path ∆ ∈ Bk(u, v) with
nonempty descent, we shall assign a unique path Flip(∆) ∈ Bk(u, v) obtained by flipping
∆ at its first descent, from bottom to top, and then we add a directed edge from ∆ to
Flip(∆). The pseudocode is given in Algorithm 3.

Algorithm 3: Flip algorithm Flip(Bk(u, v)): Determine the Flip-graph of
Bk(u, v)

Input: Bk(u, v), each element labeled by reflections
1: E := ∅
2: FG(u, v; k) := (Bk(u, v), E)
3: for ∆ ∈ Bk(u, v) do
4: if D(∆) 6= ∅ then
5: Add (the directed) edge (∆,Flip(∆)) to E.
6: end if
7: end for
8: return FG(u, v; k).

There are two straightforward properties that the Flip algorithm satisfies: it termi-
nates and it creates a graph with [ck−1]u,v components. We prove these properties in the
following lemma.

Lemma 3. The Flip algorithm satisfies the following properties.

(i) The Flip algorithm terminates.

(ii) FG(u, v; k) has [ck−1]u,v connected components, each one of which is an anti-arborescence.
That is, every connected component has a unique vertex v with zero out-degree and
every vertex in the component has a unique path to v.

Proof. (i) Notice that if i ∈ D(∆), Flipi(∆) is earlier in the lexicographic order than
∆ by Proposition 1, and since the lexicographically-first path in Bk(u, v) is rising
by Proposition 2, the Flip algorithm must terminate.

(ii) Every path, seen as a vertex in the flip graph FG(u, v; k) is associated with a unique
rising path obtained by iterating Flip until a rising path is reached. Moreover, a
vertex representing a rising path has in-degree zero, and is therefore a sink. Hence
every rising path must be in a different component, and there are [ck−1]u,v of them
since there are [ck−1]u,v rising paths. Now, if there were two paths between a path
∆ and the rising path associated with it through repeatedly applying Flip, then
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that would imply that the out-degree of ∆ is at least two, but this is not possible
since the only edge having ∆ as a tail is (∆,Flip(∆)). Therefore, there is a unique
path between any vertex in the component and the corresponding rising path.

The following corollary is an easy consequence of the Flip algorithm terminating.

Corollary 4. For every ∆ ∈ Bk(u, v), there is nonnegative integer ik,∆ so that

(i) Flipik,∆(∆) = Flipik,∆+1(∆),

(ii) Flipik,∆(∆) is rising, and

(iii) The time and space complexity of the Flip algorithm is Ω(|Bk(u, v)|).

Definition 5. Let x ∈ [u, v], and let c = (u = w0 < w1 < · · · < wp = x) ∈ Bp(u, x)
and d = (x = y0 < y1 < · · · < yq = v) ∈ Bq(x, v) with 0 6 p, q < k. Then consider the
following definitions.

(i) Define FGc(u, v; k) to be the induced subgraph of FG(u, v; k) with vertex set

Vc(u, v; k) := {(u = x0 < x1 < · · · < xk = v) : (x0 = x < · · · < xp = x) = c}.

(ii) Similarly, define FGd(u, v; k) to be the induced subgraph of FG(u, v; k) with vertex
set

V d(u, v; k) := {(u = x0 < x1 < · · · < xk = v) : (xk−q = x < · · · < xk = v) = d}.

In other words, Vc(u, v; k) denotes the set of all elements in V (FG(u, v; k)), the vertex
set of FG(u, v; k), that “start” with c and V d(u, v; k) denotes the set of all elements in
V (FG(u, v; k)) that “end” with d.

With this definition, we have the following proposition, which we call the Subgraph
Property.

Proposition 6 (Subgraph Property). Let x ∈ [u, v], and let c = (u = w0 < · · · < wp =
x) ∈ Bp(u, x) and d = (x = y0 < · · · < yq = v) ∈ Bq(x, v) with 0 6 p, q < k. Then

(i) FGd(u, v; k) ∼= FG(u, x; k − q) as graphs, and

(ii) FGc(u, v; k) is isomorphic to a subgraph of FG(x, v; k − p).

