
On upper transversals in 3-uniform hypergraphs

Michael A. Henning1,∗ Anders Yeo1,2

1Department of Pure and Applied Mathematics
University of Johannesburg

Auckland Park, 2006 South Africa
mahenning@uj.ac.za

2Department of Mathematics and Computer Science
University of Southern Denmark

Campusvej 55, 5230 Odense M, Denmark
andersyeo@gmail.com

Submitted: Aug 29, 2017; Accepted: Oct 16, 2018; Published: Nov 2, 2018

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A set S of vertices in a hypergraph H is a transversal if it has a nonempty inter-
section with every edge of H. The upper transversal number Υ(H) of H is the max-
imum cardinality of a minimal transversal in H. We show that if H is a connected
3-uniform hypergraph of order n, then Υ(H) > 1.4855 3

√
n − 2. For n sufficiently

large, we construct infinitely many connected 3-uniform hypergraphs, H, of order n

satisfying Υ(H) < 2.5199 3
√
n. We conjecture that sup

n→∞

(
inf

Υ(H)
3
√
n

)
=

3
√

16, where

the infimum is taken over all connected 3-uniform hypergraphs H of order n.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

In this paper, we continue the study of transversals in hypergraphs. Hypergraphs are
systems of sets which are conceived as natural extensions of graphs. A hypergraph H =
(V (H), E(H)) is a finite set V (H) of elements, called vertices, together with a finite
multiset E(H) of nonempty subsets of V (H), called hyperedges or simply edges. A k-edge
in H is an edge of size k. The hypergraph H is k-uniform if every edge of H is a k-edge.
Every 2-uniform hypergraph is a graph. Thus graphs are special hypergraphs. The degree
of a vertex v in H, denoted by dH(v), is the number of edges of H which contain v. The
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minimum and maximum degrees among the vertices of H is denoted by δ(H) and ∆(H),
respectively.

A subset T of vertices in a hypergraph H is a transversal (also called hitting set or
vertex cover or blocking set in many papers) if T has a nonempty intersection with every
edge of H. A vertex hits or covers an edge if it belongs to that edge. The transversal
number τ(H) of H is the minimum size of a transversal in H, while the upper transversal
number Υ(H) of H is the maximum cardinality of a minimal transversal in H. In hy-
pergraph theory the concept of transversal is fundamental and well studied. The major
monograph [1] of hypergraph theory gives a detailed introduction to this topic. Transver-
sals in hypergraphs are well studied in the literature (see, for example, [3, 4, 11, 12, 13]
for recent results and further references).

A set S of vertices in a graph G is a dominating set of G if each vertex in V (G) \ S
has a neighbor in S. A set is independent if no two vertices in it are adjacent. An
independent dominating set of G is a set that is both dominating and independent in G.
The independent domination number of G, denoted by i(G), is the minimum cardinality
of an independent dominating set. Domination is well studied in graph theory and we
refer the reader to the monographs [9, 10] which detail and survey many results on the
topic. A survey of known results on independent domination in graphs can be found in [8].

2 Main Results

We have two immediate aims in this paper. First to provide a sharp lower bound on the
upper transversal number of graphs. Secondly to present a lower bound on the upper
transversal number of 3-uniform hypergraphs, and to show that this bound is a sense
asymptotically best possible. More precisely, we prove the following results, where we use
the notation n

H
= |V (H)| to denote the order of H. Proofs of Theorem 1 and Theorem 2

are given in Section 3 and Section 4, respectively.

Theorem 1. If H is a connected graph with δ(H) > δ, then

Υ(H) > 2
√
δn

H
− 2δ,

and this bound is sharp.

Theorem 2. If H is a connected 3-uniform hypergraph, then

Υ(H) > 3

√
n

H

0.305
− 2 > 1.4855 3

√
n

H
− 2.

