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Abstract

A graphical Frobenius representation (GFR) of a Frobenius (permutation) group
G is a graph Γ whose automorphism group Aut(Γ) acts as a Frobenius permuta-
tion group on the vertex set of Γ, that is, Aut(Γ) acts vertex-transitively with the
property that all nonidentity automorphisms fix either exactly one or zero vertices
and there are some of each kind. The set K of all fixed-point-free automorphisms
together with the identity is called the kernel of G. Whenever G is finite, K is a
regular normal subgroup of G (F. G. Frobenius, 1901), in which case Γ is a Cayley
graph of K. The same holds true for all the infinite instances presented here.

Infinite, locally finite, vertex-transitive graphs can be classified with respect to
(i) the cardinality of their set of ends and (ii) their growth rate. We construct families
of infinite GFRs for all possible combinations of these two properties. There exist
infinitely many GFRs with polynomial growth of degree d for every positive integer
d, and there exist infinite families of GFRs of exponential growth, both 1-ended and
infinitely-ended, that underlie infinite chiral planar maps. There also exist GFRs
of free products of finitely many finitely generated groups. Graphs of connectivity
1 having a Frobenius automorphism group are characterized.

Mathematics Subject Classifications: 05C63, 05C25, 20B27

1 Introduction and Motivation

Let X be a nonempty set and let G be a subgroup of the symmetric group Sym(X).
The permutation group G is transitive if, given any x, y ∈ X, there exists ϕ ∈ G such that
ϕ(x) = y. The stabilizer of an element x ∈ X is the subgroup Gx = {ϕ ∈ G : ϕ(x) = x}.
For distinct x, y ∈ X, the 2-stabilizer of {x, y} is the subgroup G{x,y} = Gx ∩ Gy. If G
is transitive, then all of its stabilizers are conjugate and hence isomorphic. However, the
2-stabilizers in G are not necessarily isomorphic unless G is transitive on the 2-subsets

the electronic journal of combinatorics 25(4) (2018), #P4.22 1



of X. A permutation group is regular if it is transitive and has trivial stabilizers; it is
Frobenius if it is transitive, has nontrivial stabilizers, and has trivial 2-stabilizers.

Much of the author’s past work with finite graphs (through the 1970s, particularly
[8], and recently in [2]) pursued the question as to how smal the automorphism group
Aut(Γ) of a graph Γ can be, perhaps subject to certain conditions, but without sacrificing
transitivity. In the present work, we extend this pursuit to infinite, locally finite graphs,
where “smallness” refers to the size of the vertex-stabilizers. Clearly the minimal situation,
as in the finite case, is when the vertex-stabilizers Autv(Γ) for v ∈ V Γ are trivial. In this
case, the automorphism group Aut(Γ) of Γ is regular, and hence Γ must be a Cayley
graph Cay(G,S) for some appropriate inverse-closed generating set S of G (see [12]).
When Aut(Cay(G,S)) ∼= G, then Γ is a graphical regular representation (GRR) of the
abstract group G.

The question as to which abstract groups admit a GRR, known as the GRR Problem,
has been resolved1 for finitely generated groups since the early 1980s. A natural sequel to
the GRR Problem is the GFR Problem: which abstract groups admit a graphical Frobenius
representation (GFR)?

In the GFR Problem, we allow – in fact, we require – the 1-point stabilizers to be
nontrivial, but we require the 2-point stabilizers to be trivial. For a first big step toward
its solution for finite Frobenius groups, see [2]. Despite the apparent similarity in the
statements of these two problems, the methods as well as their consequences are nec-
essarily very different. Whereas every abstract group can be represented as a regular
permutation group on a set (namely on itself), vast classes of groups cannot act faithfully
as Frobenius permutation groups on any set whatsoever. As remarked in [2], the GFR
Problem becomes in effect a two-stage problem:

1. Given an abstract group G, is it isomorphic (abstractly) to some Frobenius permu-
tation group?

2. Given a Frobenius permutation group G on a set V , does there exist a graph Γ with
vertex set V such that Aut(Γ) is isomorphic (as a permutation group) to G?

There exists much work in the literature of group theory regarding Question 1. Ques-
tion 2 is the subject of [2], where as an application, all Frobenius groups of order at most
300 (except order 192) are categorized as to whether they admit a GFR. The present
paper turns the problem around. Rather than ask which finitely generated Frobenius
groups are realizable as automorphism groups of graphs, we demonstrate the existence of
a wide range of infinite, locally finite graphs whose automorphism groups turn out to be
Frobenius permutation groups.

In Section 2, we present some of the theory of Frobenius permutation groups needed
in the ensuing sections and some basic facts about Cayley graphs. The reader who is
well-acquainted with these notions may prefer merely to skim this section.

1The main contributors to the solution of the GRR Problem include (chronologically with some over-
lap) G. Sabidussi, W. Imrich, M. E. Watkins, L. A. Nowitz, D. Hetzel, C. D. Godsil, and L. Babai. The only
finitely generated groups not to admit a GRR are generalized dicyclic groups, Abelian groups other than
elementary Abelian 2-groups, and thirteen miscellaneous groups of order 6 32.
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In Section 3 we review the notions of growth rates of infinite graphs and ends of a
graph. Similarly, the reader familiar with infinite graph theory may find little new in this
section.

Section 4 provides some technical lemmas needed to prove that the GFRs presented
in Section 5 are what they claim to be.

The main part of this article is Section 5 consisting of five subsections: (5.1) GFRs
with linear growth rate; (5.2) GFRs with quadratic growth rate; (5.3) GFRs whose growth
rate is polynomial of degree > 3; (5.4) 1-ended GFRs with exponential growth; and (5.5)
infinitely-ended GFRs. In each subsection, a variety of infinite families of GFRs are
characterized.

2 Frobenius Groups and Cayley Graphs

Definitions and Notation.

• A permutation ϕ of a set V is fixed-point-free if ϕ(v) 6= v for all v ∈ V .

• A nontrivial permutation group G is semiregular, also called fixed-point-free, if all
non-identity elements are fixed-point-free. Equivalently, all orbits of G have the
same cardinality. Thus G is regular if it is transitive and semiregular.

• The identity of the group G is denoted by id, and α denotes the function α : G→ G
given by x 7→ x−1 for all x ∈ G. Thus α is an automorphism of G if and only if G
is Abelian. When G is an Abelian group, the operation in G is denoted additively,
the identity of G is denoted by 0, and α is given by x 7→ −x.

• The cyclic group of order n is denoted by Cn.

• A non-Abelian group G is generalized dicyclic if it contains an Abelian subgroup A
of index 2 and an element b ∈ G \ A such that b2 ∈ A \ {id} and b−1aba = id for
all a ∈ A; G is dicyclic if A = C2m for some m > 2, in which case G admits the
presentation

G = 〈a, b | a2m = amb2 = b−1aba = id〉.

When m = 2, G is the quaternion group.

