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Abstract

We show that every generator, in a certain set of generators for the variety of
reflexive near unanimity graphs, admits a semilattice polymorphism. We then find a
retract of a product of such graphs (paths, in fact) that has no semilattice polymor-
phism. This verifies for reflexive graphs that the variety of graphs with semilattice
polymorpisms does not contain the variety of graphs with near-unanimity, or even
3-ary near-unanimity polymorphisms.

Mathematics Subject Classifications: 05C75, 08B05

1 Introduction

For relational structures such as graphs, the existence of relation preserving operations,
or polymorphisms, satisfying various identities has been of great interest recently due to
its relation to the complexity of the problem of deciding whether or not there is a homo-
morphism between given structures. We refer the reader to [6] for a general discussion of
such topics, to [9] for a discussion of the results on general digraphs, or to [5] and [8] for
more concise discussion directly related to the present paper.

In this paper we look at near-unanimity (NU), and semilattice (SL) polymorphisms
on reflexive graphs. For context, we also talk of totally symmetric idempotent (TSI)
polymorphisms. The necessary definitions of these are given in the next section.

It is a trivial fact that any structure with an SL polymorphism has a TSI polymor-
phism, and it is known, see [11], that the converse is not generally true. Moreover, there
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are structures admitting SL (and so TSI) polymorphisms, but not NU polymorphisms,
and vice versa.

When one restricts ones scope to reflexive graphs though, things change. It is known,
see for example [13], that any graph having an NU polymorphism also has TSI poly-
morphisms of all arities. Moreover it was shown in [5] that any reflexive graph with
an NU polymorphism has a symmetric NU polymorphism. It is natural to ask if the
existence of an NU polymorphism on a reflexive graph might imply the existence of an
SL polymorphism, or vice-versa. Indeed, it was asked in [11] and again in [9] if there
are posets (another type of reflexive digraph) that admit NU polymorphisms but no SL
polymorphisms.

For the rest of the paper, all graphs are reflexive and symmetric. A graph is an NU
graph (SL graph), if it admits an NU polymorphism (resp. SL polymorphism).

The class, NU, of graphs admitting NU polymorphisms has been well studied; see, for
example, [1], [3], [5], [10], and [12]. In [3] for example, it was verified that NU is a variety,
i.e., is closed under categorical products and retractions. In fact it was verified that for
each k ≥ 3, the class NUk of graphs admitting k-ary NU polymorphisms, is a variety. The
variety NUk+1 contains NUk for all k. It was also shown that every chordal graph is in
NUk for some k, but also that for every k there chordal graphs in NUk+1 ∖NUk. In [5]
an explicit description of the generators of the variety NUk was given for all k ≥ 3.

The class SL of graphs admitting SL polymorphisms, on the other hand, has not been
so extensively studied. It has only been looked at recently in [8] and in a more specialised
context in [14]. In [8], we showed that SL contains all chordal graphs. We also verified
that SL is not closed under retraction, so though it is closed under products, it is not a
variety. This shows that it is different from the classes of graphs admitting TSI or NU
polymorphisms. We also found graphs in SL∖NU, and asked, as was asked about posets
in [9], whether or not NU ⊂ SL. In this paper, we answer this question in the negative.

In Proposition 7, we observe that the generators of NUk found in [5], are in SL. This
is, of course, a first step towards showing NUk ⊂ SL. Our second result however, Theorem
9, answering the question above, shows that this is not true. We find a retraction of a
product of paths (the generators of NU3) which is not in SL. This shows that NU3, and
so NU, is not contained in SL.

Proposition 7 is not simply a ploy for building tension before surprising the reader
with Theorem 9. It also yields alternate proofs of known facts, which we discuss briefly
now, and raises some questions that we talk of in Section 5.

It was observed in [4] that every NU structure H is the retraction of some universal
structure UTSI(H) which can easily be shown to admit an SL polymorphism. So every
NU graph is a retract of an SL graph. This follows also from Proposition 7. The graph
UTSI(H) is large as its vertex set is the set of subsets of vertices of H; our result generally
embeds an NU graph as a retract of a much smaller SL graph.

