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Abstract

In this paper, we introduce an algebra H from a subspace lattice with respect
to a fixed flag which contains its incidence algebra as a proper subalgebra. We
then establish a relation between the algebra H and the quantum affine algebra
Uq1/2(ŝl2), where q denotes the cardinality of the base field. It is an extension of
the well-known relation between the incidence algebra of a subspace lattice and the
quantum algebra Uq1/2(sl2). We show that there exists an algebra homomorphism

from Uq1/2(ŝl2) to H and that any irreducible module for H is irreducible as an

Uq1/2(ŝl2)-module.

Mathematics Subject Classifications: 51E20, 20G429

1 Introduction

By a subspace lattice, also known as a projective geometry, we mean the partially ordered
set (poset) of all subspaces of a finite-dimensional vector space over a finite field, where
the ordering is given by inclusion. In the field of combinatorics, subspace lattices are
regarded as q-analogs of Boolean lattices and therefore they have been studied from many
combinatorial points of view, such as Grassmann codes and Grassmann graphs. On the
other hand, the quantum affine algebras Uq(ŝl2) are Hopf algebras that are q-deformations

of the universal enveloping algebra of the affine Lie algebra ŝl2 and their representations
are developed in [1, Section 5] as trigonometric solutions of the quantum Yang–Baxter
equation. Recently, the author succeeded in [7] in establishing a relation between an
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algebra associated with a subspace lattice and the quantum affine algebras Uq(ŝl2) as an
extension of the well-known relation between the incidence algebra of a subspace lattice
and the quantum algebras Uq(sl2). In this paper, we introduce another algebra and

establish its relation to the quantum affine algebra Uq(ŝl2) which is in some sense the
opposite extreme to that obtained in [7].

Here we briefly recall the known facts. See [5], [6] and [7] for more detail. Let H
denote an N -dimensional vector space over a finite field Fq of q elements and let P denote
the subspace lattice consisting of all subspaces of H. From the poset structure of P , we
define the lowering matrix L indexed by P whose (x, y)-entry is 1 if y covers x and 0
otherwise for x, y ∈ P . Similarly, we define the raising matrix R indexed by P whose
(x, y)-entry is 1 if x covers y and 0 otherwise for x, y ∈ P . The poset P has the grading
which is a partition of P into nonempty sets

Pi = {y ∈ P | dim y = i} (0 6 i 6 N).

From this grading structure, for 0 6 i 6 N , we define the i-th projection matrix E?
i by the

diagonal matrix indexed by P whose (x, x)-entry is 1 if x ∈ Pi and 0 otherwise for x ∈ P .
By the incidence algebra, we mean the complex matrix algebra generated by the above
three kinds of matrices L, R and E?

i , where 0 6 i 6 N . It is known that there exists a
surjective algebra homomorphism from the quantum algebra Uq1/2(sl2) to the incidence
algebra. Moreover, it is also known that any irreducible module for the incidence algebra
induces an irreducible Uq1/2(sl2)-module of type 1.

In our previous paper [7], we extended the algebra homomorphism as follows. Let us
fix one subspace x ∈ P with 0 < dimx < N and consider the following new “rectangle”
partition of P with respect to x:

Pi,j = {y ∈ P | dim y = i+ j, dim(y ∩ x) = i} (1)

for 0 6 i 6 dimx and for 0 6 j 6 N − dimx. Remark that this is a refinement of the
grading. Then define the new projection matrices with respect to this partition and define
the complex matrix algebra generated by the lowering, raising matrices and these new
projection matrices. By the construction, this new algebra contains the incidence algebra
as its subalgebra. Then it is shown in [7] that there exists an algebra homomorphism from

the quantum affine algebra Uq1/2(ŝl2) to the new algebra, which extends the above algebra
homomorphism from Uq1/2(sl2) to the incidence algebra. Moreover it is also shown in [7]

that any irreducible module for the new algebra induces an irreducible Uq1/2(ŝl2)-module
of type (1, 1) which is more precisely a tensor product of two evaluation modules.

Now we summarize the main results of this paper. We fix a (full) flag {xi}Ni=0 on H
instead of the subspace x ∈ P , and consider the following new “hyper-cubic” partition of
P with respect to {xi}Ni=0:

Pµ = {y ∈ P | dim(y ∩ xi) = µ1 + µ2 + · · ·+ µi (1 6 i 6 N)} (2)

for µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N . Then for µ ∈ {0, 1}N , we define the projection matrix
E∗µ by the diagonal matrix indexed by P whose (y, y)-entry is 1 if y ∈ Pµ and 0 otherwise
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for y ∈ P . We next define the complex matrix algebraH generated by the lowering, raising
matrices and these new projection matrices E∗µ, where µ ∈ {0, 1}N . By the construction,
the algebra H contains the incidence algebra as its subalgebra. We prove that there exists
an algebra homomorphism from the quantum affine algebra Uq1/2(ŝl2) to the algebra H,
which again extends the above algebra homomorphism from Uq1/2(sl2) to the incidence
algebra. Moreover it is also proved that any irreducible module for the algebra H induces
an irreducible Uq1/2(ŝl2)-module of type (1, 1) which is more precisely a tensor product of
evaluation modules of dimension 2. Our main results are Theorems 62 and 66. To prove
the main theorems, we classify all the H-modules up to isomorphism and determine the
multiplicities appearing in the standard module.

Seen from the viewpoint of the action of the general linear group GL(N, q) on the
subspace lattice P , we may say the results of this paper are “opposite” to those obtained
in our previous paper [7]. (In this paper, however, we will not take this point of view in
any essential way. We refer the reader to [3] for this viewpoint.) Indeed, the partitions
(1) and (2) turn out to be the orbits of maximal and minimal parabolic subgroups of
GL(N, q), respectively. More precisely, the corresponding subgroups stabilize the fixed
subspace x and the fixed flag {xi}Ni=0, respectively.

It is worth pointing out that our proofs involve a natural and intrinsic combinatorial
characterization of the subspace lattice, while the method used in our previous paper [7]
is rather oriented towards Lie theory and the representation theory of quantum groups.
In this paper, we fix a basis v1, v2, . . . , vN for H such that xi is spanned by v1, v2, . . . , vi
for 1 6 i 6 N . With respect to the basis, we identify each subspace in P with a certain
matrix whose entries are in the base field Fq.

Then, we relate these matrices to classical combinatorial objects, such as Ferrers
boards, rook placements and inversion numbers, and interpret algebraic properties of sub-
spaces in terms of these matrices (and moreover, of other combinatorial objects above).
Almost all the problems which we concern in this paper arrive at problems in such clas-
sical combinatorial fields. This type of argument is motivated by Delsarte [2] and the
technique used in this paper is a kind of a generalized version of that in [2].

Comparing the partitions (1) and (2) again, one may ask whether same kinds of results
can still be obtained if we take a more general partition, which is defined by replacing
a subspace or a full flag by a general flag. We will not develop this point here because
the required computation is expected to be far more complicated. However we emphasize
that we have done for the two extremal and the most essential cases, and conjecture that
similar results still hold in the general case.

We organize this paper as follows. In Section 2, we recall the basic notation and
introduce a hyper-cubic structure in a subspace lattice. In Section 3, we recall some
notation on Ferrers boards, rook placements and inversion numbers which is used in this
paper. In Sections 4 and 5, we introduce a matrix representation of P and interpret some
properties of matrices in terms of rook placements and inversion numbers. In Sections
6 and 7, we introduce the main object of this paper, the algebra H, and discuss the
structure of it. In Sections 8, 9, 10 and 11, we discuss the H-action on the standard
module and classify all the irreducible H-modules up to isomorphism. In Section 12, for
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the convenience of the reader, we repeat the relevant material, including the definition of
the quantum affine algebra Uq(ŝl2), from [1] without proofs, thus making our exposition
self-contained. In Section 13, our main results are stated and proved.

2 A subspace lattice and its hyper-cubic structure

We now begin our formal argument. Recall the integers Z = {0,±1,±2, . . .} and the
natural numbers N = {0, 1, 2, . . .} and let C denote the complex field. The Kronecker
delta is denoted by δ. Throughout the paper except Section 12, we fix N ∈ N \ {0}.
Throughout the paper except Sections 3, 10 and 12, we fix a prime power q. Let Fq
denote a finite field of q elements and let H denote a vector space over Fq with dimension
N . Let P denote the set of all subspaces of H. We view P as a poset with the partial order
given by inclusion. The poset P is a graded lattice of rank N where the rank function is
defined by its dimension and called the subspace lattice. For two subspaces y, z ∈ P , we
say y covers z whenever z ⊆ y and dim z = dim y − 1. By a (full) flag on H we mean a
sequence {xi}Ni=0 of subspaces in P such that dim xi = i for 0 6 i 6 N and xi−1 ( xi for
1 6 i 6 N . For the rest of this paper, we fix a flag {xi}Ni=0 on H. A basis v1, v2, . . . , vN
for H is said to be adapted to the flag {xi}Ni=0 whenever each xi is spanned by v1, v2, . . . , vi
for 1 6 i 6 N .

By the N-cube we mean the poset consisting of all N -tuples in {0, 1}N with the partial
order µ 6 ν defined by µm 6 νm for all 1 6 m 6 N , where µ = (µ1, µ2, . . . , µN), ν =
(ν1, ν2, . . . , νN) ∈ {0, 1}N . (We note that it is isomorphic to the Boolean lattice of all
subsets of an N -set.) The N -cube is a graded lattice of rank N with the rank function
defined by

|µ| = µ1 + µ2 + · · ·+ µN

for µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N .

Proposition 1. There exists an order-preserving map from the subspace lattice P to the
N-cube which sends y ∈ P to (µ1, µ2, . . . , µN) ∈ {0, 1}N where

dim(y ∩ xm) = µ1 + µ2 + · · ·+ µm

for 1 6 m 6 N . Moreover this map is surjective.

Proof. Let y ∈ P and 1 6 m 6 N . We have dim(y∩xm−1) 6 dim(y∩xm) since xm−1 ⊆ xm.
We also have dim(y ∩ xm) − dim(y ∩ xm−1) 6 1 since dimxm − dimxm−1 = 1. Thus
µm = dim(y∩xm)−dim(y∩xm−1) is either 0 or 1. Therefore this correspondence becomes
a map from P to the N -cube. Let y, z ∈ P satisfy y ⊆ z and let µ = (µ1, µ2, . . . , µN), λ =
(λ1, λ2, . . . , λN) ∈ {0, 1}N be the images of y, z under the map, respectively. If there exists
1 6 m 6 N such that z ∩ xm−1 = z ∩ xm, then

(y ∩ xm) \ (y ∩ xm−1) = (y ∩ xm) \ xm−1 ⊆ (z ∩ xm) \ xm−1 = (z ∩ xm) \ (z ∩ xm−1) = ∅,

and so we have y∩xm−1 = y∩xm. Therefore, λm = 0 implies µm = 0 for any 1 6 m 6 N ,
which is equivalent to µ 6 λ. We have now proved that the map preserves the ordering.
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To show its surjectivity, let v1, v2, . . . , vN denote a basis for H adapted to the flag {xi}Ni=0.
For any µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N , consider the subspace y ∈ P spanned by the
vectors {vi | 1 6 i 6 N,µi = 1}. For each 1 6 m 6 N , the intersection y ∩ xm is spanned
by the vectors {vi | 1 6 i 6 m,µi = 1}. Therefore, dim(y ∩ xm) − dim(y ∩ xm−1) = µm
for 1 6 m 6 N and so y is mapped to µ. This proves the map is surjective.

Definition 2. If µ ∈ {0, 1}N is the image of y ∈ P by the map in Proposition 1, we call
µ the location of y. For µ ∈ {0, 1}N , let Pµ denote the set of all subspaces at location µ.
For notational convenience, for µ ∈ ZN we set Pµ = ∅ unless µ ∈ {0, 1}N .

Note that P is the disjoint union of Pµ, where µ ∈ {0, 1}N . Observe that dim y = |µ|
for y ∈ Pµ.

Definition 3. Let 1 6 m 6 N . For µ = (µ1, µ2, . . . , µN), ν = (ν1, ν2, . . . , νN) ∈ {0, 1}N ,
we say µ m-covers ν whenever νm < µm and νn = µn for 1 6 n 6 N with n 6= m.
Similarly, for y, z ∈ P , we say y m-covers z whenever y covers z and the location of y
m-covers the location of z.

For each 1 6 m 6 N , let m̂ denote the N -tuple in {0, 1}N with a 1 in m-th coordinate
and 0 elsewhere. To simplify the notation, we consider the coordinate-wise addition in
ZN so that µ m-covers ν if and only if µ = ν + m̂ for µ, ν ∈ {0, 1}N .

Lemma 4. For µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N and for 1 6 m 6 N , the following (i), (ii)
hold.

(i) Given y ∈ Pµ, the number of subspaces m-covered by y is

δµm,1q
µm+1+µm+2+···+µN .

(ii) Given y ∈ Pµ, the number of subspaces which m-cover y is

δµm,0q
(m−1)−(µ1+µ2+···+µm−1).

Proof. (i) Let P̃ be the set of subspaces in P which are m-covered by y. Then P̃ ⊆ Pµ−m̂.

If µm = 0, then µ− m̂ 6∈ {0, 1}N and so P̃ = ∅. We may assume µm = 1. For z ∈ P̃ , we
have y ∩ xm−1 = z ∩ xm−1 = z ∩ xm since z ∈ Pµ−m̂, y ∈ Pµ and z ⊆ y.

