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Abstract

A d-ary quasigroup of order n is a d-ary operation over a set of cardinality n
such that the Cayley table of the operation is a d-dimensional latin hypercube of the
same order. Given a binary quasigroup G, the d-iterated quasigroup G[d] is a d-ary
quasigroup that is a d-time composition of G with itself. A k-multiplex (a k-plex)
K in a d-dimensional latin hypercube Q of order n or in the corresponding d-ary
quasigroup is a multiset (a set) of kn entries such that each hyperplane and each
symbol of Q is covered by exactly k elements of K. It is common to call 1-plexes
transversals.

In this paper we prove that there exists a constant c(G, k) such that if a d-
iterated quasigroup G of order n has a k-multiplex then for large d the number

of its k-multiplexes is asymptotically equal to c(G, k)
(
(kn)!
k!n

)d−1
. As a corollary

we obtain that if the number of transversals in the Cayley table of a d-iterated
quasigroup G of order n is nonzero then asymptotically it is c(G, 1)n!d−1.

In addition, we provide limit constants and recurrence formulas for the num-
bers of transversals in two iterated quasigroups of order 5, characterize a typical
k-multiplex and estimate numbers of partial k-multiplexes and transversals in d-
iterated quasigroups.

Mathematics Subject Classifications: 05B15, 05D15, 20N05
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1 Definitions and preliminaries

Let n, d ∈ N, Idn = {(α1, . . . , αd) : αi ∈ {1, . . . , n}}, and let I1n = {1, . . . , n}. Denote by
I{n,k} the multiset of size kn over the set {1, . . . , n} in which each of n symbols appears
exactly k times.

A d-dimensional matrix A of order n is an array (aα)α∈Idn , aα ∈ R. The support of a
matrix A is the set of indices at which the matrix has nonzero values.

For k ∈ {0, . . . , d}, let a k-dimensional plane in A be a submatrix of A obtained by
fixing d − k indices and letting the other k indices vary from 1 to n. A 1-dimensional
plane is said to be a line, and a (d− 1)-dimensional plane is a hyperplane.

A d-dimensional latin hypercube Q of order n is a d-dimensional matrix of order n
filled by n symbols so that all symbols within each line are distinct. 2-dimensional latin
hypercubes are known as latin squares.

A d-dimensional permutation matrix M of order n is a multidimensional (0,1)-matrix
such that each line contains exactly one unity entry.

A d-ary quasigroup f of order n is a function f : Idn → I1n such that the equation
x0 = f(x1, . . . , xd) has a unique solution for any one variable if all the other d variables
are specified arbitrarily. In particular, a binary quasigroup of order n is a binary operation
∗ over the set I1n with the following property: for each a0, a1, a2 ∈ I1n there exist unique
x1, x2 ∈ I1n such that both a0 = a1 ∗ x2 and a0 = x1 ∗ a2 hold.

d-ary quasigroups f and g of order n are called isotopic if there exist permutations
σi ∈ Sn, i = 0, . . . , d such that

f(x1, . . . , xd) = σ−10

(
g(σ1(x1), . . . , σd(xd))

)
.

There are natural correspondences between permutation matrices, latin hypercubes,
and quasigroups. The Cayley table of a d-ary quasigroup f of order n is a d-dimensional
latin hypercube Q(f) of the same order, and vice versa, every d-dimensional latin hy-
percube can be considered as the Cayley table of some d-ary quasigroup. The graph
{(x0, x1, . . . , xd) : x0 = f(x1, . . . , xd)} of a quasigroup f is the set of unity entries of the
(d+ 1)-dimensional permutation matrix M(f) of order n. The correspondence between a
d-dimensional latin hypercube Q and the (d+ 1)-dimensional permutation matrix M(Q)
is given by the following rule: an entry qα1,...,αd

of a latin hypercube Q equals αd+1 if and
only if an entry mα1,...,αd+1

of the permutation matrix M(Q) equals 1. In particular, the
Cayley table of every binary quasigroup G is a latin square Q(G) that corresponds to
some 3-dimensional permutation matrix M(G).

Although all these three approaches (via quasigroups, latin hypercubes, and permuta-
tion matrices) are equivalent, in different environments it is more customary to use only
one of them. During this paper we will change between these three concepts repeatedly
because algebraic properties of quasigroups are needed for the proofs, the research is
motivated by problems for latin squares and hypercubes, but the approach via multidi-
mensional permutation matrices is often more symmetric and convenient.

Given a binary quasigroup G of order n defined by a binary operation ∗, the d-iterated
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quasigroup G denoted by G[d] is the d-ary quasigroup of order n such that

x0 = G[d](x1, . . . , xd)⇔ (· · · ((x0 ∗ x1) ∗ x2) ∗ · · · ∗ xd−1) ∗ xd = 1,

where 1 stands for the (not necessarily identity) element from the ground set I1n =
{1, . . . , n} of the binary quasigroup ∗. Note that the quasigroup G[d] can be equivalently
defined by the equation

(· · · ((x0 ∗ x1) ∗ x2) ∗ · · · ∗ xd−2) ∗ xd−1 = 1/xd,

where / is the right division for the quasigroup ∗. So we have that the quasigroup G[d] is
isotopic to the following quasigroup

(· · · ((x0 ∗ x1) ∗ x2) ∗ · · · ∗ xd−2) ∗ xd−1 = xd.