In [3] it was shown that there are chordal graphs in NUk ∖NUk−1 for all k ≥ 4. As
chordal graphs were shown in [8] to be in SL, it follows that there are SL graphs in
NUk ∖NUk−1. Corollary 8 points out how this also follows from Proposition 7, but the
examples it provides are far from chordal, and the proof is much different.
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In Section 2 we introduce the required definitions. In Section 3 we introduce the
generators of NUk from [5] and prove Proposition 7. In Section 4 we prove Theorem 9.
Finally, in Section 5 we ask some questions.

2 Basics

2.1 Semilattices

In this subsection we recall some standard definitions related to semilattices.
A semilattice on a set V can alternately be described as an ordering ≤ such that for

every pair u, v ∈ V there is a unique greatest lower bound denoted u ∧ v; or as a 2-ary
function ∧ ∶ V ×V → V ∶ (u, v)↦ u∧v on V that is idempotent (i.e., u∧u = u), symmetric,
and associative. We thus use ’∧’ and ’≤’ interchangeably, and may refer to either of them
as a semilattice ordering. We use the common variant ≥ of the symbol ≤ where it is
convenient to do so.

It is well known, and easily verified, that the two definition of a semilattice are related
through the identity

u ≤ v ⇐⇒ u ∧ v = u.
As our semilattices are finite, the existence of a lower bound for every pair of elements

extends by

⋀S = s1 ∧ ⋅ ⋅ ⋅ ∧ sd.
to subsets S ⊂ V .

The width of a semilattice is the maximum number of pairwise incomparable elements.
An element v covers or is a cover of an element u if u ≤ v and if u ≤ x ≤ v for some x
implies that x ∈ {u, v}. Given a semilattice ∧1 on V1 and a semilattice ∧2 on V1, the
product semilattice ∧ = ∧1 × ∧2 defined by

(u1, u2) ∧ (v1, v2) = (u1 ∧1 v1, u2 ∧2 v2)

is a semilattice on V1 × V2.

2.2 Semilattice polymorphisms

We denote the adjacency of two vertices u and v of a graph by u ∼ v. A (k-ary) polymor-
phism F ∶ Gk → G of a graph G is function f ∶ V (G)k → V (G), on the vertex set V (G),
which satisfies the following for all choices of ui, vi ∈ V (G).

ui ∼ vi for all i ∈ {1, . . . , k}⇒ f(u1, . . . , uk) ∼ f(v1, . . . , vk)

A semilattice ∧ ∶ V (G) × V (G) → V (G) is compatible with G, or is a semilattice (SL)
polymorphism on G, if it is a polymorphism. It is easily seen that for a reflexive graph G,
a semilattice ∧ on V (G) is a polymorphism of G if and only if it satisfies the following:

a ∼ a′, b ∼ b′⇒ (a ∧ b) ∼ (a′ ∧ b′) (1)
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(0,0)
P R

(1,0) (2,0) (3,0)

(0,3)

Figure 1: The product P of 3-paths and a retract R. (Loops omitted.)

The (categorical) product of two graphs G1 and G2 is the graph G1 ×G2 with vertices
V (G1) × V (G2) such that (a1, b1) ∼ (a2, b2) if a1 ∼ a2 and b1 ∼ b2. A retraction of a graph
G is a homomorphism r ∶ G→ G′ to a subgraph G′, that is the identity on G′.

The following standard fact from [8] verifies that SL is closed under taking products.
It was also shown in [8] that SL is not closed under retractions.

Fact 1. If ∧1 is a SL polymorphism of G1 and ∧2 is an SL polymorphism of G2 then the
product semilattice ∧ of ∧1 and ∧2 is an SL polymorphism of G1 ×G2.

We will frequently use products of paths. Let P` denote the path of length ` having
vertex set [0, `], where a ∼ b if ∣a − b∣ ≤ 1. Figure 1 shows the product P = P3 × P3 of two
3-paths, and a typical retract R of P. Though the graph is reflexive, we have omitted all
loops from the figure. We will do so on all figures.

Given a semilattice (V,∧), a sub-semilattice consists of a subset V ′ ⊂ V that is closed
under ∧:

a, b ∈ V ′⇒ a ∧ b ∈ V ′.

