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Abstract

A package for the Sage computer algebra system is developed for checking fea-
sibility of a given intersection array for a distance-regular graph. We use this tool
to show that there is no distance-regular graph with intersection array

{(2r + 1)(4r + 1)(4t− 1), 8r(4rt− r + 2t), (r + t)(4r + 1);
1, (r + t)(4r + 1), 4r(2r + 1)(4t− 1)} (r, t > 1),

{135,128,16; 1,16,120}, {234,165,12; 1,30,198} or {55,54,50,35,10; 1,5,20,45,55}. In
all cases, the proofs rely on equality in the Krein condition, from which triple
intersection numbers are determined. Further combinatorial arguments are then
used to derive nonexistence.

Mathematics Subject Classifications: 05E30

1 Introduction

Distance-regular graphs were introduced around 1970 by N. Biggs [1]. As they are in-
timately linked to many other combinatorial objects, such as finite simple groups, finite
geometries, and codes, a natural goal is trying to classify them.

Many distance-regular graphs are known, however constructing new ones has proved
to be a difficult task. A number of feasibility conditions for distance-regular graphs
have been found, which allows us to compile a list of feasible intersection arrays for small
distance-regular graphs (or related structures, such as Q-polynomial association schemes),
see Brouwer et al. [2, 3, 4] and Williford [22]. However, feasibility is no guarantee for
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existence, so proofs of nonexistence of distance-regular graphs with feasible intersection
arrays are also a contribution to the classification. In certain cases, single intersection
arrays have been ruled out [12, 13], while other proofs may show nonexistence for a whole
infinite family of feasible intersection arrays [6, 9, 19]. In this paper we give proofs of
nonexistence for distance-regular graphs belonging to a two-parameter infinite family, as
well as for graphs with intersection arrays

{135, 128, 16; 1, 16, 120},
{234, 165, 12; 1, 30, 198},

{55, 54, 50, 35, 10; 1, 5, 20, 45, 55}.

We develop a package called sage-drg [21] for the Sage computer algebra system [18].
Sage is free open-source software written in the Python programming language [17], with
many functionalities deriving from other free open-source software, such as Maxima [16],
which Sage uses for symbolic computation. The sage-drg package is thus also free open-
source software available under the MIT license, written in the Python programming
language, making use of the Sage library. The package can be used to check for feasibility
of a given intersection array against known feasibility conditions, see Van Dam, Koolen
and Tanaka for an up-to-date survey [7]. Furthermore, using equality in the Krein con-
dition (see Theorem 1), restrictions on triple intersection numbers can be derived. In
this paper, we use them to derive some nonexistence results. The sage-drg package also
includes Jupyter notebooks demonstrating its use to obtain these results, as well as the
notebook jupyter/Demo.ipynb giving some general examples of use of the package. A
more detailed description of the sage-drg package is given in the supplementary files1.

The results from Sections 3, 4 and 6 appeared in the author’s PhD thesis [20], where
computation was done using a Mathematica [23] notebook originally developed by M. Ur-
lep. Thus, the sage-drg package can be seen as a move from closed-source proprietary
software to free open-source software, which allows one to check all code for correctness,
thus making the results verifiable.

2 Preliminaries

In this section we review some basic definitions and concepts. See Brouwer, Cohen and
Neumaier [3] for further details.

Let Γ be a connected graph with diameter d and n vertices, and let ∂(u, v) denote the
distance between the vertices u and v of Γ. The graph Γ is distance-regular if there exist
constants phij (0 6 h, i, j 6 d), called the intersection numbers, such that for any pair of
vertices u, v at distance h, there are precisely phij vertices at distances i and j from u and v,
respectively. In fact, all intersection numbers can be computed given only the intersection
numbers bi = pi1,i+1 and ci+1 = pi+1

1,i (0 6 i 6 d−1) [3, §4.1A]. These intersection numbers
are usually gathered in the intersection array {b0, b1, . . . , bd−1; c1, c2, . . . , cd}. We also

1Available in the ‘Appendix’ at http://www.combinatorics.org/ojs/index.php/eljc/article/

view/v25i4p21
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define the valency k = b0 and ai = k− bi− ci (0 6 i 6 d), where bd = c0 = 0. A connected
noncomplete strongly regular graph with parameters (v, k, λ, µ) is a distance-regular graph
of diameter 2 with v vertices, valency k and intersection numbers a1 = λ, c2 = µ.