Set n = dim y − dim(y ∩ xm) = µm+1 + µm+2 + · · · + µN . Let Un denote the set
of n-sets of linearly independent vectors u = {u1, u2, . . . , un} ⊆ y \ (y ∩ xm) such that
(Span u) ∩ (y ∩ xm) = 0. Since dim y = |µ| and dim(y ∩ xm) = µ1 + · · ·+ µm, we have

|Un| =
n∏
k=1

(q|µ| − qµ1+···+µm+k−1).

For u ∈ Un and 1 6 k 6 m, we have (Span u) ∩ xk = 0. For u ∈ Un and m 6 k 6 N ,
since y = Span u+(y∩xm) and y∩xm ⊆ xk, we have y∩xk = (Span u + (y ∩ xm))∩xk =
(Span u) ∩ xk + (y ∩ xm).
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We count the cardinality of the following set S in two ways.

S = {(u, z) | u ∈ Un, z ∈ P̃ , z = Span u + (y ∩ xm−1)}.
Let u ∈ Un, and set z = Span u + (y ∩ xm−1). Since Span u ⊆ y, we have z ⊆ y. For
1 6 k 6 m − 1, we have z ∩ xk = (Span u + (y ∩ xm−1)) ∩ xk ⊇ y ∩ xk, and moreover,
equality must hold since z ⊆ y. So, we have dim(z ∩ xk) = dim(y ∩ xk).

For m 6 k 6 N , since y ∩ xm−1 ⊆ xk, we have z ∩ xk = (Span u + (y ∩ xm−1)) ∩ xk =
(Span u∩xk) + (y ∩xm−1). Recall that y ∩xk = (Span u∩xk) + (y ∩xm). Since the sums
in these two equations are direct, we have dim(z ∩ xk) − dim(y ∩ xk) = dim(y ∩ xm) −
dim(y ∩ xm−1) = 1. Thus, z ∈ P̃ . By these comments, we have

|S| = |Un|. (3)

Conversely, let z ∈ P̃ . We have dim z− dim(z ∩ xm) = n since z ∈ Pµ−m̂. So, there exists
an n-set of linearly independent vectors u = {u1, u2, . . . , un} ⊆ z \ (z ∩ xm) such that
z = Span u + (z ∩ xm) and (Span u) ∩ (z ∩ xm) = 0. Let Un(z) denote the set of such
n-sets. Since dim z = |µ| − 1 and dim(z ∩ xm) = µ1 + · · ·+ µm − 1, we have

|Un(z)| =
n∏
k=1

(q|µ|−1 − qµ1+···+µm+k−2) = q−n|Un|.

For u ∈ Un(z), we have u ⊆ y \ (y ∩ xm) since z ⊆ y, and we also have (Span u) ∩ (y ∩
xm) = (Span u) ∩ (z ∩ xm) = 0 since Span u ⊆ z ⊆ y. Thus, Un(z) ⊆ Un. We may
write z = Span u + (y ∩ xm−1) since y ∩ xm−1 = z ∩ xm. Moreover, if u ∈ Un satisfies
z = Span u+ (y∩xm−1), then u ⊆ z and (Span u)∩ (z∩xm) = 0, which imply u ∈ Un(z).

By these comments, we have Un(z) = {u ∈ Un | z = Span u + (y ∩ xm−1)} for z ∈ P̃ , and
so

|S| =
∑
z∈P̃

|Un(z)| = |P̃ | × q−n|Un|. (4)

Thus, by (3) and (4), we have |P̃ | = qn. The result follows.

(ii) Let P̃ be the set of subspaces in P which m-cover y. Then P̃ ⊆ Pµ+m̂. If µm = 1,

then µ + m̂ 6∈ {0, 1}N and so P̃ = ∅. We may assume µm = 0. Let U = xm \ xm−1. We
have |U | = qm − qm−1. We also have U ∩ y ⊆ (y ∩ xm) \ (y ∩ xm−1) = ∅.

We count the cardinality of the following set S in two ways.

S = {(u, z) | u ∈ U, z ∈ P̃ , z = (Spanu) + y}.
Let u ∈ U , and set z = (Spanu) + y. Then y ⊆ z. For m 6 k 6 N , since Spanu ⊆ xk,
we have z ∩ xk = (Spanu + y) ∩ xk = (Spanu) + (y ∩ xk). Since the sum is direct, we
have dim(z ∩ xk) = dim(y ∩ xk) + 1. For 1 6 k 6 m − 1, since y ∩ xm ⊆ xm−1 and
Spanu ∩ xm−1 = 0, we have

z ∩ xk = (z ∩ xm) ∩ xm−1 ∩ xk
= (Spanu+ y ∩ xm) ∩ xm−1 ∩ xk
= (Spanu ∩ xm−1 + y ∩ xm−1) ∩ xk
= y ∩ xk.
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In particular, dim(z ∩ xk) = dim(y ∩ xk). Thus z ∈ P̃ . By these comments, we have

|S| = |U |. (5)

Conversely, let z ∈ P̃ . We have dim(z∩xm)−dim(z∩xm−1) = 1 since z ∈ Pµ+m̂. Denote
U(z) = (z ∩ xm) \ (z ∩ xm−1). For any u ∈ U(z), we have z ∩ xm = Spanu+ (z ∩ xm−1).
Since dim(z ∩ xm) = µ1 + · · ·+ µm−1 + 1 and dim(z ∩ xm−1) = µ1 + · · ·+ µm−1, we have

|U(z)| = qµ1+···+µm−1+1 − qµ1+···+µm−1 = q(µ1+···+µm−1)−(m−1)|U |.

By definition, we have U(z) ⊆ U . Let u ∈ U satisfy z = Spanu + y. Then u ∈ z, and so
u ∈ U(z). By these comments, we have {u ∈ U | z = (Spanu) + y} = U(z), and so

|S| =
∑
z∈P̃

|U(z)| = |P̃ | × q(µ1+···+µm−1)−(m−1)|U |. (6)

Thus, by (5) and (6), we have |P̃ | = q(m−1)−(µ1+···+µm−1). The result follows.

Lemma 5. Let 1 6 m < n 6 N . For µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N with µm = µn = 1,
the following hold.

(i) Given z ∈ Pµ and y ∈ Pµ−m̂−n̂ with y ⊆ z, there exists a unique element in Pµ−n̂
which m-covers y and which is n-covered by z.

(ii) Given z ∈ Pµ and y ∈ Pµ−m̂−n̂ with y ⊆ z, there exist exactly q elements in Pµ−m̂
which n-cover y and which are m-covered by z.

(iii) Given y ∈ Pµ−m̂ and z ∈ Pµ−n̂, if there exists an element that is covered by both y
and z, then there exists a unique element that covers both y and z.

(iv) Given y ∈ Pµ−m̂ and z ∈ Pµ−n̂, if there exists an element that covers both y and z,
then there exists a unique element that is covered by both y and z.

Proof. (i) We first show the existence of such element. Set w = y + (z ∩ xn−1) and let
µ′ denote the location of w. We have y ⊆ w ⊆ z and µ − m̂ − n̂ 6 µ′ 6 µ. Since
m 6 n − 1, we have w ∩ xm = (y + z ∩ xn−1) ∩ xm ⊇ z ∩ xm, and moreover equality
must hold since w ⊆ z. So, dim(w ∩ xm) = dim(z ∩ xm). Since z ∩ xn−1 ⊆ xn, we have
w ∩ xn = (y + z ∩ xn−1)∩ xn = y ∩ xn + z ∩ xn−1. Since z ∈ Pµ and y ∈ Pµ−m̂−n̂, we have
dim(w ∩ xn) = dim(y ∩ xn) + dim(z ∩ xn−1)− dim(y ∩ xn−1) = dim(y ∩ xn)− 1. Thus the
location µ′ must be µ− n̂, i.e., w ∈ Pµ−n̂. Since y ⊆ w ⊆ z, the element w must m-cover
y and be n-covered by z.

We next show the uniqueness of such element. Take any w′ ∈ Pµ−n̂ which covers y
and which is covered by z. Then w′ must contain both y and z ∩ xn−1. So w ⊆ w′. By
computing dimensions, w and w′ must coincide. The result follows.

(ii) Let P̃ be the set of subspaces in P which cover y and which are covered by z.

Since dim(z/y) = 2, we have |P̃ | = (q2 − 1)/(q − 1) = q + 1. Let w ∈ P̃ and let µ′ be
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the location of w. Then, we have µ′ ∈ {µ− n̂, µ− m̂}. So, the q + 1 elements in P̃ must
belong to either Pµ−n̂ or Pµ−m̂. Therefore the result follows from (i).

(iii) Let w be an element that is covered by both y and z. Then we have w ⊆ y ∩ z.
Since y and z are distinct, we have dim y − 1 = dimw 6 dim(y ∩ z) 6 dim y − 1, and so
w = y ∩ z. Set w′ = y + z. Then dimw′ = dim y + 1 = dim z + 1. This means w′ is an
element that covers both y and z. The uniqueness is clear.

(iv) Similar to (iii).

3 Ferrers boards

We introduce the notion of Ferrers boards. For the general theory on this topic, we refer
the reader to [4, Chapters 1 and 2]. Note that we modify the notations of [4] to fit our
setting.

Let µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N . Then µ has a natural correspondence with a
bipartition of {1, 2, . . . , N}, which is defined by

Sµ = {s ∈ N | 1 6 s 6 N,µs = 0}, Tµ = {t ∈ N | 1 6 t 6 N,µt = 1}. (7)

We remark that Sµ and Tµ are empty if and only if µ = 1 = (1, 1, . . . , 1) and µ = 0 =
(0, 0, . . . , 0), respectively. The Ferrers board of shape µ is defined by

Bµ = {(s, t) ∈ Sµ × Tµ | s < t}. (8)

If both Sµ and Tµ are not empty, i.e. if µ 6= 0,1, we can draw a Ferrers board as a
two-dimensional subarray of a matrix whose rows indexed by Sµ and columns indexed by
Tµ, whose (s, t)-entry has a box for all (s, t) ∈ Bµ.

This subarray is also known as a Young diagram of shape µ.

Example 6 (N = 13). Let µ = (0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0) ∈ {0, 1}13. Then the
corresponding Ferrers board Bµ has the following subarray form:

2 3 5 6 8 9 12

1

4

7

10

11

13

Take a nonempty Ferrers board Bµ of shape µ. For (s0, t0) ∈ Bµ, the rectangle in Bµ

with respect to (s0, t0), denoted by Bµ(s0, t0), is defined by

Bµ(s0, t0) = {(s, t) ∈ Bµ | s 6 s0, t > t0}. (9)
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It is actually the rectangle in the corresponding Young diagram which includes the top-
right corner and the (s0, t0)-th box as its bottom-left corner. We remark that such a
rectangle is called the Durfee square if it is the largest square in Bµ. To see the rectangle
structure, we use the following notation:

Sµ(m) = {s ∈ Sµ | s 6 m}, Tµ(m) = {t ∈ Tµ | t > m}, (10)

for 1 6 m 6 N so that we can write Bµ(s0, t0) = Sµ(s0)× Tµ(t0).

Example 7 (N = 13). Take µ ∈ {0, 1}13 as in Example 6. Then (4, 6) ∈ Bµ and the
rectangle Bµ(4, 6) is the set of the following eight elements:

(1, 6), (1, 8), (1, 9), (1, 12), (4, 6), (4, 8), (4, 9), (4, 12).

In the corresponding Young diagram, Bµ(4, 6) is the following gray rectangle.

2 3 5 6 8 9 12

1

4

7

10

11

13

Take a nonempty Ferrers board Bµ of shape µ. A subset of Bµ such that no two
elements have a common entry is called a rook placement on Bµ. Let σ denote a rook
placement on Bµ. The row index set π1(σ) and the column index set π2(σ) of σ are defined
by

π1(σ) = {s ∈ Sµ | (s, t) ∈ σ for some t}, π2(σ) = {t ∈ Tµ | (s, t) ∈ σ for some s}, (11)

respectively. Remark that |π1(σ)| = |π2(σ)| = |σ|. Assume σ 6= ∅. For 1 6 i 6 |σ|, we
denote by si and by ti the i-th smallest element in π1(σ) and in π2(σ), respectively. Then
σ gives rise to a permutation of {1, 2, . . . , |σ|} which sends i to j where (si, tj) ∈ σ.

Lemma 8. Let µ ∈ {0, 1}N and σ be a rook placement on Bµ with the row/column index
sets π1 = π1(σ), π2 = π2(σ), respectively. Then the pair (π1, π2) satisfies the following.

(i) |π1| = |π2|.

(ii) Let n denote the common value in (i). For 1 6 i 6 n, the i-th smallest element in
π1 is strictly smaller than the i-th smallest element in π2.

Proof. (i) It is clear.
(ii) We may assume σ 6= ∅ since otherwise the assertion is clear. Let σ̃ denote the

permutation of {1, 2, . . . , n} corresponding to σ. For 1 6 i 6 n, we write si, ti for the
i-th smallest element in π1, π2, respectively. Fix 1 6 i 6 n. Since σ̃ is a permutation,
there exists i 6 k 6 n such that σ̃(k) 6 i. So we have (sk, tσ̃(k)) ∈ σ. Therefore
si 6 sk < tσ̃(k) 6 ti as desired.
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Proposition 9. Let µ ∈ {0, 1}N . For a pair (π1, π2) such that π1 ⊆ Sµ and π2 ⊆ Tµ, the
following are equivalent:

(i) there exists a rook placement σ on Bµ such that π1 = π1(σ) and π2 = π2(σ);

(ii) it satisfies (i), (ii) in Lemma 8.

