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Abstract

Let N denote the set of non-negative integers. Haglund, Wilson, and the second
author have conjectured that the coefficient of any Schur function sλ[X] in ∆eken[X]
is a polynomial in N[q, t]. We present four proofs of a stronger statement in the case
k = 2; we show that the coefficient of any Schur function sλ[X] in ∆e2en[X] has a
positive expansion in terms of q, t-analogs.
Mathematics Subject Classifications: 05E05, 05E10

1 Introduction

Let Λ denote the ring of symmetric functions with coefficients in Q(q, t). If µ is a partition
of n, we shall write µ ` n. LetX = x1+· · ·+xN . The sets {eµ[X] : µ ` n}, {sµ[X] : µ ` n}
and {H̃µ[X; q, t] : µ ` n} are the elementary, the Schur, and the (modified) Macdonald
symmetric function bases for Λ(n), the elements of Λ that are homogeneous of degree
n. Given a partition µ ` n and a cell c in the Young diagram of µ (drawn in French
notation), we set a′(c) and `′(c) to be the number of cells in µ that are strictly to the
left and strictly below c in µ, respectively. For example, if µ = (3, 4, 4, 5) and c is the
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Figure 1: a′(c) and `′(c).

cell pictured in Figure 1, then a′(c) = 3 is represented by the cells containing dots and
`′(c) = 2 is represented by the cells containing stars.

We set

Bµ(q, t) =
∑
c∈µ

qa
′(c)t`

′(c), Tµ(q, t) =
∏
c∈µ

qa
′(c)t`

′(c).

Given any symmetric function f ∈ Λ, we define operators ∆f and ∆′f on Λ by their action
on the Macdonald basis:

∆fH̃µ[X; q, t] = f [Bµ(q, t)]H̃µ[X; q, t], ∆′fH̃µ[X; q, t] = f [Bµ(q, t)− 1]H̃µ[X; q, t].

Here, we have used the notation that, for a symmetric function f and a sum A = a1 +. . .+
aN of monic monomials, f [A] is equal to the specialization of f at x1 = a1, . . . , xN = aN ,
where the remaining variables are set equal to zero. We also set ∇ = ∆en as an operator
on Λ(n). Note that, by definition, for any 1 6 k 6 n,

∆eken[X] = ∆′ek+ek−1
en[X] = ∆′eken[X] + ∆′ek−1

en[X]. (1)

Furthermore, for any k > n, ∆eken[X] = ∆′ek−1
en[X] = 0. Therefore ∆enen[X] =

∆′en−1
en[X].

In [5], Haglund, Remmel, and Wilson conjectured a combinatorial interpretation of the
coefficients that appear in the expansion of ∆eken[X] in terms of the fundamental quasi-
symmetric functions. Their conjecture is now referred to as the ∆-conjecture. They also
conjectured that coefficients in the Schur function expansion of ∆eken[X] are polynomials
in q and t with non-negative integer coefficients. There are two cases that are known.
Namely, when k = n, then Haiman [6] proved that ∆enen[X] = ∇en[X] is the Frobenius
image of the character generating function of the ring of diagonal co-invariants. Thus in
this case, repesentation theory tells us that the coefficient of the Schur function sλ[X],
〈∇en[X], sλ[X]〉, is a polynomial in q and t with non-negative integer coefficients. Also
in this case, the so-called “Shuffle conjecture” of Haglund, Haiman, Loehr, Remmel, and
Ulyanov [4] gives a combinatorial interpretation of the coefficients that arise in the expan-
sion of∇en[X] in terms of fundamental quasi-symmetric functions. The Shuffle conjecture
was recently proved by Carlsson and Mellit [2].

The other known case is when k = 1. In [5], the authors proved that

∆e1en[X] =

bn/2c∑
m=0

s2m,1n−2m [X]
n−m∑
p=m

[p]q,t (2)
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where [n]q,t = qn−tn
q−t = qn−1 + qn−2t+ · · ·+ qtn−2 + tn−1 for n > 0.

The main goal of this paper is to give four different proofs of the fact that ∆e2en[X] is
Schur positive, i.e. for all λ ` n, 〈∆e2en[X], sλ[X]〉 ∈ N[q, t], in hopes that some of the
ideas in those proofs can be adapted to prove the Schur positivity of ∆eken[X] for k > 3.

All of our proofs start with the following result of Haglund [3].
Lemma 1. For all n, d, and symmetric functions f [X],

〈∆ed−1
en[X], f [X]〉 = 〈∆ωf ed[X], sd[X]〉. (3)

Let λ be any partition of n. By setting f = sλ, we have

〈∆ed−1
en[X], sλ〉 = 〈∆sλ′

ed, sd〉. (4)

The formula works nicely when d is small, since we have explicit expansion of ed in terms
of Macdonald polynomials. In the case d = 2 we have

e2[X] =
1

t−q
H̃1,1[X; q, t]− 1

t−q
H̃2[X; q, t].

This leads to

〈∆e1en[X], sλ[X]〉 = 〈∆sλ′
e2[X], s2[X]〉

=
〈 1

t−q
sλ′ [1+t]H̃1,1[X; q, t]− 1

t−q
sλ′ [1+q]H̃2[X; q, t], s2[X]

〉
=

1

t−q
sλ′ [1+t]− 1

t−q
sλ′ [1+q],

which is easily seen to be an element of N(q, t).

In the case d = 3, the expansion of e3 leads to the following formula.

gλ := 〈∆e2en[X], sλ[X]〉 =

(t−q2)sλ′ [1+t+t2]− (q+t+1)(t−q)sλ′ [1+q+t] + (t2−q)sλ′ [1+q+q2]

(t−q)(t2−q)(t−q2)
(5)

At first glance, this formula does not seem to be useful. Indeed, it is not immediately
obvious that this quotient is a polynomial.

Our (chronologically) first approach to proving that gλ is in N[q, t] is based on the following
observations.

i) If λ′ has more than three parts, then gλ = 0;
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ii) If we expand sa,b,c[x + y + z] as a quotient of alternates, then from the view of
MacMahon partition analysis, one can easily see that the generating function∑

a>b>c>0

g(a,b,c)′u
a
1u

b
2u

c
3

is a rational function.

iii) Hence, it might be easier to show that this generating function has only nonnegative
coefficients.

We succeeded in this approach by finding a proof that can be easily verified by computer,
but it is too long to be printed. We will explain this approach in Section 4, but we will
not include full details.

Our other approaches rely on the following alternative representation of gλ.
Lemma 2. Let τ be the operation which switches t and q. Then

gλ = 〈∆e2en[X], sλ[X]〉 =
Fλ′ − τFλ′

t−q
=
id−τ
t−q

Fλ′ , (6)

where τF = F
∣∣
q=t,t=q

and

Fλ′ =
sλ′ [1+t+t2]− sλ′ [1+t+q]

t2−q
. (7)

Proof. By using the formula

(t−q)(1+q+t) = (t−q2)− (q−t2) = (id−τ)(t−q2),

equation (5) becomes

〈∆e2en[X], sλ[X]〉 =
(id−τ)(t−q2)sλ′ [1+t+t2]− (id−τ)(t−q2)sλ′ [1+q+t]

(t−q)(t2−q)(t−q2)

=
1

t−q
(id−τ)

(
sλ′ [1+t+t2]− sλ′ [1+t+q]

t2−q

)
.

This is just the desired (6).

We will show that Fλ′ is a polynomial that can be interpreted as a sum over semi-standard
Young tableaux filled with numbers 0, 1, 2. From this formula, it is clear that gλ is in Z[q, t]
where Z = {0,±1,±2, . . .} is the set of integers.

We present our second proof in Section 2. We introduce new combinatorial objects, called
“enriched” semi-standard Young tableaux, to interpret the coefficients of gλ. We then
define an injection on these enriched tableaux which will allow us to prove that gλ is in
N[q, t].
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In Section 3, we present our third proof that gλ is in N[q, t]. The proof in this section is a
direct computation of gλ carried out by breaking gλ into a sum of terms where each term
is easily seen to be a polynomial in q and t with non-negative coefficients. The advantage
of this proof is that we can recursively produce explicit formulas for gλ.