Because isotopy preserves the properties which we will be interested in, we prefer to use
the first definition due to its symmetry.

We denote by Q(G[d]) the Cayley table of the d-iterated quasigroup G, and the corre-
sponding (d+ 1)-dimensional permutation matrix is denoted by M(G[d]).

Let A be a d-dimensional matrix of order n. A multiset K of kn indices {α1, . . . , αkn}
is called a k-multidiagonal if each hyperplane of A contains exactly k elements of K. A
k-multidiagonal K is called a k-diagonal if all elements of K are different (namely, K is
a set).

A diagonal (or a 1-diagonal) in a multidimensional matrix is a set of n indices such
that there is exactly one index in each hyperplane. Note that if we unite any k diagonals
we obtain a k-multidiagonal, and if we unite k mutually disjoint diagonals we get a k-
diagonal. Meanwhile, not every k-multidiagonal or k-diagonal can be partitioned into
diagonals. The simplest example is the following 2-diagonal in a 3-dimensional matrix of
order 2:

(1, 1, 1) (1, 2, 2) (2, 1, 2) (2, 2, 1).

For a d-dimensional (0, 1)-matrix A of order n, define the k-permanent perkA of a
matrix A to be the number of positive k-diagonals in A. Similarly, the k-multipermanent
PerkA of A is the number of positive k-multidiagonals in the matrix A. Introduction of
the term “k-permanent” for these objects is explained by the fact that the 1-permanent
is exactly the permanent of multidimensional matrices that was studied in detail in [7].

Note that for every d-dimensional (0,1)-matrix A of order n we have

perkA 6 PerkA 6

(
(kn)!

k!n

)d−1
,

because every k-diagonal is a k-multidiagonal and because if we fix the permutation in
one coordinate of a multidiagonal then in each of the other d − 1 coordinates we have a
permutation of the multiset I{n,k}.

In a d-dimensional latin hypercube Q, a diagonal whose entries contain all different
symbols is said to be a transversal. Let us define a k-plex in a d-dimensional latin
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hypercube Q of order n as a selection of kn different indices of Q in which each hyperplane
and symbol is represented precisely k times. Analogously, we define a k-multiplex in a
latin hypercube to be a multiset of indices satisfying the same property.

From the definitions it follows that every transversal in a latin hypercube Q corre-
sponds to a positive diagonal in the permutation matrix M(Q), every k-plex (k-multiplex)
in Q corresponds to a positive k-diagonal (a positive k-multidiagonal) in M(Q), and con-
versely. For d-ary quasigroups we define transversals, k-plexes, and k-multiplexes so that
they correspond to those in latin hypercubes. Finally, for the sake of brevity and unifica-
tion, we will call positive k-multidiagonals and k-diagonals in (0, 1)-matrices k-multiplexes
and k-plexes, respectively.

Note that the number of transversals in any d-dimensional latin hypercube of order n
is not greater than n!d−1. Also, it is not hard to check that isotopic d-ary quasigroups have
the same numbers of k-plexes and k-multiplexes (for proof of this fact for transversals,
see [9]).

We will say that a k-multiplex K is divisible if there exist a k1-multiplex K1 and a
k2-multiplex K2 such that K is the union of K1 and K2; otherwise K is called indivisible.
A k-multiplex K in a d-dimensional matrix of order n is disconnected if K is the union
of k-multiplexes K1 and K2 in submatrices of orders n1 and n2 (n = n1 + n2); otherwise
K is said to be connected.

For a k-multiplex K = {α1, . . . , αkn} we denote by Kj the kn-vector (α1
j , . . . , α

kn
j ),

where αij is the jth component of the index αi. Given a binary quasigroup ∗ and two
m-vectors U and V , a component-wise product of U and V is

U ∗ V = W ⇔ ui ∗ vi = wi for all i = 1, . . . ,m.

A vector with all unity components is denoted by E.

2 Motivation and the main result

Transversals and plexes in latin squares have been widely studied for the last decades
but many important questions on existence are not solved yet. One of the best known
conjectures on transversals belongs to Ryser [6].

Conjecture 1 (Ryser). Every latin square of odd order has a transversal.

According to [1], the following conjecture for 2-plexes in latin squares was proposed
by Rodney.

Conjecture 2 (Rodney). Every latin square has a 2-plex.

For the Cayley tables of groups this conjecture was proved by Vaughan-Lee and Wan-
less.

Theorem 3 ([10]). If G is a group then the latin square Q(G) has a 2-plex.
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One of the possible ways to generalize plexes was considered by Pula in [5], and a
comprehensive survey of other results on transversals and k-plexes in latin squares is
given in [11].