Let Ai (0 6 i 6 d) be a binary square matrix indexed with the vertices of a graph
Γ of diameter d, with entry corresponding to vertices u and v equal to 1 precisely when
∂(u, v) = i. The matrix A = A1 is the adjacency matrix of Γ. The graph Γ is called
primitive if all Ai (1 6 i 6 d) are adjacency matrices of connected graphs. A distance-
regular graph of valency k > 3 that is not primitive is bipartite or antipodal (or both) [3,
Thm. 4.2.1]. The spectrum of Γ is defined to be the spectrum of A (i.e., eigenvalues with
multiplicities) and can be computed directly from the intersection array of Γ [3, §4.1B].

Suppose that Γ is distance-regular. Let M be the Bose-Mesner algebra, i.e., the
algebra generated by A. The matrices {Ai}di=0 form a basis ofM, which also has a second
basis {Ei}di=0 consisting of projectors to the eigenspaces of A [3, §2.2]. Note that the
indexing in this second basis depends on the ordering of eigenvalues. The descending
ordering of eigenvalues is known as the natural ordering. We define the eigenmatrix P
and dual eigenmatrix Q as (d + 1) × (d + 1) matrices such that Aj =

∑d
i=0 PijEi and

Ej = n−1
∑d

i=0QijAi. The graph Γ is called formally self-dual [3, p. 49] if P = Q
holds for some ordering of eigenvalues. The graph Γ is called Q-polynomial [3, §2.7]
with respect to some ordering of eigenvalues if there exist real numbers z0, . . . , zd and
polynomials qj of degree j such that Qij = qj(zi) (0 6 i, j 6 d). Finally, we define the

Krein parameters qhij [3, §2.3] as such numbers that Ei ◦ Ej = n−1
∑d

h=0 q
h
ijEh, where

◦ represents entrywise multiplication of matrices. A formally self-dual distance-regular
graph is also Q-polynomial with respect to the corresponding ordering of eigenvalues and
has phij = qhij (0 6 i, j, h 6 d). In this paper, we will use the natural ordering for indexing,
noting when a graph is Q-polynomial or formally self-dual for some other ordering.

For vertices u, v, w of the distance-regular graph Γ and integers i, j, h (0 6 i, j, h 6 d)

we denote by
[
u v w
i j h

]
(or simply [i j h] when it is clear which triple (u, v, w) we have in

mind) the number of vertices of Γ that are at distances i, j, h from u, v, w, respectively.
We call these numbers triple intersection numbers. They have first been studied in the
case of strongly regular graphs [5], and later also for distance-regular graphs, see for
example [6, 8, 9, 10, 19]. Unlike the intersection numbers, these numbers may depend
on the particular choice of vertices u, v, w and not only on their pairwise distances. We
may however write down a system of 3d2 linear Diophantine equations with d3 triple
intersection numbers as variables, thus relating them to the intersection numbers, cf. [9]:

d∑
`=1

[` j h] = pUjh − [0 j h],

d∑
`=1

[i ` h] = pVih − [i 0 h],

d∑
`=1

[i j `] = pWij − [i j 0], (1)

where U = ∂(v, w), V = ∂(u,w), W = ∂(u, v), and

[0 j h] = δjW δhV , [i 0 h] = δiW δhU , [i j 0] = δiV δjU .