In the proof of the Subgraph Property, if ∆ ∈ Bk(u, x) and Γ ∈ B`(x, v), where
x ∈ [u, v], we denote the concatenation of ∆ and Γ by ∆Γ ∈ Bk+`(u, v).

Proof. (i) Let (D1, D2) be an edge of FGd(u, v; k). We show that there exists an edge
(d1, d2) in FG(u, x; k − q), where d1, d2 ∈ Bk−q(u, x) are so that d1d = D1 and
d2d = D2. By definition of the flip graph, we have that D2 = Flip(D1), so D1

has a nonempty descent set. If min(D(D1)) > k − q, then D2 would not end with
d and therefore D2 6∈ V (FGd(u, v; k)), which contradicts the choice of D2. Hence
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min(D(D1)) < k − p, and so min(D(D1)) = min(D(d1)), and therefore there exists
d2 with Flip(D1) = d2d and Flip(d1) = d2.

Conversely, suppose that (d1, d2) is an edge of FG(u, x; k − q) then (d1d, d2d) must
be an edge of FGd(u, v; k), as the first descent from bottom to top of d1d occurs in
d1.

(ii) It is enough to show that if (cc1, cc2) is and edge in FGc(u, v; k), then (c1, c2) is also
an edge of FG(x, v; k−p). By definition of the flip graph, cc2 = Flip(cc1). Then the
first descent from bottom to top of cc1 occurs after c, as otherwise cc2 6∈ Vc(u, v; k).
Thus, c2 = Flip(c1), and the result follows.

Remark 7. We point out that it is not true that FG(x, v; k−p) is isomorphic to a subgraph
of FGc(x, v; k). For example, in A4, if c = (12345 < 32145 < 35142), or c = (2, 7) if
labeled by reflections, then FG(35142, 54312; 3) is not isomorphic to FGc(12345, 54312; 5).
In fact, the vertex set

V (FG(35142, 54312; 3)) = {(1, 6, 8), (1, 8, 5), (3, 1, 8), (3, 8, 1), (8, 1, 5), (8, 2, 1)},

where the elements have been denoted using reflections. Meanwhile,

V (FGc(12345, 54312; 5)) = {(2, 7, 3, 1, 8), (2, 7, 3, 8, 1), (2, 7, 8, 2, 1)}.

We now focus our attention on the case B`s(u,v)
(u, v), where `s(u, v) denotes the length

of the shortest u-v path inB(u, v). In this case the Flip algorithm gives a way of partition-
ing the shortest path poset SP (u, v) into subposets P1, . . . , Pk so that every subinterval
of each Pi has at most one rising chain.

4 Flip(SP (u, v))

In this section we study the Flip algorithm when applied to the shortest u-v paths of
B(u, v). Let us denote the number of rising maximal chains in SP (u, v) by r(u, v); that
is, r(u, v) := [c`s(u,v)−1]u,v.

Definition 8 (Flip posets). Let FG(u, v) := FG(u, v; `s(u, v)), and G1, . . . , Gr(u,v) be the
connected components of the flip graph FG(u, v). For each Gi one can form a poset Pi

whose maximal chains are the vertices of Gi. That is, the maximal chains of Pi are the
elements in the set {C | C ∈ V (Gi)}. We call the posets P1, . . . , and Pr(u,v) the flip posets
of [u, v].

To illustrate the Flip algorithm, consider the following example.