Investigation of transversals in latin hypercubes started only recently. In [11] Wanless
generalized Ryser’s conjecture for latin hypercubes.

Conjecture 4 (Wanless). Every latin hypercube of odd dimension or odd order has a
transversal.

It is known that if n and d are both even then the Cayley table of the d-iterated group
Zn has no transversals [7, 11]. Moreover, using the same technique it is easy to prove the
analogous statement for k-multiplexes for odd k.

Proposition 5. Let n and d be even and k be odd. Then the d-dimensional latin hypercube
Q(Z[d]

n ) has no k-multiplexes.

Proof. Assume that a multiset of indices K = {α1, . . . , αkn} is a k-multiplex in the latin

hypercube Q(Z[d]
n ). Consider the sum

S =
kn∑
i=1

d∑
j=0

αij.

Since for each αi ∈ K it holds
d∑
j=0

αij ≡ 0 mod n, we have S ≡ 0 mod n. On the

other hand, for each j ∈ {0, . . . , d} we have
kn∑
i=1

αij = k n(n+1)
2

. Therefore,

S =
d∑
j=0

kn∑
i=1

αij =
d∑
j=0

k
n(n+ 1)

2
= k(d+ 1)

n(n+ 1)

2
6≡ 0 mod n,

because n and d are even and k is odd.

The numbers of transversals in all latin hypercubes of orders 2 and 3 are found in [7],
and the numbers of transversals in d-iterated groups of order 4 are calculated in [9]. Also,
in [9] it is proved that for all odd d a d-iterated quasigroup of order 4 has transversals,
and a lower bound on their number is obtained.

The asymptotic behavior of the maximum number of transversals in latin hypercubes
of fixed dimension and large order was found in [3, 8]. In [2] it was proved that if for an
abelian group G the latin hypercube Q(G[d]) has a transversal then for large n and fixed
d the number of transversals in Q(G[d]) asymptotically reaches the upper bound.

One of the main results of this paper is that the analogous statement holds for the
Cayley tables of d-iterated quasigroups of large dimension. Namely, it will be a special
case of the following theorem.
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Theorem 6. Let G be a binary quasigroup of order n and let M(G[d−1]) be the d-
dimensional permutation matrix of the (d− 1)-iterated quasigroup G.

1. For all k and for all even d the d-dimensional permutation matrix M(G[d−1]) has
a nonzero k-multipermanent. If for some odd d′ we have that PerkM(G[d′−1]) is
positive then PerkM(G[d−1]) is greater than zero for all d > d′.

2. There exists a constant 0 < c(G, k) 6 1 such that

lim
d→∞

PerkM(G[d−1])(
(kn)!
k!n

)d−2 = c(G, k),

where d are taken so that PerkM(G[d−1]) is nonzero.

Corollary 7. Let G be a binary quasigroup of order n and let Q(G[d]) be the d-dimensional
latin hypercube that is the Cayley table of the d-iterated quasigroup G.

1. For all odd d the latin hypercube Q(G[d]) has a transversal. If for some even d′ we
have that Q(G[d′]) has transversals then the latin hypercubes Q(G[d]) have transver-
sals for all d > d′.

2. There exists a constant 0 < c(G, 1) 6 1 such that if the latin hypercube Q(G[d]) has
transversals then for large d the number of transversals is asymptotically equal to
c(G, 1)n!d−1.

3 Corollaries of the main result

Before the proof of Theorem 6 we deduce several corollaries. For this purpose, we need
the following auxiliary lemmas about plexes, multiplexes, and k-multipermanents.

Lemma 8. 1. If A is a d-dimensional (0, 1)-matrix A of order n and if for some k we
have PerkA > 0 then for all integers m > 1 it holds PerkmA > 0.

2. Let G be a binary quasigroup of order n. If for some k and d we have that
PerkM(G[d]) > 0 then for all integers m > 0 it holds that PerkM(G[d+2m]) > 0.

Also, it holds that perkM(G[d+2m]) >
(

(kn)!
k!n

)m
perkM(G[d]).

Proof. 1. It follows from the fact that a union of m copies of any k-multiplex is a km-
multiplex.

2. Let K = {α1, . . . , αkn} be a k-multiplex over the support of M(G[d]). By the
definition of a k-multiplex, we have

(· · · ((K0 ∗K1) ∗K2) ∗ · · · ∗Kd−1) ∗Kd = E.

Let U = (u1, . . . , ukn) be a kn-vector that is a permutation of the multiset I{n,k}. Define
vector V from the relation ((E ∗ U) ∗ V ) = E.
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Since ∗ is the operation of the quasigroup G, the vector V is a permutation of the
multiset I{n,k}. Consequently, for each i the index βi = (αi1, . . . , α

i
d, u

i, vi) belongs to the
support of M(G[d+2]). Therefore, K ′ = {β1, . . . , βkn} is a k-multiplex in the multidimen-
sional permutation matrix M(G[d+2]). It only remains to note that if K is a k-plex in
M(G[d]) then each choice of U leads to a different k-plex K ′ in M(G[d+2]).