Proof. We have shown in Lemma 8 that (i) implies (ii).
Suppose we are given π1 ⊆ Sµ and π2 ⊆ Tµ satisfying (i), (ii) in Lemma 8. By the

condition (i) in Lemma 8, we set n = |π1| = |π2|. Let σ = {(si, ti) | 1 6 i 6 n}, where
each si, ti is the i-th smallest element in π1, π2, respectively. By the condition (ii) in
Lemma 8, we have σ ⊆ Bµ and so σ is a rook placement on Bµ. By construction, it is
clear that π1 = π1(σ) and π2 = π2(σ). So (ii) implies (i).

Definition 10. Let µ ∈ {0, 1}N and consider the Ferrers board Bµ of shape µ. Then the
type of a rook placement σ on Bµ is defined by the disjoint union

π1(σ) ∪ π2(σ) ⊆ {1, 2, . . . , N},

where π1(σ), π2(σ) are the row/column index sets of σ defined in (11).

Lemma 11. Let µ ∈ {0, 1}N . For λ ⊆ {1, 2, . . . , N}, the following are equivalent:

(i) there exists a rook placement on Bµ of type λ;

(ii) the pair (λ ∩ Sµ, λ ∩ Tµ) satisfies (i), (ii) in Lemma 8.

Proof. Immediate from Proposition 9.

Lemma 12. For λ ⊆ {1, 2, . . . , N}, the following are equivalent:

(i) there exists a rook placement on Bµ of type λ for some µ ∈ {0, 1}N ;

(ii) the cardinality of λ is even.

Proof. Fix λ ⊆ {1, 2, . . . , N}. Suppose there exists a rook placement σ on Bµ of type λ
for some µ ∈ {0, 1}N . Then by Lemma 11, the pair (λ ∩ Sµ, λ ∩ Tµ) satisfies (i), (ii) in
Lemma 8. In particular, |λ| = |λ ∩ Sµ|+ |λ ∩ Tµ| is even. So (ii) holds.

Conversely, we suppose |λ| = 2n for some n ∈ N and show (i) holds. Let (π1, π2)
denote the bipartition of λ where π1 contains the first n smallest elements in λ and π2
contains the remaining n elements in λ. Take any µ ∈ {0, 1}N such that π1 ⊆ Sµ and
π2 ⊆ Tµ. Then we have π1 = λ ∩ Sµ and π2 = λ ∩ Tµ. Observe that the pair (π1, π2)
satisfies (i), (ii) in Lemma 8. So by Lemma 11, there exists a rook placement on Bµ of
type λ. In particular, (i) holds.
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Since rook placements can be seen as permutations, we define the concept of inversions.
Let σ be a nonempty rook placement on a Ferrers board Bµ of shape µ. For (s0, t0) ∈ σ,
the local inversion number of σ at (s0, t0), denoted by inv(σ, s0, t0), is defined by

inv(σ, s0, t0) = |{(s, t) ∈ σ | s < s0, t > t0}| = |σ ∩Bµ(s0, t0)| − 1. (12)

For a rook placement σ, the (total) inversion number of σ, denoted by inv(σ), is defined
by

inv(σ) =
∑

(s,t)∈σ

inv(σ, s, t).

Example 13 (N = 13). Take µ ∈ {0, 1}13 as in Example 6. Consider the following rook
placement σ on Bµ:

σ = {(1, 9), (4, 6), (10, 12)}.
Then we have inv(σ, 1, 9) = inv(σ, 10, 12) = 0 and inv(σ, 4, 6) = 1. Thus inv(σ) = 1.

2 3 5 6 8 9 12

? 1

? 4

7

? 10

11

13

Lemma 14. Let µ ∈ {0, 1}N and let λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma 11. For
1 6 m 6 N and for a rook placement σ on Bµ of type λ, we have

|σ ∩ (Sµ(m)× Tµ(m))| = |λ ∩ Sµ(m)|+ |λ ∩ Tµ(m)| − |λ|
2
. (13)

In particular, this number is independent of the choice of σ.

Proof. Since π1(σ) = λ ∩ Sµ, π2(σ) = λ ∩ Tµ and σ is a rook placement, we have

|λ ∩ Sµ(m)| = |π1(σ) ∩ Sµ(m)| = |σ ∩ (Sµ(m)× Tµ)|,
|λ ∩ Tµ(m)| = |π2(σ) ∩ Tµ(m)| = |σ ∩ (Sµ × Tµ(m))|,

|λ| = |π1(σ)|+ |π2(σ)| = 2|σ|.

Set Sµ(m) = Sµ \ Sµ(m) and Tµ(m) = Tµ \ Tµ(m). Then we have

|λ ∩ Sµ(m)|+ |λ ∩ Tµ(m)| − |λ|
2

= |σ ∩ (Sµ(m)× Tµ)|+ |σ ∩ (Sµ × Tµ(m))| − |σ|
= |σ ∩ (Sµ(m)× Tµ(m))| − |σ ∩ (Sµ(m)× Tµ(m))|.
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So, it remains to show that σ ∩ (Sµ(m)× Tµ(m)) = ∅. Observe that

Bµ ∩
(
Sµ(m)× Tµ(m)

)
= {(s, t) ∈ Bµ | t < m < s} = ∅.

Therefore, from σ ⊆ Bµ, the result follows.

The next lemma is a generalization of [4, Corollary 1.3.10] and the proof of the next
lemma is motivated by that of [4, Corollary 1.3.10].

Lemma 15. Let µ ∈ {0, 1}N and let λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma 11. For
1 6 m 6 N , let ρ(m,µ, λ) denote the left-hand side of (13). Then for q ∈ C with q 6= 0, 1,
we have ∑

σ

qinv(σ) =
∏

s∈λ∩Sµ

qρ(s,µ,λ) − 1

q − 1
,

where the sum is taken over all rook placements σ on Bµ of type λ.

Proof. If λ = ∅, the assertion is clear. (Note that inv(∅) = 0.) We assume λ 6= ∅. We
claim that there exists a bijection between the following two sets:

(i) rook placements σ on Bµ of type λ,

(ii) integer sequences (as)s∈λ∩Sµ such that 0 6 as 6 ρ(s, µ, λ)− 1 for s ∈ λ ∩ Sµ,

such that inv(σ) =
∑

s∈λ∩Sµ as. Suppose for the moment that the claim is true. Then we
have ∑

σ

qinv(σ) =
∏

s∈λ∩Sµ

ρ(s,µ,λ)−1∑
as=0

qas

 =
∏

s∈λ∩Sµ

qρ(s,µ,λ) − 1

q − 1
.

So the result follows.
Therefore, it remains to prove the claim. For a given rook placement σ on Bµ of type

λ and for s ∈ λ ∩ Sµ, there exists a unique t(s) ∈ λ ∩ Tµ such that (s, t(s)) ∈ σ. Thus,
we consider the map ι that sends σ to (as)s∈λ∩Sµ , where as = inv(σ, s, t(s)). Then for
s ∈ λ ∩ Sµ, we have

0 6 as = |σ ∩ (Sµ(s)× Tµ(t(s)))| − 1

6 |σ ∩ (Sµ(s)× Tµ(s))| − 1

= ρ(s, µ, λ)− 1,

where the second inequality follows from the fact that s 6 t(s). This implies that the
map ι is from (i) to (ii). To show the bijectivity of ι, take a sequence (as)s∈λ∩Sµ in the set
(ii). Set r = |λ ∩ Sµ| and for 1 6 i 6 r, we write si the i-th smallest element in λ ∩ Sµ.
By definition, observe that

0 6 asi 6 ρ(si, µ, λ)− 1 6 |λ ∩ Sµ(si)| − 1 = i− 1,
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where the third inequality follows from |λ|/2− |λ ∩ Tµ(si)| = |{t ∈ λ ∩ Tµ | t < si}| > 0.
Then, there exists a unique permutation σ̃ of {1, 2, . . . , r} such that

asi = |{j | 1 6 j < i, σ̃(i) < σ̃(j)}|. (14)

Then consider the set σ = {(si, tσ̃(i)) | 1 6 i 6 r}, where ti is the i-th smallest element in
λ ∩ Tµ. Fix 1 6 i 6 r. By (14), we have σ̃(i) > i− asi and so we have

σ̃(i) > i− asi > i− ρ(si, µ, λ) + 1 = |{t ∈ λ ∩ Tµ | t < si}|+ 1.

This implies that si < tσ̃(i). This holds for any 1 6 i 6 r and so σ becomes a rook
placement on Bµ. It is clear that σ is of type λ. By construction, the map which sends
(as)s∈λ∩Sµ to σ becomes the inverse of ι. Therefore, our claim holds.

4 The matrix representation of P

For a field K and for two finite nonempty sets S and T , let MatS,T (K) denote the set of
all matrices with rows indexed by S and columns indexed by T whose entries are in K.
If S = T , we write it MatS(K) for short. For M ∈ MatS,T (K), the support of M , denoted
by Supp(M), is the set of indices containing nonzero entries:

Supp(M) = {(s, t) ∈ S × T |Ms,t 6= 0}.

For µ ∈ {0, 1}N , recall the corresponding bipartition Sµ, Tµ from (7) and the Ferrers
board Bµ of shape µ from (8). We will assume µ 6= 0, 1 in this section so that both Sµ
and Tµ are nonempty.

Definition 16. Let µ ∈ {0, 1}N with µ 6= 0, 1. Let Mµ(Fq) denote the set of matrices
in MatSµ,Tµ(Fq) such that Supp(M) ⊆ Bµ.

Recall the set Pµ of subspaces at location µ ∈ {0, 1}N from Definition 2.

Proposition 17. Let µ ∈ {0, 1}N with µ 6= 0, 1. Fix a basis v1, v2, . . . , vN for H adapted
to the flag {xi}Ni=0. There exists a bijection from Pµ to the set Mµ(Fq) in Definition 16
that sends y ∈ Pµ to Y ∈Mµ(Fq), where y has a basis∑

s∈Sµ

Ys,tvs + vt, t ∈ Tµ.

Proof. For y ∈ Pµ, there exists a basis wt (t ∈ Tµ) for y such that wt ∈ xt \ xt−1 for each
t ∈ Tµ. Write each vector wt as a linear combination of the fixed basis v1, v2, . . . , vt for xt.
Without loss of generality, we may assume the coefficient of vt is 1. Use linear operations
on the basis wt (t ∈ Tµ) to make the coefficient of vt′ 0 for any t′ ∈ Tµ with t 6= t′. Observe
that the resulting basis w′t (t ∈ Tµ) is uniquely determined by y. Then from the basis w′t
(t ∈ Tµ), we construct the matrix Y ∈ MatSµ,Tµ(Fq) such that Ys,t is the coefficient of vs
in w′t. Then we have Y ∈ Mµ(Fq) since w′t ∈ xt. On the other hand, let Y ∈ Mµ(Fq).
For t ∈ Tµ, we write wt =

∑
s∈Sµ Ys,tvs + vt. Since Supp(Y ) ⊆ Bµ, the vector wt is a

linear combination of v1, v2, . . . , vt, that means wt ∈ xt \ xt−1. Therefore the subspace y
spanned by the vectors wt (t ∈ Tµ) must belong to Pµ.
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Definition 18. Let µ ∈ {0, 1}N with µ 6= 0, 1. Take y ∈ Pµ. By the matrix form of y, we
mean the matrix Y ∈Mµ(Fq) which is the image of y under the bijection in Proposition
17. We note that the matrix form of y depends on the basis v1, v2, . . . , vN for H.

Let µ ∈ {0, 1}N with µ 6= 0, 1. For s ∈ Sµ, we denote by s− the one smaller element
in Sµ. If there is no such element, we set s− = 0. For t ∈ Tµ, we denote by t+ the one
larger element in Tµ. If there is no such element, we set t+ = N + 1. Observe that for
(s, t) ∈ Bµ, we have (s−, t) ∈ Bµ if s− 6= 0 and we have (s, t+) ∈ Bµ if t+ 6= N + 1. For
M ∈ Mµ(Fq) and for (s, t) ∈ Bµ, let M(s, t) denote the submatrix of M indexed by the
rectangle with respect to (s, t) in (9). Moreover, we set

r−(M, s, t) =

{
rank (M(s−, t)) if s− 6= 0,

0 if s− = 0,
(15)

r+(M, s, t) =

{
rank (M(s, t+)) if t+ 6= N + 1,

0 if t+ = N + 1,
(16)

r−+(M, s, t) =

{
rank (M(s−, t+)) if s− 6= 0 and t+ 6= N + 1,

0 if s− = 0 or t+ = N + 1.
(17)

Definition 19. Let µ ∈ {0, 1}N with µ 6= 0, 1. For M ∈Mµ(Fq), we define the set σ(M)
consisting of all indices (s, t) ∈ Bµ such that

rε(M, s, t) = rank (M(s, t))− 1

for all ε ∈ {−,+,−+}.

Lemma 20. Let µ ∈ {0, 1}N with µ 6= 0, 1. For M ∈Mµ(Fq), the set σ(M) in Definition
19 is a rook placement on Bµ.

