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Abstract

In this paper, we show that a uniform hypergraph G is connected if and only
if one of its inverse Perron values is larger than 0. We give some bounds on the
bipartition width, isoperimetric number and eccentricities of G in terms of inverse
Perron values. By using the inverse Perron values, we give an estimation of the
edge connectivity of a 2-design, and determine the explicit edge connectivity of
a symmetric design. Moreover, relations between the inverse Perron values and
resistance distance of a connected graph are presented.

Mathematics Subject Classifications: 05C50, 05C65, 05C40, 05C12, 15A69

1 Introduction

Let V (G) and E(G) denote the vertex set and edge set of a hypergraph G, respectively.
G is k-uniform if |e| = k for each e ∈ E(G). In particular, 2-uniform hypergraphs are
usual graphs. For i ∈ V (G), Ei(G) denotes the set of edges containing i, and di = |Ei(G)|

∗Corresponding author. This work is supported by the National Natural Science Foundation of China
(No. 11371109, No. 11601102 and No. 11671108), the Fundamental Research Funds for the Central
Universities (No. GK2110260149).
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denotes the degree of i. The adjacency tensor [8] of a k-uniform hypergraph G, denoted
by AG, is an order k dimension |V (G)| tensor with entries

ai1i2···ik =


1

(k − 1)!
, if {i1, i2, . . . , ik} ∈ E (G) ,

0, otherwise.

The Laplacian tensor [27] of G is LG = DG − AG, where DG is the diagonal tensor of
vertex degrees of G. Recently, the research on spectral hypergraph theory via tensors has
attracted much attention [7-10,14,19,24]. The spectral properties of the Laplacian tensor
of hypergraphs are studied in [13,25,27,29,35].

For an order k dimension n tensor T = (ti1i2···ik), let T xk =
n∑

i1,...,ik=1

ti1i2···ikxi1 · · ·xik .

The algebraic connectivity of a graph plays important roles in spectral graph theory [11].
Analogue to the algebraic connectivity of a graph, Qi [27] defined the analytic connectivity
of a k-uniform hypergraph G as

α(G) = min
j=1,...,n

min

{
LGxk : x ∈ Rn

+,
n∑
i=1

xki = 1, xj = 0

}
,

where n = |V (G)|, Rn
+ denotes the set of nonnegative vectors of dimension n. Qi proved

that G is connected if and only if α(G) > 0. In [20], some bounds on α(G) were presented
in terms of degree, vertex connectivity, diameter and isoperimetric number. A feasible
trust region algorithm of α(G) was given in [9].

For any vertex j of a k-uniform hypergraph G, we define the inverse Perron value of
j as

αj(G) = min

{
LGxk : x ∈ Rn

+,
n∑
i=1

xki = 1, xj = 0

}
.

Clearly, the analytic connectivity α(G) = min
j∈V (G)

αj(G) is the minimum inverse Perron

value. For a connected graph G, αj(G) is the minimum eigenvalue of LG(j), where LG(j)
is the principal submatrix of LG obtained by deleting the row and column corresponding
to j. LG(j) is nonsingular and its inverse LG(j)−1 is a nonnegative matrix [16]. It is easy
to see that α−1

j (G) is the spectral radius of LG(j)−1, which is called the Perron value of
G. All inverse Perron values of a tree T can determine the algebraic connectivity of T
[1, 15].

The resistance distance [17, 34] is a distance function on graphs. For two vertices i, j in
a connected graph G, the resistance distance between i and j, denoted by rij(G), is defined
to be the effective resistance between them when unit resistors are placed on every edge
of G. The Kirchhoff index [17, 33] of G, denoted by Kf(G), is defined as the sum of resis-
tance distances between all pairs of vertices in G, i.e., Kf(G) =

∑
{i,j}⊆V (G)

rij(G). Kf(G)

is a global robustness index. The resistance distance and Kirchhoff index in graphs have
been investigated extensively in mathematical and chemical literatures [3,4,6,12,23,31,36].

the electronic journal of combinatorics 25(4) (2018), #P4.28 2



This paper is organized as follows. In Section 2, some auxiliary lemmas are introduced.
In Section 3, we show that a uniform hypergraph G is connected if and only if one of its
inverse Perron values is larger than 0, and some inequalities among the inverse Perron
values, bipartition width, isoperimetric number and eccentricities of G are established.
Partial results improve some bounds in [20, 27]. We also use the inverse Perron values
to estimate the edge connectivity of 2-designs. In Section 4, some inequalities among the
inverse Perron values, resistance distance and Kirchhoff index of a connected graph are
presented.