We will say that a k-multiplex is a true k-multiplex if it is not a k-plex.

Lemma 9. Let A be a d-dimensional (0, 1)-matrix of order n. Then the following hold.

1. The number of k-multiplexes in the matrix A is not greater than
(

(kn)!
k!n

)d−1
.

2. The number of true k-multiplexes is not greater than
(
n (kn−2)!
k!n−1(k−2)!

)d
.

3. The number of disconnected k-multiplexes that are a union of two k-multplexes of

orders n1 and n2 (n1 + n2 = n) is not greater than
((

n
n1

) (kn1)!(kn2)!
k!n

)d
.

4. Let S be the minimal size of the support among the hyperplanes of the matrix A. If
k > S then there are no k-plexes on the support of A.

Proof. 1. As was mentioned before, if we fix the permutation in one coordinate of a
multiplex then in each of the other d − 1 coordinates we have a permutation of the
multiset I{n,k}.

2. If K = {α1, . . . , αkn} is a k-multiplex but not a k-plex then K contains at least
two identical elements. Without loss of generality, suppose that indices α1 and α2 are the
same. For constructing a true k-multiplex K, in each of d positions we have n possibilities
to choose a symbol for indices α1 and α2. The remaining kn− 2 indices are defined by a
permutation of the multiset of kn − 2 elements in which each of n − 1 symbols appears
exactly k times and the last symbol appears k − 2 times.

3. If a k-multiplex K = {α1, . . . , αkn} is a union of two k-multiplexes of orders n1

and n2 then K can be partitioned into two submultisets K1 and K2 of sizes kn1 and kn2

such that any two indices αi ∈ K1 and αj ∈ K2 differ at all positions. For constructing
such a disconnected k-multiplex K, in each of d positions we choose independently n1

and n2 symbols that appear in elements of K1 and K2 and then take permutations of the
multisets I{n1,k} and I{n2,k}.

4. By definition, each hyperplane of A contains exactly k different elements of a k-plex,
so if the support of A in one hyperplane is less than k then A has no k-plexes on it.

Using this lemma and Theorem 6 we prove for large d that a typical k-multiplex in a
d-iterated quasigroup is a connected indivisible k-plex.

Theorem 10. Let G be a binary quasigroup of order n and let M(G[d]) be the (d + 1)-
dimensional permutation matrix corresponding to the d-iterated quasigroup G. Then the
ratio of the number of connected indivisible k-plexes to the number of k-multiplexes in
M(G[d]) tends to one as d tends to infinity. In other words, the ratio of the number of
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connected indivisible k-plexes to
(

(kn)!
k!n

)d−1
tends to c(G, k) as d → ∞ with d being such

that PerkM(G[d]) > 0. Here c(G, k) is the constant in Theorem 6.

Proof. We prove that the ratios of the numbers of true k-multiplexes, divisible k-multi-
plexes, and disconnected k-multiplexes to the number of all k-multiplexes in M(G[d]) (if
it is nonzero) tends to zero as d tends to infinity, which implies the statement of the
theorem.

By Theorem 6, there exists some constant c > c(G, k)
(

(kn)!
k!n

)−1
> 0 such that if

PerkM(G[d]) > 0 then

PerkM(G[d]) > c

(
(kn)!

k!n

)d
for all suitable d starting from some d0. So we have a lower bound on the number of all
k-multiplexes in M(G[d]).

Let us find upper bounds on the numbers of true k-multiplexes, divisible k-multiplexes,
and disconnected k-multiplexes in M(G[d]) and show that they are negligible with respect
to the number of all k-multiplexes.

1. By Lemma 9, the number of true k-multiplexes in M(G[d]) is not greater than(
n (kn−2)!
k!n−1(k−2)!

)d
. Therefore, the ratio of this number to the number of all k-multiplexes in

M(G[d]) is not greater than 1
c

(
1

k2(k−1)(kn−1)

)d
, which tends to zero as d→∞.

2. By Lemma 9, the number of k-multiplexes in M(G[d]) is not greater than
(

(kn)!
k!n

)d
.

Consequently, the number of divisible k-multiplexes that are the union of a k1-multiplex

and a k2-multiplex is not greater than
(

(k1n)!(k2n)!
k1!nk2!n

)d
. Then the number of all divisible

k-multiplexes is less than

∑
k1+k2=k

(
(k1n)!(k2n)!

k1!nk2!n

)d
6 k max

k1+k2=k

(
(k1n)!(k2n)!

k1!nk2!n

)d
.

It is known that if n > 2 then (
kn

k1n

)
>

(
k

k1

)n
.

Indeed, if k = k1 + k2 then the left-hand side of this inequality is the number of kn-tuples
over the set of two symbols in which symbol i appears exactly kin times and the right-
hand side is the number of sets of n k-tuples over the same set of symbols in which symbol
i appears exactly ki times in each k-tuple.