• Let the subset S ⊆ G \ {id} generate G and satisfy S = S−1. The Cayley graph
Cay(G,S) has vertex set G and edge set {[v, vs] : v ∈ G; s ∈ S}. The set S is the
connection set of Cay(G,S). For each s ∈ S, the edges of the form [v, vs±1] are said
to have color s.

• The kernel K of a Frobenius group G is the set of fixed-point-free permutations in
G together with the identity permutation id. The point-stabilizer H is called the
complement. Thus H ∩K = {id}.

We make the following observations:
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Proposition 2.1. If K is the kernel of a Frobenius group G, then:

a) gKg−1 = K for all g ∈ G;

b) The action of H on K \ {id} by conjugation is semi-regular.

Proof. For (a), we note that the property of a permutation having no fixed point is
preserved by conjugation. For (b), suppose that hkh−1 = k for some h ∈ H and k ∈
K \ {id}. Then h = khk−1, and so h ∈ H ∩ kHk−1. Since G has trivial 2-stabilizers, we
have h = id.

That K is actually a subgroup of G in the finite case is a seminal result of Frobenius:

Theorem 2.2. (Frobenius [3] and Thompson [14]) The kernel of a finite Frobenius group
is a nilpotent normal subgroup of G.

Remark. In the case of finite Frobenius groups, one can deduce from Theorem 2.2
that the kernel K is a regular permutation group such that G = HK. Indeed, the proof
in [2] (Corollary 2.3) draws heavily upon the finiteness of K. The fact that Theorem 2.2
may fail for infinite Frobenius groups is shown by constructions in [1]. (See also [10], pp.
50–54, for properties of infinite but locally finite Frobenius groups.) Nonetheless, for all
the examples Γ of GFRs in the present work, it will hold that Aut(Γ) = HK and that K
acts regularly on V Γ.

The following result, which was proved in [2] specifically for finite groups, is shown
here to hold in general.

Proposition 2.3. If K is an Abelian group and ϕ ∈ Aut(K) is an involution that is
fixed-point-free on K \ {0}, then ϕ = α.

Proof. Let ϕ be as stated, and let k ∈ K \{0}. Since ϕ is an involution and K is Abelian,
we have

ϕ(ϕ(k) + k) = ϕ2(k) + ϕ(k) = k + ϕ(k) = ϕ(k) + k.

Thus ϕ(k) + k is a fixed point of ϕ and so, by our assumption, must equal 0. Since k was
chosen arbitrarily, we have ϕ = α.

The converse to Proposition 2.3 is false; an example below in subsection 5.1 has
H = 〈α〉 but K = D∞, which is not Abelian.

Henceforth in this work, all infinite graphs will be assumed to be locally
finite, i.e., have finite valences. Thus all Cayley graphs are graphs of finitely
generated groups.

We emphasize the close connection between Frobenius groups and Cayley graphs.
When the kernel K of a Frobenius permutation group G acting on a set V is indeed a
regular subgroup group of G, as in all examples in this work, then the following classical
result of Sabidussi comes into play:
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Theorem 2.4. (Sabidussi [12]) A necessary and sufficient condition for a graph Γ to be
a Cayley graph Cay(K,S) is that Aut(Γ) contain a subgroup K ′ that acts regularly on the
vertex set of Γ. In that case, K ′ ∼= K.

Thus, a necessary condition for given graph Γ to be a GFR of a Frobenius group G is
that Γ be a Cayley graph of the kernel of G.

Corollary 2.5. Let the (locally finite) graph Γ = Cay(K,S) be a GFR of an infinite
Frobenius group HK having an Abelian kernel K. Then |H| is finite and even, and α is
the unique involution in H.

Proof. Because Γ is locally finite, S is finite. By Proposition 2.1(b), H acts semiregularly
on K \ {0} and hence faithfully on S, because S is a union of orbits of H. Thus H
is finite. Since K is Abelian, we have α ∈ Aut0(K). Since K is infinite and finitely
generated, K is not an elementary Abelian 2-group, and so α is not the identity. Hence
α has order 2, implying that |H| is even. By Proposition 2.3, α is the unique involution
in Aut0(K) = H.

Examples of finite groups whose automorphism group contains a unique involution
include the cyclic groups of odd prime order and the dicyclic groups.

Proposition 2.6. ([2], Theorem 3.3) Let Γ and ∆ be nontrivial vertex-transitive graphs.
Then Γ◦∆ is not a GFR, where ◦ indicates any of the following graph products: Cartesian,
strong, categorical (Kronecker), or lexicographic or their graph-complements.

It follows that no group having a nontrivial factorization as a direct product can have
a GFR. Thus, other than cyclic groups, no Abelian group and no nilpotent group can
admit a GFR. This does not apply to the kernel of such a group (cf. Theorem 2.2), as
will be seen in many of the examples to follow.

3 Growth Rates and Ends

Infinite (locally finite) graphs can be classified with respect to (i) their number of ends
and (ii) their growth rate. For completeness, we briefly review these two notions.

Given a graph Γ, let R(Γ) denote the set of rays (i.e., one-way infinite paths) in Γ.
The rays R1, R2 ∈ R(Γ) are end-equivalent if there exists a ray R3 ∈ R(Γ) such that both
V (R3∩R1) and V (R3∩R2) are infinite. It is not hard to see that end-equivalence is indeed
an equivalence relation on R(Γ). The equivalence classes with respect to end-equivalence
are the ends of Γ. We denote by ω(Γ) the cardinality of the set of ends of Γ. Thus two
rays belong to different ends exactly when they contain subrays that can be separated by
a finite set of vertices.

When Γ is locally finite, ω(Γ) has a convenient characterization: it is the supremum
of the number of infinite components of Γ− F as F ranges over all finite subsets of V Γ.
In particular, Γ is 1-ended if and only if Γ−F has exactly one infinite component for any
finite set F of vertices.
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Theorem 3.1. (Halin [7]) If Γ is a connected locally finite graph such that Aut(Γ) has
finitely many orbits, then ω(Γ) = 1, 2 or 2ℵ0.

In order to describe growth, we let d( , ) denote the standard distance metric2 for
graphs. For each vertex v ∈ V Γ and each integer n > 0, let

Sn(v) : = {w ∈ V Γ : d(v, w) = n};
Bn(v) : = {w ∈ V Γ : d(v, w) 6 n};
f(n, v) : = |Bn(v)|.

We call Sn(v) the n-sphere and Bn(v) the n-ball, respectively, about v. The function
f(n, v) is the growth function of Γ with respect to the vertex v. If Γ is infinite and
connected, then f(n, v) is a strictly increasing function of n. Clearly the growth functions
with respect to vertices in the same orbit of Aut(Γ) are identical, and if Γ is vertex-
transitive, then we suppress the vertex v altogether.

If limn→∞ f(n)/cn > 0 holds for some constant c > 1, then Γ has exponential growth
rate; otherwise, Γ has subexponential growth rate. As a particular case of subexponential
growth rate, Γ has polynomial growth rate and its growth degree is δ if δ = inf{d : f(n) 6
cnd for all n ∈ N} for some positive constant c. A graph with linear growth rate has
growth degree 1; if the growth degree is 2, then its growth rate is quadratic.