A subset S of the vertices of a graph G is conservative (sometimes called a subal-
gebra) if for every idempotent polymorphism φ ∶ Gd → G of G, s1, . . . , sd ∈ S implies
that φ(s1, . . . , sd) ∈ S. In particular, an SL polymorphism of a graph G induces a sub-
semilattice on any conservative set. So the subgraph of any SL graph induced by any
conservative set is also an SL graph. It is well known that the ith distance neighbourhood
N i(v) of a reflexive graph G, consisting of all vertices that are distance at most i from
a vertex v, are conservative. It is also known that the intersection of conservative sets is
conservative.

That is to say, we have the following.

Fact 2. Let G be a reflexive SL graph, then following sets induce SL subgraphs of G.

i. The set N i(v) for any vertex v ∈ G, and any integer i ≥ 0.

the electronic journal of combinatorics 25(4) (2018), #P4.2 4



ii. Intersections of the above sets.

As the only semilattice on a two element set is a totally ordered set, the following
useful fact is immediate from the above fact.

Fact 3. If an edge (u, v) of an SL graph G is the intersection of distance neighbourhoods
of vertices of G, then either u ≤ v or v ≤ u with respect to any compatible semilattice.

2.3 NU polymorphisms

A k-ary polymorphism f ∶ Gk → G is near-unanimity (NU) if

f(v1, . . . , vk) = a

whenever at least k − 1 of the vi are a. Specifying the arity, we often refer to such
a polymorphism f as being k-NU. A 3-NU polymorphism is also known as a majority
polymorphism.

There are many characterisations graphs with NU polymorphisms. We introduce here
the description from [5].

Definition 4. Let T be a tree with k leaves and m edges e1, . . . , em. Let U and D be the
partition of its vertices into two independent set, and let U∗ and D∗ be the subsets of U
and D respectively, of vertices of degree at least 2. Define a graph K0(T ) as follows: its
vertices are the tuples (x1, . . . , xm) such that

i. xi ∈ {0,1,2} for every 1 ≤ i ≤m;

ii. for each u ∈ U∗, xi = 2 for at least one edge ei incident with u; and

iii. for each d ∈D∗, xi = 0 for at least one edge ei incident with d.

Tuples (x1, . . . , xm) and (y1, . . . , ym) are adjacent if ∣xi − yi∣ ≤ 1 for all i.

For an example of the construction K0(T ), remove the orientation from the edges of
the graphs shown in Figure 2. The vertices of the tree T = K1,3 are partitioned into the
set U of three leaves, and set D containing the last vertex. Though this is not the case
with our later figures, all the vertices of K0(T ) are shown in this figure: U∗ is empty, but
D∗ contains the one vertex of D, so every vertex has exactly one coordinate equal to 0.
Not all edges are shown, however; two vertices are adjacent if they are in the same unit
cube.

The following was a main result of [5]

Theorem 5. A reflexive graph G admits a k-NU polymorphism if and only if it is a retract
of the product of the graphs K0(Ti), for a finite family of trees T1, . . . , Td each having at
most k − 1 leaves.
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(0,0,2)

(0,0,0)
(2,2,0)

(2,0,0)
(0,2,0)

Figure 2: An orientation of the rooted tree T = K1,3 and the corresponding semilattice
∧z, on the graph K0(T ). The semilattice ∧z is the transitive closure of the shown digraph
on K0(T ). (Unlike similar figures later in the paper, all vertices are shown here.)

3 SL polymorphisms on the generators of NUk

We define an SL polymorphism on K0(T).
Definition 6. Let T be a tree with k leaves andm edges e1, . . . , em, having vertex partition
U and D as in Definition 4. Choose a root z of T , and orient the edges of T towards z,
(so that any vertex of T has at most one incident edge oriented away from it).

Define ∧ = ∧z ∶ K0(T ) × K0(T ) → K0(T ) as follows: for x = (x1, . . . , xm) and y =
(y1, . . . , ym) ∈ K0(T ), let

(x1, . . . , xm) ∧ (y1, . . . , ym) = (z1, . . . , zm)
where zi is max(xi, yi) if ei is oriented towards U , and is min(xi, yi) if ei is oriented
towards D. (See Figure 2 for an example.)