Example 9. Consider the 10 elements of B3(1234, 4312). Then the output of the Flip
algorithm is shown in Figure 1. In the first column we have the two components G1 and
G2 of the flip graph FG(1234, 4312), and in the right column the corresponding flip posets
P1 and P2. The paths of B3(1234, 4312) are labeled by reflections, and the same is done
to label the edges of the posets.
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P1

G1

P2

G2

1234

3214 1432 1243

4213 3412

4312

2 5 6

3 5 2 2

5 1

1234

13242134 1243

4132

1432

2314 1342

4312

1 4 5 6

3 24 6 1 5

4 3 2

(6,5,2)(4,6,2)(4,2,3)(1,4,3)

(1,3,4)

(5,1,4)

(2,3,5)

(6,2,5)

(5,2,1)(2,5,1)

Figure 1: On the left, the two connected components G1 and G2 of the flip graph
FG(1234, 4312), and on the right, the corresponding flip posets P1 and P2. If 1243 and
1432 are identified, one would obtain the face poset of a triangle and a 2-gon, respectively.
We discuss this identification in Section 5.

Each Pi has properties that resemble those of Bruhat intervals; for instance, consider
the following lemma.

Lemma 10. Let Gi, 1 6 i 6 r(u, v), be a connected component of FG(u, v) and Pi, with
1 6 i 6 r(u, v), be the corresponding flip poset. Then Pi is graded.

Proof. We recall that SP (u, v) is graded (see [7, Proposition 3].) We now prove that the
Flip algorithm preserves the rank in SP (u, v).

Let C be a maximal chain of SP (u, v) and w ∈ W be an element in C. Let rC(w)
be the length of the u-w path in C. Furthermore, let u1 and v1 be elements in C with
rC(u1) = rC(w)− 1 and rC(v1) = rC(w) + 1. We show that the Flip algorithm does not
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change the value rC(w), that is, rFlipj(C)(w) = rC(w) for all j > 1. Suppose otherwise,

and let rC′(w) be the length of the u-w path C ′, with Flipj(C) = C ′ for some j > 1. Let
u2 and v2 be elements in C ′ with rC′(u2) = rC′(w) − 1 and rC′(v2) = rC′(w) + 1. Notice
that

rC(w) =
rC(u1) + rC(v1)

2
and rC′(w) =

rC′(u2) + rC′(v2)

2
.

If rC(w) 6= rC′(w) then either rC(u1) < rC′(u2) or rC(u1) > rC′(u2), but in either
case there is a contradiction to C and C ′ being maximal chains of SP (u, v). Indeed, if it
were the case, there would exist D of the form Cw(C ′)w or C ′wC

w, where Cw (or C ′w) and
Cw (or (C ′)w) denotes the chain C (or C ′) of elements that are at most w and the chain
C (or C ′) of elements that are at least w, respectively. This chain D would be shorter
than C and C ′, which is not possible since C and C ′ are maximal chains in SP (u, v). So
rC(w) = rC′(w). Thus the rank function of every flip poset Pi of SP (u, v) is the same as
the rank function of SP (u, v).

Remark 11. The proof of Lemma 10 holds in more generality. If one selects a maximal
chain in a graded poset and there is a suitable definition of the flip operation, the rank
would be preserved after repeated applications of the flip operation.

Useful notation: We define the following notation.

1. We write x 6s y to denote that x is smaller than y in SP (u, v).

2. If x 6s y is a cover relation, that is, if there does not exist z with x 6s z 6s y, then
we use the notation xls y.

3. If P1, . . . , Pr(u,v) are the flip posets of the Bruhat interval [u, v], we define [x, y]Pi
:=

{z ∈ Pi : x 6s z 6s y}, for x, y ∈ Pi and 1 6 i 6 r(u, v).

As a consequence of the Subgraph Property (Proposition 6), we have the following
corollary.

Corollary 12. If x ∈ [u, v] and P1, . . . , Pr(u,v) are the flip posets of [u, v] then

(i) [u, x]Pi
⊂ [u, v]Pi

has one rising chain for 1 6 i 6 r(u, v).

(ii) [x, v]Pi
⊂ [u, v]Pi

has at most one rising chain for 1 6 i 6 r(u, v).

Proof. (i) Let d = (x = x0 < · · · < xk = v). The Subgraph Property, Proposition 6(i),
yields that FGd(u, v) ∼= FG(u, x). Since each connected component of FG(u, x)
gives rise to a flip poset, which has a unique rising chain, [u, x]Pi

must have a
unique rising chain.