Example 3.2. The d-dimensional lattice Λd has vertex set Zd. Two vertices are adjacent
if and only if, in exactly one coordinate, the entries differ by exactly 1. Let sn,d denote
the number of vertices in the n-sphere about the origin of Λd. One can prove inductively
that

sn,d = sn,d−1 + 2
n−1∑
j=1

sj,d−1 + 2

is a polynomial in n of degree d− 1, and so the size of the n-ball about the origin of Λd

is a polynomial of degree d. Hence Λd has polynomial growth rate of degree d.

That growth degree δ is always an integer follows from a result of Gromov [5]. Graphs
with subexponential growth rate that exceeds any polynomial have intermediate growth
rate. These descriptive words for rates of growth of graphs derive from similar usage
for rates of growth of groups defined as follows. Given a group G and an inverse-closed
subset S ⊆ G \ {id} that generates G, let g(n) denote the number of elements of G that
can be expressed as a word in S of length at most n. Then substitute g(n) for f(n, v)
in the above definitions for graphs. It is immediate that the growth rate of a group G
generated by a finite, inverse-closed subset S is the same as the growth rate of the Cayley
graph Cay(G,S). Finitely generated Abelian groups, and hence their Cayley graphs, have
polynomial growth, but not conversely.

For connected, vertex-transitive, locally finite graphs, the two notions of ends and
growth rates come together with exactly the following possibilities:

2If u and v are vertices of the same component of Γ, then d(u, v) is the length of a shortest path
having terminal vertices u and v. Otherwise, define d(u, v) =∞.
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• Linear growth: ω = 2.

• Polynomial growth of degree > 2: ω = 1.

• Intermediate growth: ω = 1.

• Exponential growth: ω = 1 or 2ℵ0 .

The automorphism groups of graphs of intermediate growth, while finitely generated, are
not finitely presentable; they will not be discussed here. Families of examples of all the
other possibilities are presented respectfully in the five subsections of Section 5.

4 Automorphisms of Cayley graphs

Given a group G and an inverse-closed generating set S ⊆ G \ {id}, one must distin-
guish between automorphisms of the group G that leave the set S invariant (group-
automorphisms) and automorphisms of the Cayley graph Cay(G,S) that fix the vertex
labeled by the identity element of G (graph-automorphisms). Although every such graph-
automorphism ϕ also leaves the set S invariant, ϕ need not always respect the group
operation of G, i.e., with respect to that operation, the equation ϕ(xy) = ϕ(x)ϕ(y) need
not always hold. The next result says that all group-automorphisms of G are also graph-
automorphisms of any Cayley graph of G.

Proposition 4.1. ([15], Lemma 3). Given any Cayley graph Cay(G,S), the set of group-
automorphisms of G that fix S setwise is a subgroup of the stabilizer in Aut(Cay(G,S))
of the vertex labeled as the identity.

Although the converse of this proposition is generally false, the group structure does
somewhat constrain graph-automorphisms, as seen by the following pair of results from
[8].

Proposition 4.2. ([8] Proposition 2.11) Given a Cayley graph Γ = Cay(G,S), let U be
any inverse-closed subset of G \ {id}, and suppose that Autu(Γ) = Autid(Γ) holds for all
u ∈ U . Then Autu(Γ) = Autid(Γ) holds for all u in the subgroup 〈U〉 of G generated by
U . In particular, if 〈U〉 = G holds, then Autid(Γ) is trivial and Γ is a GRR of G.

For Abelian groups, we have the following two narrower results.

Proposition 4.3. ([8] Proposition 2.12) Let Γ be a Cayley graph of an Abelian group A,
and let a ∈ L ⊆ A \ {0}. Suppose that for all ϕ in the stabilizer Aut0(Γ) it holds that

ϕ(a) ∈ {a,−a} and
[
ϕ(a) = a⇒ ϕ∣∣L = id∣∣L].

Then for all ϕ ∈ Aut0(Γ),[
ϕ(a) = a⇒ ϕ∣∣〈L〉 = id∣∣〈L〉] and

[
ϕ(a) = −a⇒ ϕ∣∣〈L〉 = α∣∣〈L〉].
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Definition. The term geodesic designates a unique shortest path, if one exists, be-
tween two given vertices of a graph. (Clearly graph-automorphisms map geodesics onto
geodesics, and subpaths of geodesics are geodesics.)

When the Abelian group in question is Zn, we have the following limited but useful
tool.

Lemma 4.4. Let Γ = Cay(Zn, S) and let ϕ ∈ Aut0(Γ). Suppose that if s ∈ S, then
2s /∈ S, and suppose further that for all distinct s, t ∈ S, all differences s− t are distinct.
Then:

(a) For all s, t ∈ S, no element of S has the form 2s+ t; and

(b) For all m,n ∈ Z, we have

ϕ(ms+ nt) = mϕ(s) + nϕ(t). (4.1)

Proof. (a) If some element of S had the form 2s + t for some s, t ∈ S, then one would
have (2s+ t)− s = s− (−t), contrary to hypothesis.

(b) Let s ∈ S, and so ϕ(s) ∈ S, and let m ∈ Z. We claim that there exists a geodesic
joining ms and (m+ 2)s. Since 2s /∈ S, there exists a shortest path Π of length 2 through
(m + 1)s joining ms and (m + 2)s. If u 6= (m + 1)s were also a common neighbor of ms
and (m+ 2)s, then there would exist s′, t′ ∈ S such that u = ms+ s′ = (m+ 2)s+ t′. But
then 2s+ t′ = s′ ∈ S, a contradiction. Hence Π is a geodesic.

If w is any other vertex adjacent to (m + 1)s, then there are two distinct paths of
length 2 joining ms and w: one (of course) through (m + 1)s, but also one through
ms+ v = w − s, where v = w − (m+ 1)s ∈ S, and so these two paths are not geodesics.
Thus there are exactly two geodesics of length 2 that contain the edge [ms, (m + 1)s];
one includes the vertex (m− 1)s and the other includes (m + 2)s. For any vertex x, the
function v 7→ v + x for all v ∈ Zn is a graph-automorphism and hence maps geodesics to
geodesics. We conclude that a path of length 2 is a geodesic if and only if it is of the form
[x, x+ s, x+ 2s] for some x ∈ Zn and s ∈ S.

If we set m = −1 in the above argument, we have that −s is the only vertex joined
to s by a geodesic of length 2 through 0. Since ϕ fixes 0, we have ϕ(−s) = −ϕ(s). If we
set m = 0, then the only neighbor of s joined to 0 by a geodesic of length 2 is 2s. Hence
ϕ(±2s) = ±2ϕ(s).

Continuing the inductive argument, we assume for some m > 2 that ϕ(js) = jϕ(s) for
|j| 6 m. There are exactly two geodesics of length 2 containing the edge [(m− 1)s,ms].
One of them includes (m + 1)s, and so ϕ((m + 1)s) = (m + 1)ϕ(s), completing the
induction.

