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Abstract

Let R be a family of n axis-parallel rectangles with packing number p — 1,
meaning that among any p of the rectangles, there are two with a non-empty inter-
section. We show that the union complexity of R is at most O(n + p?), and that
the (k — 1)-level complexity of R is at most O(n + kp?). Both upper bounds are
tight.

Mathematics Subject Classifications: 52C45, 52C15

1 Introduction

For a finite family C = {C1,Cs,...,C,} of geometric objects in general position in the
plane, the union complexity of U(C) = U, C; (or, in short, the union complexity of C) is
the number of vertices on the boundary 0(U(C)), where a vertex is an intersection point
of the boundaries of two objects C;, C; € C.! More generally, for any k > 0, the k-level
complexity of C is the number of vertices that are contained in the interior of exactly k
elements of C.

*Research partially supported by Grant 635/16 from the Israel Science Foundation, by the Shulamit
Aloni Post-Doctoral Fellowship of the Israeli Ministry of Science and Technology, and by the Kreitman
Foundation Post-Doctoral Fellowship.

TResearch partially supported by Grant 635/16 from the Israel Science Foundation.

!Formally, the definition of the union complexity is slightly more complex: it is the total number of
faces of all dimensions of the arrangement of the boundaries of the objects, which lie on the boundary of
the union (see [1]). We use our simpler definition as in our context, both definitions are clearly equivalent
up to a constant factor.
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Bounding the union complexity of families of geometric objects is useful for ana-
lyzing the running time of various algorithms, and has applications to linear program-
ming, robotics, molecular modeling, and many other fields. In particular, Clarkson and
Varadarajan [5] showed that if the union complexity of a family R of r ranges with
VC dimension ¢ is sufficiently close to O(r), then R has an e-net of size smaller than
O(glog g); Smorodinsky [11] showed that bounds on the union complexity and on the
level-1 complexity of families of geometric objects in the plane can be used in computing
the proper chromatic number and the conflict-free chromatic number of the corresponding
hypergraph. Union complexity of various families has been studied extensively; k-level
complexity was also the subject of extensive study and is sometimes considered harder to
evaluate. For example, finding the k-level complexity of a family of n half-planes is the
well-known ‘k-set problem’ posed by Lovasz (1971) and Erdds et al. (1973), which is still
wide open (see, e.g., [6, 12]). For more on union complexity and k-level complexity, see
the survey [1] and [10, Chapter 11].

For several families of geometric objects, it was shown that the union complexity is
asymptotically lower than the trivial O(n?) bound. In particular, Kedem et al. [9] showed
that the union complexity of any family of n pseudo-discs in the plane is at most 6n — 12,
and Alt et al. [2] and Efrat et al. [7] proved a similar bound for any family of fat wedges.
An almost linear bound for families of y-fat triangles was obtained by Ezra et al. [8].

For a general family of axis-parallel rectangles in the plane, the union complexity can
be quadratic — e.g., if the family is an §-by-5 grid of long and thin rectangles. However,
one may note that such a family contains as many as n/2 pairwise disjoint sets. Hence,
it is natural to ask whether any family of axis-parallel rectangles with a quadratic union
complexity must contain a linear-sized sub-family whose elements are pairwise disjoint.

In this note we answer this question in the affirmative. We show that the union
complexity of any family R of axis-parallel rectangles is sub-quadratic if the packing
number of the family is sub-linear. Recall that the packing number of R, denoted v(R),
is p — 1 if p is the smallest number such that among any p elements of R, two have a
non-empty intersection. Our main result is the following:

Theorem 1. Let R be a family of axis-parallel rectangles in general position with packing
number v(R). Then for any k > 1, the (k — 1)-level complexity of R is O(n + kv(R)?).
In particular, the union complezity of R is O(n + v(R)?).

Both results are tight, as we show by an explicit example.?

2 Proof of Theorem 1

The proof of Theorem 1 consists of several steps, and for convenience we divide them into
separate subsections. We start with a few definitions and notations.