In Section 4, we shall expand our discussion of the generating function approach described
above and describe an alternate way to analyze the resulting generating functions which
is our fourth proof.

Finally in Section 5, we give a formula of ∆e3en[X]. However it is not clear how we can
split up this formula into pieces which are easily seen to be polynomials in q and t with
non-negative coefficients. Thus, the general problem of establishing the Schur-positivity
of ∆eden[X] seems to require new ideas.

2 Combinatorial Proof

The idea is based on the following observation:

(id−τ)tjqi

t−q
= −(id−τ)tiqj

t−q
and

(id−τ)tiqj

t−q
= (tq)j[i−j]q,t, if i > j.

Thus if Fλ′ =
∑

i,j ai,jq
itj, we have

gλ =
(id−τ)Fλ′

t−q
=
∑
i>j

(ai,j−aj,i)(tq)j[i−j]q,t.

To show that gλ ∈ N[q, t], it is sufficient to show that ai,j−aj,i > 0 for every i > j.
Note that this condition indeed shows the Schur-positivity of gλ in q, t-analogs, a stronger
condition than gλ ∈ N[q, t]: for instance, q2+t2 ∈ N[q, t] but q2+t2 = [3]q,t−qt [1]q,t.

Now we have a combinatorial interpretation of Fλ′ using formula (7) of Section 1. Firstly,

sλ′ [x0+x1+x2] =
∑
T

x
κ0(T )
0 x

κ1(T )
1 x

κ2(T )
2 ,

where the sum is over all semi-standard Young tableaux T of shape λ′ filled with numbers
0, 1, 2, and κi(T ) is the number of i’s in T . Generic semi-standard Young tableaux T of
shape λ′ are pictured in Figure 6. For any given tableau T , we see that contribution to

sλ′ [1+t+t2]− sλ′ [1+t+q]

t2−q

is

tκ1(T ) t
2κ2(T )−qκ2(T )

t2−q
= tκ1(T )[κ2(T )]t2,q.
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Thus

Fλ′ =
∑
T

tκ1(T )[κ2(T )]t2,q.

This can be interpreted as

Fλ′ =
∑
T ′

tκ1(T ′)qκ2(T ′)t2κ2̄(T ′),

where T ′ ranges over the following objects, which we call enriched tableaux: T ′ consists
of a semi-standard Young tableau T filled with 0, 1, 2 and additional markings on some
2’s. When reading the 2’s from left to right in T , the corresponding cells in T ′ contain
some undecorated 2’s (weighted by q), followed by some 2̄’s (weighted by t2), followed
by a single 2̂ (weighted by 1). The remaining entries, 0’s and 1’s, get weights 1 and t
respectively. See the figures below for examples. For each character x ∈ {0, 1, 2, 2̄, 2̂},
κx(T

′) denotes the number of times x occurs in T ′.
Theorem 3. For any shape λ,

gλ =
∑
T ′

(tq)κ2(T ′)[κ1(T ′)+2κ2̄(T ′)−κ2(T ′)]q,t

where the sum ranges over enriched tableaux T ′ of shape λ which satisfy at least one of
the following conditions:

1. T ′ has a 2̄ or 2̂ in the third row,

2. T ′ has a 2̂ in the second row and fewer than κ1(T ′)+2κ2̄(T ′)−κ2(T ′) 1’s at the top
of columns of height 2, or

3. T ′ has a 2̂ in the bottom row, fewer than 2κ2̄-many 2’s in the bottom row and fewer
than κ1(T ′)+2κ2̄(T ′)−κ2(T ′) 1’s at the top of columns of height 2.

Proof. Following the remarks above, for each i > j, we will give an injection from enriched
tableaux of weight tjqi (which are counted by aj,i) into those of weight tiqj (counted by
ai,j). The enriched tableaux which are not in the image of this injection will be precisely
those enumerated above.

Let i > j and let T ′ be an enriched filling of the (french) Young diagram of λ with weight
tjqi. Note that κ2 > 2κ2̄ since undecorated 2’s are the only entries contributing q’s to the
weight of T ′. Note also that T ′ cannot have a 2̄ or 2̂ in the third row. This is because
all 2’s in the third row are “balanced” by the 1’s which must lie beneath them, and the
presence of a 2̄ or 2̂ in the third row makes it impossible to gain any more powers of q
later in T ′. Hence we can safely ignore (freeze) all columns of height 3.

Case 1: Suppose that the single 2̂ lies in the bottom row. Further suppose that there are
at least 2κ2̄-many 2’s in the bottom row. (Recall that if there are any 2’s in the bottom
row, then all 2̄’s are also in the bottom row.) Construct T ′′ as follows: Freeze 2κ2̄-many
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2’s in the bottom row as well as all 1’s in the bottom row which are under a 2. Then
exchange the number of unfrozen 1’s and unfrozen 2’s in the bottom row, and also the
number of 1’s and 2’s above 0’s (in the second row). Then reorder cells within these rows
to make them weakly increasing.

1 1
1 10 0 0 0 0

2 2
2 2 2

2 2 2 2 2 2

1 1 1
1 10 0 0 0 0

2 2
2

2 2 2 2 2
1

1

2

1

Figure 2: An illustration of Case 1 with i = 10 and j = 6. Grey columns are fixed.

Case 2: Suppose that the single 2̂ is not in the bottom row or that there are fewer than
2κ2̄-many 2’s in the bottom row. Note that in the former situation, there are no 2’s in
the bottom row. Hence, either way, the total weight of all cells in columns of height 1
has a (weakly) larger power of t than q. Furthermore, we noted above that the weight
of the columns of height 3 has equal powers of t and q. Hence the total weight of the
columns of height 2 must be tbqa for some a, b with a−b > i−j. In particular, the number
of 2’s above 0’s must be at least i−j (since 2’s above 1’s are “balanced”). To construct
T ′′, simply change the leftmost i−j of these to 1’s (still above 0’s).

1 1
10 0 0 0 0

2
2 2 2 2 2

0 0
2 2 2 2 2
0 0 0 0 1 1

2

1 1
10 0 0 0 0

2
2 2 2 2
0 0
2 2 2 2 2
0 0 0 0 1 1

1 1

Figure 3: An illustration of Case 2 with i = 10 and j = 8.

It is easy to see that each of these maps alone is injective. If you know a particular
enriched tableaux T ′′ is the image of a Case 1 tableau T ′, you can simply freeze 2κ2̄-many
2’s in the bottom row and then switch the roles of 1’s and 2’s back to reconstruct T ′. If
you know T ′′ is a Case 2 image, you just swap as (i−j)-many 1’s for 2’s at the tops of
columns of height 2.

Furthermore, these images don’t intersect: the image of a Case 1 tableau always has the
2̂ and at least 2κ2̄-many 2’s in the bottom row and the image of a Case 2 tableau never
does. Hence for any shape λ and any i > j, these maps together form an injection from
enriched tableaux of shape λ of weight tjqi into those of weight tiqj.
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Using the partial inverses mentioned above, we can see that the enriched tableaux of
weight tiqj not in the image of our injection are those which 1) have a 2̄ or 2̂ in the third
row; 2) have a 2̂ in the second row and fewer than i−j 1’s at the top of columns of height
2; or 3) have a 2̂ in the bottom row, fewer than 2κ2̄-many 2’s in the bottom row and
fewer than i−j 1’s at the top of columns of height 2. This gives the desired combinatorial
interpretation of

∑
i>j(ai,j−aj,i)tiqj as an enumeration of certain enriched tableaux.

For example, consider the case λ = (31, 24, 15). Figure 4 shows all enriched tableaux of
shape λ′ and weight t5q7 together with their images under the injection above. For the
tableaux belonging to Case 1, the frozen cells are shaded. Only the last falls into Case
2 from the proof of the theorem. Then in Figure 5 we give all the remaining enriched
tableaux of weight t7q5.