Further, there exist infinitely many connected 3-uniform hypergraphs H of sufficiently
large order n

H
satisfying

Υ(H) <
3
√

16 · n
H
< 2.52 3

√
n

H
.
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3 Proof of Theorem 1

Recall that a transversal in a graph is a set of vertices covering all the edges of the graph,
where a vertex covers an edge if it is incident with it. Theorem 1 can be restated as
follows.

Theorem 1. If G is a connected graph of order n with δ(G) > δ, then Υ(G) > 2
√
δn−2δ,

and this bound is sharp.

In order to prove Theorem 1, we first establish a relationship between the upper
transversal number and independent domination number of a graph.

Theorem 3. If G is an isolate-free graph on n vertices, then i(G) + Υ(G) = n.

Proof. Let G be an isolate-free graph. Let S be an independent dominating set in G
of minimum cardinality, and so |S| = i(G). Let T = V (G) \ S and note that T is a
transversal in G as S is an independent set. Since every vertex in T has a neighbor in S,
we furthermore note that T is a minimal transversal, which implies that Υ(G) > |T | =
n− |S| = n− i(G).

Conversely, let T be a minimal transversal in G of maximum cardinality, and so
|T | = Υ(G). Let S = V (G)\T and note that S is an independent set as T is a transversal.
Since T is a minimal transversal, every vertex in T has a neighbor in S, implying that
S is an independent dominating set in G. Therefore, i(G) 6 |S| = n − |T | = n − Υ(G).
Consequently, i(G) + Υ(G) = n.

Favaron [5] was the first to prove the following upper bound on the independent
domination of a graph with no isolated vertex: If G is an isolate-free graph of order n,
then i(G) 6 n + 2 − 2

√
n. We remark that this result also follows from a result due to

Bollobás and Cockayne [2] (and was also proved in [6]). Sun and Wang [14] proved the
following more general result, which was originally posed as a conjecture by Favaron [5]
and was proved for δ = 2 by Glebov and Kostochka [7].

Theorem 4. ([14]) If G is a graph of order n with δ(G) > δ, then i(G) 6 n+ 2δ− 2
√
δn.

Theorem 1 is an immediate consequence of Theorem 3 and Theorem 4. That this
bound is sharp, follows from a result of Favaron [5] who showed that for every positive
integer δ, the bound in Theorem 4 is attained for infinitely many graphs. The same
graphs achieve equality in the bound for Theorem 1. For example, for c > 2, let Gc be
the connected graph constructed as follows. Let Fc be the complete graph of order c, and
so Fc ∼= Kc. For every vertex v of Fc, add c−1 new vertices v1, . . . , vc−1 and add the c−1
edges vvi for all i ∈ [c − 1]. Let G = Gc denote the resulting graph of order n = c2. We
note that all the new vertices added to Fc have degree 1 in Gc. Every transversal in Gc

must contain all except possibly one vertex of Fc in order to cover all the edges of Fc. If a
minimal transversal in Gc contains exactly c−1 vertices of Fc, say all vertices of Fc except
for v, then the transversal contains exactly c − 1 vertices not in Fc, namely v1, . . . , vc−1,
in order to cover the edges vvi for all i ∈ [c− 1]. Such a minimal transversal therefore has
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size exactly 2(c − 1). If a minimal transversal in Gc contains all c vertices of Fc, then it
contains no other vertex of Gc and therefore has size exactly c. Therefore, the connected
graph G of order n = c2 satisfies Υ(G) = max{2(c− 1), c} = 2(c− 1) = 2

√
n− 2, noting

that c > 2. Thus, the bound of Theorem 1 when δ = 1 is sharp. For every δ > 2 one can
similarly show that Theorem 1 is tight.

As a special case of Theorem 1, if H is a connected 2-uniform hypergraph of order n >

2, then Υ(H) > 2
√
n − 2. When n > 3, we observe that 2

√
n − 2 >

√
1
2
n. Further, we

observe that when n = 2, Υ(H) = 1 =
√

1
2
n. Thus, as an immediate consequence of

Theorem 1 we observe that if H is a connected graph, then Υ(H) >
√

1
2
n

H
.