Now let t ∈ S and assume t 6= ±s. Then s + t is the unique non-0 common neighbor
of s and t. For if u were any other common neighbor, then u = s + t′ = t + s′ for some
s′, t′ ∈ S. But then one has s− t = s′ − t′, contrary to assumption. Hence ϕ(s+ t) is the
only common neighbor other than 0 of ϕ(s) and ϕ(t). More generally, ϕ(±s ± t) is the
only common neighbor other than 0 of ϕ(±s) and ϕ(±t), and so ϕ(s+ t) = ϕ(s) + ϕ(t).
Thus Equation (4.1) holds whenever ms + nt lies within the 2-ball B2(0). It is now
straightforward to complete the proof by induction on |m|+ |n|.
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5 Classes of Infinite GFRs

For several of the infinite families of GFRs presented in this section, the Frobenius kernel
K is an infinite free Abelian group, namely Zd, which we treat as a vector space. Our
convention for Abelian groups, as stated in Section 2, is that the operation in K is denoted
additively, the identity of K is denoted by 0, and the inversion function is α : k 7→ −k
for all k ∈ K. In this context, the Frobenius complement H may be identified with a
linear transformation of K, that is, as a (d × d)-matrix with entries in Z. We have thus
far encountered no infinite example wherein H is not cyclic. (We invite the reader to find
one!)

5.1 GFRs with linear growth rate

The double ray (i.e. two-way infinite path) is a Cayley graph of the infinite cyclic group
C∞, and hence is a GFR for the infinite dihedral group D∞ = 〈α〉C∞, admitting the
presentation

D∞ = 〈a, b | b2 = (ba)2 = id〉. (5.1)

Another 2-ended example (see Figure 1) is the graph Cay(D∞, S), where S = {a, a−1, b, ba};
it is a GFR of the group 〈ϕ〉D∞, with ϕ ∈ Aut(D∞) given by:

ϕ(a) = a−1 and φ(b) = ba.

With C∞ = 〈x〉 and S = {x±1, x±2}, a different labeling of the vertices turns this same
graph into a GFR of the group 〈α〉C∞ ∼= D∞.

Figure 1: A 2-ended graph labeled as a Cayley graph of D∞.

The following theorem produces an infinite family of 2-ended GFRs. Here we treat
the infinite cyclic group additively and write Z instead of C∞.

Theorem 5.1. Let a and b be relatively prime positive integers. Let S = {±a,±b}. Then
Cay(Z, S) is a GFR of D∞.
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Proof. Since a and b are relatively prime, S generates Z, and so Cay(Z, S) is connected.
Clearly α : n 7→ −n and τ : n 7→ n + 1 for n ∈ Z are automorphisms of Cay(Z, S)
that satisfy α2 = (ατ)2 = id and hence generate D∞. By Proposition 4.3, it suffices to
show that if ϕ ∈ Aut0(Cay(Z, S)), then ϕ|S = id|S or α|S. For suppose ϕ(a) = b and,
without loss of generality, that ϕ(b) = a. (If ϕ(a) = −b, then replace ϕ with αϕ.) By
Lemma 4.4, ϕ must swap ka with kb for small values of k and hence either fix or invert ab.
Without loss of generality, suppose a < b. There is a unique geodesic joining 0 with ab
and a unique geodesic joining 0 with −ab; each geodesic has length a and passes through
vertices labeled as multiples of b, but the path starting at 0 through multiples of a has
length b > a, and hence is not a geodesic. Therefore ϕ fixes S pointwise, and we apply
Proposition 4.2.

The GFRs characterized here are quotient graphs of the 2-dimensional lattice Λ2 (cf.
Example 3.2), coordinatized in the standard xy-fashion, modulo the line with equation
ay = bx. One can readily visualize them embedded nicely on an infinite cylinder.

5.2 GFRs with quadratic growth rate

In this subsection we present three infinite families of GFRs and one particular GFR, all
of quadratic growth. It was shown in [13] that the automorphism group of an almost
transitive3 graph of quadratic growth contains an almost-transitive subgroup isomorphic
to Z2. The examples in the first two families contain as a spanning subgraph the rect-
angular integer lattice Λ2 with vertex set Z2. The graphs in the third family and the
graph in the free-standing example are built on the regular hexagonal tessellation of the
Euclidean plane.

Notation. For the current subsection, we fix the presentation of the group Z2 as

{x, y | x+ y = y + x}.

To reduce repetition, we fix the names of the following column vectors in Z2:

x =
[1
0

]
; y =

[0
1

]
; z =

[a
b

]
,

where a and b are distinct positive integers.

Theorem 5.2. Let H acting on Z2 be represented by the matrix
[ −1 0

0 −1
]
. Let S =

Hx ∪Hy ∪Hz. Then Cay(Z2, S) is a 6-valent GFR of 〈α〉Z2 if and only if a, b > 2.

Proof. We may assume without loss of generality that a > b. If b = 1, let ϕ be represented
by the matrix

[
1 −a
0 −1

]
. This action fixes pointwise the subgroup 〈x〉 while swapping ±y

with ∓z. Thus S is preserved, and so ϕ ∈ Aut0(Cay(Z2, S)) holds by Proposition 4.1.
Since ϕ does not act semiregularly on Z2 \ {0}, the Cayley graph Cay(Z2, S) is not a
GFR. (If b > a = 1, then use

[ −1 0
−b 1

]
, which fixes y while swapping ±x with ∓z.)

3An infinite graph is almost transitive if its automorphism group has only finitely many orbits.
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Figure 2: Theorem 5.2 with a > b > 1.

Conversely, assume b > 2. We observe that the vertex ±ax is joined to ±z by a
geodesic of length b. (See Figure 2.) Because a > b > 2, there is no other instance, for
s, t ∈ S, that as is joined to t by a geodesic of length b. Since ±z ∈ S while ±ax /∈ S, any
graph-automorphism ϕ ∈ Aut0(Cay(Z2, S)) either fixes each of ax and z or inverts each of
them. By Lemma 4.4(b), we have aϕ(x) = ϕ(ax) = ±ax, which implies ϕ(x) = ±x. Thus
ϕ(z) = z if and only if ϕ(x) = x. Since ϕ(S) = S, we have ϕ(y) = ±y. If ϕ fixes z but
inverts y, then Lemma 4.4(b) yields z = ϕ(ax+ by) = ax− by /∈ S, a contradiction. Since
either ϕ fixes or ϕ inverts all of S pointwise, we have H = 〈α〉 by Proposition 4.3.

Two more infinite families of GFRs with quadratic growth are presented via the fol-
lowing pair of theorems.

Theorem 5.3. Let H acting on Z2 be represented by the matrix
[
0 −1
1 0

]
. (Thus H ∼= C4.)

Then Cay(Z2, S) with S = Hx ∪Hz is an 8-valent GFR of HZ2.

Theorem 5.4. Let H acting on Z2 be represented by the matrix
[
0 −1
1 1

]
. (Thus H ∼= C6.)

Then Cay(Z2, S) with S = Hx ∪Hz is a 12-valent GFR of HZ2.