Using this inequality and comparing the bound on divisible k-multiplexes with the
number of all k-multiplexes we conclude that there exists a constant 0 < κ < 1 such that
their ratio is not greater than k

c
κd and tends to zero as d→∞.
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3. By Lemma 9, the number of disconnected k-multiplexes that are the union of k-

multiplexes of orders n1 and n2 is not greater than
((

n
n1

) (kn1)!(kn2)!
k!n

)d
. Then the number

of all disconnected k-multiplexes is less than∑
n1+n2=n

((
n

n1

)
(kn1)!(kn2)!

k!n

)d
< n max

n1+n2=n

((
n

n1

)
(kn1)!(kn2)!

k!n

)d
.

As is known, if k > 2 then (
kn

kn1

)
>

(
n

n1

)
.

Using this inequality and comparing the bound on disconnected k-multiplexes with the
number of all k-multiplexes we conclude that there exists a constant 0 < κ < 1 such that
their ratio is not greater than n

c
κd and tends to zero as d→∞.

Next, we specify Theorem 6 for plexes and multiplexes in iterated groups.

Theorem 11. Let G be a group of order n and let M(G[d−1]) be the d-dimensional per-
mutation matrix of the iterated group G.

1. If k is even and d > 3 then M(G[d−1]) has a k-multiplex. Moreover, there exists a
constant 0 < c(G, k) 6 1 such that

lim
d→∞

PerkM(G[d−1])(
(kn)!
k!n

)d−2 = lim
d→∞

perkM(G[d−1])(
(kn)!
k!n

)d−2 = c(G, k),

with there being a finite number of d for which perkM(G[d−1]) is zero.

2. If k is odd then there exists a constant 0 < c(G, k) 6 1 such that

lim
d→∞

PerkM(G[d−1])(
(kn)!
k!n

)d−2 = lim
d→∞

perkM(G[d−1])(
(kn)!
k!n

)d−2 = c(G, k),

where the limits are taken over all d for which k-permanents and k-multipermanents
are nonzero.

Proof. 1. By Theorem 3, we have that per2M(G[2]) > 0. Using Lemma 8, we obtain that
PerkM(G[2]) > 0 for all even k. Theorem 6 states that for all d > 3 the k-multipermanent
of M(G[d−1]) is nonzero and there exists a constant c(G, k) > 0 such that

lim
d→∞

PerkM(G[d−1])(
(kn)!
k!n

)d−2 = c(G, k).

Since by Theorem 10, for large d a typical k-multiplex in the iterated group M(G[d−1]) is
a k-plex, we have that the k-permanent of M(G[d−1]) has the same limit and it equals to
zero only for a finite number of d.

2. This clause is an immediate corollary of Theorem 6 and Theorem 10.
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In conclusion, we note that if Rodney’s conjecture is true then clause 1 of Theorem 11
holds for all quasigroups G, and if Ryser’s conjecture is true then, in addition, this clause
holds for all odd k and quasigroups of odd orders n.

4 Proof of Theorem 6

The main idea of the proof of Theorem 6 is to show that the number of k-multiplexes
in the multidimensional permutation matrix of an iterated quasigroup is a result of some
Markov process.

Suppose K = {α1, . . . , αkn} is a k-multiplex in the permutation matrix M(G[d−1]) of
order n. Consider the rectangular kn × d table T = (ti,j) such that ti,j = αij. Note that
the table T has the following two properties:

1. Each column Tj of T is a permutation of the multiset I{n,k}.

2. For columns Tj of T we have

(· · · ((T1 ∗ T2) ∗ T3) ∗ · · · ∗ Td−1) ∗ Td = E,

where ∗ is the operation of the quasigroup G.

Conversely, rows of every rectangular kn × d table T satisfying these two properties
comprise a k-multiplex in the (d− 1)-iterated quasigroup G.

Permutations of rows of the table T do not change the corresponding k-multiplex K,
and ifK is a k-plex then it corresponds to exactly (kn)! tables T . By Lemma 9, the number

of true k-multiplexes is not greater than
(
n (kn−2)!
k!n−1(k−2)!

)d
, so to prove Theorem 6 it suffices

to show that the number of such tables is asymptotically equal to c(G, k)(kn)!
(

(kn)!
k!n

)d−2
for some constant c(G, k). Note that c(G, k) is not greater than 1, because Lemma 9 says

that any d-dimensional matrix of order n has no more than
(

(kn)!
k!n

)d−1
k-multiplexes.

Given m > 1 and a kn-vector U = (u1, . . . , ukn), consider the set TU(m) of all kn×m
tables T in which each column Tj is a permutation of the multiset I{n,k} and such that

(· · · ((T1 ∗ T2) ∗ T3) ∗ · · · ∗ Tm−1) ∗ Tm = U.