4 Proof of Theorem 2

We first prove the lower bound in Theorem 2.

Theorem 5. If H is a connected 3-uniform hypergraph, then Υ(H) > 3

√
n
H

0.305
− 2.

Proof. Let H be a connected 3-uniform hypergraph of order n
H

and let T be a minimal
transversal of maximum size. Let T = {t1, t2, . . . , tc}, and so Υ(H) = |T | = c. For all i
and j where 1 6 i < j 6 c and for all k ∈ [c], define Zi,j, Ek and Yk as follows.

Zi,j = {v ∈ V (H) \ T | {ti, tj, v} ∈ E(H)}
Ek = {e ∈ E(H) | V (e) ∩ T = {tk}}
Yk = V (Ek) \ {tk}.

We note that Yk ⊆ V (H) \ T for each k ∈ [c]. Let Q ⊆ V (T ) be a minimum set
of vertices in T that covers all edges that are completely within T (i.e., all edges e with
V (e) ⊆ V (T )). Possibly, Q = ∅. Let q = |Q|. Renaming vertices of T if necessary, we
may assume that Q = {t1, . . . , tq}. Let

I = {(i, j) | 1 6 i < j 6 c}
Iq = {(i, j) | 1 6 i 6 q and i < j 6 c}
I>q = {(i, j) | q + 1 6 i < j 6 c}.

We note that I = Iq ∪ I>q. We proceed further with the following claims.

Claim 6. |Zi,j| 6 c− q for all (i, j) ∈ I.

Proof. Suppose, to the contrary, that |Zi,j| > c− q for some i and j, where 1 6 i < j 6 c.
Let R = V (H) \ {ti, tj}. Clearly, R is a transversal in H as it contains all vertices in
H except two and H is 3-uniform. Let R′ be obtained from R by removing vertices
until we get a minimal transversal in H. We note that Zi,j ⊆ R′ since each vertex
z ∈ Zi,j is needed in order to cover the edge {ti, tj, z}. Further, R′ contains at least q
vertices from T in order to cover the edges that are contained entirely within T . Hence,
Υ(H) > |R′| > |Zi,j|+ q > c, contradicting the fact that Υ(H) = c.
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Claim 7.

∣∣∣∣∣ ⋃
(i,j)∈I>q

Zi,j

∣∣∣∣∣ 6 c− q.

Proof. Suppose, to the contrary, that

|
⋃

(i,j)∈I>q

Zi,j| > c− q.

Let R = V (H) \ {tq+1, . . . , tc}. By definition of the set Q, every edge of H intersects
{tq+1, . . . , tc} in at most two vertices, implying that R is a transversal in H. Let R′ be
obtained from R by removing vertices from R until we get a minimal transversal in H.
We note that ⋃

(i,j)∈I>q

Zi,j ⊆ R′

since each vertex z ∈ Zi,j where q + 1 6 i < j 6 c is needed in order to cover the edge
{ti, tj, z}. Further, R′ contains at least q vertices from Q in order to cover the edges that
are contained entirely within T . Hence,

Υ(H) > |R′| > |
⋃

(i,j)∈I>q

Zi,j|+ q > c,

contradicting the fact that Υ(H) = c.

Claim 8.

∣∣∣∣∣ ⋃(i,j)∈I
Zi,j

∣∣∣∣∣ 6 ((c2)− (c−q2 )) (c− q) + (c− q).