Note that in this example there are no such enriched tableaux which have a 2̄ or 2̂ in the
third row. This can only happen when all 2’s are at the tops of columns of height 3, that
is, when the power of q is less than the number of parts of size 3 in λ. Similarly, there
are no enriched tableaux which have a 2̂ in the second row. This can only happen when
the power of q is less than the number of parts of size 2 or 3.

0 20
2

2 2
21

2

2

0
2

1 10
2

0 20
2

2 2
21

2

0
2

1 1
2

11

0 20 2 2 2
21

2

0
2

1 1
21
1

0 20 2 2
21

2

0 1
2
1 2 2

1 1

0 20 2 2
21

2

2

0
2

1
1

0
2

2

0 20 2
21

2

2

0
2

0
2

2 2
2

0

0 20 2 2
21

2

2

0 10

0 20 2 2
21

2

0 1 1
2

11

0 20 2
21

2

0
2

1 1
21
1

0 20
21

2

0 1
2
1

0 20 2 2
21

2

2

0 1
1

0
2

0 20 2
21

2

2

0 0
2

2 20
1 1

1
1

1 1 1
2

1 1 1 1
22

1 1

1 1

Figure 4: All enriched tableaux of shape (10, 5, 1) and weight t5q7 along with their images
under the injection from the proof of Theorem 3.

0 20
21

2

2

0 0
2

20 2
22

0

0 20
21

2

2

0 0
2

20
22

1 1

0 20
21

2

2

0 0
2

20
2

1
1

2

0 20
21

2

2

0 0
1 22

21

0 20
21

2

2

0 0
22 2

1 1 1 1

1 1

0 20
21

2

2

0 0
2

20 2
22

0

0 20
21

2

2

0 0
2

20
22

1 1

0 20
21

2

2

0 0
2

20
2

1
1

2

0 20
21

2

2

0 0
1 22

21

0 20
21

2

2

0 0
22 2

1 1 1 1

1 1

Figure 5: All enriched tableaux of shape (10, 5, 1) and weight t7q5 not included in Figure 4.
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3 Proof by Direct Computation

3.1 Preliminaries

In this section, we shall show the computation of an explicit formula for gλ.

We let

(1) [n]q = qn−1+qn−2+ · · ·+1 = qn−1
q−1

,

(2) [n]q,t = qn−1+qn−2t+ · · ·+tn−1 = qn−tn
q−t for n > 0,

(3) [−n]q,t = q−n−t−n
q−t = −[n]q,t

(qt)n
for n > 0, and

(4) [n → m]q,t =
∑m

i=n[i]q,t =
∑m
i=n t

i−
∑m
i=n q

i

t−q = tn[m−n+1]t−qn[m−n+1]q
t−q or alternatively

(q−1)(tm+1−tn)−(t−1)(qm+1−qn)
(t−1)(q−1)(t−q) .

We know that gλ = 0 if λ′ has more than 3 rows. Thus we can assume that λ′ has 3 or fewer
rows. We let SSYT(λ′, 012) denote the set of all semi-standard Young tableaux T of shape
λ′ with cells filled by {0, 1, 2}. Given a semi-standard Young tableau T ∈ SSYT(λ′, 012),
the contribution of T to gλ is denoted as gT . This is also known as T ’s weight. We can
write

gλ =
∑

T∈SSYT(λ′,012)

gT . (8)

Since we are only considering the weight of T ∈ SSYT(λ′, 012), we can write T in 4 parts
as shown in Figure 6: a1 – the part with 3 rows, k1 – the part with two rows and the
bottom row is filled with 0’s, a2 – the part with two rows and the bottom row is filled
with 1’s, k2 – the part with one row and the fillings are not 0. If there is no a2 part, there
can be a part called a0 at the same place which consists of one row filled with 0’s. In
our weighting scheme for T ∈ SSYT(λ′, 012) given below, the weight of any 0 will be 1.
Hence a0 won’t contribute anything to gT so that we will not consider a0 in our formulas.
We define the set S[a1, k1, a2, k2] to be the collections of T ’s having the part composition
[a1, k1, a2, k2]. Since a1 and a2 have exactly the same kind of contribution to the formula,
we can define

g[a1+a2, k1, k2] =
∑

T∈S[a1,k1,a2,k2]

gT . (9)

· · · 0 · · · 0 · · · 0 1 · · · 1 1 · · · 2

· · · 1 · · · 1 · · · 2 2 · · · 2

· · · 2 · · ·

a1 k1 a2 k2

(a)

or
· · · 0 · · · 0 · · · 0 0 · · · 0 1 · · · 2

· · · 1 · · · 1 · · · 2

· · · 2 · · ·

a1 k1 a0 k2

(b)

Figure 6: T ∈ SSYT(λ′, 012)
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By Lemma 2, we can simplify the formula for gλ as:

gλ = 〈∆e2en[X], sλ〉

=
id− τ
t− q

Fλ′

=
id−τ
t−q

sλ′ [1+t+t2]− sλ′ [1+t+q]

t2−q

=
sλ′ [1+t+t2]− sλ′ [1+t+q]

(t−q)(t2−q)
+
sλ′ [1+q+q2]− sλ′ [1+q+t]

(t−q)(t−q2)
. (10)

Suppose a Young tableau T ∈ SSYT(λ′, 012) has ω1 1’s and ω2 2’s, then it has weight

gT =
tω1+2ω2−tω1qω2

(t−q)(t2−q)
+
qω1+2ω2−qω1tω2

(t−q)(t−q2)

=
tω1 [ω2]t2,q−qω1 [ω2]q2,t

t−q
. (11)

Now we define
w(ω1, ω2) =

tω1 [ω2]t2,q−qω1 [ω2]q2,t

t−q
(12)

and
W (T ) = w(ω1, ω2) =

tω1 [ω2]t2,q−qω1 [ω2]q2,t

t−q
. (13)

Then it is clear that

g[a1+a2, k1, k2] =
∑

T∈S[a1,k1,a2,k2]

gT =
∑

T∈S[a1,k1,a2,k2]

W (T ). (14)

We will use the new weight W (T ) to deduce a formula for g[a1+a2, k1, k2] which will, in
turn, allow us to compute an explicit formula for gλ.

3.2 The computation of g[a1 + a2, k1, k2]

3.2.1 A formula for g[0, 0, k]

The set S[0, 0, 0, k] contains the tableaux T of shape
1· · ·2
k

. If there are i 1’s, then there

will be k − i 2’s. For any statement A, we let χ(A) = 1 if A is true and χ(A) = 0 if A is
false. Then we have the following theorem.
Theorem 4. We have g[0, 0, 1] = 0 and, for k > 2,

g[0, 0, k] =

b(2k−2)/3c−χ(k ≡ 1 mod 3)∑
i=0

(qt)i
[
k−i−b i+1

2
c → 2k−2−3i

]
q,t
. (15)
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Proof. It is easy to see by direct calculation that g[0, 0, 1] = 0. Next observe that for any
r > 1, ω(r, 0) = 0. Thus we need only consider the cases where there is at least one 2 in
the tableau. It follows that

g[0, 0, k] =
∑

T∈S[0,0,0,k]

gT =
k−1∑
i=0

w(i, k−i)

=
k−1∑
i=0

ti[k−i]t2,q−qi[k−i]q2,t

t−q
=

k−1∑
i=0

∑k−1−i
j=0 t2k−2j−i−2qj−q2k−2j−i−2tj

t−q

=
k−1∑
i=0

k−1−i∑
j=0

(qt)j[2k−3j−i−2]q,t.