Furthermore, we can use the triangle inequality to conclude that certain triple intersec-
tion numbers must be zero. Moreover, the following theorem sometimes gives additional
equations.
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Theorem 1. ([6, Theorem 3], cf. [3, Theorem 2.3.2]) Let Γ be a distance-regular graph
with diameter d, dual eigenmatrix Q and Krein parameters qhij (0 6 i, j, h 6 d). Then,

qhij = 0 ⇐⇒
d∑

r,s,t=0

QriQsjQth

[
u v w
r s t

]
= 0 for all u, v, w ∈ V Γ.

Together with integrality and nonnegativity of triple intersection numbers, we can use
all of the above to either derive that the system of equations has no solution, or arrive
at a small number of solutions, which gives us new information on the structure of the
graph and may lead to proving its nonexistence.

3 A two-parameter family of primitive graphs of diameter 3

In [9], graphs meeting necessary conditions for the existence of extremal codes were stud-
ied. One of the families of primitive graphs of diameter 3 for which these conditions were
met was

{a(p+ 1), (a+ 1)p, c; 1, c, ap}, (2)

where a = a3, c = c2 and p = p333. Graphs belonging to this family are Q-polynomial with
respect to the natural ordering of eigenvalues precisely when the Krein parameter q311 is
zero, which is equivalent to

c =
1

4

(
(p+ 1)2 +

2a(p+ 1)

p+ 2

)
. (3)

Hence, p + 2 must divide 2a for c to be integral. If p = 2r − 1, then a = t(2r + 1) and
c = r(r + t) for some positive integers r, t, which gives us the two-parameter family

{2rt(2r + 1), (2r − 1)(2rt+ t+ 1), r(r + t); 1, r(r + t), t(4r2 − 1)}.

In [9], nonexistence was shown for a feasible subfamily with r = t > 2. If, on the other
hand, p is even, integrality of the multiplicity of the second largest eigenvalue implies that
we must have p = 4r, a = (2r+1)(4t−1) and c = (r+ t)(4r+1) for some positive integers
r, t, giving the family

{(2r + 1)(4r + 1)(4t− 1), 8r(4rt− r + 2t), (r + t)(4r + 1);
1, (r + t)(4r + 1), 4r(2r + 1)(4t− 1)}. (4)

We find two one-parameter infinite subfamilies of feasible intersection arrays by setting
t = 4r2 or t = 4r2 + 2r:

{(2r + 1)(4r + 1)(16r2 − 1), 8r2(16r2 + 8r − 1), r(4r + 1)2;
1, r(4r + 1)2, 4r(2r + 1)(16r2 − 1)},

{(2r + 1)(4r + 1)(16r2 + 8r − 1), 8r2(4r + 1)(4r + 3), r(4r + 1)(4r + 3);
1, r(4r + 1)(4r + 3), 4r(2r + 1)(16r2 + 8r − 1)}.
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There are also other feasible cases – for instance, when r = 2, we have, besides the cases
from the two subfamilies above, feasible examples when t ∈ {4, 7, 196}. The case with
r = 1 and t = 4 belonging to the first subfamily above is also listed in the list of feasible
parameter sets for 3-class Q-polynomial association schemes by J. S. Williford [22].

We now prove that a graph ∆ with intersection array (4) does not exist. The proof
parallels that of [9, Lems. 1, 3] – in fact, a significant part of the proof may be extended
to the entire family (3), as it has been done in [20]. The computation needed to obtain
the results in this section is illustrated in the jupyter/DRG-d3-2param.ipynb notebook
included in the sage-drg package [21].

Lemma 2. Let ∆ be a distance-regular graph with intersection array (4), and u′, v, w be

vertices of ∆ with ∂(u′, v) = 1, ∂(u′, w) = 2 and ∂(v, w) = 3. Then
[
u′ v w
3 3 3

]
= 1.