(ii) Let c = (u = y0 < · · · < yt = x). Then the Subgraph Property, Proposition 6(ii),
gives the existence of an injection ϕ : V (FGc(u, v)) → V (FG(x, v)) so that if
(C1, C2) ∈ E(FGc(u, v)) then (c1, c2) ∈ E(FG(x, v)), with cc1 = C1 and cc2 = C2.
Since ϕ is not necessarily a bijection since FG(x, v) need not be a subgraph of
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FGc(u, v) (cf. Remark 7), there could be an edge (c1, c2) of FG(x, v) so that (cc1, cc2)
is not an edge of FGc(u, v). Hence a connected component of FGc(u, v) might not
have a rising chain.

Putting (i) and (ii) together we obtain the following proposition.

Proposition 13. If P1, . . . , Pr(u,v) are the flip posets of [u, v] then [x, y]Pi
⊂ [u, v]Pi

has
at most one rising chain for 1 6 i 6 r(u, v).

Proof. It is enough to show that the proposition holds for uls x 6s y or u 6s y ls v, as
Pi is graded. These cases follow from Corollary 12(i) and 12(ii).

Moreover,

Proposition 14. If P1, . . . , Pr(u,v) are the flip posets of [u, v] and [x, y]Pi
⊂ [u, v]Pi

is an
interval of rank 2, then [x, y]Pi

has at most two atoms for 1 6 i 6 r(u, v).

Proof. If there were more than two atoms, then either (i) [x, y]Pi
would have at least

two rising chains, or (ii) [x, y]Pi
would have at least two falling chains. Proposition 13

gives that Case (i) is impossible. On the other hand, if Case (ii) were true, then since
the Bruhat interval [x, y] has the same number of rising chains as falling chains, the
pigeonhole principle gives that there would exist j with 1 6 j 6 r(u, v) so that [x, y]Pj

would have more than one rising chain. Again, this contradicts Proposition 13, and the
result follows.

We remark that Corollary 12, Proposition 13, and Proposition 14 hold in the case
of Bruhat intervals, for which one can substitute the phrase “at most” with the word
“exactly.” Indeed, since the Bruhat order is an Eulerian poset, every interval of length
two has exactly two atoms (see [4, Lemma 2.7.3]).

Lemma 15. Let P1, . . . , Pr(u,v) be the flip posets of [u, v] and G1, . . . , Gr(u,v) be the corre-
sponding connected components in the flip graph. Then each Gi, 1 6 i 6 r(u, v), has an
even number of vertices.

Proof. Let C = (t1, t2, t3, . . . , t`s) be a vertex of Gi (so (t1, t2, t3, . . . , t`s) is a maximal
chain of SP (u, v)). Notice that (t1, t2, t3, . . . , t`s) is connected to C ′ = (t′1, t

′
2, t3, . . . , t`s),

where flip(t1, t2) = (t′1, t
′
2), as either (t1, t2) or (t′1, t

′
2) has a descent. Hence, C ′ is also a

vertex of Gi, and thus one can establish a bijection

ϕ : {C ∈ Gi : D(C) ∩ {1} = {1}} ←→ {C ∈ Gi : D(C) ∩ {1} = ∅}

given by (r1, r2, r3 . . . , r`s)
ϕ↔ (r′1, r

′
2, r3, . . . , r`s), with flip(r1, r2) = (r′1, r

′
2). Therefore the

vertices of Gi can be paired, and so there must be an even number of them.
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5 Flip algorithm applied to B2(u, v) and B3(u, v)

In this section we focus our attention on the case k = 2, 3. In these cases, we have been able
to derive connections to the complete cd-index. Indeed, one of the main open questions
regarding the complete cd-index is if its coefficients are nonnegative [2, Conjecture 6.1].
Partial results exist for some coefficients [6, 7, 11, 14]. One approach that has not been
explored much is to find a way of partitioning the elements of Bk(u, v) of the same length
in such a way that each of the parts would produce cd-monomials that when added
together would yield the terms of ψ̃u,v(c,d) of degree k− 1. In this section, we show that
the Flip algorithm provides such a procedure for k = 2, 3.