Now let A(k)
i,j = (qt)j[2k−3j−i−2]q,t. In Figure 7, we have pictured the array

{A(8)
i,j : 06i67 & 06j6i}. In general, if one looks at the first row of the A

(k)
i,j =

(qt)j[2k−3j−i−2]q,t, which is the sequence ((qt)j[2k−3j−2]q,t), the terms will be non-
negative if 2k−2 > 3j, or, equivalently, if j 6 b(2k−2)/3c. We shall show that for any
negative terms in the first row of the form (qt)j[−k]q,t, the first k+1 terms along the
anti-diagonal starting at that position will sum to 0. This will leave us only with positive
terms corresponding to sum stated in the theorem. For example, in Figure 7, one can
easily compute that the sum of the first two terms of the anti-diagonal starting at the
term (qt)5[−1]q,t equals 0, the sum of the first five terms of the anti-diagonal starting at
the term (qt)6[−4]q,t equals 0, and the sum of the first eight terms of the anti-diagonal
starting at the term (qt)7[−7]q,t equals 0. These are the terms corresponding to the green,
blue, and red diagonals respectively. In this case, we see that g[0, 0, 8] equals

[8→ 14]q,t + qt[6→ 11]q,t + (qt)2[5→ 8]q,t + (qt)3[3→ 5]q,t + (qt)4[2→ 2]q,t

which is exactly the formula predicted by the theorem.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

i
j

q,t

q,t

q,t q,t q,t q,t q,t q,t q,t
7(qt)  [−7]

q,t

q,t q,t q,t q,t q,t q,t

q,t q,t q,t q,t q,t

q,tq,tq,tq,tq,t

q,t

q,t

q,t

q,t

q,t

q,t

q,t

q,t

q,t q,t

[14]

[13]

[12]

[11]

[10]

[9]

[8]

[7]

1

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

4

4

4

5

5

5

6

6

(qt)  [11] (qt)   [8] (qt)   [5] (qt)   [2] (qt)  [−1] (qt)  [−4]

(qt)  [10] (qt)   [7] (qt)   [4] (qt)   [1] (qt)  [−2] (qt)  [−5]

(qt)   [9] (qt)   [6] (qt)   [3] (qt)   [0] (qt)  [−3]

(qt)   [8] (qt)   [5] (qt)   [2] (qt)  [−1]

(qt)   [7] (qt)   [4] (qt)   [1]

4

(qt)   [6] (qt)   [3]

(qt)   [5]

Figure 7: The table of A(8)
i,j .
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The proof requires a careful case by case analysis by considering the value of k modulo 3.
Note that

1. if k = 3t, then b(2k−2)/3c = 2t−1,

2. if k = 3t+1, then b(2k−2)/3c = 2t, and

3. if k = 3t+2, then b(2k−2)/3c = 2t.

Case 1. k = 3t.

The negative terms in the first row are

(qt)2t−1+s[6t−2−3(2t−1+s)]q,t = (qt)2t−1+s[−3s+1]q,t

for s = 1, . . . , t. In particular, the last term in the first row equals (qt)3t−1[−3t+1]q,t and
the first negative term is A(3t)

0,2t = (qt)2t[−2]q,t.

Then we have two subcases depending on whether s is even or odd.

Subcase 1.1. s = 2r.

In this case, A(3t)
0,2t−1+2r = q2t+2r−1[−6r+1]q,t. We claim that

∑6r−1
a=0 A

(3t)
a,2t−1+2r−a = 0. We

shall prove this by showing that for all 0 6 a 6 3r−1,

A
(3t)
a,2t−1+2r−a = −A(3t)

6r−1−a,2t−1+2r−(6r−1−a) = −A(3t)
6r−1−a,2t−4r+a.

Note that

A
(3t)
a,2t−1+2r−a = (qt)2t−1+2r−a[6t−2−a−3(2t−1+2r−a)]q,t

= (qt)2t−1+2r−a[−6r+1+2a]q,t

= −(qt)2t−1+2r−a−(6r−1−2a)[6r−1+2a]q,t

= −(qt)2t−4r+a[6r−1+2a]q,t.

On the other hand,

A
(3t)
6r−1−a,2t−4r+a =

(qt)2t−4r+a[6t−2−(6r−1−a)−3(2t−4r+a)]q,t = (qt)2t−4r+a[6t−1+2a]q,t

as desired.

Subcase 1.2. s = 2r+1.

In this case, A(3t)
0,2t−1+2r+1 = q2t+2r−1[−6r−2]q,t. We claim that

∑6r+2
a=0 A

(3t)
a,2t+2r−a = 0. First

note that

A
(3t)
3r+1,2t+2r−(3r+1) = A

(3t)
3r+1,2t−r−1 =

(qt)2t−r−1[6t−2−(3r+1)−3(2t−r−1)]q,t = (qt)2t−r−1[0]q,t = 0.
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Thus we can prove our claim if we show that 0 6 a 6 3r,

A
(3t)
a,2t+2r−a = −A(3t)

6r+2−a,2t+2r−(6r+2−a) = −A(3t)
6r+2−a,2t−4r−2+a.

Note that

A
(3t)
a,2t+2r−a = (qt)2t+2r−a[6t−2−a−3(2t+2r−a)]q,t

= (qt)2t+2r−a[−6r−2+2a]q,t

= −(qt)2t+2r−a−(6r+2−2a)[6r+2−2a]q,t

= −(qt)2t−4r−2+a[6r+2−2a]q,t.

On the other hand,

A
(3t)
6r+2−a,2t−4r−2+a = (qt)2t−4r−2+a[6t−2−(6r+2−a)−3(2t−4r−2+a)]q,t

= (qt)2t−4r+a[6r+2−2a]q,t.

Observe that the bottom term of the r-th column of the array {A(3t)
i,j }i=0,...,3t−1 & 06j6i is

A3t−1−r,r. Our computations above show that in the array {A(3t)
i,j }i=0,...,3t−1 & 06j6i, the first

3s terms of any anti-diagonal starting at A0,2t−1+s sum to 0 for s = 1, . . . , t. This means
that the corresponding terms in the array make no contribution to g[0, 0, k]. It follows
that we can ignore all the terms in columns 2t, . . . , 3t−1. Note that the first 3t terms of
the anti-diagonal starting at A(3t)

0,3t−1 cancel out the bottom term in each column. Next the
first 3t − 3 terms of the anti-diagonal starting at A(3t)

0,3t−2 reach only to column 2 so they
will cancel out the next to last term in columns 2, . . . , 2t−1. Then the first 3t−6 terms
of the anti-diagonal starting at A(3t)

0,3t−3 reach only to column 4 so they will cancel out the
second to last terms in columns 4, . . . , 2t−1. Continuing on in this way, we finally see that
the 3 anti-diagonal terms starting at A(3t)

0,2t will only cancel out terms in columns 2t−2 and
2t−1. It follows that for r = 0, . . . , t−1, we can ignore that last r+1 terms in columns
2r and 2r+1. This means that if 0 6 r 6 t−1, the lowest term that can contribute to
g[0, 0, k] in column 2r is

A
(3t)
3t−1−2r−(r+1),2r = A3t−3r−2,2r = (qt)2r[6t−2−(3t−3r−2)−3(2r)]q,t

= (qt)2r[3t−3r]q,t = [3t−(2r)−b(2r+1)/2c]q,t.

Note that the top element in column 2r is A(3t)
0,2r = (qt)2r[3t−2−3(2r)]q,t. Since the q, t-

numbers of the terms in column 2r increase by 1 as one moves up, it follows that the
contribution of column 2r to g[0, 0, k] is (qt)2r[k−(2r)−b(2r+1)/2c → 2k−2−3(2r)]q,t as
predicted by our formula.

Similarly, if 0 6 r 6 t − 1, the lowest term that can contribute to g[0, 0, k] in column
2r+1 is

A
(3t)
3t−1−(2r+1)−(r+1),2r+1 = A3t−3r−3,2r+1 = (qt)2r+1[6t−2−(3t−3r−3)−3(2r+1)]q,t

= (qt)2r+1[3t−3r−2]q,t = [3t−(2r+1)−b(2r+2)/2c]q,t.
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Note that the top element in column 2r+1 is A(3t)
0,2r+1 = (qt)2r+1[3t−2−3(2r+1)]q,t. Since

the q, t-numbers in the terms in column 2r+1 increase by 1 as one moves up, it follows
that the contribution of column 2r+1 to g[0, 0, k] is (qt)2r+1[k−(2r+1)−b(2r+1)/2c →
2k−2−3(2r+1)]q,t as predicted by our formula.