Proof. Fix M ∈ Mµ(Fq). Since σ(M) is a subset of Bµ, it suffices to show that no two
elements in σ(M) have a common entry. To do this, we take (s1, t), (s2, t) ∈ σ(M) and
assume s1 < s2. Observe that s−2 6= 0. Since (s1, t) ∈ σ(M), we have

r+(M, s1, t) = rank (M(s1, t))− 1. (18)

Since (s2, t) ∈ σ(M), we have r−+(M, s2, t) = r−(M, s2, t). By definition, r−+(M, s2, t) =
r+(M, s−2 , t),r

−(M, s2, t) = rank
(
M(s−2 , t)

)
and so we obtain

r+(M, s−2 , t) = rank
(
M(s−2 , t)

)
. (19)

By (18), the t-th column of M(s1, t) can’t be expressed as a linear combination of other
columns of M(s1, t). By (19), the t-th column of M(s−2 , t) can be expressed as a linear
combination of other columns of M(s−2 , t). This implies s−2 < s1, which contradicts to
s1 < s2. Therefore we must have s1 = s2. Similarly, if we take (s, t1), (s, t2) ∈ σ(M), then
one can show that t1 = t2. So the result follows.
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Recall the local inversion numbers of a rook placement from (12).

Lemma 21. Let µ ∈ {0, 1}N with µ 6= 0, 1. For M ∈Mµ(Fq), we have

rank (M(s, t)) = inv(σ(M), s, t) + 1

for (s, t) ∈ σ(M).

Proof. Fix (s, t) ∈ σ(M). Observe that rank (M(s, t)) can be computed as follows:∑
(s′,t′)∈Bµ(s,t)

(
rank (M(s′, t′))− r−(M, s′, t′)− r+(M, s′, t′) + r−+(M, s′, t′)

)
.

Then by the definition of σ(M), each summand is 1 if (s′, t′) ∈ σ(M). We claim that each
summand is 0 if (s′, t′) 6∈ σ(M). Suppose for the moment that the claim is true. Then
rank (M(s, t)) is equal to the cardinality of σ(M) ∩ Bµ(s, t). The result follows from the
definition of local inversion numbers.

Therefore, it remains to prove the claim. If (s′, t′) 6∈ σ(M), then there exists ε ∈
{−,+,−+} such that rε(M, s′, t′) 6= rank (M(s′, t′)) − 1. If ε = +, then r+(M, s′, t′) =
rank (M(s′, t′)). In this case, the t′-th column of M(s′, t′) can be expressed as a linear
combination of other columns of M(s′, t′). In particular, if s′− 6= 0, the t′-th column of
M(s′−, t′) can be expressed as a linear combination of other columns of M(s′−, t′). This
implies r−+(M, s′, t′) = r−(M, s′, t′), which is also true if s′− = 0. Therefore, the summand
is 0. Similarly, if ε = −, the summand is 0. If ε = −+, then we have two possibilities:
r−+(M, s′, t′) = rank (M(s′, t′)) or r−+(M, s′, t′) = rank (M(s′, t′)) − 2. For the first
case, we have rank (M(s′, t′)) = r−(M, s′, t′) = r+(M, s′, t′) = r−+(M, s′, t′) since we
have rank (M(s′, t′)) > r−(M, s′, t′) > r−+(M, s′, t′) and rank (M(s′, t′)) > r+(M, s′, t′) >
r−+(M, s′, t′) by definition. This also implies the summand is 0. For the second case,
we have rank (M(s′, t′)) = r−(M, s′, t′) + 1 = r+(M, s′, t′) + 1 = r−+(M, s′, t′) + 2 since
we have rank (M(s′, t′)) 6 r−(M, s′, t′) + 1 6 r−+(M, s′, t′) + 2 and rank (M(s′, t′)) 6
r+(M, s′, t′) + 1 6 r−+(M, s′, t′) + 2 by definition. This also implies the summand is 0.
Hence the claim holds.

Lemma 22. Let µ ∈ {0, 1}N with µ 6= 0, 1. For a subset σ ⊆ Bµ, the following are
equivalent:

(i) there exists M ∈Mµ(Fq) such that σ(M) = σ.

(ii) it is a rook placement on Bµ.

Proof. Lemma 20 shows that (i) implies (ii).
Assume we are given a rook placement σ on Bµ. Consider the matrix Mσ ∈ Mµ(Fq)

defined by

(Mσ)s,t =

{
1 if (s, t) ∈ σ,
0 otherwise

for s ∈ Sµ, t ∈ Tµ. Then it is easy to check that σ(M) = σ. So (ii) implies (i).
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5 The number of matrices with given parameter

Let µ ∈ {0, 1}N with µ 6= 0,1. Recall from Lemma 22 that each matrix Mµ(Fq) corre-
sponds to a rook placement on the Ferrers board Bµ of shape µ. Recall the sets from (7)
and (10). To simplify the notation, we set

n(π1) =
∑
s∈π1

|Sµ(s)| (20)

for a subset π1 ⊆ Sµ.

Definition 23. Let µ ∈ {0, 1}N . A subset λ ⊆ {1, 2, . . . , N} is said to be column-full
with respect to µ whenever Tµ ⊆ λ. Moreover, a rook placement σ on Bµ is said to be
column-full whenever the type of σ is column-full.

Let µ ∈ {0, 1}N . We remark that a rook placement σ on Bµ is column-full if and only
if the column index set π2(σ), defined in (11), is maximal.

Proposition 24. Let µ ∈ {0, 1}N with µ 6= 0,1 and let σ denote a rook placement on Bµ.
Assume σ is column-full in Definition 23. Then the number of matrices M ∈ Mµ(Fq)
such that σ = σ(M) in Definition 19 is given by

(q − 1)|µ|qinv(σ)+|Bµ|−n(π1(σ)).

Proof. Let t ∈ Tµ. We count the number of possibilities for the t-th column of M with
σ = σ(M). Since σ is a column-full rook placement, there uniquely exists s ∈ Sµ such
that (s, t) ∈ σ. Since (s, t) ∈ σ, we have

r−(M, s, t) = r−+(M, s, t) = rank (M(s, t))− 1. (21)

This means that the t-th column of the submatrix M(s−, t) is a linear combination of
other columns. Therefore, the number of possibilities for the t-th column of M(s−, t) is
qr(M,s,t)−1. For a given such column of M(s−, t), the number of possibilities for the t-th
column of M(s, t) is at most q since M(s, t) has one more row than M(s−, t). In other
words, the number of possibilities for the t-th column of M(s, t) is at most qr(M,s,t)−1×q =
qr(M,s,t). Similarly, since (s, t) ∈ σ, we have

r(M, s, t)− 1 = r+(M, s, t). (22)

This means that the t-th column of the submatrix M(s, t) is not a linear combination
of other columns. Since there are qr(M,s,t)−1 columns which are linear combinations of
columns of M(s, t+), the number of possibilities for the t-th column of M(s, t) is

qr(M,s,t) − qr(M,s,t)−1 = (q − 1)qr(M,s,t)−1 = (q − 1)qinv(σ,s,t).

The second equality follows from Lemma 21. Since M ∈ Mµ(Fq), or equivalently
Supp(M) ⊆ Bµ, the (s′, t)-entries are 0 if s′ > t. Therefore, for a given t-th column
of M(s, t), the number of possibilities for the t-th column of M is at most ql, where

l = |{s′ ∈ Sµ | s < s′ 6 t}| = |Sµ(t)| − |Sµ(s)|.
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Observe that any choices of the t-th column among the ql possibilities satisfy both (21)
and (22) by construction. Since the conditions (21) and (22) are equivalent to (s, t) ∈ σ,
the number is exactly ql. We have shown that the number of possibilities for the t-th
column of M is

(q − 1)qinv(σ,s,t) × q|Sµ(t)|−|Sµ(s)|,

which is independent of the choice of other columns of M . Therefore the number of M
is obtained by taking the product of the values for all t ∈ Tµ since σ is column-full. The
result follows from the definition of inv(σ) and the column-full property and∑

t∈Tµ

|Sµ(t)| = |{(s, t) ∈ Sµ × Tµ | s < t}| = |Bµ|.

Corollary 25. Let µ ∈ {0, 1}N with µ 6= 0,1 and let λ ⊆ {1, 2, . . . , N} satisfy (ii) in
Lemma 11. Assume λ is column-full with respect to µ in Definition 23. Then the number
of matrices M ∈ Mµ(Fq) such that σ(M) is of type λ in Definitions 10 and 19 is given
by

q|Bµ|−n(λ∩Sµ)
∏

s∈λ∩Sµ

(
qρ(s,µ,λ) − 1

)
,

where ρ(s, µ, λ) is defined in Lemma 15.

Proof. Use Lemma 15 and Proposition 24.

6 The algebra H

Recall MatP (C), the set of all matrices whose rows and columns are indexed by P and
whose entries are in C. We see it as a C-algebra. We write I ∈ MatP (C) for the identity
matrix and O ∈ MatP (C) for the zero matrix. In this section, we introduce a subalgebra
H of MatP (C) which represents the N -cube structure in P .

Let V = CP denote the vector space over C consisting of the column vectors whose
coordinates are indexed by P and whose entries are in C. Observe that MatP (C) acts
on V by left multiplication. We call V the standard module for MatP (C). We equip V
with the standard Hermitian inner product defined by 〈u, v〉 = uT v̄ for u, v ∈ V , where T

denotes transpose and¯denotes complex conjugate.
Recall from Definition 2 that we have partitioned P into the sets Pµ of all subspaces

at location µ for µ ∈ {0, 1}N . For µ ∈ ZN , define a diagonal matrix E∗µ ∈ MatP (C) by

(E∗µ)y,y =

{
1 if y ∈ Pµ,
0 if y 6∈ Pµ,

y ∈ P.

Observe that E∗µ = O unless µ ∈ {0, 1}N . By construction, we have

E∗µE
∗
ν = δµ,νE

∗
µ, µ, ν ∈ {0, 1}N ,
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I =
∑

µ∈{0,1}N
E∗µ.

Moreover, we have a decomposition of V :

V =
∑

µ∈{0,1}N
E∗µV, (direct sum),

where E∗µV is the subspace of V consisting of the vectors whose nonzero entries are indexed
by elements in Pµ. Thus, the matrix E∗µ is the projection from V onto E∗µV and we call
it the projection matrix.

Definition 26. By the above comments, the matrices E∗µ, where µ ∈ {0, 1}N form a basis
for a commutative subalgebra of MatP (C). We denote this subalgebra by K.

We now introduce matrices that generate K. For 1 6 m 6 N , we define diagonal
matrices Km ∈ MatP (C) by

(Km)y,y = q1/2−µm , y ∈ Pµ,

where µ = (µ1, µ2, . . . , µN).

Lemma 27. For 1 6 m 6 N , we have

Km =
∑

µ∈{0,1}N
q1/2−µmE∗µ,

where µ = (µ1, µ2, . . . , µN).

Proof. Immediate from the construction.

Proposition 28. The algebra K in Definition 26 is generated by Km for 1 6 m 6 N .

Proof. By Lemma 27, the matrices Km (1 6 m 6 N) generate a subalgebra K′ of K. By
Lemma 27 and since E∗µ are idempotent, for ν = (ν1, ν2, . . . , νN) ∈ {0, 1}N , we have

Kν1
1 K

ν2
2 · · ·K

νN
N =

∑
µ∈{0,1}N

q
∑N
m=1(νm/2−µmνm)E∗µ.

By linear algebra, if the coefficient matrix QN indexed by {0, 1}N , whose (ν, µ)-entry is

q
∑N
m=1(νm/2−µmνm), is invertible, then each E∗µ is a linear combination of Kν1

1 K
ν2
2 · · ·K

νN
N

(ν = (ν1, ν2, . . . , νN) ∈ {0, 1}N). In particular, in this case, E∗µ is a polynomial in Km

(1 6 m 6 N) for every µ ∈ {0, 1}N and consequently, K′ = K. So, it remains to show
that the determinant of QN is nonzero. First, observe that if N = 1,

detQ1 = det

(
1 1
q1/2 q−1/2

)
= q−1/2 − q1/2 6= 0
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since q 6= 1. We next consider the matrix Q⊗N1 indexed by {0, 1}N . The (ν, µ)-entry of
Q⊗N1 is given by

q
∑N
m=1(νm/2−µmνm),

which is same as that of QN . This means QN = Q⊗N1 . By QN = Q⊗N1 and detQ1 6= 0,
we conclude that detQN 6= 0 as desired.

Next we introduce two kinds of matrices from covering relations in Definition 3. For
1 6 m 6 N , the matrices Lm, Rm ∈ MatP (C) are defined by

(Lm)y,z =

{
1 if z m-covers y,

0 otherwise,
(Rm)y,z =

{
1 if y m-covers z,

0 otherwise

for y, z ∈ P . We remark that for each 1 6 m 6 N , the matrices Lm and Rm are transposes
of one another. Recall the comment in the above of Lemma 4.

Lemma 29. For 1 6 m 6 N and µ ∈ {0, 1}N , we have the following.

(i) LmE
∗
µ = E∗µ−m̂Lm and RmE

∗
µ = E∗µ+m̂Rm.

(ii) LmE
∗
µV ⊆ E∗µ−m̂V and RmE

∗
µV ⊆ E∗µ+m̂V .

Proof. Immediate from the construction.

Because of Lemma 29 (ii), we call Lm the lowering matrices and Rm the raising
matrices.

Definition 30. Let H denote the subalgebra of MatP (C) generated by Lm, Rm (1 6 m 6
N) and the algebra K in Definition 26.

Proposition 31. The algebra H in Definition 30 is semisimple.

Proof. This follows since H is closed under the conjugate-transpose map.