Proposition 7. The map ∧z ∶ K0(T ) ×K0(T ) → K0(T ) defined in Definition 6 is an SL
polymorphism on K0(T ).

Proof. To prove that this function is onto K0(T) we must show for (x1, . . . , xm) and
(y1, . . . , ym) in K0(T ) that

(z1, . . . , zm) = (x1, . . . , xm) ∧z (y1, . . . , ym)
is also in K0(T ). This requires showing that for any d ∈ D∗, there is at least one each
edge ei incident to d such that zi = 0; and for any u ∈ U∗ there is an incident edge ei such
that zi = 2. We show the former, the proof of the latter is essentially the same.

Let d ∈ D∗ have incident edges e1, . . . , ec. At most one, say e1, is directed away from
d. If there is some i ≠ 1 such that xi = 0 or yi = 0, then zi = min(xi, yi) = 0. Otherwise,
both x1 = 0 and y1 = 0 and so z1 = max(x1, y1) = 0. So (z1, . . . , zm) ∈ K0(T ), as needed.

To see that ∧z it is a homomorphism, assume that xi ∼ x′i and yi ∼ y′i for all i, where
x,x′, y and y′ are in K0(T ). Then ∣xi − x′i∣ ≤ 1 and ∣yi − y′i∣ ≤ 1. As both ∣min(xi, yi) −
min(x′i, y′i)∣ and ∣max(xi, yi) − max(x′i, y′i)∣ are clearly at most 1, we get that ∣zi − z′i∣ ≤ 1
for all i, and so (z1, . . . , zm) ∼ (z′1, . . . , z′m).

The homomorphism is symmetric and associative, as it is in each coordinate, and is
clearly idempotent by definition. Thus it is an SL polymorphism, as needed.
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In [5] it was shown that for a tree T with k − 1 leaves, K0(T ) ∈ NUk ∖NUk−1. Thus
we get the following.

Corollary 8. For all k ≥ 4 there are graphs in SL∩NUk that are not in NUk−1.

This is already known, it follows from [3] and [8]; but the examples one gets from these
papers are chordal or products of chordal graphs. The above examples are far from this.

In [5] we defined retracts K(T ) of the K0(T ) which also served as generators of the
variety NUk. One can show that the SL polymorphism defined above survives the re-
traction from K0(T ) to K(T ), so these smaller generators are also in SL. The proof of
this is basic, but is too messy for what it gains us; we chose to omit it from the paper.

4 A graph in NU3 ∖SL

In this section we prove the following theorem.

Theorem 9. There exists a reflexive graph admitting a 3-NU polymorphism, but no SL
polymorphism.

Our proof is constructive. For a semilattice ≤ defined on the vertex set of a graph
G, we say an edge u ∼ v is oriented u → v by ≤ if u ≤ v, and u ≠ v. A bad 2-path is an
induced 2-path in G such that the edges are oriented towards each other: u → v ← w.
The following simple observation is key.

Lemma 10. Given an SL polymorphism on a graph, the graph contains no bad 2-paths.

Proof. Indeed, if u→ v ← w, then u = u∧ v ∼ v ∧w = w. This contradicts the fact that the
2-path u ∼ v ∼ w is induced.

The main idea of our proof of Theorem 9, is that in light of the above observation,
there are very few compatible semilattices for a product P of paths. The only compatible
semilattices are, up to some skewing, the product of semilattices that are compatible with
the component paths; and each of these can be ‘killed’ by making a retraction in the right
place. The ’right place’ is not very specific, but does require that the ‘killing’ retraction
is well inside one of the orthants of P one gets by viewing it as a three dimensional cube
with the minimum element of the lattice as its origin.

We thus start with a product of long paths, and make several killing retractions in
such a way that wherever the minimum vertex is for a semilattice defined on V (P), one
of the killing retractions is contained well inside an orthant, and so kills the compatibility
of the semilattice with the graph.