Thus our formula holds in this case.

Case 2. k = 3t+1.

The negative terms in the first row are

(qt)2t+s[6t+2−2−3(2t+s)]q,t = (qt)2t+s[−3s]q,t

for s = 1, . . . , t. In particular, the last term in the first row equals (qt)3t[−3t]q,t and the
first negative term is A(3t+1)

0,2t+1 = (qt)2t+1[−3]q,t.

Then as in Case 1, we have two subcases depending on whether s is even or odd.

Subcase 2.1. s = 2r.

In this case, A(3t+1)
0,2t+2r = q2t+2r[−6r]q,t. We claim that

∑6r
a=0 A

(3t)
a,2t−1+2r−a = 0. First observe

that
A

(3t+1)
3r,2t+2r−(3r) = q2t−r[6t+2−2−3r−3(2t−r)]q,t = q2t−r[0]q,t.

Thus we can prove our claim by showing that for 0 6 a 6 3r − 1,

A
(3t+1)
a,2t+2r−a = −A(3t+1)

6r−a,2t+2r−(6r−a).

This is a straightforward calculation so we will not include the details here.

Subcase 2.2. s = 2r+1.

In this case, A(3t+1)
0,2t+2r+1 = q2t+2r+1[−6r−3]q,t. We claim that

∑6r+3
a=0 A

(3t+1)
a,2t+2r+1−a = 0. In

this case, one can easily check that for 0 6 a 6 3r+1,

A
(3t+1)
a,2t+2r+1−a = −A(3t+1)

6r+3−a,2t+2r+1−(6r+3−a),

so we shall not include the details here.

Next observe that the bottom term of the array {A(3t+1)
i,j }i=0,...,3t & 06j6i in the r-th column

is A3t−r,r. Our computations above show that in the array {A(3t+1)
i,j }i=0,...,3t & 06j6i, the

first 3s+1 terms of any anti-diagonal terms starting at A(3t+1)
0,2t+s sum to 0 for s = 1, . . . , t.

This means that the corresponding terms in the array make no contribution to g[0, 0, k].
It follows that we can ignore all the terms in columns 2t+1, . . . , 3t. One can use a similar
reasoning as we used in Case 1 to show that for r = 0, . . . , t−1, we can ignore the bottom
r+1 terms in columns 2r and 2r+1. Moreover, we can ignore the bottom t terms in
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column 2t. This is because A(3t+1)
0,2t+1 = [−3]q,t, which means that the first four terms of

the anti-diagonal starting at A(3t+1)
0,2t+1 will cancel terms in columns 2t−2, 2t−1, and 2t. It

follows that if 0 6 r 6 t−1, the lowest term that can contribute to g[0, 0, k] in column 2r
is

A
(3t+1)
3t−2r−(r+1),2r = A

(3t+1)
3t−3r−1,2r = (qt)2r[6t+2−2−(3t−3r−1)−3(2r)]q,t

= (qt)2r[3t−3r+1]q,t = [3t+1−(2r)−b(2r+1)/2c]q,t.

Note that the top element in column 2r is A(3t+1)
0,2r = (qt)2r[2(3t+1)−2−3(2r)]q,t. Since the

q, t-numbers in the terms in column 2r increase by 1 as one moves up, it follows that the
contribution of column 2r to g[0, 0, k] is (qt)2r[k−(2r)−b(2r+1)/2c → 2k−2−3(2r)]q,t as
predicted by our formula.

Similarly, if 0 6 r 6 t−1, the lowest term that can contribute to g[0, 0, k] in column 2r+1
is

A
(3t+1)
3t−(2r+1)−(r+1),2r+1 = A

(3t+1)
3t−3r−2,2r+1 = (qt)2r+1[6t+2−2−(3t−3r−2)−3(2r+1)]q,t

= (qt)2r+1[3t−3r−1]q,t = [(3t+1)−(2r+1)−b(2r+2)/2c]q,t.

Note that the top element in column 2r+1 is A(3t+1)
0,2r+1 = (qt)2r+1[2k−2−3(2r+1)]q,t. Since

the q, t-numbers in the terms in column 2r+1 increase by 1 as one moves up, it follows
that the contribution of column 2r+1 to g[0, 0, k] is (qt)2r+1[k−(2r+1)−b(2r+1)/2c →
2k−2−3(2r+1)]q,t as predicted by our formula.

Finally in column 2t, the lowest term that can contribute to g[0, 0, k] is

A
(3t+1)
3t−(2t)−(t),2r+1 = A

(3t+1)
0,2t = (qt)2t[6t+2−2−3(2t)]q,t

= (qt)2t[0]q,t.

Thus this column makes no contribution which is why we exclude this term from the sum.
Note that in this case 3t+1−2t−b(2t+1)/2c = 1 while 2k−2−3(2t) = 6t+2−2−6t = 0 so
that [k−2t−b(2t+1)/2c → 2k−2−3(6t)]q,t = [1→ 0]q,t which is an empty sum.

Thus our formula holds in this case.

Case 3. k = 3t+2.

Then the negative terms in the first row are

(qt)2t+s[6t+4−2−3(2t+s)]q,t = (qt)2t+s[−3s+2]q,t

for s = 1, . . . , t+1. In particular, the last term in the first row equals (qt)3t+1[−3t−1]q,t
and the first negative term is A(3t+2)

0,2t+1 = (qt)2t+1[−1]q,t.

Then as before, we have two subcases depending on whether s is even or odd.
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Subcase 3.1. s = 2r.

In this case, A(3t+2)
0,2t+2r = q2t+2r[−6r+2]q,t. We claim that

∑6r−2
a=0 A

(3t)
a,2t−1+2r−a = 0. First

observe that

A
(3t+2)
3r−1,2t+2r−(3r−1) = q2t−r+1[6t+4−2−(3r−1)−3(2t−r+1)]q,t = q2t−r+1[0]q,t.

Thus we can prove our claim by showing that for 0 6 a 6 3r−2,

A
(3t+2)
a,2t+2r−a = −A(3t+2)

6r−2−a,2t+2r−(6r−2−a).

This is a straightforward calculation so we will not include the details here.

Subcase 3.2. s = 2r+1.

In this case, A(3t+2)
0,2t+2r+1 = q2t+2r+1[−6r−1]q,t. We claim that

∑6r+1
a=0 A

(3t+2)
a,2t+2r+1−a = 0. In

this case, one can easily check that for 0 6 a 6 3r,

A
(3t+1)
a,2t+2r+1−a = −A(3t+1)

6r+1−a,2t+2r+1−(6r+1−a),

so we shall not include the details here.

Next we observe that the bottom term of the array {A(3t+2)
i,j }i=0,...,3t & 06j6i in the r-th

column is A3t+1−r,r. Our computations above have shown that in the array
{A(3t+2)

i,j }i=0,...,3t+1 & 06j6i, the first 3s − 1 terms of any anti-diagonal starting at A(3t+2)
0,2t+s

sum to 0 for s = 1, . . . , t+1. This means that the corresponding terms in the array
make no contribution to g[0, 0, k]. It follows that we can ignore all the terms in columns
2t+1, . . . , 3t+1. One can use a similar reasoning as we used in Case 1 to show that for
r = 0, . . . , t−1, we can ignore the bottom r+1 terms in columns 2r and 2r+1. We can
also ignore the bottom t+1 terms in column 2t. This is because A(3t+2)

0,2t+1 = (qt)2t+1[−1]q,t so
that the sum of first two anti-diagonal terms starting at A(3t+2)

0,2t+1 will only cancel elements
in columns 2t and 2t+1.