Proof. As observed earlier, I = Iq ∪ I>q. By Claim 6, |Zi,j| 6 c − q for all (i, j) ∈ Iq.
Since there are

(
c
2

)
−
(
c−q
2

)
pairs (i, j) ∈ Iq where 1 6 i 6 q and i < j 6 c, we note by

Claim 6 and Claim 7 that∣∣∣∣∣∣
⋃

(i,j)∈I

Zi,j

∣∣∣∣∣∣ 6
∣∣∣∣∣∣
⋃

(i,j)∈Iq

Zi,j

∣∣∣∣∣∣+

∣∣∣∣∣∣
⋃

(i,j)∈I>q

Zi,j

∣∣∣∣∣∣ 6
((

c

2

)
−
(
c− q

2

))
(c− q) + (c− q).

Claim 9. |Yi| 6 ( c−q
2

+ 1)2 for all i ∈ [c].

Proof. Suppose, to the contrary, that |Yi| > ((c − q)/2 + 1)2 for some i ∈ [c]. Let H ′ be
the graph with vertex set V (H ′) = Yi and with edge set E(H ′) = {e \ {ti} | e ∈ Ei}. By
Theorem 1, there is a minimal transversal T ′ in H ′, such that |T ′| > 2(

√
|Yi| − 1). Let

R′ = T ′∪ (T \{ti}) and note that R′ is a transversal in H. Let R′′ be obtained from R′ by
removing vertices from R′ until we get a minimal transversal in H. In order to cover the
edges Ei, we must have T ′ ⊆ R′′, noting that T ′ is a minimal transversal in H ′. Further,
R′ contains at least q vertices from T \ {ti} in order to cover the edges that are contained
entirely within T . Therefore,

Υ(H) > |R′′| > |T ′|+ q > 2(
√
|Yi| − 1) + q > 2

√(c− q
2

+ 1

)2

− 1

+ q = c
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contradicting the fact that Υ(H) = c.

Since T is a transversal in H, we note that

V (H) = T ∪

 ⋃
(i,j)∈I

Zi,j

 ∪( c⋃
i=1

Yi

)
. (1)

Let β be defined such that (c − q) = βc. We note that 0 6 β 6 1. By Equation (1)
and by Claim 8 and 9, we therefore get the following.

n
H

6 |T |+
∑
i,j

|Zi,j|+
∑
i

|Yi|

6 c+
((

c
2

)
−
(
c−q
2

))
(c− q) + (c− q) + c( c−q

2
+ 1)2

6 c+
(
c(c−1)

2
− βc(βc−1)

2

)
βc+ βc+ c(βc

2
+ 1)2

= c+ 1
2

(c2 − c− β2c2 + βc) βc+ βc+ c(β
2c2

4
+ βc+ 1)

= c3
(
β
2
− β3

2
+ β2

4

)
+ c2

(
−β
2

+ β2

2
+ β

)
+ c(2 + β)

= c3

4
(−2β3 + β2 + 2β) + c2

(
β
2

+ β2

2

)
+ c(2 + β).

Let
f(β) = −2β3 + β2 + 2β.

The maximum value of f(β) when 0 6 β 6 1 is obtained when β = (1 +
√

13)/6,
noting that 0 = f ′(β) = −6β2 + 2β + 2 implies β = (1 ±

√
13)/6. Therefore, f(β) 6

f
(

1+
√
13

6

)
< 1.22 for all 0 6 β 6 1, implying by our earlier observations that

n
H

6 c3

4
(−2β3 + β2 + 2β) + c2

(
β
2

+ β2

2

)
+ c(2 + β)

< c3

4
(1.22) + c2

(
1
2

+ 1
2

)
+ c(2 + 1)

= 0.305c3 + c2 + 3c

< 0.305(c+ 2)3,

and so Υ(H) = c > 3

√
n
H

0.305
− 2. This completes the proof of Theorem 5.

We remark that 3

√
1

0.305
> 1.48559, and so as a consequence of Theorem 5, if H is

a connected 3-uniform hypergraph of order n > 3, then Υ(H) > 1.4855 3
√
n − 2. When

n > 17, we observe that 1.4855 3
√
n − 2 > 3

√
1
3
n. Further, we observe that when n = 3,

Υ(H) = 1 = 3

√
1
3
n, while for 4 6 n 6 16, Υ(H) > 2 > 3

√
1
3
n. Thus, as an immediate

consequence of Theorem 5, we observe that if H is a connected 3-uniform hypergraph,
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then Υ(H) > 3

√
n
H

3
. We show next that the lower bound in Theorem 5 is asymptotically

best possible.