Proof of Theorem 5.3. One may assume without loss of generality that a > b > 1. The
connection set S comprises two H-orbits, which in cyclic order are Hx = (x, y,−x,−y)
and Hz = (z,−bx+ ay,−z, bx− ay). Suppose that ϕ ∈ Aut0(Cay(Z2, S)).

First suppose z = 2x+ y (and so the hypothesis of Lemma 4.4 is not satisfied). Let w
be a vertex in the 2-sphere S2(0). If w is in the orbit H(2z), then there exists a geodesic
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of length 2 joining 0 and w. We claim that no other vertices in the 2-sphere have this
property. If, for example, w ∈ H(2x), say w = 2x, then there are two distinct paths of
length 2 joining 0 and w: one through x and one through z. If w = s+ t for any s, t ∈ S
where t 6= ±s, then again there exist two distinct paths of length 2 joining 0 and w: one
through s and one through t. We conclude that each of the two H-orbits comprising S is
invariant under Aut0(Cay(Z2, S)). Since x and z share three common neighbors (namely
2x, x+ y and 3x+ y), while x shares fewer common neighbors with other vertices in Hz,
it holds that, if ϕ fixes one of x and z, then ϕ also fixes the other.

Now suppose that a > 3, and so Lemma 4.4(b) is at our disposal. If b > 2, the only
instances of two elements of S being joined by a geodesic of length b are the four pairs
{hi(ax), hi(z)} for i = 0, 1, 2, 3. The remainder of the proof in this subcase is so similar
to the proof of Theorem 5.2 that we leave the details to the reader.

Figure 3: Proof of Theorem 5.3 when z = ax+ y and a > 3.

Finally, assume z = ax + y and a > 3. Suppose that for some distinct elements of
Hx, we have that ϕ fixes only one of them. By composition with hi for some i, we may
assume that ϕ fixes x but not y. By Lemma 4.4(b), ϕ fixes ax, whose two neighbors in S
are −y and z. (See Figure 3.) Hence ϕ(y) = −z. By Lemma 4.4(b), ϕ(ay) = −az. But
ay is adjacent to an element of S (namely h(z) = −x+ ay), while −az is adjacent to no
element of S. We conclude that the two H-orbits in S are invariant. Clearly, if ϕ fixes x,
then ϕ fixes ax and hence also z and −y. Since {x,−y} generates Z2, the theorem follows
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from Lemma 4.4(b).

Proof of Theorem 5.4. The 1-sphere about id induces two disjoint hexagons; one hexagon
is induced by Hx and the other by Hz. (See Figure 4.) By hypothesis, Aut0(Cay(Z2, S))
contains a “rotation” ρ such that ρ3 = α; we must show that ρ alone generates Aut0(Cay(Z2, S)).
To do so, one must prove that no graph-automorphism ϕ ∈ Aut0(Cay(Z2, S)) acts in any
of the following ways:

• (1) reflects a hexagon onto itself;

• (2) fixes pointwise exactly one of the two hexagons; or

• (3) maps each hexagon onto the other hexagon.

Figure 4: Labeled vertices are cited in the proof of Theorem 5.4. Dark segments indicate
edges induced by S.

Assume without loss of generality that a > b > 1 holds. We first dispose of the case
where z has the form 2s + t for some s, t ∈ S \ {±z}, and in particular, let z = 2x + y,
the argument being symmetrical for the other possibilities. Suppose that ϕ is a reflection
of the hexagon induced by Hx; say, ϕ interchanges x and y. Then ϕ fixes their only
non-0 common neighbor x + y. The vertex 2x is the only vertex in the 2-sphere S2(0)
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adjacent to both x and x + y, while 2y is the only such vertex adjacent to y and x + y.
Hence ϕ swaps 2x and 2y. Since z is adjacent to 2x and x + y, its image ϕ(z) must be
adjacent to 2y and x + y. However, no element of Hz has that property. Hence ϕ does
not reflect Hx onto itself. We next show that (2) cannot occur, from which it will follow
that the hexagon induced by Hz also cannot be reflected. Observe that x and z share
four common neighbors (namely 0, x + y, x + z, and 2x), while y and z share only three
common neighbors (0, x+ y, and y + z). Thus, ϕ moves x if and only if ϕ moves z.

Now suppose that z does not have the form 2s+ t, and so a > 3. If ϕ interchanges x
and y, then by Lemma 4.4(b):

ϕ(z) = aϕ(x) + bϕ(y) = ay + bx.

Since a 6= b, we have ϕ(z) /∈ S, and so ϕ does not reflect Hx onto itself. Hence, if ϕ fixes
x, then ϕ also fixes y and hence also fixes z = ax+ by by Lemma 4.4(b). We have proved
that neither (1) nor (2) can occur.

Finally, suppose that ϕ interchanges the orbits Hx and Hz. (We remark that ϕ would
then be a graph-automorphism that is not a group-automorphism, because Hx generates
Z2 while Hz does not.) Thanks to action by ρ, we may assume that ϕ(x) = z. As there
are no reflections, we have ϕ(y) = ρ(z) = −bx + (a + b)y. Then by Lemma 4.4(b), we
have

ϕ(z) = aϕ(x) + bϕ(y) = a(ax+ by) + b(−bx+ (a+ b)y) = (a2 − b2)x+ (2ab+ b2)y.

Since a 6= b, the coefficient of x is too large for ϕ(z) to be in Hx, a contradiction, proving
(3). We conclude that the only automorphisms in Aut0(Cay(Z2, S)) are the rotations
induced by H = 〈ρ〉.

The final example of this subsection is a GFR of a group G = HK of quadratic growth
wherein the complement H is of odd order, and hence, by Corollary 2.5, the Frobenius
kernel K must be non-Abelian. A spanning subgraph is the hexagonal tessellation of the
Euclidean plane, which is representable as a Cayley graph of the non-Abelian group

K = 〈x, y, z | x2 = y2 = z2 = (xyz)2 = id〉. (5.2)

Theorem 5.5. Let K be the group presented in (5.2). Let H = 〈h〉, where h is the group-
automorphism of K of order 3 that maps x 7→ y 7→ z 7→ x, and let S = Hx ∪ H(xyx).
Then Cay(K,S) is a 6-valent GFR of the Frobenius group HK.

Proof. Every orbit of H in K \ {id} has size 3, and each j-sphere Sj(id) for j > 0 is
a union of such orbits. We prove that if ϕ ∈ Autid(Cay(K,S)) fixes any one vertex in
Hx = {x, y, z}, then ϕ fixes the other two and hence each vertex in the orbit H(xyx). As
the spanning hexagonal tessellation is a planar map, it follows that ϕ must be the identity
automorphism, as required. This is accomplished via the following steps. (See Figure 5.)
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Figure 5: The subgraph Θ in the proof of Theorem 5.5.

1. For j = 2, 3, let S ′j denote the set of vertices in the j-sphere Sj(id) that are adjacent
to at least two vertices in S ′j−1. The set S ′2 is a union of two H-orbits, and S ′3 is a
single H-orbit.