This means that if 0 6 r 6 t−1, the lowest term that can contribute to g[0, 0, k] in column
2r is

A
(3t+2)
3t+1−2r−(r+1),2r = A

(3t+2)
3t−3r,2r = (qt)2r[6t+4−2−(3t−3r)−3(2r)]q,t

= (qt)2r[3t−3r+2]q,t = [3t+2−(2r)−b(2r+1)/2c]q,t.

Note that the top element in column 2r is A(3t+2)
0,2r = (qt)2r[2(3t+2)−2−3(2r)]q,t. Since the

q, t-numbers in the terms in column 2r increase by 1 as one moves up, it follows that the
contribution of column 2r to g[0, 0, k] is (qt)2r[k−(2r)−b(2r+1)/2c → 2k−2−3(2r)]q,t as
predicted by our formula.
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Similarly, if 0 6 r 6 t−1, the lowest term that can contribute to g[0, 0, k] in column 2r+1
is

A
(3t+2)
3t+1−(2r+1)−(r+1),2r+1 = A

(3t+2)
3t−3r−1,2r+1 = (qt)2r+1[6t+4−2−(3t−3r−1)−3(2r+1)]q,t

= (qt)2r+1[3t−3r]q,t = [(3t+2)−(2r+1)−b(2r+2)/2c]q,t.

Note that the top element in column 2r+1 is A(3t+2)
0,2r+1 = (qt)2r+1[2(3t+2)−2−3(2r+1)]q,t.

Since the q, t-numbers in the terms in column 2r+1 increase by 1 as one moves up, it fol-
lows that the contribution of column 2r+1 to g[0, 0, k] is (qt)2r+1[k−(2r+1)−b(2r+1)/2c →
2k−2−3(2r+1)]q,t as predicted by our formula.

Finally for column 2t, the lowest term that can contribute to g[0, 0, k] in column 2t is

A
(3t+2)
3t+1−(2t)−(t+1),2t = A

(3t+2)
0,2t = (qt)2t[6t+4−2−3(2t)]q,t

= (qt)2t[2]q,t = [(3t+2)−(2t)−b(2t+1)/2c]q,t.

It follows that the contribution of column 2t to g[0, 0, k] is (qt)2t[k−(2t)−b(2t+1)/2c →
2k−2−3(2t)]q,t = (qt)2t[2]q,t as predicted by our formula.

Thus our formula holds in this case which completes our proof.

For example, we have

g[0, 0, 12] =
7∑
i=0

(qt)i
[
12−i−b i+1

2
c → 22−3i

]
q,t

= [12→ 22]q,t + (qt)[10→ 19]q,t + (qt)2[9→ 16]q,t + (qt)3[7→ 13]q,t

+(qt)4[6→ 10]q,t + (qt)5[4→ 7]q,t + (qt)6[3→ 4]q,t + (qt)7[1]q,t.

3.2.2 A formula for g[a, 0, k]

Theorem 5.

g[a, 0, k] = (qt)ag[0, 0, k] +
a∑
i=1

(qt)a−i[k+3i→ 2k+3i]q,t. (16)

Proof. We have

g[a, 0, k] =
∑

T∈S[a,0,0,k]

gT

=
k∑
i=0

w(a+i, a+k−i)

=
k∑
i=0

ta+i[a+k−i]t2,q − qa+i[a+k−i]q2,t

t−q
.
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Notice that

[a+k−i]t2,q = qa[k−i]t2,q +
a−1∑
j=0

t2(k−i+a−j−1)qj

and

[a+ k − i]q2,t = ta[k−i]q2,t +
a−1∑
j=0

q2(k−i+a−j−1)tj.

By plugging in these new equations we can get

g[a, 0, k] =taqa
k∑
i=0

ti[k−i]t2,q − qi[k−i]q2,t

t−q

+
k∑
i=0

a−1∑
j=0

(qt)j
t2k−i+3a−3j−2−q2k−i+3a−3j−2

t−q

=(qt)ag[0, 0, k] +
a−1∑
j=0

(qt)j
k∑
i=0

[2k−i+3a−3j−2]q,t

=(qt)ag[0, 0, k] +
a−1∑
i=0

(qt)i[k+3a−3i−2→ 2k+3a−3i−2]q,t

=(qt)ag[0, 0, k] +
a∑
i=1

(qt)a−i[k+3i−2→ 2k+3i−2]q,t.

3.2.3 The computation of g[a, k1, k2]

We still need to add k1 to complete the formula. Since the function g[a, k1, k2] is equal to
g[a, k2, k1], we suppose k1 6 k2 without loss of generality.
Theorem 6. For k1 6 k2, we have

g[a, k1, k2] =

k1∑
i=0

g[a+i, 0, k1+k2−2i]. (17)

Proof.

g[a, k1, k2] =
∑

T∈S[a,k1,0,k2]

gT

=

k1∑
j=0

k2∑
i=0

w(a+i+j, a+k1+k2−i−j)

=

k1∑
i=0

k1+k2−2i∑
j=0

w(a+i+j, a+k1+k2−i−j)

=

k1∑
i=0

g[a+ i, 0, k1 + k2 − 2i].

the electronic journal of combinatorics 25(4) (2018), #P4.20 18



3.3 Formula for gλ

For any λ = (3a2b1c), λ′ has the shape
a b c

We can then write the formula of gλ in

terms of g[x, y, z].
Theorem 7. Let λ = (3a2b1c). Then

gλ =
b∑
i=0

g[a+i, b−i, c] +
c∑
i=1

g[a, b, c−i]. (18)

Proof. The first term
∑b

i=0 g[a+i, b−i, c] sums over all the cases in Figure 6(a) and the
second term

∑c
i=0 g[a, b, c−i] sums over all the cases in Figure 6(b).

Thus, we have a formula for gλ which is based on recursively compute functions g[a, b, c].
The recursive formula for g[a, b, c] not only shows that gλ is Schur-positive in q, t-analogs,
but also gives us a way of writing gλ into q, t-analogs and powers of (qt). For example,
suppose λ = 14. Then λ′ = (4) so that taking into account the possible numbers of 0’s in
a tableau T ∈ SSY T ((4), 012), we see that

g(14) = g[0, 0, 0] + g[0, 0, 1] + g[0, 0, 2] + g[0, 0, 3] + g[0, 0, 4].

g[0, 0, 0] = g[0, 0, 1] = 0, and we can apply Theorem 4 to compute

g[0, 0, 2] =
0∑
i=0

(qt)i[2−i−b(i+1)/2c → 4−2−3i]q,t = [2]q,t,

g[0, 0, 3] =
1∑
i=0

(qt)i[3−i−b(i+1)/2c → 6−2−3i]q,t

= [3→ 4]q,t + (qt)[1→ 1]q,t = [3]q,t + [4]q,t + qt,

and

g[0, 0, 4] =
1∑
i=0

(qt)i[4−i−b(i+1)/2c → 8−2−3i]q,t

= [4→ 6]q,t + (qt)[2→ 3]q,t

= [4]q,t + [5]q,t + [6]q,t + qt([2]q,t + [3]q,t),

Thus
g(14) = [2]q,t + [3]q,t + 2[4]q,t + [5]q,t + [6]q,t + qt(1 + [2]q,t + [3]q,t).