Before we get to the actually constructive proof, we set up for it by defining our
‘killing’ retractions.
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4.1 Setup for the proof

Let P = P 3
` be a product of three paths of length `; so vertices of P are triples v =

(v1, v2, v3) ∈ [0, `]3. For i ∈ [3], let ei denote the vector with a 1 in the ith coordinate, and
0 elsewhere, so that for a vertex v, v + ei is the vertex we get from it by increasing the
i-coordinate by one.

An edge of P of the form {v, v + ei} is i-square. It is inner i-square if vj /∈ {0, `} for
any j ≠ i. An edge is (inner) square if it is (inner) i-square for some i. These edges will
be important because of the following simple observation.

Lemma 11. Under any SL polymorphism of P, all inner square edges are oriented.

Proof. Clearly we may assume our inner square edge is of the form {u,u + e1}. In this
case, as it is an inner square edge, the set

S = {u,u + e1, u ± e2, u ± e3}

is contained in P. As ⋂s∈SN(s) = {u,u + e1}, we have by Fact 3 that {u,u + e1} is
oriented.

For a subgraph G of P, the square edges are consistently oriented under a semilattice
on V (G), if for each i, there exists d ∈ {−1,1} such that all i-square edges of G are oriented
v → v + dei. If d = 1 they are positively oriented, if d = −1 they are negatively oriented.

For a square edge {v, v + ei} let C(v; i+) be the cone of vertices that are closer (graph
distance) to v + ei than to v. That is, let

C(v; i+) = {v +
3

∑
j=1
aiei ∈ V (P) ∶ ∀j ≠ i,0 ≤ ∣aj ∣ < ai} .

Define C(v, i−) analogously as the cone of vertices closer to v − ei that to v. The graph
P ∖ C(v, i+) is in fact a retract of P, as one can easily check that the following map r,
which ‘pushes C(v; i+) in the i direction’, is a homomorphism: for x ∈ P ∖ C(v; i+), let
r(x) = x; and for x ∈ C(v; i+) let r(x) = x−mxei for the smallest mx > 0 such that x−mxei
is not in C(v; i+).

The retract R in Figure 1 can be viewed as a 2-dimensional version of the construction
P ∖C(v; i+). Specifically, it would be P ∖C((1,1); 1+)), as we have removed the cone of
vertices closer to (2,1) than to (1,1).

Figure 3 gives two different depictions of B = P 3
2 ∖C((1,1,1); 1+). The first depiction

shows the subgraphs induced by the 1-layers of P 3
2 , the ith 1-layer being the set of vertices

v such that v1 = i. We have only shown the edges between 1-layers that involve the vertex
(1,2,2). The second depiction, in which the 1st coordinate increases toward the reader,
is more suggestive of how B can be viewed as subgraph of a product of paths achieved
by removing a cone. Many edges are hidden, but any ’unit cube’ in this picture induces
a clique of B.

It is easy to show that removing a vertex in the i direction, as in Figure 3 for i = 1,
will ‘kill’ SL polymorphisms with consistently oriented square edges that are directed, in
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(0,2
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(2,0
,2)

(2,2,0)
(2,0,0)

(0,0,0)

Figure 3: Two depictions of graph B = P ∖C((1,1,1); 1+)

the i direction, away from the missing vertex. The useful property for us though, is the
less intuitive fact that it kills such polymorphisms directed towards the missing vertex.

Lemma 12. Let P = P 3
2 , and let B = P ∖ C((1,1,1); i+) for some i ∈ [3]. (See Figure 3

for the case i = 1.) There is no SL polymorphism on B with consistently oriented square
edges in which the i-square edges are positively oriented. The same holds when replacing
‘B = P ∖C((1,1,1); i+)’ with ‘B = P ∖C((1,1,1); i−)’ and ‘positively’ with ’negatively’.

Proof. We prove only the first statement, the second follows by relabeling vertices. We
further assume that i = 1. Towards contradiction, assume that ∧ is an SL polymorphism
of B. Without loss of generality we may assume that the j-square edges are positively
oriented for all j ∈ [3]; so x→ y if xj ≤ yj for all j.