5.1 Case B2(u, v) 6= ∅

If B2(u, v) 6= ∅, then the maximal chains of SP (u, v) correspond to the elements of
B2(u, v). In this case, the Flip algorithm will split up the elements of B2(u, v) into [c]u,v
components, each of them will have two elements, one of which will be falling and the
other one will be rising. So in this case, the Flip algorithm will split up the maximal
chains of SP (u, v) into [c]u,v pieces, each of them contributing c to ψ̃u,v(c,d). Moreover,
each of these pieces is isomorphic to a Boolean poset on two elements, which we denote
by Boolean(2), and therefore each has ordinary cd-index (seen as an Eulerian poset) of
c. In other words,

[1]ψ̃u,v(c,d) =

[c]u,v∑
i=1

ψ(Boolean(2)), (1)

where [k]ψ̃u,v(c,d) denotes the coefficients of degree k in ψ̃u,v(c,d). Notice that (1) relates
terms in the complete cd-index to terms arising from the ordinary cd-index of Eulerian
posets. It turns out we can establish a similar equality for the terms of degree two in the
complete cd-index.

5.2 Case B3(u, v) 6= ∅

We can think of B3(u, v) as a poset by considering its elements as maximal chains, even
if B1(u, v) 6= ∅. First we need some definitions.

Definition 16 (Order complex, face poset, and face lattice). Following [16, Section 1.1],
we recall that for every partially ordered set P , one can define an abstract simplicial
complex ∆(P ), called the order complex of P , as follows. The vertices of ∆(P ) are the
elements of P and the faces of ∆(P ) are the chains of P . In other words, ∆(P ) = {F ⊆
P | F is totally ordered}. Similarly, if ∆ is a simplicial complex, then its face poset P (∆)
is the poset of nonempty faces of ∆ ordered by inclusion. That is, if F1 and F2 are two
nonempty faces of ∆, then F1 6 F2 if and only if F1 ⊆ F2. Furthermore, the face lattice
L(∆) is P (∆) with a smallest element 0̂ and a largest element 1̂ attached to it.

Lemma 17. Let P1, . . . , Pk be the flip poset of B3(u, v). Then ∆(Pi\{u, v}) is isomorphic
to a path or a polygon for 1 6 i 6 k.
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Proof. The result follows if we show that each vertex in Gi has degree at most 2. This
is clear as any subinterval [x, y]Pi

⊂ [u, v]Pi
of rank two has at most four elements as a

consequence of Proposition 13.

To illustrate the previous lemma, for example, the order complexes corresponding to
the flip posets of Example 9 are depicted in Figure 2. In this case, they are both paths.

5.2.1 Identification

Let ∆ be the order complex ∆(Pi \ {u, v}) for some flip poset Pi of B3(u, v). Then by
Lemma 17, ∆ is either isomorphic to a path or a polygon. We define I(∆) to be the
following operator: If ∆ is a polygon, then I(∆) := ∆, and if ∆ is a path, then I(∆) is
the unique polygon obtained by identifying the two vertices of degree 1 and preserving
the other vertices and edges of ∆. For instance, after identification, the order complexes
of the flip posets of Example 9, shown in Figure 2, become a hexagon and a square,
respectively.

5

6

2 4

3

1
2

3

5

2

x

y
x y

Figure 2: The order complexes ∆1 := ∆(P1\{1234, 4312}) and ∆2 := ∆(P2\{1234, 4312}),
where P1, P2 are the posets in Figure 1. After identification of vertices x and y, ∆1 and
∆2 are the barycentric subdivision of a triangle and a 2-gon, respectively.