2We note that our upper bound on the union complexity is not hereditary, in the sense that there
may exist a sub-family of R (of size ©(p), where v(R) = p — 1 is the packing number of R) whose
union complexity is quadratic in its number of elements. Another non-hereditary bound on the union
complexity, for specific families of discs in the plane, was obtained by Aronov et al. [3].
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2.1 Definitions and Notations

Throughout this note, R denotes a family of axis-parallel rectangles in the plane, and we
assume that R is in general position, meaning that no two rectangles have more than 4
common points (i.e., no two rectangles share a segment of the boundary; this implies that
no three boundaries intersect at the same point). Put v(R) = p — 1, so any p rectangles
in R contain two with a non-empty intersection.

For any x € R? the depth of x, denoted depth(z), is the number of rectangles in
R that contain z as an interior point. For k > 0, let Yj be the set of vertices (i.e.,
intersections of pairs of boundaries) of depth k. Of course, |Yy| is the union complexity
of R and |Y%| is the k-level complexity of R.

2.2 Partition of the rectangles into floors

Let R; € R be the rectangle whose upper boundary is the lowest (i.e., has the smallest y
coordinate) among the rectangles in R. If there are several such rectangles, we choose one
of them arbitrarily. Denote by ¢; the horizontal line that contains the upper boundary of
R;.

Define inductively a sequence {/;}a<i<,y, for some p’ < p, as follows. Let R; be the
rectangle whose upper boundary is the lowest between all elements of R whose lower
boundary is above ¢; 1. (Again, if there are several such rectangles, we pick one of them
arbitrarily.) Denote by ¢; the horizontal line that contains the upper boundary of R;. If
there are no rectangles in R whose lower boundary is above ¢;_1, take ¢; to be an arbitrary
horizontal line above ¢;_1, set p’ = i, and stop the process. Note that by the construction,
the rectangles {R;}1<;<p are pairwise disjoint. As v(R) = p — 1, this implies that the
process in indeed finite and that p’ < p.

We now define the partition of R into floors: we say that R € R belongs to floor ¢,
1 <i < p — 1, if the upper boundary of R is above or contained in ¢; and lower than
liy1. We denote the set of all rectangles in floor i (1 < i < p' — 1) by F;. It is clear from
the construction that {F;}1<i<py—1 is a partition of R into p’ —1 < p — 1 pairwise disjoint
families. In addition, we need the following observation:

Observation 2. For any 1 <i<p —1, if R € F; then RN {; # 0. Furthermore, i is the
largest index such that R intersects {;.

Proof. Let R € F;. If the lower boundary of R is above ¢; then by the definition of ¢;,1,
the upper boundary of R cannot lie strictly below ¢;, 1, a contradiction. Hence, the lower
boundary of R is either below ¢; or on ¢;. As the upper boundary of R is either on ¢; or
above ¢; and also lower than ¢; 1, the assertion follows. O

Observation 2 implies that R is pierced by the set of lines £ = {¢;,...,{,_1}, meaning
that each R € R has a non-empty intersection with (at least) one of the lines. A similar
argument shows that there exists a set H = {hy, ho,..., hy—1} (for some p” < p) of
vertical lines (arranged in increasing order of the x coordinate) that pierces R. We may
assume w.l.o.g. that p” = p. The set H will be used, along with £, in the sequel.
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Figure 1: Types of intersection of pairs of axis-parallel rectangles in general position.

2.3 Classification of the intersection points of type L

Intersection points of boundaries of two axis-parallel rectangles can be partitioned into
four types, depicted in Figure 1. The type described in Figure 1(a) (in which the inter-
section point is the rightmost-upmost point of the intersection of the rectangles) will be
called type L intersection. We denote by X the set of all points of type L in Y. In what
follows, we obtain an upper bound on | X|. By symmetry, this will imply an upper bound
on the k-level complexity of R. As a preparation, we classify the intersection points of
type L.

For any intersection point x of type L, we denote by A, the rectangle to whose upper
boundary x belongs, and by B, the rectangle to whose right boundary x belongs.

Definition 3. Let z € Xj. Denote by h, the rightmost amongst the vertical lines in the
set {h € H:hN B, #0}. We say that = is (A,, h,)-contributed.

For A € R, we say that z is A-contributed if there exists h € H such that = is (A, h)-
contributed. Conversely, for h € H, we say that x is h-contributed if there exists A € R
such that z is (A, h)-contributed (see Figure 2(a)).