Proof. Let u be a vertex of ∆ at distance 3 from both v and w (such a vertex exists
since p333 = 4r > 0). We consider the triple intersection numbers [i j h] that correspond
to (u, v, w). As q311 = q113 = q131 = 0, Theorem 1 gives three additional equations to the
system (1), allowing us to express its solution in terms of a single parameter α = [3 3 3].
Let us express the counts of vertices at distance 1 or 2 from one of u, v, w and at distance
3 from the other two vertices:

[3 3 1] = [3 1 3] = [1 3 3] =
(α− 4r + 1)(4r + 1)

4r − 1
,

[3 3 2] = [3 2 3] = [2 3 3] =
8r(4r − 1− α)

4r − 1
.

For the values above to be nonnegative, we must have α = 4r− 1, which means that they
are all zero. As the choice of u, v, w was arbitrary, this implies that any pair of vertices
at distance 3 induces a set of 4r + 2 vertices pairwise at distance 3 – in the terminology
of [9], this is a maximal 1-code in ∆. Since we have a3p

3
33 = 4r(2r + 1)(4t − 1) = c3, it

follows by [9, Prop. 2] that
[
u′ v w
3 3 3

]
= 1 holds.

Theorem 3. A distance-regular graph ∆ with intersection array (4) does not exist.

Proof. Let u′, v, w be vertices of ∆ with ∂(u′, v) = 1, ∂(u′, w) = 2 and ∂(v, w) = 3
(such vertices exist, since we have p213 = b2 = (r + t)(4r + 1) > 0). We consider the
triple intersection numbers [i j h] that correspond to (u′, v, w). By Lemma 2, we have
[3 3 3] = 1. Using q311 = 0, Theorem 1 gives an additional equation which allows us to
obtain a unique solution to the system (1). However, we obtain [1 1 3] = 2t− 1/2, which
is nonintegral for all integers t. Therefore, the graph ∆ does not exist.

4 A primitive graph with diameter 3 and 1360 vertices

Let Λ be a distance-regular graph with intersection array

{135, 128, 16; 1, 16, 120}. (5)
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This intersection array can be obtained from (2) by setting a = 15, c = 16 and p = 8. The
graph Λ has diameter 3 and 1360 vertices. It is not Q-polynomial, however its Krein pa-
rameter q333 is zero. We show that such a graph does not exist. The computation needed to
prove Theorem 4 is illustrated in the jupyter/DRG-135-128-16-1-16-120.ipynb note-
book included in the sage-drg package [21].

Theorem 4. A distance-regular graph Λ with intersection array (5) does not exist.

Proof. Let u, v, w be three pairwise adjacent vertices of Λ (such vertices exist, since we
have p111 = 6 > 0). We consider triple intersection numbers [i j h] that correspond to
(u, v, w). As q333 = 0, Theorem 1 gives an additional equation to the system (1), allowing
us to express its solution in terms of a single parameter α = [1 1 1]. In particular, we
obtain

[3 3 3] =
71− 27α

8
.

Clearly, α must be a nonnegative integer. For [3 3 3] to be nonnegative, we must have
α ∈ {0, 1, 2}. However, [3 3 3] is still nonintegral in these cases, showing that the graph
Λ does not exist.

5 A primitive graph with diameter 3 and 1600 vertices

Let Ξ be a distance-regular graph with intersection array

{234, 165, 12; 1, 30, 198}. (6)

The graph Ξ has diameter 3 and 1600 vertices. The intersection array (6) has been
found as an example of a feasible parameter set for a distance-regular graph which is
formally self-dual for an ordering of eigenvalues distinct from the natural ordering – in
fact, Ξ is Q-polynomial for the ordering 0, 2, 3, 1, so its Krein parameters q122, q

2
12 and

q221 are zero. The intersection array (6) is also listed in the list of feasible parameter
sets for 3-class Q-polynomial association schemes by J. S. Williford [22]. We show that
such a graph does not exist. The computation needed to prove Theorem 5 is illustrated
in the jupyter/DRG-234-165-12-1-30-198.ipynb notebook included in the sage-drg

package [21].

Theorem 5. A distance-regular graph Ξ with intersection array (6) does not exist.