2. The subgraph Θ spanned by {id} ∪ S1(id) ∪ S ′2 ∪ S ′3 is therefore invariant under
Autid(Cay(K,S)), and id is fixed under Aut(Θ) as the only 6-valent vertex in Θ.

3. In the subgraph Θ, the vertices in the H-orbit Hx are 4-valent while those in H(xyx)
are 2-valent. Hence each of these orbits is invariant under Aut(Θ).

4. Without loss of generality, suppose that ϕ fixes x but interchanges y with z.

5. Of the three neighbors of x in S ′2, only xy is adjacent to neither y nor z, while xz is
adjacent to z but not to y, and yx is adjacent to y but not to z. Hence ϕ fixes xy
while interchanging xz with yx.

6. Of the three vertices in S ′3, only xyz is adjacent to neither xz nor yx, while yzx
is adjacent to xz but not yx, and zxy is adjacent to yx but not to xz. Hence ϕ
interchanges yzx with zxy.

7. The vertex yzx is adjacent to xy (which is fixed by Step 5) while zxy is not adjacent
to xy, contrary to Step 6.

8. ϕ must fix each of x, y, and z as well as each vertex in S ′2 ∪ S ′3.

9. Proceeding inductively outward from id, one straightforwardly shows that ϕ extends
to the identity automorphism.
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5.3 GFRs whose growth rate is polynomial of degree > 3

In this subsection we obtain for each integer d > 3 an infinite family of GFRs having
polynomial growth rate of degree d by extending the construction in Theorem 5.2. Let
ui ∈ Zd denote the d-tuple with 1 as the ith coordinate and all others 0. Let the d-tuple
w = (a1, . . . , ad) have integer terms of distinct absolute values all > 2. Reading subscripts
in this subsection modulo d, let zi = aiui + ai+1ui+1.

Theorem 5.6. For d > 3, the Cayley graph Cay(Zd, S) with

S = {±ui : i = 1, . . . d} ∪ {±zi : 1 6 i 6 d} ∪ {±w}

is a GFR of the group 〈α〉Zd with polynomial growth of degree d.

Proof. Let Γ = Cay(Zd, S) and let Pi denote the 2-dimensional subspace of Zd spanned by
{ui, ui+1}. Observe that zi ∈ Pj if and only if i = j, while w /∈ Pi for all i = 1, . . . , d. Let
ϕ ∈ Aut0(Γ). Because the integers a1, . . . , ad have distinct nonzero absolute values, it is
not difficult to see that ϕ leaves invariant each of the subspaces Pi while ϕ(w) ∈ {w,−w}.
Since |ai| > 2 for all i, it follows by Theorem 5.2 that the restriction of ϕ to any given 2-
dimensional subspace Pi is either the identity on Pi or α∣∣Pi

. But ϕ∣∣Pi
= α∣∣Pi

for some (and

hence all) i if and only if ϕ(w) = −w. Since {u1, . . . , ud} is a basis for Zd, Proposition
4.3 yields that ϕ equals either id or α.

5.4 1-Ended GFRs with exponential growth

If a Frobenius group G = HK admits a GFR Cay(K,S) with exponential growth, then,
since H is finite, the kernel K itself has exponential growth. Hence K must be non-
Abelian. The family of GFRs to be presented in this section consists of bipartite chiral
planar maps of valence at least 6. Since all faces have even covalence at least 4, these
maps accrue faces too fast to admit uniformly bounded faces in the Euclidean metric (see
[4]); they have vertex-homogeneous embeddings in the hyperbolic plane and their growth
is exponential.

For any integer r > 3, let σ = (e1, . . . , er), be a cyclic r-sequence of even integers
> 4 that is invariant under rotation and reflection, i.e., for all i = 2, . . . , r, the r-tuple
(e1, . . . , er) equals neither (ei, . . . , er, e1, . . . , ei−1) nor (er, . . . , e1). For ` > 2 consider the
group Kσ,` with generating set Sσ,` := {xi,j : i = 1, . . . , r; j = 1, . . . , `}, where each xi,j is
an involution, together with additional relations

(xi,jxi+1,j)
ei/2 = 1; (i = 1, . . . , r − 1; j = 1, . . . , `) (5.3)

and
(xr,jx1,j+1)

er/2 = 1; (j = 1, . . . , `), (5.4)

where subscripts i and j are read modulo r and `, respectively. Then Γσ,` = Cay(Kσ,`.Sσ,`)
is the underlying graph of a map in the plane having valence r`. The underlying graph is
bipartite; the rotational order of the connection set about each vertex v is

(x1,1, . . . , xr,1, x1,2, . . . , xr,2, . . . , x1,`, . . . , xr,`) (5.5)
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in the clockwise direction if v is in one of the two parts of the bipartition and in the coun-
terclockwise direction if v is in the other part. The cyclic r`-sequence (5.5) corresponds
to another cyclic r`-sequence

(e1, . . . , er, e1, . . . , er, . . . , e1, . . . , er) (5.6)

of even integers > 4 that are the covalences of the faces in cyclic order about any given
vertex. This cyclic sequence (5.6) admits no reflection but admits a rotation of order `.

Because Γσ,` underlies an r`-valent planar map, each vertex-stabilizer is a subgroup of
the dihedral groupDr`. In this case that subgroup is the cyclic group C` having a generator
that, intuitively speaking, rotates the map about the vertex id by 2π/` radians. The
automorphism group of the map is a Frobenius group with kernel Kσ,` and complement
C`. In summary,

Theorem 5.7. For any r > 3 and ` > 2, let the group Kσ,` be generated by the set
Sσ,` = {xi,j : 1 6 i 6 r; 1 6 j 6 `} of involutions that also satisfy relations (5.3) and
(5.4). Then the graph Cay(Kσ,`, Sσ,`) is a GFR of a Frobenius group with kernel Kσ,` and
complement C`.

Remarks

• If ` had been allowed to equal 1, then the vertex-stabilizers would be trivial, and so
Γσ,1 would instead be a GRR.

• If r had been allowed to equal 2, then reflections would abound.

• The sum of the covalences of the faces about any vertex is
∑r

i=1(`/2ei), which is
less than 1

2
(r`− 2), as required for the growth rate to be exponential.

Example 5.8. Among the GFRs described in Theorem 5.7, here is the one having the
fewest and smallest possible values of the parameters. Let σ = (4, 6, 8) and consider the
group

Kσ,2 =
〈
x1, y1, z1, x2, y2, z2 | x2i = y2i = z2i

= (xiyi)
2 = (yizi)

3 = (z1x2)
4 = (z2x1)

4 = id (i = 1, 2)
〉
.

Let Sσ,2 = {x1, y1, z1, x2, y2, z2}. Then Γσ,2 = Cay(Kσ,2, Sσ,2) is a 6-valent, bipartite graph
underlying a planar map where the clockwise cyclic order of the connection set about
each vertex in one part is (x1, y1, z1, x2, y2, z2) with the reverse order for vertices in the
other part. Thus, twice about each vertex lie a 4-gon, a 6-gon, then an 8-gon. (See Figure
6.) The only nonidentity element of the stabilizer of the identity of Γσ,2 is the involution
induced by ρ : x1 ↔ x2, y1 ↔ y2, z1 ↔ z2; and so Gσ,2 = Aut(Γσ.2) is an extension of Kσ,2

by C2. Geometrically, ρ may be regarded as a 180◦ rotation about the vertex labeled id,
which makes evident that ρ fixes no other vertex. Observe that since K is not Abelian,
the involution ρ is not equal to α (cf. Proposition 2.3).
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Figure 6: The 1-sphere S1(id) and part of the 2-sphere in Example 5.8.