We now show that there is no value viable value for x = (2,1,2) ∧ (2,2,1). Indeed,
as (2,1,2) ∼ (2,2,1) we have that x is adjacent to both of these vertices, so must be
in {1,2}3 ∖ (2,1,1). Further, it is below both these vertices. So its second co-ordinate
cannot be 2, or else x→ (2,1,2)← (2,0,2) would be a bad 2-path, which is impossible by
Lemma 10. Similarily its third co-ordinate cannot be 2 or x → (2,2,1) ← (2,2,0) would
be a bad 2-path. Thus x can only be (1,1,1). But as x is (2,1,2) ∧ (2,2,1) it is then
above (2,0,0), and so (0,1,1)→ x← (2,0,0) is a bad 2-path.

4.2 Graph with 3-NU but no SL

Let P = P 3
17. Consider the sets

V−
i = {v ∈ P ∣ vi = 2 and vj ∈ {4,9,13} for j ≠ i}

V+
i = {v ∈ P ∣ vi = 15 and vj ∈ {4,9,13} for j ≠ i}

So V = V− ∪ V+ contains 54 vertices, each two layers in from an outside layer of P. For
each v in V−

i let C(v) = C(v; i−) and for each v in V+
i let C(v) = C(v; i+), and let

R = P ∖ (⋃
v∈V
C(v)).
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Figure 4: The retract R = P ∖ (⋃C(v)) from Lemma 13

As we observed following the definition of the notation C(v, i−), R can be viewed as a
retract r(P) where r is the retraction that ’pushes in’ each of the cones C(v). Figure
4 shows part of the graph R. The dimples in the face of the cube are some of the 54
different cones C(v) removed from P. As with previous figures, not all edges are drawn;
vertices in the same unit cube, even in these dimples, are adjacent.

Lemma 13. The retract R of P = P 3
17 defined above has no SL polymorphisms.

Proof. For each v ∈ V let B(v) be the neighbourhood of v in R. It is easy to check that
the vertices in V are far enough apart that each subgraph B(v) is isomorphic to the graph
B from Lemma 12.

Assume, towards contradiction, that R has a SL polymorphism ∧. We will show that ∧
must be consistently ordered on one of the subgraphs B(v) in such a way as to contradict
Lemma 12.

The first step is the following claim, which says that Lemma 11 holds not only on P,
but on the retract R

Claim 14. All edges of R that are inner i-square edges of P, are oriented.

Proof. By Fact 3 it is enough to show that any inner i-square edge, which we may assume
to be {x,x + e1}, is the intersection of distance neighbourhoods.

This is easy if all neighbours of x and x+e1 in P are in R, as then {x,x+e1} = ⋂s∈SN(s)
where S = {x,x + e1, x ± e2, x ± e3} as in the proof of Lemma 11. If x + ej or x − ej is not
in R for j = 2 or 3, then we can replace it in the set S. Indeed, it is enough to consider
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the case that x+ e2 is not in R. In this case, the proof above works by replacing x+ e2 in
S with any vertex in

{x + e1 + e2, x + e2 ± e3, x + e1 + e2 ± e3}.

So we must show that at least one of these vertices are in R. If none of them are, then
as the subgraphs B(v) of P are distance at least 3 apart, all of these vertices are in C(v)
for some single v ∈ V.

Now, these five vertices, along with x+ e2, make up a copy of P2 ×P3 and all have the
same 2 coordinate x2 + 1. The only way they can fit into C(v) is if v is in V+

2 , and if v
is one of x and x + e1. But then v /∈ R contradicts the fact that both x and x + e1 are in
R. ◇

Now, for a vertex v ∈ R let the i-line of v be the set

Li(v) = {u ∈ V (P) ∣ vj = uj for j ≠ i}

of vertices of P that differ from it in at most the ith coordinate. Observe that for an i-line
L = Li(v) of inner square edges, which is fully contained in R, the edges are oriented by
the previous claim, so we have from Lemma 10 that L contains a center vertex cL away
from which all edges must be oriented. If an i-line L = Li(v) is not contained in R, then
the retraction r ∶ P→ R maps a unique vertex c of L onto center of some other i-line, and
we define this c as the center of L.

Claim 15. Let u and v be adjacent, then for any i, the centers of the i-lines Li(u) and
Li(v) are adjacent.