Let W be a permutation of the multiset I{n,k} written as a column kn-vector. The

number of such vectors is equal to the multinomial coefficient
(
kn
k···k

)
= (kn)!

k!n
. For two

column kn-vectors U and V over the set I1n define aU,V to be the number of permutations
W such that V ∗W = U . By definition, we have that for given U and V ,∑

V ′∈Iknn

aU,V ′ =
∑

U ′∈Iknn

aU ′,V =
(kn)!

k!n
.
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Note that if we extend a table T from the set TV (m−1) to the right by a permutation
W then we obtain a table from the set TU(m) with V ∗W = U . For every m, the number
lU(m) of tables from TU(m) can be expressed as

lU(m) =
∑
V ∈Iknn

aU,V lV (m− 1),

where aU,V is independent of m.
If we suppose L(m) to be a nkn-vector of all lU(m), then we obtain

L(m) = A(G)L(m− 1),

where A(G) = (aU,V ) is a (0,1)-matrix of order nkn. As was noted previously, the sum of

the entries of the matrix A(G) over each column and each row is equal to (kn)!
k!n

.

Next we normalize vectors L(m) and the matrix A(G) and put X(m) =
( (kn)!
k!n

)−m
L(m)

and B(G) =
( (kn)!
k!n

)−1
A(G). Then we obtain the process

X(m) = B(G)X(m− 1)

that is the Markov chain with a doubly stochastic transition matrix B(G) (a nonnegative
matrix with sums of entries over each row and each column equal to 1). For our purposes
we are interested in the value of only one component of the vector X(m), namely xE(m).

The present reasoning implies that Theorem 6 is a corollary of the following statement.

Proposition 12. Let G be a quasigroup of order n. Suppose the matrix B(G) and vectors
X(m) are as above and

X(m) = B(G)X(m− 1).

1. For all even m we have xE(m) > 0. If for some odd m′ we have xE(m′) > 0 then
xE(m) > 0 for all m > m′.

2. For some constant c = c(G) > 0 we have

lim
m→∞

xE(m) = c,

where all m are such that xE(m) is nonzero.

To prove this statement we need to recall some concepts and theorems of the theory
of Markov processes.

A Markov chain with a transition matrix B (or the matrix itself) is called reducible if
by simultaneous permutations of rows and columns the matrix B can be put into a block
upper triangular matrix of the form (

P R
0 S

)
,

where P and S are square matrices. A Markov chain is irreducible if it is not reducible.
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Let a matrix B be irreducible. We define the period of state i to be the greatest
common divisor of all natural numbers m for which the entry with index (i, i) in the m-th
power of B is greater than zero. It is known that for an irreducible matrix B each state
i has the same period that is called the period of B. If the period of a matrix B is equal
to 1 then the matrix B is said to be aperiodic. The period of a Markov chain coincides
with the period of its transition matrix.

The following theorem is the key result of the theory of Markov chains.

Theorem 13 (Ergodic theorem). A Markov chain

X(m) = BX(m− 1); xi(0) > 0;
∑

xi(0) = 1

with a transition matrix B is irreducible and aperiodic if and only if for each i there exists
lim
m→∞

xi(m) = ci > 0 that does not depend on the initial state X(0).

Now we are ready to prove Proposition 12.

Proof. Let G be a quasigroup of order n and U, V ∈ Iknn . Let W be a permutation of the
multiset I{n,k}. Suppose B(G) = bU,V is a nonnegative matrix of order nkn such that bU,V
is equal to k!n

(kn)!
multiplied by the number of permutations W for which V ∗W = U . Let

us consider the Markov chain X(m) = B(G)X(m− 1), xE(0) = 1, and xU(0) = 0 for all
other vectors U .

We already know that the matrix B(G) is doubly stochastic. It is not hard to prove
that if a doubly stochastic matrix is reducible then by simultaneous permutations of rows
and columns it can be put into a block-diagonal matrix in which each block is a doubly
stochastic matrix of smaller order (a proof can be found, for example, in [4, p. 34]). If
the matrix B(G) is reducible then instead of the Markov chain with the matrix B(G) we
consider a process with the irreducible block containing entry bE,E. So we may assume
that B(G) is an irreducible matrix.

The proof of Lemma 8 implies that the state xE(m) has period at most 2, so matrix
B(G) also has period at most 2. Moreover, B(G) is aperiodic if for some odd m we have
xE(m) > 0.

1. If the matrix B(G) is aperiodic, then by the ergodic theorem, there exists a constant
c = c(G) such that lim

m→∞
xE(m) = c.

2. If the matrix B(G) has period 2, then we consider the process X(2t) = B2(G)X(2t−
2), xE(0) = 1, and xU(0) = 0 for all other vectors U . The matrix B2(G) is aperiodic and
we have xE(m) > 0 for all even m. So, by the ergodic theorem, there exists a constant
c = c(G) such that lim

m→∞
xE(m) = c, where all m are even.

Since we have now proved Proposition 12, Theorem 6 and all corollaries are also
proved.
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5 Computational results and concluding remarks

At the end of this paper, we provide computational results on the numbers of transversals
in the Cayley tables of iterated groups and quasigroups of small order, consider a gener-
alization of Theorem 6 for partial transversals and plexes, and raise several problems.