2 Preliminaries

For a positive integer n, let [n] = {1, 2, . . . , n}. An order m dimension n tensor T =
(ti1···im) consists of nm entries, where ij ∈ [n], j ∈ [m]. When m = 2, T is an n×n matrix.
Let R[m,n] denote the set of order m dimension n real tensors, and let Rn

+ denote the cone

of nonnegative vectors in Rn. For T = (ti1i2···im) ∈ R[m,n] and x = (x1, . . . , xn)T ∈ Rn, let
T xm−1 ∈ Rn denote the vector whose i-th component is

(
T xm−1

)
i

=
n∑

i2,i3,...,im=1

tii2···imxi2xi3 · · ·xim ,

and let x[m−1] = (xm−1
1 , . . . , xm−1

n )T. In 2005, Qi [26] and Lim [21] proposed the concept of
eigenvalues of tensors, independently. For T = (ti1i2···im) ∈ R[m,n], if there exist a number
λ ∈ R and a nonzero vector x = (x1, . . . , xn)T ∈ Rn such that T xm−1 = λx[m−1], then λ
is called an H-eigenvalue of T , x is called an H-eigenvector of T corresponding to λ.

For a vertex j of a k-uniform hypergraph G, let LG(j) ∈ R[k,n−1] denote the principal
subtensor of LG ∈ R[k,n] with index set V (G) \ {j}. By Lemma 2.3 in [32], we know that
αj(G) is the smallest H-eigenvalue of LG(j) for any j ∈ V (G).

A path P of a uniform hypergraph G is an alternating sequence of vertices and edges
v0e1v1e2 · · · vl−1elvl, where v0, . . . , vl are distinct vertices of G, e1, . . . , el are distinct edges
of G and vi−1, vi ∈ ei, for i = 1, . . . , l. The number of edges in P is the length of P . For
all u, v ∈ V (G), if there exists a path starting at u and terminating at v, then G is said
to be connected [5].

Lemma 1. [27] The uniform hypergraph G is connected if and only if α(G) > 0.

Let G be a k-uniform hypergraph, S 6= ∅ be a proper subset of V (G). Denote S =
V (G) \ S. The edge-cut set E(S, S) consists of edges whose vertices are in both S and S.
The minimum cardinality of such an edge-cut set is called edge connectivity of G, denote
by e(G).

Lemma 2. [27] Let G be a k-uniform hypergraph with n vertices. Then

e(G) >
n

k
α(G).
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The {1}-inverse of a matrix M is a matrix X such that MXM = M . Let M (1) denote
any {1}-inverse of M , and let (M)ij denote the (i, j)-entry of M .

Lemma 3. [2, 34] Let G be a connected graph. Then

rij(G) = (L(1)
G )ii + (L(1)

G )jj − (L(1)
G )ij − (L(1)

G )ji.

Let tr(A) denote the trace of the square matrix A, and let e denote an all-ones column
vector.

Lemma 4. [30] Let G be a connected graph of order n. Then

Kf(G) = ntr(L(1)
G )− e>L(1)

G e.

Lemma 5. [2] Let G be a connected graph with n vertices and i ∈ [n]. Let LG = L1 x L2

xT di y
L2

T yT L3

, where L1 ∈ R(i−1)×(i−1), L3 ∈ R(n−i)×(n−i), x ∈ Ri−1, yT ∈ Rn−i.

Suppose LG(i)−1 =

(
L̃1 L̃2

L̃2

T
L̃3

)
, where L̃1 ∈ R(i−1)×(i−1), L̃3 ∈ R(n−i)×(n−i) . Then L̃1 0 L̃2

0 0 0

L̃2

T
0 L̃3

 is a symmetric {1}-inverse of LG.

3 Inverse Perron values of uniform hypergraphs

In the following theorem, the relationship between inverse Perron values and connectivity
of a hypergraph is presented.

Theorem 6. Let G be a k-uniform hypergraph. Then the following statements are equiv-
alent:
(1) G is connected.
(2) αj(G) > 0 for all j ∈ V (G).
(3) αj(G) > 0 for some j ∈ V (G).

Proof. (1)=⇒(2). If G is connected, then by Lemma 1, we know that αj(G) > 0 for all
j ∈ V (G).