We recall the incidence algebra, which is generated by L, R and E?
i (0 6 i 6 N) from

the second paragraph in Section 1. We remark that H contains the incidence algebra
as its subalgebra because L =

∑N
m=1 Lm, R =

∑N
m=1Rm and E?

i =
∑

µ∈{0,1}N ,|µ|=iE
∗
µ.

Moreover, if N > 2, the incidence algebra is a proper subalgebra of H.

7 The structure of the algebra H

In this section, we discuss the relations among the generators Lm, Rm, Km of the algebra
H.

Proposition 32. For 1 6 m,n 6 N with m 6= n, the following hold.

(i) LmKn = KnLm.
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(ii) RmKn = KnRm.

(iii) qLmKm = KmLm.

(iv) RmKm = qKmRm.

Proof. This lemma follows by combining Lemmas 27 and 29 (i).

Proposition 33. For 1 6 m,n 6 N , we have the following.

(i) L2
m = R2

m = 0.

(ii) qLmLn = LnLm if m < n.

(iii) RmRn = qRnRm if m < n.

(iv) LmRn = RnLm if m 6= n.

Proof. (i) It follows from the definition of Lm and Rm. (ii), (iii) These are matrix re-
formulations of Lemma 5 (i), (ii). (iv) This is a matrix reformulation of Lemma 5 (iii),
(iv).

8 The Lm- and Rm-actions on V

We now describe a basis for V , which is the key in this paper. In this section, we fix a
basis v1, v2, . . . , vN for H adapted to the flag {xi}Ni=0 and assume that the matrix forms
in Definition 18 are always taken with respect to this basis v1, v2, . . . , vN .

Definition 34. Let χ denote a nontrivial character of the additive group Fq and let
µ ∈ {0, 1}N . For y ∈ Pµ, define a vector χy ∈ V as follows.

(i) If µ = 0 or 1, then for z ∈ P , the z-th entry of χy is 1 if y = z and 0 otherwise.

(ii) If µ 6= 0,1, then for z ∈ P , the z-th entry of χy is defined by{
χ
(
tr(Y ZT )

)
if z ∈ Pµ,

0 if z 6∈ Pµ,

where Y, Z ∈ Mµ(Fq) are the matrix forms of y, z, respectively in Definition 18.
Here T denotes transpose and tr denotes the trace map of matrices.

For the rest of this section, we fix a nontrivial character χ of the additive group Fq.

Lemma 35. For µ ∈ {0, 1}N , the set of vectors χy ∈ V for y ∈ Pµ in Definition 34 forms
an orthogonal basis for the vector space E∗µV .
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Proof. Let µ ∈ {0, 1}N . For y ∈ Pµ, observe that χy ∈ E∗µV from the construction. If
µ = 0 or 1, then the assertion is trivial, since dimE∗µV = 1. Assume µ 6= 0,1 and take
y, y′ ∈ Pµ. Consider the Hermitian inner product

〈χy, χy′〉 =
∑
z∈P

χy(z)χy′(z),

where χy(z), χy′(z) denote the z-th entries of χy, χy′ , respectively. By the definitions of
χy(z), χy′(z), we have

〈χy, χy′〉 =
∑

Z∈Mµ(Fq)

χ
(
tr(Y − Y ′)ZT

)
,

where Y, Y ′ are the matrix forms of y, y′, respectively. Assume y 6= y′ and equivalently
Y 6= Y ′. Observe that for g ∈ Fq, the number of Z ∈Mµ(Fq) such that tr(Y −Y ′)ZT = g
does not depend on g, and so the number is |Mµ(Fq)|/|Fq| = q|Bµ|−1. Therefore, we have

〈χy, χy′〉 = q|Bµ|−1
∑
g∈Fq

χ(g) = 0.

The last equality follows from the orthogonality of the character χ and the trivial charac-
ter. Therefore the set of vectors χy for y ∈ Pµ becomes an orthogonal basis for a subspace
Vµ of E∗µV . By comparing their dimensions, we have Vµ = E∗µV and the result follows.

Recall the m-covering relation from Definition 3.

Lemma 36. Let 1 6 m 6 N and let µ, ν ∈ {0, 1}N with µ, ν 6= 0,1 such that µ m-covers
ν. Take y ∈ Pµ, z ∈ Pν and let Y ∈ Mµ(Fq) and Z ∈ Mν(Fq) denote the matrix forms
of y, z, respectively in Definition 18. Then y m-covers z if and only if

Zs,t = Ys,t + Ys,mZm,t

for s ∈ Sµ and for t ∈ Tν.

Proof. Recalling the bijection of Proposition 17, for t ∈ Tµ and t′ ∈ Tν , we write

wt(Y ) =
∑
s∈Sµ

Ys,tvs + vt, wt′(Z) =
∑
s′∈Sν

Zs′,t′vs′ + vt′ .

Assume y covers z. For each t′ ∈ Tν , since z ⊆ y, the vector wt′(Z) is a linear combination
of wt(Y ), where t ∈ Tµ. Comparing the coefficients of vt for t ∈ Tµ, we have wt′(Z) =
Zm,t′wm(Y ) + wt′(Y ). Then comparing the coefficients of vs for s ∈ Sµ, we obtain the
desired equality. On the other hand, assume the equality Zs,t′ = Ys,t′+Zm,t′Ys,m for s ∈ Sµ
and t′ ∈ Tν . By the same argument above, we have wt′(Z) ∈ y for all t′ ∈ Tν . This implies
y covers z, as desired.
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Lemma 37. Let 1 6 m 6 N and let µ, ν ∈ {0, 1}N with µ, ν 6= 0,1 such that µ m-covers
ν. Take y ∈ Pµ, z ∈ Pν and let Y ∈ Mµ(Fq), Z ∈ Mν(Fq) denote the matrix forms of
y, z, respectively in Definition 18. Then the z-th entry of Lmχy is given by

Lmχy(z) = q|Sµ(m−1)|χ

∑
s∈Sµ

∑
t∈Tν

Ys,tZs,t


if Ys,m =

∑
t∈Tν Ys,tZm,t for all s ∈ Sµ with s < m and 0 otherwise.

Proof. By the definition of Lm, the z-th entry of Lmχy is defined by

Lmχy(z) =
∑
y′

χy(y
′),

where the sum is taken over all y′ ∈ Pµ such that y′ m-covers z. Then by Definition 34
and Lemma 36, we have

Lmχy(z) =
∑
Y ′

χ

∑
s∈Sµ

∑
t∈Tµ

Ys,tY
′
s,t

 ,

where the sum is taken over all Y ′ ∈ Mµ(Fq) such that Zs,t = Y ′s,t + Y ′s,mZm,t for s ∈ Sµ
and for t ∈ Tν . Observe that Tµ \ Tν = {m} and so we have

Lmχy(z) =
∑

χ

∑
s∈Sµ

∑
t∈Tν

Ys,t(Zs,t − Y ′s,mZm,t) +
∑
s∈Sµ

Ys,mY
′
s,m


=
∑

χ

∑
s∈Sµ

∑
t∈Tν

Ys,tZs,t

χ

∑
s∈Sµ

(
Ys,m −

∑
t∈Tν

Ys,tZm,t

)
Y ′s,m

 ,

where the first sum in each line is taken over all Y ′s,m ∈ Fq such that Y ′s,m = 0 if s > m. If
Ys,m 6=

∑
t∈Tν Ys,tZm,t for some s ∈ Sµ with s < m, then by the same argument as in the

proof of Lemma 35, the sum is 0. If Ys,m =
∑

t∈Tν Ys,tZm,t for all s ∈ Sµ with s < m, then

Lmχy(z) = q|Sµ(m−1)|χ

∑
s∈Sµ

∑
t∈Tν

Ys,tZs,t

 .

Here the coefficient q|Sµ(m−1)| is the number of choices for Y ′s,m ∈ Fq for s ∈ Sµ with s < m.
The result follows.

Lemma 38. Let 1 6 m 6 N and let µ, ν ∈ {0, 1}N with µ, ν 6= 0,1 such that µ m-covers
ν. Take y ∈ Pµ, z ∈ Pν and let Y ∈ Mµ(Fq), Z ∈ Mν(Fq) denote the matrix forms of
y, z, respectively in Definition 18. Then the y-th entry of Rmχz is given by

Rmχz(y) = q|Tν(m+1)|χ

∑
s∈Sµ

∑
t∈Tν

Ys,tZs,t


if Zm,t = −

∑
s∈Sµ Zs,tYs,m for all t ∈ Tν with t > m and 0 otherwise.
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Proof. Similar to the proof of Lemma 37.

Lemma 39. Referring to Lemma 37, let λ denote the type of σ(Y ) in Definitions 10 and
19. Then the number of Z ∈ Mν(Fq) such that Ys,m =

∑
t∈Tν Ys,tZm,t for all s ∈ Sµ with

s < m is given by ql where

l = |Bν | − |λ ∩ Sµ(m− 1)| − |λ ∩ Tµ(m+ 1)|+ |λ|/2

if m 6∈ λ, and 0 otherwise.

Proof. We count the number of possibilities for Zs,t ∈ Fq for s ∈ Sν and t ∈ Tν . If s > t,
then Zs,t = 0 since Supp(Z) ⊆ Bν . If s 6= m and s < t, then Zs,t is arbitrary and therefore
the number of possibilities is q. The number of such pairs (s, t) is given by

|{(s, t) ∈ Bν | s 6= m}| = |Bν | − |Tν(m+ 1)|.

For the case s = m and m < t, by the constraint, the sequence (Zm,t)t∈Tν ,t>m must be a
solution of the system of linear equations over Fq:

Cu = c,

where C = (Ys,t)s∈Sµ,s<m,t∈Tν ,t>m is the coefficient matrix, u = (ut)t∈Tν ,t>m is the unknown
vector and c = (Ys,m)s∈Sµ,s<m is the constant vector. By linear algebra, the system Cu = c
has a solution if and only if the rank of the augmented matrix [C, c] is equal to the rank
of the coefficient matrix C. By Definition 19, it is also equivalent to (s,m) 6∈ σ(Y ) for
all s ∈ Sµ with s < m, which means m 6∈ λ. Moreover, suppose there is a solution of the
system Cu = c. Since there are |Tν(m + 1)| columns in C, the number of solutions is
given by

q|Tν(m+1)|−rankC .

By the proof of Lemma 21, the rank of C is computed as follows:

rankC = |{(s, t) ∈ σ(Y ) | s 6 m− 1, t > m+ 1}|
= |{(s, t) ∈ σ(Y ) | s 6 m− 1}|+ |{(s, t) ∈ σ(Y ) | t > m+ 1}| − |σ(Y )|
= |λ ∩ Sµ(m− 1)|+ |λ ∩ Tµ(m+ 1)| − |λ|/2.

Therefore the result follows.

Lemma 40. Referring to Lemma 38, let λ denote the type of σ(Z) in Definitions 10 and
19. Then the number of Y ∈ Mµ(Fq) such that Zm,t = −

∑
s∈Sµ Zs,tYs,m for all t ∈ Tν

with t > m is given by ql where

l = |Bµ| − |λ ∩ Sµ(m− 1)| − |λ ∩ Tµ(m+ 1)|+ |λ|/2

if m 6∈ λ, and 0 otherwise.

Proof. Similar to the proof of Lemma 39.
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Definition 41. Let µ ∈ {0, 1}N and take y ∈ Pµ. If µ 6= 0,1, then let Y ∈ Mµ(Fq)
denote the matrix form of y in Definition 18. Then the type of y is defined to be the type
of σ(Y ) in Definitions 10 and 19. If µ = 0 or 1, then the type of y is defined to be the
empty set. We note that the type of y depends on the basis v1, v2, . . . , vN for H since the
matrix form does.

Lemma 42. Let µ ∈ {0, 1}N and let λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma 11. For
1 6 m 6 N , the following are equivalent:

(i) for any y ∈ Pµ of type λ, we have Lmχy = 0;

(ii) m ∈ Sµ or m ∈ λ.

Proof. Set ν = µ − m̂ so that µ m-covers ν. Then ν 6= 1. For y ∈ Pµ, observe that
Lmχy ∈ E∗νV by Lemma 29 (ii).

(i) ⇒ (ii) Suppose Lmχy = 0 for any y ∈ Pµ of type λ. If µ = 0, then m ∈ Sµ and so
(ii) holds. If µ = 1, then Pµ = {y = H} and any subspaces z ∈ Pν are m-covered by y,
and so the z-th entry of Lmχy is

Lmχy(z) = χy(y) = 1

by Definition 34. This is a contradiction to Lmχy = 0. If ν = 0, then Pν = {0} and any
subspaces y′ ∈ Pµ m-cover 0, and so the 0-th entry of Lmχy is

Lmχy(0) =
∑

Y ′∈Mµ(Fq)

χ
(
tr(Y Y ′T )

)
,

where Y is the matrix form of y. By the same argument as in the proof of Lemmas 35
and 37, the sum vanishes (if and) only if Y is not the zero matrix from the orthogonality
of the characters χ and the trivial character. Since y ∈ Pm̂, we must have m ∈ λ. If
µ, ν 6= 0,1, then by Lemma 37, Lmχy = 0 implies that there is no Z ∈Mν(Fq) such that
Ys,m =

∑
t∈Tν Ys,tZm,t for all s ∈ Sµ with s < m, where Y ∈ Mµ(Fq) denote the matrix

form of y in Definition 18. In this case, by Lemma 39, we have m ∈ λ, where λ is the
type of y.