It is not hard to see that latin hypercubes of orders 2 and 3 are unique up to equivalence
and that they are the Cayley tables of the iterated groups Z2 and Z3. For order 4 there
are plenty of non-equivalent multidimensional latin hypercubes but there are only two
groups of order 4, namely Z4 and Z2

2. The following table summarizes results from [7]
and [9] on transversals in d-dimensional latin hypercubes that are the Cayley tables of
d-iterated groups of orders n 6 4.

G d even d odd
Z2 0 2d−1

Z3
2
3
· 6d−1 − 3d−2 2

3
· 6d−1 + 3d−2

Z4 0 3
8
· 24d−1 + 5 · 8d−2

Z2
2

3
8
· 24d−1 − 8d−2 3

8
· 24d−1 + 5 · 8d−2

In this section, using the technique proposed in the proof of Theorem 6, we count the
number of transversals in the Cayley tables of the iterated group Z5 and of one iterated
quasigroup of order 5.

5.1 Transversals in the iterated group Z5

We start with the group Z5 whose Cayley table is as follows:

1 2 3 4 5
1 1 2 3 4 5
2 2 3 4 5 1
3 3 4 5 1 2
4 4 5 1 2 3
5 5 1 2 3 4

As before, let lU(d) be the number of tables T from the set TU(d) such that each of
their columns Tj is a permutation of the set of elements of Z5 and

(· · · ((T1 ∗ T2) ∗ T3) ∗ · · · ) ∗ Td = U,

where ∗ is the Z5 group operation.
Note that if there exists a permutation σ ∈ S5 such that (u1, . . . , u5) = (vσ(1), . . . , vσ(5))

then the numbers lU(d) and lV (d) are the same. Also, if vectors U and V satisfy U ∗H = V
where H = (h, . . . , h), h ∈ Z5 then lU(d) = lV (d). This fact is easy to prove by induction
on d using associativity of the group Z5 and the fact that for any permutation W of
the group Z5 and any H = (h, . . . , h) the vector H ∗W is a permutation. We will say
that vectors U and V are equivalent if they can be turned into each other by these two
operations.
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Denote by ZU the equivalence class for vector U . By direct calculation, it can be
checked that lU(d) is nonzero for some d only if vector U belongs to one of the following
equivalence classes:

Z11111, Z12345, Z11134, Z11125, Z11224, Z11332.

Also, it can be verified that numbers lU(d) for U from Z11134 and Z11125 satisfy similar
relations, so they coincide and these two classes can be joined into one. The same is true
for classes Z11224 and Z11332. For shortness, we introduce the following notations

y1(d) =
∑

U∈Z11111

lU(d); y2(d) =
∑

U∈Z12345

lU(d);

y3(d) =
∑

U∈Z11134, Z11125

lU(d); y4(d) =
∑

U∈Z11224, Z11332

lU(d).

Then the number of transversals in the d-dimensional latin hypercube that is the
Cayley table of d-iterated group Z5 is equal to 1

5·120y1(d + 1) or to 1
120
y2(d). By direct

calculations, we establish that yi(d) satisfy the following recurrence relations:
y1(d)
y2(d)
y3(d)
y4(d)

 =


0 5 0 0

120 15 30 20
0 50 30 40
0 50 60 60




y1(d− 1)
y2(d− 1)
y3(d− 1)
y4(d− 1)

 ;

y1(0) = 1; y2(0) = y3(0) = y4(0) = 0.

Note that these relations define a process with irreducible and aperiodic matrix A. So
we have that for all d > 1 the number of transversals in the d-iterated group Z5 is greater
than zero and that there exists a constant c(Z5, 1) for which

lim
d→∞

T (Q(Z[d]
5 ))

120d−1
= c(Z5, 1).

To find the limit constant c(Z5, 1) we use the fact that y1(d) = χ1120d where χ1 is
the first component of the eigenvector χ of the matrix A corresponding to the largest

eigenvalue λ = 120 and normalized so that
4∑
i=1

χi = 1. Compute that

χ =
1

125
(1, 24, 40, 60)T .

Thus χ1 = 1
125

and c(Z5, 1) = 120
5
χ1 = 24

125
. Therefore, for the number of transversals

in the d-dimensional d-iterated group Z5 and for the permanent of the corresponding
(d+ 1)-dimensional permutation matrix we have

lim
d→∞

T (Q(Z[d]
5 ))

120d−1
= lim

d→∞

perM(Z[d]
5 )

120d−1
=

24

125
.
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5.2 Transversals in the quasigroup of order 5

Let us consider the quasigroup G of order 5 defined by the following Cayley table:

1 2 3 4 5
1 1 2 3 4 5
2 2 1 4 5 3
3 3 4 5 1 2
4 4 5 2 3 1
5 5 3 1 2 4

We will use the same notations as before but now ZU will be the set of vectors V
that can be turned into the vector U only via a permutation of components. By direct
calculation, it can be checked that for all vectors U the number lU(d) is not zero for certain
d.