(2)=⇒(3). Obviously.
(3)=⇒(1). Suppose that G is disconnected. For any j ∈ V (G), let G1 be the component

of G such that j /∈ V (G1). Let x = (x1, . . . , x|V (G)|)
T be the vector satisfying

xi =

{
|V (G1)|−

1
k , if i ∈ V (G1),

0, otherwise.

Clearly, we have
n∑
i=1

xki = 1. Then we have 0 6 αj(G) 6 LGxk = 0 for any j ∈ V (G), a

contradiction to (3). Hence G is connected if (3) holds.
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The bipartition width of a hypergraph G is defined as [18, 28]

bw(G) = min
{
|E(S, S)| : S ⊆ V (G), |S| =

⌊n
2

⌋}
,

where
⌊
n
2

⌋
denotes the maximum integer not larger than n

2
. The computation of bw(G)

is very difficult even for the graph case. In [22], Mohar and Poljak used the algebraic
connectivity to obtain a lower bound on the bipartition width of a graph. In the following
theorem, we use the inverse Perron values to obtain a lower bound on the bipartition
width of a uniform hypergraph.

Theorem 7. Let G be a k-uniform hypergraph with n vertices. Then

bw(G) >
n+ (−1)n

k(n+ 1)

n∑
j=1

αj(G).

Proof. Suppose that S0 ⊆ V (G) satisfying |S0| =
⌊
n
2

⌋
and |E(S0, S0)| = bw(G). Let

x = (x1, . . . , xn)T be the vector satisfying

xi =

{
|S0|−

1
k , i ∈ S0,

0, i ∈ S0.

Then
n∑
i=1

xki = 1. For j ∈ S0, we get

αj(G) 6 LGxk =
∑

{i1,...,ik}∈E(G)

(
xki1 + · · ·+ xkik − kxi1 · · ·xik

)

αj(G) 6
∑

{i1,...,ik}∈E(S0,S0)

(
xki1 + · · ·+ xkik − kxi1 · · ·xik

)
=

1

|S0|
∑

e∈E(S0,S0)

|e ∩ S0| =
t(S0)bw(G)

|S0|
, (1)

where t(S0) = 1

|E(S0,S0)|
∑

e∈E(S0,S0)

|e ∩ S0|.

Similarly, for j ∈ S0, we obtain

αj(G) 6
(k − t(S0))bw(G)

|S0|
. (2)

Combining (1) and (2), we get

n∑
j=1

αj(G) =
∑
j∈S0

αj(G) +
∑
j∈S0

αj(G) 6
|S0|(k − t(S0))bw(G)

|S0|
+
|S0|t(S0)bw(G)

|S0|
.
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If n is even, then |S0| = |S0| and bw(G) > 1
k

n∑
j=1

αj(G). If n is odd, then |S0| = |S0| − 1 =

n−1
2

and

n∑
j=1

αj(G) 6 k
|S0|
|S0|

bw(G) =
k(n+ 1)bw(G)

n− 1
, bw(G) >

n− 1

k(n+ 1)

n∑
j=1

αj(G).

The isoperimetric number of a k-uniform hypergraph G is defined as

i(G) = min

{
|E(S, S)|
|S|

: S ⊆ V (G), 0 < |S| 6 |V (G)|
2

}
.

Let β(G) = max
j∈V (G)

αj(G) denote the maximum inverse Perron value of G. In [20], it was

shown that i(G) > 2
k
α(G). We improve it as follows.

Theorem 8. Let G be a k-uniform hypergraph. Then

i(G) >
α(G) + β(G)

k
.

Proof. Suppose that S1 ⊆ V (G) satisfying 0 < |S1| 6 |V (G)|
2

and |E(S1,S1)|
|S1| = i(G). Let

x = (x1, . . . , xn)T be the vector satisfying

xi =

{
|S1|−

1
k , i ∈ S1,

0, i ∈ S1.

Then
n∑
i=1

xki = 1. For j ∈ S1, we obtain

αj(G) 6 LGxk =
t(S1)|E(S1, S1)|

|S1|
= t(S1)i(G), (3)

where t(S1) = 1

|E(S1,S1)|
∑

e∈E(S1,S1)

|e ∩ S1|.

Similarly, for j ∈ S1, we get

αj(G) 6
(k − t(S1))|E(S1, S1)|

|S1|
6 (k − t(S1))i(G). (4)

Let αs(G) = β(G). If s ∈ S1, by (3), we get

β(G) = αs(G) 6 t(S1)i(G).