5.5 Infinitely-ended GFRs

It was shown in [6] (Satz 2) that every almost transitive, infinitely-ended graph Γ contains
a subdivision T of the infinite dyadic tree such that distinct ends of T lie in distinct ends
of Γ. Since T has uncountably many ends, so then must Γ. Since Γ is almost transitive,
the distances between “nearest” end-separating subgraphs are bounded. Thus Γ has
exponential growth. In this subsection, we first characterize GFRs of connectivity 1. We
then present two very different families of infinitely-ended GFRs, the first of which has
connectivity 1.

Infinite, almost transitive graphs of connectivity 1 other than the double ray (which
was discussed in Subsection 5.1) have precisely this tree-like structure. When such graphs
are vertex-transitive, every vertex is a cut-vertex incident either with at least three lobes4

or with at least two lobes of which at least one is biconnected. As their automorphism
groups must likewise have exponential growth, we might rightly expect our GFRs to be
graphical representations involving free products of groups.

4Following O. Ore [11], a lobe is a subgraph graph that either consists of a cut-edge with its two
incident vertices or is a maximal biconnected subgraph. We eschew the word “block” for this role, as it
leads to ambiguity when discussing imprimitivity.
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In [9], H. A. Jung and the author characterized infinite graphs of connectivity 1 whose
automorphism groups act on their vertex sets as (respectively) transitive, primitive, and
regular permutation groups. In [17] the author went on to characterize Cayley graphs of
connectivity 1. Although GFRs also are Cayley graphs, this last characterization requires
more machinery than is needed to characterize GFRs of connectivity 1.

It is useful to recall the characterization of vertex-transitive graphs Γ having connec-
tivity 1. Let L1,L2, . . . be the list of equivalence classes of isomorphic lobes of Γ. For
each i, if Λ ∈ Li, let Λ(j) denote the jth orbit of Aut(Λ). Finally, for each vertex v ∈ V Γ
and for each i and j, let

µ
(j)
i (v) = |{Λ ∈ Li : v ∈ Λ(j)}|. (5.7)

Proposition 5.9. ([9] Lemma 3.1 and Theorem 3.2) Let Γ be an infinite graph of con-
nectivity 1. A necessary and sufficient condition for Γ to be vertex-transitive is that, for
all i and j, the functions µ

(j)
i as defined in Equation (5.7) are constant and positive on

V Γ. Furthermore, any automorphism of the union of the lobes incident with a common
vertex is extendable to an automorphism of Γ.

We now characterize graphs of connectivity 1, other than the double ray, whose auto-
morphism groups are Frobenius groups.

Theorem 5.10. Let Γ be an infinitely-ended graph having connectivity 1. A necessary
and sufficient condition for Aut(Γ) to be a Frobenius group is that the following three
conditions hold: (1) Every vertex of Γ is incident with exactly two lobes; (2) all lobes are
pairwise isomorphic; (3) the lobes are GRRs. In this case, the Frobenius complement of
Aut(Γ) has order 2.

Proof of sufficiency. Suppose that Γ satisfies all three conditions. In terms of the
function µ

(j)
i of Equation (5.7), there is only one value of i, one value of j, and µ

(j)
i (v) = 2

for all v ∈ V Γ. By Proposition 5.9, Γ is vertex-transitive.
Let v ∈ V Γ be given, let ϕ ∈ Autv(Γ), and let Λ1 and Λ2 be the two lobes incident

with v. Then ϕ either fixes or swaps Λ1 and Λ2. In the former case, since these lobes are
GRRs, ϕ behaves as the identity on each lobe, and by Proposition 5.9 is the identity on
Γ. Otherwise, ϕ interchanges Λ1 and Λ2. If ϑ ∈ Aut(Γ) also has this property, then ϑ−1ϕ
fixes these lobes, and so ϑ = ϕ. Hence the stabilizer of v has order 2. Furthermore, if w
is any vertex other than v and if ϕ is not the identity, then any path joining w and ϕ(w)
must pass through v, and so ϕ(w) 6= w. We conclude that ϕ fixes no vertex other than v.
Hence Γ is a GFR with complement of order 2.

Proof of necessity. Assume that Γ is a GFR. Hence Γ is vertex-transitive, and so the
functions µ

(j)
i are constant and positive on V Γ by Proposition 5.9. We first dispose of

the case where Γ is the infinite r-valent tree, and so all lobes are copies of K2. When
r = 2, the three conditions are met and Γ is the double ray discussed in Subsection 5.1.
When r > 2, then condition (1) fails and Γ is easily seen not to be a GFR. Hence we may
assume that every vertex is incident with at least one lobe having at least three vertices.

Let v ∈ V Γ and let Λ1,Λ2, and Λ3 be some three lobes incident with v with |V Λ1| > 3.
If there were to exist an automorphism ζ ∈ Autv(Γ) that maps Λ2 to Λ3 while fixing a
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second vertex of Λ1, then ζ would fix at least two vertices, a contradiction. The argument
would be similar were ζ to swap two vertices of Λ1 while fixing any other vertex. It
follows that the automorphism group of every lobe is semiregular and that every vertex is
incident with exactly two lobes. That is, v is incident only with Λ1 and Λ2. If no element
of Autv(Γ) were to swap these two lobes, then Autv(Γ) would be trivial, contrary to the
definition of a GFR. This would occur only if either the two lobes were not isomorphic or
they were isomorphic but v belongs to different orbits in each lobe. Hence Λ1 and Λ2 are
indeed isomorphic and the vertex set of each lobe consists of but a single orbit. That is
to say, each lobe is a GRR. If there were two automorphisms ϕ, ϑ ∈ Autv(Γ) that swap
Λ1 and Λ2, then we would have ϑ−1ϕ ∈ Autv(Γ) fixing Λ1. But Autv(Λ1) is trivial. Hence
ϕ2 = id and Av(Γ) = 〈ϕ〉.

The rank of a group G is the least cardinality of a generating subset of G. In an earlier
work [16], the author showed that every free product of 6 ℵ0 groups, each of rank at most
ℵ0, admits a GRR. Moreover, if the sum of the ranks of the groups involved is finite, then
there exists a locally finite GRR. We pursue an analogous result for locally finite GFRs.