Proposition 10. For all n > 3, there exists a connected 3-uniform hypergraph H = Hn

of order n
H

= 1
2
(n3 − n2 + 2n) such that

Υ(H) =
3
√

16(1− εn) · n
H

where εn =
2n2 − n+ 1

n3 − n2 + 2n
.

Proof. For each n > 3, let Hn be the connected 3-uniform hypergraph constructed as
follows. Let Fn be the complete 3-uniform hypergraph on n vertices, and so Fn has(
n
3

)
hyperedges corresponding to the 3-element subsets of V (Fn). Thus, every set of

three vertices in Fn belongs to a 3-edge of Fn. Let S = V (Fn). For every pair of
vertices, {x, y}, in S add n new vertices, vxy1 , v

xy
2 , . . . , v

xy
n to Fn and add the n hyperedges

{x, y, vxy1 }, {x, y, v
xy
2 }, . . . , {x, y, vxyn }. Let H = Hn denote the resulting hypergraph of

order

n
H

=

(
n

2

)
n+ |V (Fn)| = n2(n− 1)

2
+ n =

1

2
(n3 − n2 + 2n).

We note that all the new vertices added to Fn have degree 1 in Hn. Every transversal
in Hn must contain all n vertices in Fn, except for possibly two vertices in order to cover
all the edges in Fn. Every minimal transversal in Hn contains either exactly n−1 vertices
of S (and no other vertex in Hn) or exactly n−2 vertices of S, say all vertices of S except
for the vertices x and y, and exactly n vertices not in S, namely vxy1 , v

xy
2 , . . . , v

xy
n , in order

to cover the edges {x, y, vxy1 }, {x, y, v
xy
2 }, . . . , {x, y, vxyn }, implying that

Υ(Hn) = (|S| − 2) + n = 2(n− 1).

Therefore, letting εn = 2n2−n+1
n3−n2+2n

, we note that the connected 3-uniform hypergraph
H = Hn satisfies

Υ(H) = 2(n− 1)

=
3
√

8 · (n− 1)3

=
3

√
16 · (n− 1)3

2n
H

· n
H

=
3

√
16

(
n3 − 3n2 + 3n− 1

n3 − n2 + 2n

)
· n

H

=
3

√
16

(
1− 2n2 − n+ 1

n3 − n2 + 2n

)
· n

H

=
3
√

16(1− εn) · n
H
.

Using the notation introduced in the statement of Proposition 10, we note that 2
3

=
ε3 > ε4 > ε5 > · · · and that εn → 0 as n → ∞. In particular, we note that given any
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ε > 0, we can choose n sufficiently large so that εn < ε, implying by Proposition 10 that
the connected 3-uniform hypergraph H = Hn satisfies

3
√

16(1− ε) · n
H
< Υ(H) <

3
√

16 · n
H

5 Closing Conjectures

We pose the following conjecture. As observed earlier, Conjecture 11 is true for k ∈ {2, 3}.
However, we have yet to settle the conjecture for k > 4.

Conjecture 11. For k > 2, ifH is a connected k-uniform hypergraph then Υ(H) > k

√
n

H

k
.

LetHn denote the class of all connected 3-uniform hypergraphs of order n. As observed
earlier, Proposition 10 implies that for n sufficiently large there exist hypergraphs H ∈ Hn

such that
Υ(H)

3
√
n

>
3
√

16(1− ε)

for any given ε > 0. We close with the following conjecture that we have yet to settle.

Conjecture 12. sup
n→∞

(
inf

H∈Hn

Υ(H)
3
√
n

)
=

3
√

16.
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