Proof. It is enough to prove the claim for u and v whose i-lines are in R. Assume that
the centers a = cLi(u) and b = cLi(v) are not adjacent. Then as they are in the i-lines of
adjacent vertices, their i-coordinates must differ by more than one. We may assume that
ai ≤ bi−2. Let a′ be the vertex in Li(u) with a′i = bi−1. Then a′ ∼ b and a′−ei ∼ b−ei, but

a′ − ei = a′ ∧ a′ − ei ∼ b ∧ b − ei = b,

which contradicts the fact that a′ − ei /∼ b. ◇

The inner i-floor is the graph induced by the set of centers of the inner i-lines. By
the previous claim, we have that it is a product of two paths. A simple consequence of
this is that if x and x′ are in the i-floor then

∣xi − x′i∣ ≤ ∣xj − x′j ∣ for all j ≠ i (2)

Equation (2) now implies that the inner 1-floor cannot intersect B(v) and B(v′) for v
in V+

1 and v′ in V−
1 . Indeed the maximum distance ∣xj − x′j ∣ between the j ≠ 1 coordinates

of vertices x ∈ B(v) and x′ ∈ B(v′) is 13 − 4 + 2 = 12 while the distance ∣x1 − x′1∣ between
their 1 coordinates is at least 17 − 4 = 13. So we may assume that the 1-floor does not
intersect B(v) for any v ∈ V+

1 .
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Similarly, equation (2) gives us that the inner 2-floor can intersect B(v) for at most
three v ∈ V+

1 . We show that for any m ∈ {4,9,13}, it can intersect B(v) for at most one
v with v1 = 15 and v3 = m. Indeed, if it were to contain x ∈ B(v) and x′ ∈ B(v′) for
v ≠ v′ where v1 = 15 = v′1 and v3 = m = v3, then ∣x3 − x′3∣ ≤ 2 and as v ≠ v′, ∣x2 − x′2∣ ≥
(9 − 1) − (4 + 1) = 3.

So there is some v ∈ V+
1 such that B(v) is not intersected by any i-floor. This means

that its square edges are consistently oriented, and in particular its 1-square edges are
positively oriented. This is the contradiction of Lemma 12 we were looking for, and so
completes the proof of Lemma 13.

As the graph R is a retract of a product of paths, it follows by [7] that it admits a
3-NU polymorphism, so this completes the proof of Theorem 9.

5 Questions and Discussion

The construction for Theorem 9 is certainly bigger than it needs to be, having 183 − 540
vertices. It is probably not hard to refine the construction to make it a little smaller,
but a much smaller example would be interesting. In particular, our construction is a
retraction of a product of three paths. We spent considerable time trying to prove the
results with a retract of a product of two paths, but it proved to be quite a stubborn
problem.

Question 16. Does every retract of a product of two paths admit an SL polymorphism?

As there are generators of NUk for k ≥ 5 that retract to a product of three paths,
there are retracts of such generators that omit SL polymorphisms. However we wonder
about the following; a positive answer to this question would imply a positive answer to
the previous question.

Question 17. Does every retract of K0(T ), where T is a tree with three leaves, admit
an SL polymorphism?

References

[1] H.-J. Bandelt, Graphs with edge-preserving majority functions. Discrete Math.
103(1), (1992), pp. 1–5.

[2] H.-J. Bandelt, G. Meletiou, An Algebraic Setting for Near-Unanimity Consensus,
Order 7, (1990), pp. 169–178.

[3] R. Brewster, T. Feder, P. Hell, J. Huang, and G. MacGillivray. Near-unanimity
functions and varieties of reflexive graphs. SIAM J. Discrete Math., 22, (2008), pp.
938–960.

[4] T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM Journal
on Computing, 28, (1998), pp. 57–104.

the electronic journal of combinatorics 25(4) (2018), #P4.2 12



[5] T. Feder, P. Hell, B. Larose, C. Loten, M. Siggers, C. Tardif, Graphs admitting k-NU
operations. Part 1: the reflexive case. SIAM J. Discrete Math. 27(4), (2013), pp.
1940–1963.
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