Proof. Let u, v, w be three vertices of Ξ that are pairwise at distance 3 (such vertices exist,
since we have p333 = 8 > 0). We consider triple intersection numbers [i j h] that correspond
to (u, v, w). As q122 = q212 = q221 = 0, Theorem 1 gives three additional equations to the
system (1), allowing us to express its solution in terms of a single parameter α = [3 3 3].
In particular, we obtain

[3 3 2] = [3 2 3] = [2 3 3] = −17− 4α.

Clearly, α must be nonnegative, but then we have [3 3 2] = [3 2 3] = [2 3 3] < 0, a
contradiction. We conclude that the graph Ξ does not exist.
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Figure 1: The partition of vertices of Σ by distance from a pair of vertices u, v at distance 2. The part
that is at distance i from u and distance j from v has size p2ij . As the graph is bipartite, the intersection

number p2ij is nonzero only when i + j is even. Moreover, there are no edges within each part. It is
natural to consider [1 1 1] for w at distance 2 from both u and v, see Lemma 6.

6 A bipartite graph with diameter 5

Let Σ be a distance-regular graph with intersection array

{55, 54, 50, 35, 10; 1, 5, 20, 45, 55}. (7)

This intersection array appears in the list of feasible intersection arrays for bipartite non-
antipodal distance-regular graphs of diameter 5 by Brouwer et. al. [3, p. 418] as an open
case. The existence of such a graph would give a counterexample to a conjecture by
MacLean and Terwilliger [15], cf. Lang [14]. The computation needed to obtain the re-
sults in this section is illustrated in the jupyter/DRG-55-54-50-35-10-bipartite.ipynb
notebook included in the sage-drg package [21].

The graph Σ has diameter 5 and 3500 vertices. The partition of Σ corresponding to
two vertices at distance 2 is shown in Figure 1. The graph is Q-polynomial for the natural
ordering of eigenvalues, see for example [3, p. 418]. Moreover, as the graph is bipartite, it
is also Q-antipodal [3, Thm. 8.2.1]. Many Krein parameters are zero, in particular q311 and
q411 due to the triangle inequality. We use this fact in the proof of the following statement.

Lemma 6. Let Σ be a distance-regular graph with intersection array (7), and u, v, w be

vertices of Σ that are pairwise at distance 2. Then
[
u v w
1 1 1

]
6 1.

Proof. We consider the triple intersection numbers [i j h] that correspond to (u, v, w).
Since the graph Σ is bipartite, we have [i j h] = 0 whenever any of the sums i+ j, j + h,
h+ i is odd. As q311 = q411 = 0, Theorem 1 gives us two additional equations to the system
(1), thus allowing us to express the solution of the system in terms of a single parameter
α = [1 1 1]. In particular, we obtain

[5 5 5] = 20− 12α.

The integrality and nonnegativity of [5 5 5] now gives α 6 b5/3c = 1.
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Note. It can also be shown with a method similar to the one used in Lemma 6 that the
graph [Σ5(u)]2 for a vertex u ∈ V Σ (i.e., the graph of vertices at distance 5 from a vertex
u, with adjacency corresponding to distance 2 in Σ) is strongly regular with parameters
(v, k, λ, µ) = (210, 99, 48, 45). A strongly regular graph with such parameters has been
constructed by M. Klin [11].

Theorem 7. A distance-regular graph Σ with intersection array (7) does not exist.

Proof. Let u and v be vertices of Σ at distance 2, see Figure 1, and let {i j} denote the
set of vertices at distances i and j from u and v, respectively. There are p211(k − 2) =
5 ·53 = 265 edges between the sets {1 1} and {2 2}. However, the cardinality of the latter
set is p222 = 243 < 265, so there is a vertex w ∈ {2 2} that has at least two neighbours in

{1 1}, i.e.,
[
u v w
1 1 1

]
> 2, which is in contradiction with Lemma 6. Hence, the graph Σ

does not exist.
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