From (4), we have

α(G) = min
j∈V (G)

αj(G) 6 min
j∈S1

αj(G) 6 (k − t(S1))i(G).
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Then
α(G) + β(G) 6 t(S1)i(G) + (k − t(S1))i(G) = ki(G).

Similarly, if s ∈ S1, we can also obtain α(G) + β(G) 6 ki(G).

From the above discussion, we get i(G) > α(G)+β(G)
k

.

The distance d(u, v) between two distinct vertices u and v of G is the length of the
shortest path connecting them. The eccentricity of a vertex v is ecc(v) = max{d(u, v) :
u ∈ V (G)}. The diameter and radius of G are defined as diam(G) = max

v∈V (G)
ecc(v) and

rad(G) = min
v∈V (G)

ecc(v), respectively.

Theorem 9. Let G be a connected k-uniform hypergraph with n vertices. Then

ecc(j) >
k

2(k − 1)(n− 1)αj(G)
, j ∈ V (G).

Proof. For j ∈ V (G), let x = (x1, . . . , xn)T ∈ Rn
+ satisfying xj = 0,

n∑
i=1

xki = 1 and

αj(G) = LGxk. Then

αj(G) = LGxk =
∑

{i1,...,ik}∈E(G)

(
xki1 + · · ·+ xkik − kxi1 · · ·xik

)
. (5)

From AM-GM inequality, it yields that

∑
16s<t6k

x
k
2
is
x

k
2
it
>
k(k − 1)

2

( ∏
16s<t6k

x
k
2
is
x

k
2
it

) 2
k(k−1)

=
k(k − 1)

2
xi1 · · ·xik . (6)

By (5) and (6), we have

αj(G) >
∑

{i1,...,ik}∈E(G)

(
xki1 + · · ·+ xkik −

2

k − 1

∑
16s<t6k

x
k
2
is
x

k
2
it

)

=
1

k − 1

∑
{i1,...,ik}∈E(G)

∑
16s<t6k

(
x

k
2
is
− x

k
2
it

)2

=
1

k − 1

∑
e∈E(G)

∑
s,t∈e

(
x

k
2
s − x

k
2
t

)2

. (7)

Let v0 ∈ {i|xi = max
p∈V (G)

xp}. Let P = v0e1v1e2 · · · vl−1elvl be the shortest path from vertex

v0 to vertex vl = j. Then xkv0 >
1

n−1
, xvl = 0 and

∑
e∈E(G)

∑
s,t∈e

(
x

k
2
s − x

k
2
t

)2

>
∑

e∈E(P)

∑
s,t∈e

(
x

k
2
s − x

k
2
t

)2
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>
l∑

i=1

(x k
2
vi−1 − x

k
2
vi

)2

+
∑

uj∈ei\{vi−1,vi}

((
x

k
2
vi−1 − x

k
2
uj

)2

+
(
x

k
2
uj − x

k
2
vi

)2
)

>
l∑

i=1

(x k
2
vi−1 − x

k
2
vi

)2

+
1

2

∑
uj∈ei\{vi−1,vi}

(
x

k
2
vi−1 − x

k
2
uj + x

k
2
uj − x

k
2
vi

)2


=

l∑
i=1

((
x

k
2
vi−1 − x

k
2
vi

)2

+
k − 2

2

(
x

k
2
vi−1 − x

k
2
vi

)2
)

=
k

2

l∑
i=1

(
x

k
2
vi−1 − x

k
2
vi

)2

.

By Cauchy-Schwarz inequality, we obtain

∑
e∈E(G)

∑
s,t∈e

(
x

k
2
s − x

k
2
t

)2

>
k

2

l∑
i=1

(
x

k
2
vi−1 − x

k
2
vi

)2

>
k

2l

(
l∑

i=1

(
x

k
2
vi−1 − x

k
2
vi

))2

=
k

2l

(
x

k
2
v0 − x

k
2
vl

)2

>
k

2ecc(j)

(
x

k
2
v0 − x

k
2
vl

)2

>
k

2(n− 1)ecc(j)
. (8)

From (7) and (8), it yields that

αj(G) >
k

2(k − 1)(n− 1)ecc(j)
, ecc(j) >

k

2(k − 1)(n− 1)αj(G)
.

For a connected k-uniform hypergraph G with n vertices, [20] showed that

diam(G) >
4

n2(k − 1)α(G)
.

By Theorem 9, we obtain the following improved result.