For ` > 2, let {L1, . . . , L`} be a sequence of finitely generated groups, perhaps isomor-
phic, and denote their free product by K =

∐`
j=1 Lj. (The operation of free product is

well known to be associative and commutative up to isomorphism.) For each j = 1, . . . , `,
let Sj be an inverse-closed generating subset of Lj not containing the identity, and let

S =
⋃`
j=1 Sj. Denote by Γj the Cayley graph Cay(Lj, Sj), and let Γ = Cay(K,S). Thus

Γ is an uncountably-ended graph of connectivity 1 whose lobes are copies of Γ1, . . . ,Γ`,
and every vertex is a cut-vertex incident with a fixed (positive) number of copies of each
of these lobes. When ` = 2, we denote by L1 ∗L2 the free product of L1 by L2. With this
notation, Theorem 5.10 immediately translates to the following characterization of GFRs
of connectivity 1 and of their possible automorphism groups:

Corollary 5.11. If a Frobenius group G whose kernel is a free product
∐`

j=1 Lj admits
a GFR of connectivity 1, then ` = 2, L1

∼= L2, the group L1 admits a GRR, and the
Frobenius complement of G has order 2. Conversely, if a graph Γ has the property that
every vertex is incident with exactly two lobes and the lobes are all isomorphic copies of
a GRR of a group L, then Γ is a GFR of connectivity 1 of a group of the form C2(L ∗L).

As an application, we continue the notation from Theorem 5.7. Let K ′σ′,` denote the
group obtained from Kσ,` by suppressing the relations (5.4), let σ′ = (e1, . . . , er−1), and
let

S ′σ′,` = Sσ,` \ {xr,j : j = 1, . . . , `}.
In the Cayley graph Ωσ′,` = Cay(K ′σ′,`, S

′
σ′,`), every vertex becomes a cut-vertex incident

with exactly ` isomorphic infinite lobes. In effect, σ behaves as (e1, . . . , er−1,∞). One sees
that these lobes are semiregular provided that σ′ is not palindromic, i.e., (e1, . . . , er−1) 6=
(er−1, . . . , e1). For if σ′ were palindromic, then a permutation of the generators of K ′σ′,` of
the form xi,j ↔ xr−i,j (j = 1, . . . , `) would respect the relations (5.3) and hence induce a
group-automorphism of Ωσ′,`. Observe that there exists a vertex-covering monomorphism
from Ωσ′,` onto Γσ,` and hence Ωσ′,` also has exponential growth. If ` = 2, then Ωσ′,` is a
GFR. We summarize as follows:
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Corollary 5.12. The graph Ωσ′,` is a GFR of the group C`Kσ′,` if and only if ` = 2 and
σ′ is not palindromic. In this case, C2 = 〈ρ〉, and ρ acts on Kσ′,` by interchanging the
generators xi,1 with xi,2 for all i = 1, . . . , r − 1.

Example 5.13. This is a continuation of Example 5.8. From σ = (4, 6, 8), we have
σ′ = (4, 6). For j = 1, 2, we consider the two isomorphic groups and generating sets

K ′j = 〈xj, yj, zj | x2j = y2j = z2j = (xjyj)
2 = (yjzj)

3 = id〉; Sj = {xj, yj, zj}.

Each tree-like graph Cay(K ′j, Sj) is a GRR of K ′j consisting of denumerably many 4-
cycles and 6-cycles; each 4-cycle shares alternate edges (colored y) with a different 6-
cycle, and vice versa. Observe that zjxj has infinite order in Kj. The graph Ωσ′,2 =
Cay(K ′1 ∗K ′2, S1 ∪ S2) is a GFR of the group C2(K

′
1 ∗K ′2) of connectivity 1 and valency

6, where the generator of C2 is given by x1 ↔ x2, y1 ↔ y2, z1 ↔ z2.

Having determined that the kernels of the only groups that admit GFRs of connectivity
1 are free products with themselves of a group that admits a GRR, one is led to inquire
about free products of groups that do not generally admit GRRs, such as Abelian groups.
Of course, such GFRs are biconnected. We conclude the present work by taking a small
step in this direction; we present GFRs whose kernels are free products of a pair of cyclic
groups.

Theorem 5.14. Let the group Cm ∗ Cn be given by 〈x, y | xm = yn = id〉. Let S =
{x±1, y±1, (xy)±1}, and let Γ = Cay(Cm ∗ Cn, S). If m = n, then Γ is a GFR of C2(Cm ∗
Cm). If m 6= n, then Γ is a GRR of Cm ∗ Cn.

Proof. If m = n = 2, then C2∗C2 is isomorphic to the group D∞ as presented by Equation
(5.1) obtained by setting x = b and y = ba. The graph Cay(C2 ∗ C2, S) is isomorphic to
the graph shown in Figure 1 and so is a GFR of D∞.

Now assume that at least one of m and n is at least 3. Edges having color xy lie on
exactly one 3-cycle [v, vx, vxy, v] and on no other chordless cycle. Edges having color x
or color y lie on exactly two 3-cycles if m = 2 or 3 and lie on a chordless m-cycle if m > 4.
Thus the set of edges of color xy is invariant under Aut(Γ).

Let ϕ ∈ Autid(Γ). We next dispose of the special case when (without loss of gen-
erality) m = 2 and n = 3 (see Figure 7). Here the 1-sphere S1(id) induces a path
[xy, x, y, y2, (xy)−1] of length 4. Hence y, being the middle vertex, is fixed by Autid(Γ). If
ϕ were to swap x and y2, then the edge [x, y], which has color xy, would be mapped onto
the edge [y2, y], which is not of color xy, a contradiction. Hence by Lemma 4.2, Autv(Γ)
is trivial and Γ is a GRR of Cm ∗ Cn.

Now assume m,n > 3. Observe that the vertex x is adjacent to the vertex xy but x−1

is adjacent to neither xy nor (xy)−1. Hence ϕ(x) 6= x−1, since the set of edges colored xy
is invariant.

If m 6= n, then edges of color x and edges of color y lie on chordless cycles of different
lengths, and so the edge [id, x] cannot be mapped onto [id, y]. Thus ϕ(x) fixes x and so
also fixes x−1. Since y is adjacent to x−1 while y−1 is not, ϕ also fixes y. Again, Autv(Γ)
is trivial and Γ is a GRR.
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Figure 7: Theorem 5.14, the case where m = 2 and n = 3.

Finally, suppose m = n. Then Cm ∗ Cm admits a group-automorphism β given by
β(x) = y−1 and β(y) = x−1. Observe that β2 = id. Since β(xy) = (xy)−1, we have
β(S) = S, and so by Proposition 4.1, β ∈ Autid(Γ). If ϑ were a different nonidentity
element of Autv(Γ), then ϑ(x) = y would hold, and so βϑ(x) = x−1, a contradiction.
Thus Autid(Γ) = 〈β〉.

Exercises.

(1) Consider the Cayley graph with connection set {x±1, y±1, z±1, (xyz)±1} of the free
product

Cp ∗ Cq ∗ Cr = 〈x, y, z | xp = yq = zr = id〉.

When is this graph a GFR or a GRR?

(2) Construct a 3-connected GFR of Cm ∗ Cm. Does there exist a planar example?

(3) Is it the case that, if m 6= n, then no GFR of Cm ∗ Cn exists, or did we just make
an unfortunate choice for the connection set in Theorem 5.14?
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