Analyzing the relations between numbers lU(d), we divide all vectors from the set I55
into the following classes (different letters mean different values):

H1 = ∪Ziiiii; H2 = Z12345; H3 =
⋃

Z222ij ∪ Ziii2j;

H4 = ∪Ziiijk, where i, j, k 6= 2; H5 =
⋃

Z222ii ∪ Ziii22; H6 = ∪Ziiijj, where i, j 6= 2;

H7 = ∪Zii2jk; H8 = ∪Ziijkl, where i, j, k, l 6= 2; H9 = ∪Z22ijk;

H10 = ∪Z22iik; H11 = ∪Ziijjk, where i, j, k 6= 2; ; H12 = ∪Ziijj2; H13 = ∪Ziiiij.
Put yi(d) =

∑
U∈Hi

lU(d) for all i = 1, . . . , 13 and denote Y (d) = (y1(d), . . . , y13(d))T . By

calculations, we found that Y (d) satisfies the process Y (d) = A ·Y (d−1) with the matrix

A =



0 5 0 0 0 0 0 0 0 0 0 0 0
120 3 6 12 12 0 2 2 8 0 4 12 0
0 18 18 18 0 0 12 18 18 12 12 24 0
0 24 12 12 0 0 8 6 6 12 12 8 0
0 8 0 0 0 0 4 0 0 8 8 0 0
0 0 0 0 0 0 6 6 6 8 8 8 0
0 12 24 24 36 36 30 24 24 28 28 16 72
0 4 12 6 0 12 8 12 6 12 8 8 24
0 16 12 6 0 12 8 6 0 16 12 0 24
0 0 12 18 36 24 14 18 24 4 8 24 0
0 12 12 18 36 24 14 12 18 8 12 16 0
0 18 12 6 0 12 4 6 0 12 8 4 0
0 0 0 0 0 0 10 10 10 0 0 0 0



.

The eigenvector χ of the matrix A corresponding to the largest eigenvalue λ = 120

with
13∑
i=1

χi = 1 is

χ =
1

625
(1, 24, 72, 48, 16, 24, 144, 48, 48, 72, 72, 36, 20)T .
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So the limit constant c(G, 1) for the number of transversals in the d-dimensional d-
iterated quasigroup G and for the permanent of the corresponding (d + 1)-dimensional
permutation matrix is c(G, 1) = 24

625
.

5.3 Remarks and open questions

First of all, we would like to note that the technique proposed in this paper can be used not
only to count transversals in iterated quasigroups of order 5 but to estimate the number
of transversals and k-plexes in other small-ordered iterated quasigroups and to find these
numbers exactly for all small dimensions.

Secondly, we note that d-iterated quasigroups obtained from isotopic binary quasi-
groups can be non-isotopic and can have different numbers of transversals and plexes.
For example, there exists a binary quasigroup G of order 4 isotopic to the group Z4 but
in contrast to the d-iterated group Z4 the d-iterated quasigroup G has transversals for all
d > 3.

Imitating the proof of Theorem 6, we can obtain the similar theorem for partial struc-
tures in iterated quasigroups. A partial diagonal of length l in a d-dimensional matrix of
order n is a set of l indices such that each hyperplane contains no more than one index
from the set. A partial transversal in a d-dimensional latin hypercube Q of order n is a
set of indices corresponding to a unity partial diagonal in the (d+ 1)-dimensional matrix
M(Q).

A partial k-multidiagonal of length l in a multidimensional matrix is a multiset of
kl indices such that there are either k or zero indices in each hyperplane. A partial k-
multidiagonal in a multidimensional permutation matrix corresponds to a partial multiplex
in a latin hypercube.

For a d-dimensional (0, 1)-matrix A of order n let us denote by Pl,k(A) the number of
partial k-multidiagonals of length l over the support of M . Using the same method as in
the proof of Theorem 6, we can obtain the following statement.

Proposition 14. Let G be a binary quasigroup of order n and let M(G[d−1]) be the d-
dimensional permutation matrix of the (d− 1)-iterated quasigroup G.

1. For all even d and for all l 6 n the permutation matrix M(G[d−1]) has a positive
partial k-multidiagonal of length l. If for some odd d′ we have that Pl,k(M(G[d′−1]))
is positive then Pl,k(M(G[d−1])) is greater than zero for all d > d′.

2. There exists a constant c(G, k, l) > 0 such that

lim
d→∞

Pl,k(M(G[d−1]))((
n
l

) (kl)!
k!l

)d−2 = c(G, k, l),

where the limit is taken on the set of all d for which M(G[d−1]) contains a positive
partial k-multidiagonal of length l.
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In conclusion, we raise several questions and open problems inspired by the obtained
results:

1. How can the limit constants c(G, k) for the number of k-plexes be estimated in
general and for explicit groups and quasigroups G?

2. How are the limit constants c(G, k) for the number of k-plexes in a given iterated
quasigroup G related to each other for different k?

3. For odd n or d, does some d-iterated group always have the maximum number of
transversals (and possibly k-plexes and k-multiplexes) among all iterated quasigroups of
order n?

4. Suppose k 6 nd−1 and a latin hypercube Q has a k-multiplex. Is it true that Q has
a k-plex?
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