(ii) ⇒ (i) Suppose m ∈ Sµ or m ∈ λ. If m ∈ Sµ, then ν 6∈ {0, 1}N and so E∗µV = 0.
This implies Lmχy = 0 since Lmχy ∈ E∗νV . We now assume m ∈ Tµ and m ∈ λ. Observe
that µ 6= 0. If µ = 1, then λ = ∅ by Definition 41. This contradicts to m ∈ λ. If
ν = 0, then by the similar argument above, m ∈ λ implies the matrix form of y is not
the zero matrix. Then this implies the 0-th entry of Lmχy is 0, which means Lmχy = 0.
If µ, ν 6= 0,1, then the result follows from Lemmas 37 and 39.

Lemma 43. Let ν ∈ {0, 1}N and let λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma 11 with µ
replaced by ν. For 1 6 m 6 N , the following are equivalent:

(i) for any z ∈ Pν of type λ, we have Rmχz = 0;

(ii) m ∈ Tν or m ∈ λ.
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Proof. Similar to the proof of Lemma 42.

Recall from Lemma 12, a subset λ ⊆ {1, 2, . . . , N} becomes a type if and only if it has
even cardinality. For λ ⊆ {1, 2, . . . , N} with even cardinality, let Vλ denote the subspace
of V spanned by the vectors χy ∈ V for all y ∈ P of type λ in Definitions 34 and 41.
Then for λ ⊆ {1, 2, . . . , N} with even cardinality, we define a matrix Eλ ∈ MatP (C) such
that

(Eλ − I)Vλ = 0,

EλVλ′ = 0 if λ 6= λ′,

where λ′ ⊆ {1, 2, . . . , N} with even cardinality. In other words, Eλ is the projection from
V onto Vλ. Observe that E∗µ and Eλ commute for all µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N}
with even cardinality.

Lemma 44. For µ ∈ {0, 1}N and for λ ⊆ {1, 2, . . . , N} with even cardinality, the follow-
ing are equivalent:

(i) E∗µEλ = EλE
∗
µ 6= 0;

(ii) the pair (λ ∩ Sµ, λ ∩ Tµ) satisfies (i), (ii) in Lemma 8.

Proof. This is a matrix interpretation of Lemma 11.

9 The LmRm- and RmLm-actions on V

In this section, we fix a basis v1, v2, . . . , vN for H adapted to the flag {xi}Ni=0 and assume
that the matrix forms in Definition 18 and the types in Definition 41 are always taken with
respect to this basis v1, v2, . . . , vN . We also fix a nontrivial character χ of the additive
group Fq. Recall from Section 8, the definition of Eλ for λ ⊆ {1, 2, . . . , N} with even
cardinality depends on the basis v1, v2, . . . , vN and on the character χ. We show in this
section, that Eλ is independent of the basis v1, v2, . . . , vN for H adapted to the flag {xi}Ni=0

and the nontrivial character χ of the additive group Fq.

Lemma 45. Let 1 6 m 6 N , and let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in
Lemma 11. Set

κ(m,µ, λ) = |Sµ(m− 1) \ λ|+ |Tµ(m+ 1) \ λ|+ |λ|/2. (23)

Then for v ∈ E∗µEλV , we have the following:

RmLmv =

{
qκ(m,µ,λ)v if m ∈ Tµ and m 6∈ λ,
0 if m ∈ Sµ or m ∈ λ.
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Proof. Observe that RmLm acts on E∗µV by Lemma 29 (ii). Fix y ∈ Pµ of type λ in
Definition 41. We show that χy is an eigenvector for RmLm. If m ∈ Sµ or m ∈ λ, then
by Lemma 42, we have Lmχy = 0 and so χy is an eigenvector for RmLm with respect
to the eigenvalue 0. If µ = 1, then Pµ = {H} and λ = ∅. So we have dimE∗µV = 1.
Therefore, χy is an eigenvector of RmLm and the corresponding eigenvalue is the number
of subspaces which are m-covered by y = H, which is equal to qN−m = qκ(m,1,∅) by Lemma
4 (i). Set ν = µ− m̂ so that µ m-covers ν. If m ∈ Tµ, m 6∈ λ and ν = 0, then Pν = {0}
and λ = ∅. In other words, the matrix form of y in Definition 18 equals the zero matrix
O, and so y′-th entry χy(y

′) of χy is 1 if y′ ∈ Pµ and 0 if y′ 6∈ Pµ. Since Pν = {0}, χy is an
eigenvector of RmLm and the corresponding eigenvalue is the number of subspaces which
m-covers z = 0, which is equal to qm−1 = qκ(m,m̂,∅) by Lemma 4 (ii). If m ∈ Tµ, m 6∈ λ,
µ 6= 1 and ν 6= 0, then we have

RmLmχy =
1

|Pµ|
∑
y′∈Pµ

〈RmLmχy, χy′〉χy′ .

Let y′ ∈ Pµ. Since Lm and Rm are (conjugate-)transposes of one another, we have

〈RmLmχy, χy′〉 = 〈Lmχy, Lmχy′〉

=
∑
z∈Pν

Lmχy(z)Lmχy′(z).

Let Y, Y ′ ∈ Mµ(Fq) and Z ∈ Mν(Fq) be the matrix forms of y, y′, z, respectively in
Definition 18. Then by Lemma 37, it becomes

∑
z∈Pν

Lmχy(z)Lmχy′(z) = q2|Sµ(m−1)|
∑

χ

∑
s∈Sµ

∑
t∈Tν

(
Ys,t − Y ′s,t

)
Zs,t

 ,

where the sum is taken over all Z ∈Mν(Fq) such that∑
t∈Tν

Ys,tZm,t = Ys,m,
∑
t∈Tν

Y ′s,tZm,t = Y ′s,m (24)

for all s ∈ Sµ with s < m. Then, since Supp(Z) ⊆ Bν , by the orthogonality of the
character χ and the trivial character, the sum vanishes unless Ys,t = Y ′s,t for all s ∈ Sµ
and t ∈ Tν with s < t, which by (24) and Lemma 39 implies Y = Y ′ and so y = y′. In
particular, χy is an eigenvector of RmLm. Moreover, using Lemma 39 and |Pµ| = q|Bµ|,
we can easily show that the corresponding eigenvalues is qκ(m,µ,λ).

Lemma 46. Let 1 6 m 6 N , and let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in
Lemma 11. Recall κ(m,µ, λ) from (23). Then for v ∈ E∗µEλV , we have the following:

LmRmv =

{
qκ(m,µ,λ)v if m ∈ Sµ and m 6∈ λ,
0 if m ∈ Tµ or m ∈ λ.
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Proof. Similar to the proof of Lemma 45.

Proposition 47. For λ ⊆ {1, 2, . . . , N} with even cardinality, the matrix Eλ belongs to
the algebra H in Definition 30.

Proof. Referring to (23), we set

θ(m,µ, λ) =

{
qκ(m,µ,λ) if m 6∈ λ,
0 if m ∈ λ

for 1 6 m 6 N , µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfying (ii) in Lemma 11. Then by
Lemmas 45 and 46, we have

RmLm + LmRm =
∑
µ,λ

θ(m,µ, λ)E∗µEλ,

where the sum is taken over all pairs µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfying (ii) in
Lemma 11. Pick µ ∈ {0, 1}N and multiply each term on the left of the above equation,
by E∗µ. Then we obtain

E∗µRmLm + E∗µLmRm =
∑
λ

θ(m,µ, λ)E∗µEλ,

where the sum is taken over λ ⊆ {1, 2, . . . , N} satisfying (ii) in Lemma 11. For a subset
λ′ ⊆ {1, 2, . . . , N}, since E∗µ, Eλ are mutually commutative and they are idempotents, we
have ∏

m∈λ′

(
E∗µRmLm + E∗µLmRm

)
=
∑
λ

(∏
m∈λ′

θ(m,µ, λ)

)
E∗µEλ, (25)

where the sum is taken over λ ⊆ {1, 2, . . . , N} satisfying (ii) in Lemma 11. Observe that
the coefficient

∏
m∈λ′ θ(m,µ, λ) vanishes if and only if λ ∩ λ′ 6= ∅.

We show that each E∗µEλ is a polynomial in E∗µRmLm + E∗µLmRm (1 6 m 6 N) by
induction on |λ|. If we apply λ′ = {1, 2, . . . , N} to the equation (25), then the right-hand
side becomes a nonzero scalar multiple of E∗µE∅. This means that E∗µE∅ is a polynomial in
E∗µRmLm + E∗µLmRm (1 6 m 6 N). Suppose each E∗µEλ′′ is a polynomial in E∗µRmLm +
E∗µLmRm (1 6 m 6 N) for all |λ′′| < k. Then for λ ⊆ {1, 2, . . . , N} with |λ| = k
satisfying (ii) in Lemma 11, we apply λ′ = {1, 2, . . . , N} \ λ to the equation (25). The
right-hand side is a nonzero scalar multiple of E∗µEλ plus a linear combination of E∗µEλ′′
with |λ′′| < k, which is a polynomial in E∗µRmLm + E∗µLmRm (1 6 m 6 N) by inductive
hypothesis. This means E∗µEλ is also a polynomial in E∗µRmLm +E∗µLmRm (1 6 m 6 N).
Therefore each E∗µEλ is a polynomial in E∗µRmLm + E∗µLmRm (1 6 m 6 N). Observe
that for λ ⊆ {1, 2, . . . , N} with even cardinality, we have

Eλ =
∑
µ

E∗µEλ

where the sum is taken over all µ ∈ {0, 1}N such that the pair (λ ∩ Sµ, λ ∩ Tµ) satisfies
(i), (ii) in Lemma 8. Then the result follows.
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We remark that the above proof of Proposition 47 also shows that the matrices Eλ are
independent of the basis v1, v2, . . . , vN for H adapted to the flag {xi}Ni=0 and the nontrivial
character χ of the additive group Fq.

Lemma 48. Let Vnew denote the set of all v ∈ V such that Lmv = 0 for all 1 6 m 6 N .
Then we have

Vnew =
∑
µ,λ

E∗µEλV (direct sum),

where the sum is taken over all pairs (µ, λ) with µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N}
satisfying (ii) in Lemma 11 such that λ is column-full with respect to µ in Definition 23.

Proof. Take µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfying (ii) in Lemma 11. Observe that
the following are equivalent:

(i) for 1 6 m 6 N , we have either m ∈ Sµ or m ∈ λ;

(ii) λ is column-full with respect to µ.

Then by Lemma 42, if λ is column-full with respect to µ, we have E∗µEλV ⊆ Vnew. Suppose
λ is not column-full with respect to µ. Then there exists 1 6 m 6 N such that m ∈ Tµ
and m 6∈ λ. By Lemma 45, for any v ∈ E∗µEλV , RmLmv is a nonzero scalar multiple of
v. In particular, Lmv 6= 0 and so v 6∈ Vnew. By above comments and by the fact that V
is the direct sum of E∗µEλV , the result follows.

Recall the column-full property in Definition 23. For µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N}
satisfying (ii) in Lemma 11, we say λ is row-full with respect to µ if Sµ ⊆ λ.

Lemma 49. Let Vold denote the set of all v ∈ V such that Rmv = 0 for all 1 6 m 6 N .
Then we have

Vold =
∑
µ,λ

E∗µEλV (direct sum),

where the sum is taken over all pairs (µ, λ) with µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N}
satisfying (ii) in Lemma 11 such that λ is row-full with respect to µ.

Proof. Similar to the proof of Lemma 48.

10 The scalar κ(m,µ, λ)

In this section, we discuss on the scalar κ(m,µ, λ) in (23).

Lemma 50. Let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma 11. Referring
to (23), we have the following.∑

m

(−1)µmκ(m,µ, λ) =
(N − 1)(N − 2|µ|)

2
,

where the sum is taken over all 1 6 m 6 N with m 6∈ λ.
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Proof. Fix µ ∈ {0, 1}N and we prove the assertion by induction on the cardinality of λ.
Let F (λ) denote the left-hand side of the equation. Observe that

F (λ) =

 ∑
s∈Sµ\λ

|Sµ(s− 1) \ λ|+
∑

s∈Sµ\λ

|Tµ(s+ 1) \ λ|+
∑

s∈Sµ\λ

|λ|
2


−

 ∑
t∈Tµ\λ

|Sµ(t− 1) \ λ|+
∑
t∈Tµ\λ

|Tµ(t+ 1) \ λ|+
∑
t∈Tµ\λ

|λ|
2

 .

Each of the second and fourth sums counts the number of pairs (s, t) ∈ Sµ × Tµ with
s, t 6∈ λ and t > s. Thus, the second and fourth terms cancel out, i.e.,

F (λ) =

 ∑
s∈Sµ\λ

|Sµ(s− 1) \ λ|

−
 ∑
t∈Tµ\λ

|Tµ(t+ 1) \ λ|

+
|λ|
2

(|Sµ \ λ| − |Tµ \ λ|) .

If λ = ∅, then we have∑
s∈Sµ

|Sµ(s− 1)| = 0 + 1 + · · ·+ (N − |µ| − 1) =
(N − |µ|)(N − |µ| − 1)

2
,

and ∑
t∈Tµ

|Tµ(t+ 1)| = 0 + 1 + · · ·+ (|µ| − 1) =
|µ|(|µ| − 1)

2
.