Observation 4. 1. For any given A, h,k, there exists at most a single point x with
depth(z) = k that is (A, h)-contributed.

2. It may be that x is (A, h)-contributed, while ANh =10 (see Figure 2(b)).

Definition 5. An (A, h)-contributed point x is called an inner contribution of A if there
exist points y, z and lines h # h', b € H, such that:

e yis (A, h')-contributed and z is (A, h”)-contributed, and

e z lies strictly between y and z. (Note that all of x, y, 2z belong to the upper boundary
of A. This induces a natural ordering between them.)

If there are no such points, z is called an extremal contribution of A (see Figure 2(c)).
The following observation is crucial in the sequel.

Observation 6. Let x € X, be an (A, h;)-contributed intersection point. If x is an inner
contribution of A, then A intersects both h; and h;,1.
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Figure 2: An auxiliary figure for Section 2.3. In (a) and (b), the point x is (As, hs)-
contributed. In (c¢), € Xj is an inner contribution of A.

Proof. Denote the vertical lines that contain the left and right boundaries of A by [4
and ry4, respectively. Note that if for some m there exists an (A, h,,)-contributed point
Z, then the line h,,; must lie to the right of 14 (as otherwise, Bz must intersect A1,
contradicting the assumption that z is contributed by h,,). On the other hand, h,, must
lie to the left of r4, since it intersects Bz and the right boundary of B; is to the left of
ra (as the intersection point T is of type L, see Figure 1(a)).

In our case, as x is an inner contribution of A, there exist some s, s5 > 1 and points
y, z such that y is (A, h;_s, )-contributed and z is (A, h;1s,)-contributed. By the previous
paragraph, the former implies that h; s, lies to the right of {4 while h; g, lies to the
left of r4. As s1,89 > 1, this implies that both h; and h;,; lie to the right of [4 and to
the left of 4, and thus, both intersect A, as asserted. O

2.4 Upper bound on ‘inner contributions’ to the k-level complexity

In this subsection we obtain an upper bound on the number of elements of X, that are
inner contributions, by considering pairs of the form (Floor F;, vertical line h;) separately,
and for each such pair, upper bounding the number of (A, h;)-contributed points for
A € F; that are inner contributions.

Proposition 7. For k>0, 1<i<p —1,and 1 <j<p—1, let
Spl ={x € Xy : JA € Fy, x is (A, hy)-contributed and x is an inner contribution of A}.

(Informally, S,i’j 1s the set of all contributions to the k-level complexity, that are con-
tributed by h; on the i-th floor in an ‘inner’ way). Then for all i, 7,

ISP < k+ 1. (1)

Proof. Fix 1 < j < p—1. Define, for any 1 < <p — 1,
A; ={A € F;, : 3(A, hj)-contributed = € X}, that is an inner contribution of A}.

(Informally, A; is the set of all rectangles on the i-th floor, whose upper edge contains an
inner contribution to the k-level complexity, contributed by h;.) Denote |A;| = m;, and
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Figure 3: An illustration to the proof of Proposition 7.

let the elements of A; = {A, Ay, ..., Ay, } be ordered in descending order of the height
of the upper boundary, as demonstrated in Figure 3. (So, A; is the rectangle whose
upper boundary is the highest, As’s upper boundary is the second highest, etc.. Note
that equality cannot occur here as by Observation 6, any A € A; intersects both h; and
hji1, and so, if two of these rectangles had upper boundaries of the same height, they
would share part of the boundary, contradicting the assumption that the elements of R
are in general position.)

For each 1 <1 < m;, denote
Qi = {x € X} : x is (A;, hj)-inner contributed}.

By Observation 4, for each | we have |Q;| < 1. It is clear that
1Sp7| = [{x € X} : JA € A; such that z is (A, h;)-inner contributed}| = Z Q. (2)
I=1

Hence, the assertion will follow once we show that @; = ) for all [ > k + 1. To see this,
we prove that for each [, each x € Q;, and each 1 < r <[ —1, z is an interior point of A,
(and thus, each = € @ is of depth > [ — 1). We use several simple observations.