Corollary 10. Let G be a connected k-uniform hypergraph with n vertices. Then

diam(G) >
k

2(k − 1)(n− 1)α(G)
, rad(G) >

k

2(k − 1)(n− 1)β(G)
.

In [27], it was shown that α(G) 6 δ, where δ is the minimum degree of G. We improve
it as follows.

Theorem 11. Let G be a k-uniform hypergraph with n vertices. Then

αj(G) 6
(k − 1)dj
n− 1

, j ∈ V (G).
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Proof. For j ∈ V (G), let x = (x1, . . . , xn)T be the vector satisfying

xi =

{
(n− 1)−

1
k , i 6= j,

0, i = j.

Then
n∑
i=1

xki = 1, and we get

αj(G) 6 LGxk =
∑

{i1,...,ik}∈E(G)

(
xki1 + · · ·+ xkik − kxi1 · · ·xik

)
=

∑
{i1,...,ik}∈Ej(G)

(
xki1 + · · ·+ xkik

)
=

(k − 1)dj
n− 1

,

where Ej(G) denotes the set of edges containing j.

By Theorem 11, we obtain the following result.

Corollary 12. Let G be a k-uniform hypergraph with n vertices and m edges. Then

n∑
j=1

αj(G) 6
(k − 1)km

n− 1
, j ∈ V (G).

Let G be a k-uniform hypergraph. For x, y ∈ V (G), let c(x, y) = |{e ∈ E(G) : x, y ∈
e}|. A 2-(n, b, k, r, λ) design can be regarded as a k-uniform r-regular hypergraph G on n
vertices, b edges, and c(x, y) = λ for any pair of distinct x, y ∈ V (G). A 2-design satisfying
n = b is called a symmetric design.

Theorem 13. Let G be a connected k-uniform hypergraph with n vertices. Then G is a
2-design if and only if α1(G) = · · · = αn(G) = ∆(k−1)

n−1
, where ∆ is the maximum degree of

G.

Proof. We first prove the necessity. If G is a 2-(n, b, k, r, λ) design, then λ(n−1) = r(k−1)
and ∆ = r = d1 = · · · = dn. For any j ∈ V (G), by Theorem 11, we have

αj(G) 6
r(k − 1)

n− 1
= λ. (9)

Let x = (x1, . . . , xn)T ∈ Rn
+ satisfying xj = 0,

n∑
i=1

xki = 1 and αj(G) = LGxk. Then we get

αj(G) = LGxk >
∑

{i1,...,ik}∈Ej(G)

(
xki1 + · · ·+ xkik − kxi1 · · ·xik

)
= λ

∑
i 6=j

xki = λ. (10)

Combining (9) and (10), we get

α1(G) = · · · = αn(G) = λ =
r(k − 1)

n− 1
=

∆(k − 1)

n− 1
.
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Next we prove the sufficiency. Let α1(G) = · · · = αn(G) = ∆(k−1)
n−1

. From Theorem

11, we obtain d1 = · · · = dn = ∆. Let z =
(

(n− 1)−
1
k , . . . , (n− 1)−

1
k

)T

∈ Rn−1
+ .

For j ∈ V (G), let y = (y1, . . . , yn)T ∈ Rn
+ be a vector such that yi = 0 if i = j and

yi = (n− 1)−
1
k otherwise. Then

LGyk =
∑

{i1,...,ik}∈E(G)

(
yki1 + · · ·+ ykik − kyi1 · · · yik

)
=

∑
{i1,...,ik}∈Ej(G)

(
yki1 + · · ·+ ykik

)
=

∆(k − 1)

n− 1
= αj(G) = α(G).

We know that α(G) = αj(G) is the smallest H-eigenvalue of LG(j). Since LG(j)zk =
LGyk = α(G), z is an H-eigenvector corresponding to α(G), that is

α(G)z[k−1] = LG(j)zk−1.

For all i ∈ V (G) \ {j}, we have

α(G) =
1

zik−1

(
LG(j)zk−1

)
i

=
1

zik−1

∑
i2,...ik 6=j

(LG(j))ii2···ikzi2 · · · zik

=
∑

i2,...,ik 6=j

(LG)ii2···ik = c(i, j).

So c(i, j) = α(G) for any pair of distinct i, j ∈ V (G), which implies that G is a 2-design.

We give an estimation of the edge connectivity of a 2-design as follows.

Theorem 14. Let G be a 2-(n, b, k, r, λ) design. Then

nλ

k
6 e(G) 6

(n− 1)λ

k − 1
.