Lemma 15 and Lemma 17 guarantee that, after identification if needed, ∆(Pi \ {u, v})
will be an n-gon with an even number of sides. Thus, said order complex is the barycentric
subdivision of an n

2
-gon. The face posets of these n

2
-gons shall be utilized to express the

terms of degree two in the complete cd-index as sums of the cd-index of Eulerian posets.
This is discussed in the next subsection.

5.3 Terms of degree two in the complete cd-index

In this sub-section we show how the Flip algorithm separates B3(u, v) into Eulerian

pieces whose cd-index adds up to the degree-two terms of ψ̃u,v(c,d). In particular, we
establish that the terms corresponding to the paths in B3(u, v) are non-negative. Using
a different method, the non-negativity of these terms has already been established by
Karu [14] as they contain at most one d. Our approach, however, allows us to describe
these monomials in the complete cd-index in terms of the (ordinary) cd-index of Eulerian
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posets, thus providing a nice connection between the two concepts and concluding non-
negativity of certain terms in the complete cd-index.

We now prove that the terms of degree two in the complete cd-index are given by
adding up the cd-index of posets coming from the Flip algorithm.

Theorem 18. Suppose that B3(u, v) 6= ∅ and let Pi, for 1 6 i 6 k, be the flip posets of
B3(u, v). Furthermore, let ∆i = ∆(Pi \ {u, v}), and P ′i := L(I(∆i)) (the face lattice of ∆i

after identification). Then the terms of degree two of the complete cd-index are obtained
by adding the cd-index of all the P ′i . In other words,

[2]ψ̃u,v(c,d) =
k∑

i=1

ψ(P ′i ).

Proof. Lemma 15 gives that I(∆i) is a polygon of even length. Thus I(∆i) is the first
barycentric subdivision of an mi-cycle for some positive integer mi. Therefor, P ′i (and Pi)
has 2mi maximal chains. Notice that the flag f -vector of P ′i is f∅ = 1, f{1} = mi = f{2},
and f{1,2} = 2mi and therefore the flag h-vector of P ′i is h∅ = 1, h{1} = mi− 1 = h{2}, and
h{1,2} = 1. It follows that the ab-index of P ′i is

a2 + (mi − 1)ab + (mi − 1)ba + b2 = (a2 + ab + ba + b2) + (mi − 2)(ab + ba).

Thus, ψ(P ′i ) = c2 + (mi − 2)d, and the sum of the cd-index of P ′1, . . . , P
′
k is

k∑
i=1

(P ′i ) = kc2 +
k∑

i=1

(mi − 2)d.

Let us now compute the terms of degree two of ψ̃u,v(c,d). Since there are k flip posets,
there are exactly k rising paths and k falling paths in B3(u, v). Thus,

[2]ψ̃u,v(c,d) = k(a2 + b2) + nabab + nbaba, (2)

where nab and nba are the number of ab and ba monomials, respectively. Notice that
nab + nba is the number of paths in B3(u, v) that are neither rising nor falling. Thus

nab + nba =
k∑

i=1

(2mi − 2),

since each flip poset Pi has 2mi maximal chains. The existence of ψ̃u,v(c,d) gives that
nab = nba, and therefore (2) becomes

[2]ψ̃u,v(c,d) = k(a2 + b2) +
k∑

i=1

(mi − 1)(ab + ba)

= k(a2 + ab + ba + b2) +
k∑

i=1

(mi − 2)(ab + ba)

= kc2 +
k∑

i=1

(mi − 2)d,

and the result follows.
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Example 19. Let us consider the interval [1234, 4312] in A3. One can compute ψ̃u,v(c,d)
to get

ψ̃1234,4312(c,d) = c4 + c2d + 2cdc + dc2 + d2 + 2c2 + d.

From Example 9, shown in Figure 1, we know that B3(1234, 4312) has two flip posets
P1 and P2. The face posets of their order complex, ∆1 and ∆2, shown in Figure 2, are
that of a triangle and a 2-gon, and they contribute c2 + d and c2, respectively. The sum
gives the degree-two terms of ψ̃1234,4312(c,d), 2c2 + d.
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