Therefore, we have

F (∅) =
(N − |µ|)(N − |µ| − 1)

2
− |µ|(|µ| − 1)

2
=

(N − 1)(N − 2|µ|)
2

and the result follows.
If |λ| > 1, there exist s = max(λ∩Sµ) and t = max(λ∩Tµ) since the pair (λ∩Sµ, λ∩Tµ)

satisfies (i) in Lemma 8. Set λ′ = λ \ {s, t} and observe that λ′ satisfies (ii) in Lemma 11
and we have

∑
s′∈Sµ\λ

|Sµ(s′ − 1) \ λ| =

 ∑
s′∈Sµ\λ′

|Sµ(s′ − 1) \ λ′|

− |Sµ \ λ|,
and ∑

t′∈Tµ\λ

|Tµ(t′ + 1) \ λ| =

 ∑
t′∈Tµ\λ′

|Tµ(t′ + 1) \ λ′|

− |Tµ \ λ|.
Therefore, since |λ| = |λ′|+ 2, we have

F (λ) = F (λ′)

and by the inductive hypothesis, the result follows.
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In the next lemma, we do not assume q to be a prime power.

Lemma 51. Let µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in
Lemma 11. Referring to (23), for q ∈ C with q 6= 0, 1, we have the following.

∑
m

(−1)µmqκ(m,µ,λ) =
qN−|µ| − q|µ|

q − 1
,

where the sum is taken over all 1 6 m 6 N with m 6∈ λ.

Proof. For notational convenience, in this proof we use the following notation. Take
n ∈ N \ {0}. For ν = (ν1, ν2, . . . , νn) ∈ {0, 1}n, a sequence a = (a1, a2, . . . , an) ∈ Zn is
called a κ-sequence with respect to ν whenever it satisfies

ai =

{
ai−1 + 1 if νi−1 = νi,

−ai−1 if νi−1 6= νi

for 2 6 i 6 n. We call ν ∈ {0, 1}n reduced if n 6 2 or ν is either 0 or 1. Let a =
(a1, a2, . . . , an) ∈ Zn be a κ-sequence with respect to a non-reduced ν = (ν1, ν2, . . . , νn) ∈
{0, 1}n. Then we have νi−1 6= νi for some 2 6 i 6 n. Let ν ′ ∈ {0, 1}n−2 be the sequence
obtained from ν by removing the coordinates i − 1 and i, and let a′ ∈ Zn−2 denote the
sequence obtained from a by removing the same pair of coordinates. Then it is easy
to show that the sequence a′ is again a κ-sequence with respect to ν ′. Moreover, by
continuing this process, any κ-sequence reaches a κ-sequence with respect to a reduced
tuple ν. More precisely, a κ-sequence a with respect to ν ∈ {0, 1}n becomes

(i) a κ-sequence of length 2 with respect to (0, 1) or (1, 0) if 2|ν| = n,

(ii) a κ-sequence of length n− 2|ν| with respect to 0 ∈ {0, 1}n−2|ν| if 2|ν| < n,

(iii) a κ-sequence of length 2|ν| − n with respect to 1 ∈ {0, 1}2|ν|−n if 2|ν| > n.

We call this a reduced κ-sequence from a. For a κ-sequence a = (a1, a2, . . . , an) ∈ Zn with
respect to ν = (ν1, ν2, . . . , νn) ∈ {0, 1}n, we define

f(ν, a; q) =
n∑
i=1

(−1)νiq(−1)
νiai .

Observe that the value f(ν, a; q) is invariant under the reducing process above. In partic-
ular, if a′ is a reduced κ-sequence with respect to ν ′ obtained from a κ-sequence a with
respect to ν, then we have f(ν, a; q) = f(ν ′, a′; q).

Set n = N − |λ|. Let ν = ν(µ, λ) ∈ {0, 1}n be the sequence obtained from µ by
removing all the coordinates indexed by λ. Consider the sequence a ∈ Zn defined by

a = ((−1)µmκ(m,µ, λ))m∈{1,2,...,N}\λ,
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where the index m increases from left to right. For 1 6 m < m′ 6 N with m,m′ 6∈ λ,
observe that

κ(m,µ, λ)− κ(m′, µ, λ) = |{t ∈ Tµ \ λ | m < t 6 m′}| − |{s ∈ Sµ \ λ | m 6 s < m′}|.

Therefore, the sequence a is a κ-sequence with respect to ν. Let a′ be a reduced κ-
sequence with respect to ν ′ from a. Then the left-hand side of the desired identity becomes
f(ν ′, a′; q).

We first consider the case 2|µ| = N . Then we have |Sµ| = |Tµ| and so 2|ν| = n since
the pair (λ∩Sµ, λ∩Tµ) satisfies (i) in Lemma 8. Thus, a′ is a κ-sequence of length 2 with
respect to (0, 1) or (1, 0) and so f(ν ′, a′; q) = 0 and the result follows. We next consider
the case 2|µ| < N . Then by the similar argument above, we have 2|ν| < n. Thus, a′ is a
κ-sequence of length n−2|ν| = N−2|µ| with respect to 0 ∈ {0, 1}n−2|ν|. By the definition
of κ-sequence, a′ is an arithmetic sequence with common difference 1. We claim that

a′ = (|µ|, |µ|+ 1, . . . , N − |µ| − 1).

To show this, since it is an arithmetic sequence, it suffices to show that∑
a′∈a′

a′ =
(N − 1)(N − 2|µ|)

2
.

This follows from Lemma 50 since
∑

a′∈a′ a
′ =

∑
a∈a a. For the case 2|µ| > N , the proof

is similar to that for the case 2|µ| < N . Hence the result follows.

11 The H-modules

Recall from Proposition 31 that the algebra H is semisimple. Thus the standard module
V is a direct sum of irreducible H-modules, and every irreducible H-module appears in
V up to isomorphism. We now discuss the H-submodules of V , which from now on we
call H-modules for short.

Proposition 52. Any irreducible H-module is generated by a nonzero vector v ∈ V such
that Lmv = 0 for all 1 6 m 6 N .

Proof. Set Φ(v) = {m | 1 6 m 6 N,Lmv 6= 0} for v ∈ V . Let W denote an irreducible H-
module and take a nonzero vector w ∈ W . If Φ(w) = ∅, then Lmw = 0 for all 1 6 m 6 N
and by the irreducibility of W , the module W is generated by w and so the result follows.
Suppose Φ(w) 6= ∅. Let m = min Φ(w) and set w′ = Lmw ∈ W . By Proposition 33 (i)
and (ii), we have Φ(w′) ( Φ(w). By continuing this process at most |Φ(w)| times, we get
a nonzero vector v ∈ W such that Φ(v) = ∅. By the same argument above, the assertion
holds.

Recall from Sections 8 and 9, that there are the matrices Eλ in H and that they turn
out to be independent of the basis v1, v2, . . . , vN for H and the nontrivial character χ of
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the additive group Fq. By Lemma 48 and Proposition 52, it suffices to consider the module
Hv for v ∈

∑
µ,λE

∗
µEλV , where the sum is taken over all pairs (µ, λ) with µ ∈ {0, 1}N

and λ ⊆ {1, 2, . . . , N} satisfying (ii) in Lemma 11 such that λ is column-full with respect
to µ in Definition 23.

Proposition 53. Let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma 11, and
assume that λ is column-full with respect to µ in Definition 23. Recall κ(m,µ, λ) in (23).
For a nonzero vector v ∈ E∗µEλV , the H-module Hv has a basis

w(ε) ∈ E∗µ+εV, ε = (ε1, ε2, . . . , εN), εm =

{
0 if m ∈ λ,
0 or 1 if m 6∈ λ,

(26)

on which the generators Lm, Rm (1 6 m 6 N) act as follows:

Lmw(ε) = qκ(m,µ,λ)−(ε1+···+εm−1)w(ε− m̂),

Rmw(ε) = qεm+1+···+εNw(ε+ m̂),

where we set w(ε) = 0 if ε is not of the form in (26).

Proof. Let H+ denote the subalgebra of H generated by R1, R2, . . . , RN . Consider H+v,
the H+-module generated by v. We show that H+v is an H-module. Let 1 6 m 6 N .
Then H+v is Rm-invariant by the construction and Km-invariant by Proposition 32 (ii),
(iv). In addition, H+v is Lm-invariant by Proposition 33 (i), (iii), (iv), Lemma 46 and
since Lmv = 0 by Lemma 48. Since H is generated by Rm, Lm and Km, for 1 6 m 6 N ,
H+v is an H-module. Thus we have H+v = Hv. By Proposition 33 (i), (iii), H+v is
spanned by

w(ε) = RεN
N R

εN−1

N−1 · · ·R
ε1
1 v,

for ε = (ε1, ε2, . . . , εN) ∈ {0, 1}N . By Lemma 29 (ii), w(ε) ∈ E∗µ+εV . By Lemma 43,
w(ε) 6= 0 if and only if m ∈ Sµ and m 6∈ λ for all 1 6 m 6 N with εm = 1. Thus (26)
forms a basis for Hv. For 1 6 m 6 N , the Lm-actions on w(ε) follow from Proposition
33 (iii), (iv), Lemma 46 and Lmv = 0. Similarly, for 1 6 m 6 N , the Rm-actions on w(ε)
follow from Proposition 33 (i), (iii). The result follows.

Proposition 54. Referring to Proposition 53, the basis (26) for Hv satisfies the following.

Kmw(ε) = q1/2−(µm+εm)w(ε),

for 1 6 m 6 N , where µ = (µ1, µ2, . . . , µN) and ε = (ε1, ε2, . . . , εN).

Proof. By Proposition 53, we have w(ε) ∈ E∗µ+εV . The result follows from the definition
of Km.

Theorem 55. For any irreducible H-module W , there uniquely exist µ ∈ {0, 1}N and
λ ⊆ {1, 2, . . . , N} satisfying (ii) in Lemma 11 where λ is column-full with respect to µ,
such that W is generated by a nonzero vector in E∗µEλV . Moreover, W is determined up
to isomorphism by µ and λ.
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Proof. By Proposition 52, there exists a nonzero vector v ∈ W with Lmv = 0 for all
1 6 m 6 N such that W = Hv. According to the direct sum decomposition in Lemma
48, we write

v =
∑
µ,λ

E∗µEλv.

Since v is nonzero, there exists a pair (µ, λ) such that E∗µEλv 6= 0. By Proposition 47,
E∗µEλv belongs to W and so by the irreducibility of W , E∗µEλv generates W . Suppose
there exist another pair (µ′, λ′) and a vector v′ ∈ V such that E∗µ′Eλ′v

′ also generates
W . Thus we have the two bases (26) for W . However, by comparing them, we obtain
(µ′, λ′) = (µ, λ) and the result follows.

Definition 56. Referring to Theorem 55, we call µ ∈ {0, 1}N the endpoint of W and
λ ⊆ {1, 2, . . . , N} the shape of W .

Corollary 57. Let λ ⊆ {1, 2, . . . , N} with even cardinality. For an irreducible H-module
W of shape λ, we have

dimW = 2N−|λ|.

Proof. Count the vectors in the basis (26) for W .

Theorem 58. For µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfying (ii) in Lemma 11 where
λ is column-full with respect to µ, there exists an irreducible H-module of endpoint µ and
shape λ. Moreover, the multiplicity in V is given by

q|Bµ|−n(λ∩Sµ)
∏

s∈λ∩Sµ

(
qρ(s,µ,λ) − 1

)
,

where n(λ ∩ Sµ) is defined in (20) and ρ(s, µ, λ) is defined in Lemma 15.

Proof. Take a nonzero vector v ∈ E∗µEλV . We show that W = Hv is irreducible. Consider
an irreducible H-module decomposition of W as follows.

W = W1 +W2 + · · ·+Wr, (direct sum)

for some positive integer r > 1. According to this decomposition, we write v = w1 +w2 +
· · · + wr such that wn ∈ Wn (1 6 n 6 r). Since this sum is direct and v ∈ E∗µEλW , we
find wn ∈ E∗µEλW for 1 6 n 6 r. However, by Proposition 53, we have dimE∗µEλW = 1.
Thus, all the vectors wn (1 6 n 6 r) are scalar multiples of v. This forces r = 1, i.e., W
is irreducible.

The multiplicity of W in V is dimE∗µEλV , which is determined in Corollary 25.

12 The quantum affine algebra Uq(ŝl2)

In this section, we fix a nonzero scalar q ∈ C which is not a root of unity. For n ∈ N, we
define

[n]q =
qn − q−n

q − q−1
.

We recall the definition of Uq(ŝl2) from [1] in terms of Chevalley generators.
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Definition 59 ([1, Section 2]). The quantum affine algebra Uq(ŝl2) is the associative
C-algebra generated by e±i , ki, k

−1
i (i = 0, 1) with the relations

kik
−1
i = k−1i ki = 1, k0k1 = k1k0, (27)

kie
±
i = q±2e±i ki, kie

±
j = q∓2e±j ki, i 6= j, (28)

e+i e
−
i − e−i e+i =

ki − k−1i
q − q−1

, e±0 e
∓
1 − e∓1 e±0 = 0, (29)

(e±i )3e±j − [3]q(e
±
i )2e±j e

±
i + [3]qe

±
i e
±
j (e±i )2 − e±j (e±i )3 = 0, i 6= j. (30)

We call e±i , ki, k
−1
i (i = 0, 1) the Chevalley generators for Uq(ŝl2).

It is known that the quantum affine algebra Uq(ŝl2) has the following Hopf algebra
structure. The comultiplication ∆ satisfies

∆(e+i ) = e+i ⊗ ki + 1⊗ e+i , ∆(e−i ) = e−i ⊗ 1 + k−1i ⊗ e−i , ∆(ki) = ki ⊗ ki.