1. Any (A, h;)-contributed x lies between the lines h; (inclusive) and h;i; (non-
inclusive). Indeed, as x lies on the right boundary of B, and h; intersects B,
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x must lie either on h; or to the right of h;. On the other hand, if = lies on h;; or
on the right of h;;, then B, must intersect h;;1, a contradiction.

2. Any such z lies above or on the line /;, since it belongs to the upper boundary of
Al e F;.

3. Each of the rectangles Aj,..., A,,, intersects ¢; by Observation 2, and intersects
both h; and h;y; by Observation 6.

By the simple observations, for each 1 < r <[ — 1, the rectangle A, intersects ¢;, h; and
h;+1, and its upper boundary lies above z (since x lies on the upper boundary of A4;). As
x lies between the lines h; and hj;, and above ¢;, it follows that  is an interior point of
A,. This completes the proof. 0

2.5 Finalizing the proof of Theorem 1

Now we are ready to prove Theorem 1. Actually, we prove the following exact version of
the theorem:

Theorem 8. Let R be a family of n azis-parallel rectangles in general position with
v(R)=p—1. For any k > 0, the k-level complexity of R is at most 8n + 4(p — 1)(p —
3)(k +1). In particular, the union complexity of R is at most 8n + 4(p — 1)(p — 3).

Proof. By symmetry considerations, the k-level complexity of R is at most 4| X}|, so it is
sufficient to prove
[ Xkl <2n+ (p—1)(p—3)(k+1). (3)

We prove (3) by upper bounding the inner contributions and the extremal contributions
separately.

Inner contributions. By Proposition 7, for each ¢, 7, the number of inner contributions
that correspond to F; and h; is at most k+ 1. For j € {1,p — 1}, any h;-contributed z is
an extremal contribution. Hence, the number of inner contributions that correspond to
Fi is at most (p — 3)(k + 1), and so, the total number of inner contributions is at most

(p—1p—3)(k+1).

Extremal contributions. Let A € R. By the definition of inner and extremal con-
tributions, all A-contributed points that are extremal contributions belong to one of two
vertical lines. By Observation 4, for any single pair (A, h), X; contains at most one
(A, h)-contributed point. Therefore, there are at most two A-contributed points that are
extremal contributions. It follows that the total number of extremal contributions is at
most 2n. This completes the proof. n

Remark 9. Theorem 8 implies that the (< k)-level complexity of R is at most 8(k+ 1)n+
2(p—1)(p—3)(k+1)(k+2). We note that a similar bound on the (< k)-level complexity
can be achieved by first obtaining an upper bound on the union complexity of R and then
applying the classical technique of Clarkson and Shor [4] (which bounds the (< k)-level
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Figure 4: A family of axis-parallel rectangles that demonstrates the tightness of Theo-
rem 1.

complexity of a family R’ using a bound on the union complexity of a random sub-family
in which each element of R’ is selected with probability 1/k). It seems, however, that the
Clarkson-Shor technique does not provide an effective bound on the k-level complexity,
and thus is not sufficient for proving Theorem 8.

3 Tightness of Theorem 1

In this section we present a family R of n axis-parallel rectangles with ¥(R) = p — 1
whose (k — 1)-level complexity is ©(n + kp?), thus showing that Theorem 1 is tight (up
to a constant factor). We note that in our construction, we assume that k& + 1 < ﬁ.

The family R, presented in Figure 4, is a disjoint union of two subfamilies of n/2
rectangles each.

The subfamily drawn in the left of the figure consists of a sequence of pairwise-
intersecting rectangles in which each rectangle is taller and thinner than its successor.
This subfamily contributes O(n) points to the k-level complexity of R.

The subfamily drawn in the right of the figure is based on an (p — 2)-by-(p — 2) grid of
long thin rectangles. We replace each rectangle in the basic grid with m nested copies
to obtain a family of n/2 rectangles (for simplicity, we assume 4(p — 2)|n; note that only
the basic grid is depicted in the figure). This subfamily contributes ©(kp?) points to the

k-level complexity of R. (Here we use the assumption D) = k+1.)

Hence, the (k — 1)-level complexity of R is ©(n + kp?), as asserted.
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