Moreover, if G is a symmetric design, then e(G) = k = r.

Proof. Since G is a 2-(n, b, k, r, λ) design, we have λ(n − 1) = r(k − 1). By Theorem 13,
we have

α(G) =
r(k − 1)

n− 1
= λ.

It follows from Lemma 2 that

nλ

k
=
n

k
α(G) 6 e(G) 6 r =

(n− 1)λ

k − 1
. (11)

Moreover, if G is a symmetric design, then n = b. Since nr = bk, we have r = k. From
λ(n− 1) = r(k − 1) and (11), we have

n(k − 1)

n− 1
6 e(G) 6 k.

Since e(G) is a positive integer, we get e(G) = k = r.

the electronic journal of combinatorics 25(4) (2018), #P4.28 10



4 Inverse Perron values and resistance distance of graphs

For a vertex i of a connected graph G, we define its resistance eccentricity as ri(G) =
max
j∈V (G)

rij.

Theorem 15. Let G be a connected graph. For any i ∈ V (G), we have

ri(G) 6
1

αi(G)
.

Proof. Without loss of generality, assume that i is the vertex corresponding to the last
row of the Laplacian matrix LG. Since αi(G) is the minimum eigenvalue of the principal
submatrix LG(i), α−1

i (G) is the spectral radius of the symmetric nonnegative matrix
LG(i)−1. So α−1

i (G) > max
j 6=i

(LG(i)−1)jj.

By Lemmas 5 and 3, we get rij(G) = (LG(i)−1)jj for any j 6= i. Hence

α−1
i (G) > max

j 6=i
(LG(i)−1)jj = ri(G),

ri(G) 6
1

αi(G)
.

For a vertex i of a connected graph G, its resistance centrality is defined as Kfi(G) =∑
j∈V (G)

rij(G). It is used to measure the centrality of a network [4]. Note that Kf(G) =∑
{i,j}⊆V (G)

rij(G) = 1
2

∑
i∈V (G)

Kfi(G).

Theorem 16. Let G be a connected graph with n vertices. For any i ∈ V (G), we have

nKfi(G)−Kf(G) 6
n− 1

αi(G)
.

Proof. Note that α−1
i (G) is the maximum eigenvalue of the symmetric matrix LG(i)−1.

Let e be the all-ones column vector, then

α−1
i (G) >

e>LG(i)−1e

e>e
=

e>LG(i)−1e

n− 1
.

By Lemmas 5 and 4, we have

Kf(G) = ntr(LG(i)−1)− e>LG(i)−1e.

From Lemmas 5 and 3, we get rij(G) = (LG(i)−1)jj for any j 6= i. Hence tr(LG(i)−1) =
Kfi(G) and

Kf(G) = nKfi(G)− e>LG(i)−1e.
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By α−1
i (G) > e>LG(i)−1e

n−1
we get

α−1
i (G) >

e>LG(i)−1e

n− 1
=
nKfi(G)−Kf(G)

n− 1
,

nKfi(G)−Kf(G) 6
n− 1

αi(G)
.

Corollary 17. Let G be a connected graph with n vertices. Then

Kf(G) 6
n− 1

n

n∑
i=1

α−1
i (G).

Proof. By Theorem 16, we have

n∑
i=1

n− 1

αi(G)
>

n∑
i=1

(nKfi(G)−Kf(G)) = nKf(G),

Kf(G) 6
n− 1

n

n∑
i=1

α−1
i (G).
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[28] J. A. Rodŕıguez. Laplacian eigenvalues and partition problems in hypergraphs. Appl.
Math. Lett., 22:916–921, 2009.

[29] J. Shao and X. Yuan. Some properties of the Laplace and normalized Laplace spectra
of uniform hypergraphs. Linear Algebra Appl., 531:98–117, 2017.

the electronic journal of combinatorics 25(4) (2018), #P4.28 13



[30] L. Sun, W. Wang, J. Zhou and C. Bu. Some results on resistance distances and
resistance matrices. Linear Multilinear Algebra, 63:523–533, 2015.

[31] Y. Yang and D. J. Klein. Resistance distance-based graph invariants of subdivisions
and triangulations of graphs. Discrete Appl. Math., 181:260–274, 2015.

[32] L. Zhang, L. Qi and G. Zhou. M-tensors and some applications. SIAM J. Matrix
Anal. Appl., 35:437–452, 2014.
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