It is also known that there exists a family of finite-dimensional irreducible Uq(ŝl2)-modules
Vd(α) for d ∈ N, α ∈ C \ {0}, where Vd(α) has a basis {ui}di=0 satisfying

e+0 ui = α[i+ 1]qui+1 (0 6 i 6 d− 1), e+0 ud = 0,

e+1 ui = [d− i+ 1]qui−1 (1 6 i 6 d), e+1 u0 = 0,

e−0 ui = α−1[d− i+ 1]qui−1 (1 6 ε 6 d), e−0 u0 = 0,

e−1 ui = [i+ 1]qui+1 (0 6 i 6 d− 1), e−1 ud = 0,

k0ui = q2i−dui (0 6 i 6 d),

k1ui = qd−2iui (0 6 i 6 d).

We call Vd(α) the evaluation module for Uq(ŝl2) with the evaluation parameter α. We

recurrently define the algebra homomorphism ∆(N) : Uq(ŝl2)→ Uq(ŝl2)⊗ · · · ⊗ Uq(ŝl2)︸ ︷︷ ︸
(N + 1) times

for

N ∈ N by

∆(0) = id,

∆(1) = ∆,

∆(N) = (id⊗ · · · ⊗ id︸ ︷︷ ︸
(N − 2) times

⊗∆) ◦∆(N−1) (N > 2).

This algebra homomorphism ∆(N) is called the N-fold comultiplication. For each N > 1,
by the (N − 1)-fold comultiplication ∆(N−1), a tensor product of N evaluation modules

again becomes a Uq(ŝl2)-module. More precisely, a tensor product Vd1(α1)⊗· · ·⊗VdN (αN)
has a basis

u(ε) = uε1 ⊗ · · · ⊗ uεN , 0 6 ε1 6 d1, . . . , 0 6 εN 6 dN , (31)
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on which the Chevalley generators act as follows:

e+0 u(ε) =
N∑
m=1

αm[εm + 1]qq
2(εm+1+···+εN )−(dm+1+···+dN )u(ε+ m̂), (32)

e+1 u(ε) =
N∑
m=1

[dm − εm + 1]qq
(dm+1+···+dN )−2(εm+1+···+εN )u(ε− m̂), (33)

e−0 u(ε) =
N∑
m=1

α−1m [dm − εm + 1]qq
(d1+···+dm−1)−2(ε1+···+εm−1)u(ε− m̂), (34)

e−1 u(ε) =
N∑
m=1

[εm + 1]qq
2(ε1+···+εm−1)−(d1+···+dm−1)u(ε+ m̂), (35)

k0u(ε) = q2(ε1+···+εN )−(d1+···+dN )u(ε), (36)

k1u(ε) = q(d1+···+dN )−2(ε1+···+εN )u(ε), (37)

where ε = (ε1, ε2, . . . , εN) ∈ ZN and we define u(ε) = 0 if ε is not of the form in (31).

Let W denote a finite-dimensional irreducible Uq(ŝl2)-module. By [1, Proposition 3.2],
there exist scalars ε0, ε1 ∈ {−1, 1} such that each eigenvalue of ki on W is εi times an
integral power of q for i = 0, 1. The pair (ε0, ε1) is called the type of W . For each pair

ε0, ε1 ∈ {−1, 1}, there exists an algebra automorphism of Uq(ŝl2) that sends

ki 7→ εiki, e+i 7→ εie
+
i , e−i 7→ e−i , (i = 0, 1).

By this automorphism, any finite-dimensional irreducible Uq(ŝl2)-module of type (ε0, ε1)
becomes that of type (1, 1).

Theorem 60 ([1, Theorem 4.11]). Every finite-dimensional irreducible Uq(ŝl2)-module of
type (1, 1) is isomorphic to a tensor product of evaluation modules. Moreover, two such
tensor products are isomorphic if and only if one is obtained from the other by permuting
the factors in the tensor product.

With an evaluation module Vd(α), we associate the set of scalars

Sd(α) = {αqd−1, αqd−3, . . . , αq−d+1}.

The set Sd(α) is called a q-string of length d. Two q-strings Sd1(α1), Sd2(α2) are said to
be in general position if one of the following occurs:

(i) Sd1(α1) ∪ Sd2(α2) is not a q-string,

(ii) Sd1(α1) ⊆ Sd2(α2) or Sd2(α2) ⊆ Sd1(α1).

Moreover, several q-strings are said to be in general position if every two q-strings are in
general position.

Theorem 61 ([1, Theorem 4.8]). A tensor product of evaluation modules for Uq(ŝl2) is
irreducible if and only if the associated q-strings are in general position.
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13 The algebra H and the quantum affine algebra Uq1/2(ŝl2)

In this section, we get back to the subspace lattice P over Fq. Recall the matrices Eλ ∈ H
in Sections 8 and 9. Let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma 11. For
v ∈ E∗µEλV and 1 6 m 6 N , if Lmv 6= 0, then we have m ∈ Tµ and m 6∈ λ by Lemma

42 and so (LmRm)Lmv = qκ(m,µ,λ)Lmv by Lemma 45. Therefore, we define the matrix
(LmRm)−1Lm by

(LmRm)−1Lmv =

{
q−κ(m,µ,λ)Lmv if Lmv 6= 0,

0 if Lmv = 0
(38)

for v ∈ V . We remark that (LmRm)−1Lm does not mean the product of (LmRm)−1 and Lm
since LmRm is not invertible by Lemma 45. Similarly, we define the matrix (RmLm)−1Rm

by

(RmLm)−1Rmv =

{
q−κ(m,µ,λ)Rmv if Rmv 6= 0,

0 if Rmv = 0
(39)

for v ∈ V .

Theorem 62. Let α1, α2, . . . , αN denote nonzero scalars. The standard module V sup-
ports a Uq1/2(ŝl2)-module structure on which the Chevalley generators act as follows:

generators actions on V

e+0 q(1−N)/2
∑N

m=1 αmRm

e+1 q(N−1)/2
∑N

m=1(LmRm)−1Lm

e−0
∑N

m=1 α
−1
m Lm

e−1
∑N

m=1(RmLm)−1Rm

k0
∏N

m=1K
−1
m

k−10

∏N
m=1Km

k1
∏N

m=1Km

k−11

∏N
m=1K

−1
m

Here the matrices (LmRm)−1Lm and (RmLm)−1Rm are defined in (38) and in (39), re-
spectively.

Proof. Referring to the above table, for i = 0, 1 let ê+i , ê
−
i , k̂i, k̂

−1
i denote the expressions

to the right of e+i , e
−
i , ki, k

−1
i respectively. We show these elements ê+i , ê

−
i , k̂i, k̂

−1
i (i = 0, 1)

satisfy the defining relations (27)–(30) of Uq1/2(ŝl2) on V .
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We first show ê+i , ê
−
i , k̂i, k̂

−1
i (i = 0, 1) satisfy the relations except the first relation in

(29). They satisfy the relations in (27) by the definitions of k̂i, k̂
−1
i (i = 0, 1). They satisfy

the first relation in (28) with i = 0 by Proposition 32. They satisfy the second relation
in (28) with (i, j) = (1, 0) by Proposition 32. Since the other relations involve ê+1 , ê

−
1 , we

show them as follows. Fix a nonzero vector v ∈ V . Then we apply both sides of each
defining relation to v and check the results are the same. These elements ê+i , ê

−
i , k̂i, k̂

−1
i

(i = 0, 1) satisfy the first relation in (28) with i = 1 by Proposition 32. They satisfy the
second relation in (28) with (i, j) = (0, 1) by Proposition 32. They satisfy the second
relation in (29) and the relations in (30) by Proposition 33.

It remains to show that they satisfy the first relation in (29). Take a nonzero vector
v ∈ E∗µEλV for some µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N , λ ⊆ {1, 2, . . . , N}. By Lemmas 45
and 46, we have

(
ê+0 ê

−
0 − ê−0 ê+0

)
v = −

(
q(1−N)/2

∑
m

(−1)µmqκ(m,µ,λ)

)
v,

where the sum is taken over all 1 6 m 6 N with m 6∈ λ. On the other hand, by the
definition of Km, we have(

k̂0 − k̂−10

q1/2 − q−1/2

)
v =

(
q|µ|−N/2 − qN/2−|µ|

q1/2 − q−1/2

)
v

By Lemma 51, it turns out that both scalars are the same and so ê+0 , ê
−
0 , k̂0, k̂

−1
0 satisfy

the first relation in (29). Similarly, ê+1 , ê
−
1 , k̂1, k̂

−1
1 satisfy the first relation in (29).

Corollary 63. Let α1, α2, . . . , αN denote nonzero scalars. There exists an algebra homo-
morphism from Uq1/2(ŝl2) to H that sends

e+0 7→ q(1−N)/2

N∑
m=1

αmRm, e+1 7→ q(N−1)/2
N∑
m=1

(LmRm)−1Lm,

e−0 7→
N∑
m=1

α−1m Lm, e−1 7→
N∑
m=1

(RmLm)−1Rm,

k0 7→
N∏
m=1

K−1m , k1 7→
N∏
m=1

Km.

Proof. Immediate from Proposition 62.

The algebra homomorphism in Corollary 63 turns an H-module into a Uq1/2(ŝl2)-
module.

Lemma 64. Let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma 11 where
λ is column-full with respect to µ in Definition 23. Let Wµ,λ denote an irreducible H-
module with endpoint µ and shape λ. The basis (26) for Wµ,λ has the following actions of
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Chevalley generators via the algebra homomorphism in Corollary 63.

e+0 w(ε) = q(1−N)/2

N∑
m=1

αmq
εm+1+···+εNw(ε+ m̂), (40)

e+1 w(ε) = q(N−1)/2
N∑
m=1

q−(εm+1+···+εN )w(ε− m̂), (41)

e−0 w(ε) =
N∑
m=1

α−1m θm(µ, λ)q−(ε1+···+εm−1)w(ε− m̂), (42)

e−1 w(ε) =
N∑
m=1

θm(µ, λ)−1qε1+···+εm−1w(ε+ m̂), (43)

k0w(ε) = q−N/2+|µ|+|ε|w(ε), (44)

k1w(ε) = qN/2−|µ|−|ε|w(ε), (45)

where ε = (ε1, ε2, . . . , εN) ∈ {0, 1}N . Here we define w(ε) = 0 if ε is not of the form in
(26).

Proof. Use Propositions 53, 54 and Corollary 63.

Lemma 65. Let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma 11 where λ is
column-full with respect to µ in Definition 23. We define d = (d1, d2, . . . , dN) ∈ {0, 1}N
by

dm =

{
1 if m 6∈ λ,
0 if m ∈ λ,

(1 6 m 6 N).

Then we have the following.

(i) |d| = N − 2|µ|.

(ii) If m 6∈ λ, then κ(m,µ, λ) = (N − 1)/2 + (d1 + · · ·+ dm−1)/2− (dm+1 + · · ·+ dN)/2
defined in (23).

Proof. (i) By the definition of d, we have |d| = N − |λ|. By the assumption, we have
|λ| = 2|µ| and so the result follows.

(ii) Assume m 6∈ λ. Observe that

|Sµ(m− 1) \ λ| = d1 + · · ·+ dm−1, |Tµ(m+ 1) \ λ| = 0.

By the definition of d,
|λ|/2 = N/2− (d1 + · · ·+ dN)/2.

Hence the result follows from the above comments and dm = 1.
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Theorem 66. Let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma 11 where λ is
column-full with respect to µ in Definition 23. Let Wµ,λ denote an irreducible H-module
with endpoint µ and shape λ. Then by the algebra homomorphism in Corollary 63, Wµ,λ

becomes a Uq1/2(ŝl2)-module and we have the following.

(i) Wµ,λ has type (1, 1).

(ii) Wµ,λ is isomorphic to the tensor product of V1(αm), where 1 6 m 6 N such that
m 6∈ λ.

Proof. (i) This follows from (44) and (45).
(ii) Recall (d1, d2, . . . , dN) ∈ {0, 1}N from Lemma 65. It suffices to show that

Wµ,λ ' Vd1(α1)⊗ · · · ⊗ VdN (αN).

Recall the basis w(ε) in (26) for Wµ,λ and the basis u(ε) in (31) for Vd1(α1)⊗· · ·⊗VdN (αN),
where ε = (ε1, ε2, . . . , εN) ∈ {0, 1}N such that w(ε) = 0 and u(ε) = 0 if dm < εm for some
1 6 m 6 N . We define a linear map ϕ from Vd1(α1)⊗ · · · ⊗ VdN (αN) to Wµ,λ that sends
u(ε) to γ(ε)w(ε), where

γ(ε) = q|ε|(1−N)/2
∏
m∈Tε

q(dm+1+···+dN )/2.

We check ϕ preserves the actions of Chevalley generators. Observe that

γ(ε) = q(N−1)/2q−(dm+1+···+dN )/2γ(ε+ m̂) (46)

for ε ∈ {0, 1}N .
By (36) and (44) and Lemma 65 (i), ϕ preserves the action of k0. By (37) and (45) and

Lemma 65 (i), ϕ preserves the action of k1. By (32), (40) and (46), the map ϕ preserves
the action of e+0 . By (33), (41) and (46), the map ϕ preserves the action of e+1 . By (34),
(42), (46) and Lemma 65 (ii), the map ϕ preserves the action of e−0 . By (35), (43), (46)
and Lemma 65 (ii), the map ϕ preserves the action of e−1 .
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