In general, we see that

〈∆e2en[X], en[X]〉 =
n∑
s=2

g[0, 0, s]. (19)
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We claim that g[0, 0, n] is a q, t-analogue of 2
(
n+1

3

)
. To see this, we shall use a formula of

[5] to show that

〈∆e2en[X], en[X]〉|q=t=1 = 2

(
n+ 2

4

)
(20)

from which it follows that

g[0, 0, n]|q=t=1 = 〈∆e2en[X], en[X]〉|q=t=1 − 〈∆e2en−1[X], en−1[X]〉|q=t=1

= 2

(
n+ 2

4

)
− 2

(
n+ 1

4

)
= 2

(
n+ 1

3

)
. (21)

It is proved in [5] that

∆eken[X]|t=1/q =
q(

k
2)−k(n−1)

[k + 1]q

[n
k

]
q
en[X(1+q+ · · ·+qk)]. (22)

Repeatedly applying the sum rule that

sλ[X + Y ] =
∑
µ⊆λ

sµ[X]sλ/µ[Y ],

we see that

∆eken[X]|t=1/q =
q(

k
2)−k(n−1)

[k + 1]q

[n
k

]
q

∑
is>0

i0+i1+···+ik=n

k∏
s=0

eis [q
sX]

=
q(

k
2)−k(n−1)

[k + 1]q

[n
k

]
q

∑
is>0

i0+i1+···+ik=n

k∏
s=0

qsiseis [X]. (23)

It follows that

〈∆eken[X], en[X]〉|t=1/q =
q(

k
2)−k(n−1)

[k + 1]q

[n
k

]
q

∑
is>0

i0+i1+···+ik=n

k∏
s=0

qsis . (24)

It is easy to see that ∑
is>0

i0+i1+···+ik=n

k∏
s=0

qsis =

[
n+ k

k

]
q

(25)

since the LHS is just the sum of q|λ| over all partitions λ contained in the n× k rectangle.
Thus

〈∆eken[X], en[X]〉|t=1/q =
q(

k
2)−k(n−1)

[k + 1]q

[n
k

]
q

[
n+ k

k

]
q

. (26)
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Setting q = 1 and k = 2 in (26), we see that

〈∆e2en[X], en[X]〉|q=t=1 =
1

3

n!

2!(n− 2)!

(n+ 2)!

2!n!

=
4

2

(n+ 2)!

4!(n− 2)!
= 2

(
n+ 2

4

)
. (27)

For another example, we compute gλ for λ = (12, 2), and the conjugate λ′ = (1, 3). In
this case, we can classify the tableau T ∈ SSY T ((1, 3), 012) by whether the bottom
corner square contains a 1, in which case we get a term g[1, 0, 2], or the bottom corner
square contains a 0, in which case we get a contribution of g[0, 1, 2], g[0, 1, 1], or g[0, 1, 0],
depending on the number of 0’s in the first row. Now g[0, 1, 0] = g[0, 0, 1] = 0, and by
Theorem 6,

g[0, 1, 1] =
1∑
i=0

g[i, 0, 2−2i]

= g[0, 0, 2] + g[1, 0, 0]

= [2]q,t + g[1, 0, 0],

and

g[0, 1, 2] =
1∑
i=0

g[i, 0, 3−2i]

= g[0, 0, 3] + g[1, 0, 1]

= [3]q,t + [4]q,t + qt+ g[1, 0, 1].

By Theorem 5

g[1, 0, 0] = (qt)g[0, 0, 0] + [3→ 3]q,t = [1]q,t,

g[1, 0, 1] = (qt)g[0, 0, 1] + [4→ 5]q,t = [2]q,t + [3]q,t, and
g[1, 0, 2] = (qt)g[0, 0, 2] + [3→ 5]q,t

= (qt)[2]q,t + [3]q,t + [4]q,t + [5]q,t.

It follows that

g12,2 = [1]q,t + 2[2]q,t + 3[3]q,t + 2[4]q,t + [5]q,t + (qt)(1 + [2]q,t).

3.4 The relation between the combinatorial proof and direct computation

We show in this subsection that the combinatorial involution of the enriched tableaux
implies the cancellation step of the computation of g[a, k1, k2].
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Firstly, we present the case g[0, 0, k]. We illustrate the relation by an example of k = 5.
Let λ = (5) and suppose there are no 0’s in the filling. Then the contribution of all
tableaux of this form is g[0, 0, 5].

If there are i 1’s in the filled Young diagram, then there are 5−i 2’s. Theorem 4 shows
that when we sum over all cases classified by number of 1’s, we have

g[0, 0, 5] =
k∑
i=0

w(i, k−i)

= −[4]q,t − (qt)2[1]q,t + (qt)2[2]q,t + (qt)[5]q,t + [8]q,t

−(qt)[2]q,t + (qt)2[1]q,t + (qt)[4]q,t + [7]q,t

+0 + (qt)[3]q,t + [6]q,t

+(qt)[2]q,t + [5]q,t

+[4]q,t

= [5→ 8]q,t + (qt)[3→ 5]q,t + (qt)2[2]q,t.

Notice that there is a cancellation in the last step of the equation. The cancellation cancels
terms of different signs in the last steps, which follows the same idea of the combinatorial
proof. The injection of the combinatorial proof maps the negative terms into the positive
terms, giving this cancellation. Table 1 shows all enriched tableaux of shape λ = (5) with
no 0’s and their corresponding weight. From this, we can see that the first column and
the first two rows of the second column are canceled, leaving only the red terms. These
give g[0, 0, 5] = [5→ 8]q,t + (qt)[3→ 5]q,t + (qt)2[2]q,t.

# of 1’s no 2 one 2 two 2 three 2 four 2

0
2 2 2 2 2̂

−[4]q,t

2 2 2 2 2̂

−(qt)2[1]q,t

2 2 2 2 2̂

(qt)2[2]q,t

2 2 2 2 2̂

(qt)[5]q,t

2 2 2 2 2̂

[8]q,t

1
1 2 2 2 2̂

−(qt)[2]q,t

1 2 2 2 2̂

(qt)2[1]q,t

1 2 2 2 2̂

(qt)[4]q,t

1 2 2 2 2̂

[7]q,t

2
1 1 2 2 2̂

0

1 1 2 2 2̂

(qt)[3]q,t

1 1 2 2 2̂

[6]q,t

3
1 1 1 2 2̂

(qt)[2]q,t

1 1 1 2 2̂

[5]q,t

4
1 1 1 1 2̂

[4]q,t

Table 1: Contribution of tableaux of shape λ = (5)

Next, we show this relation for the case g[a, 0, k]. The semi-standard Young tableaux
contributing to such gλ contain 2 parts – the first part has a columns of 2 rows of which
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the bottom row is filled with 1’s, and the second part has k columns of 1 row filled with

some 1’s and 2’s, looking like T =
1· · ·1 1· · ·2
2· · ·2

a k
.

Theorem 5 gives that g[a, 0, k] = (qt)ag[0, 0, k] +
∑a−1

j=0(qt)j
∑k

i=0[2k−i+3a−3j−2]q,t. We
want to show this formula combinatorially. If we fill all cells of the top row of the first
a columns of T with 2, then the contribution of the first a columns is (qt)a, and the
contribution of the last k columns is g[0, 0, k] for the same reason as the first case of
g[0, 0, k], except that the last k columns cannot be all 1’s as there should be a 2̂ in these
columns. Actually this exceptional restriction about filling does not affect g[0, 0, k] as
an all 1’s filling case contributes 0 to g[0, 0, k]. Otherwise, if there is at least one 2̄ or
2̂ in the first a columns, then there must be no 2 in the last k columns. Suppose there
are i 1’s in the last k columns and j 2’s in the first a columns. Then the contribution
is (qt)j[2k−i+3a−3j−2]q,t. These are all fixed points in the involution described in the
combinatorial proof, and we now have found the implication of combinatorial involution
in the cancellation of g[a, 0, k].

Finally, for the case g[a, k1, k2], the combinatorics is straightforward in the recursion
in Theorem 7. Thus we see the connection of the combinatorial proof and the direct
computation.

4 Proofs by Generating Functions

Here we illustrate two proofs using generating functions. They are not different in nature.

First generating function proof.

It is clear that gλ = 0 unless λ′ has at most 3 parts, i.e., λ′ = (a+b+c, b+c, c) for a, b, c > 0.
The idea is to show the generating function

G(u1, u2, u3) =
∑
a,b,c>0

g(a+b+c,b+c,c)′u
a
1u

b
2u

c
3

has only nonnegative coefficients.

Firstly, we use the quotient formula for Schur functions:

sa+b+c,b+c,c[x+ y + z] =
1

(x−y)(y−z)(x−z)
det

xa+b+c+2 xb+c+1 xc

ya+b+c+2 yb+c+1 yc

za+b+c+2 zb+c+1 zc

 .

Next, from the view of MacMahon partition analysis (see, e.g., [1], [7]), G is easily seen
to be a rational power series. Here we only need the following fact:
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If γij > 0 for all i, j, then∑
a,b,c>0

xγ11a+γ12b+γ13cyγ21a+γ22b+γ23czγ31a+γ32b+γ33cua1u
b
2u

c
3

=
1

(1− xγ11yγ21zγ31u1)(1− xγ12yγ22zγ32u2)(1− xγ13yγ23zγ33u3)
.

One simple case will illustrate the idea. By the quotient formula,

sa+b+c,b+c,c[1 + q + t] =
1

(1−q)(1−t)(q−t)
(ta+b+c+2qb+c+1 + other terms),

where the “other terms” are the five terms of similar type obtained by expanding the
determinant. Now we have∑

a,b,c>0

R(q, t)ta+b+cqb+cua1u
b
2u

c
3 = R(q, t)

1

(1− tu1)(1− u2qt)(1− u3qt)
,

where R(q, t) = t2q/((1−q)(1−t)(q−t)) is a rational function independent of a, b, c.

Thus we can write G as a sum of 6× 3 = 18 rational functions. This can be carried out
by Maple and we normalize to obtain

G =
P

(1−m1)(1−m2) · · · (1−m15)
,

where mi are monomials, and P is a polynomial with 1023 terms. Through a complicated
search procedure, we found a decomposition G =

∑27
i=1Qi where each Qi is easily seen to

have only nonnegative coefficients. For instance, one of the terms is

Q1 =
u1u2q (q3u2+t)

(qtu2−1) (t2u1−1) (u1−1) (qu2−1) (qtu3−1) (qu1−1) (q2u2−1) (q3u2−1)
.

This proves that G has only nonnegative coefficients and hence gλ ∈ Z>0[q, t]. As a proof,
we only need to verify that these Qi’s sum to G (which is routine by computer) but not
how to find them. We are not going to explain in detail how to decompose G since the
idea is not mature.

Second generating function proof.

After the first proof was obtained, Professor Adriano Garsia investigated some data of gλ
and conjectured that gλ is indeed also Schur positive in q, t-analogs. More precisely, we
have

gλ =
∑
i>j>0

bi,js(i−1,j)[q+t] =
∑
i>j>0

bi,jq
jtj[i−j−1]q,t,

where bi,j are nonnegative for all i > j > 0.
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This is equivalent to writing (t− q)G = F − τF , where

F =
∑
i>j>0

bi,j(u1, u2, u3)tiqj,

and showing the nonnegativity of bi,j(u1, u2, u3). To obtain an explicit formula of F from
G, it is better to make the change of variable by q = q̄/t. Then

F =
∑
i>j>0

bi,j(u1, u2, u3)ti−j q̄j,

τF =
∑
i>j>0

bi,j(u1, u2, u3)qitj =
∑
i>j>0

bi,j(u1, u2, u3)t−(i−j)q̄i.

It follows that F consists of all terms in the series expansion of (t− q̄/t)G with positive
powers in t. This can be realized by the following constant term

F = (z−q̄/z)G
∣∣
t=z

∑
k>1

(t/z)k
∣∣∣
z0

= (z−q̄/z)G
∣∣
t=z

t/z

1− t/z

∣∣∣
z0
.

Thus F can be calculated by MacMahon’s partition analysis techniques.

The complexity of G suggests that this approach does not work for ∆e3en[X], so we go
over the computation and the use of Lemma 2 which is the point of departure for the
other proofs.

Using the explicit formula of F , which has 132 terms in the numerator and 11 factors in
the denominator, we are able to decompose F as a sum of 7 rational functions that are
easily seen to have nonnegative coefficients:

F = − (qtu1
3 + qtu1

2u2 + qtu1u2
2 + tu1

2 + tu1u2 + tu2
2) t

(u1 − 1) (tu2 − 1) (t3u3 − 1) (t2u1 − 1) (t3u2 − 1) (q2t2u1
3 − 1) (q2t2u2

3 − 1)

− u2
3t (t3 + qt)

(u1 − 1) (tu2 − 1) (t3u3 − 1) (t2u1 − 1) (t3u2 − 1) (q2t2u2
3 − 1) (t2u2 − 1)

− u2t (q2t4u1
2u2

2 + q2t2u1
2u2 + q2t2u1u2

2 + qt2u1
2 + qt2u1u2 + qt2u2

2 + t2u1 + t2u2 + 1)

(u1 − 1) (tu2 − 1) (t3u3 − 1) (t3u2 − 1) (q2t2u1
3 − 1) (q2t2u2

3 − 1) (qtu2 − 1)

− (qtu1 + t) t2u1
3

(q2t2u1
3 − 1) (t2u1 − 1) (t3u3 − 1) (tu2 − 1) (qtu2 − 1) (u1 − 1) (tu1 − 1)

− u1u2t
2

(t2u1 − 1) (t3u3 − 1) (tu2 − 1) (qtu2 − 1) (u1 − 1) (tu1 − 1) (t3u2 − 1)

− u1t
2u3 (qt2u1

2 + t2u1 + 1)

(u1 − 1) (qtu2 − 1) (tu2 − 1) (t3u3 − 1) (q2t2u1
3 − 1) (qtu3 − 1) (tu1 − 1)

−(q2t4u1
2u2

2 + q2t2u1
2u2 + q2t2u1u2

2 + qt2u1
2 + qt2u1u2 + qt2u2

2 + t2u1 + t2u2 + 1) tu3

(u1 − 1) (qtu2 − 1) (tu2 − 1) (t3u3 − 1) (q2t2u1
3 − 1) (q2t2u2

3 − 1) (qtu3 − 1)
.

This may be treated as our fourth proof, but in the same vein of our first proof.
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5 The ∆e3 Case

For the ∆e3en[X] case, we have a similar formula

e4[X] =

H̃4[X; q, t]

(q−t) (q2−t) (q3−t)
−

(q2+q+t+1) H̃3,1[X;q,t]

(q+t) (q3−t) (q−t)2 −
(qt−1) H̃2,2[X; q, t]

(−t2+q) (q2−t) (q−t)2

+
(t2+q+t+1) H̃2,1,1[X; q, t]

(q+t) (−t3+q) (q−t)2 − H̃1,1,1,1[X; q, t]

(q−t) (−t3+q) (−t2+q)
.

This gives

〈∆e3en[X], sλ′〉 =

sλ[B4]

(q−t) (q2−t) (q3−t)
− (q2+q+t+1) sλ[B3,1]

(q+t) (q3−t) (q−t)2 −
(qt−1) sλ[B2,2]

(−t2+q) (q2−t) (q−t)2

+
(t2+q+t+1) sλ[B2,1,1]

(q+t) (−t3+q) (q−t)2 −
sλ[B1,1,1,1]

(q−t) (−t3+q) (−t2+q)
.

By playing with partial fraction decompositions, the best formula we have is

〈∆e3en[X], sλ′〉 =
Fλ(q, t)− Fλ(t, q)

q − t
−sλ[1+q+t+q2]/q2 − sλ[1+q+t+t2]/t2

2 (q2−t2)
, (28)

where Fλ = Fλ(q, t) is given by

Fλ =
sλ[1+q+q2+q3]− sλ[1+q+t+qt]

(q−1) q2 (q2−t)
− sλ[1+q+q2+q3]− sλ[1+q+t+q2]

q2 (q−1) (q3−t)

− (q+1)(sλ[1+q+t+q2]− sλ[1+q+t+qt])

2 (q−t) q2 (q−1)
+
sλ[1+q+t+qt]

2q2t
.

One can use this formula to prove that gλ is a polynomial divided by (1−q). Nevertheless,
it is clear that this approach becomes more and more complicated so that the proof of
the general ∆eden[X] case seems to require a new idea.
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