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Abstract

Let R be a family of n axis-parallel rectangles with packing number p − 1,
meaning that among any p of the rectangles, there are two with a non-empty inter-
section. We show that the union complexity of R is at most O(n + p2), and that
the (k − 1)-level complexity of R is at most O(n + kp2). Both upper bounds are
tight.

Mathematics Subject Classifications: 52C45, 52C15

1 Introduction

For a finite family C = {C1, C2, . . . , Cn} of geometric objects in general position in the
plane, the union complexity of U(C) = ∪ni=1Ci (or, in short, the union complexity of C) is
the number of vertices on the boundary ∂(U(C)), where a vertex is an intersection point
of the boundaries of two objects Ci, Cj ∈ C.1 More generally, for any k > 0, the k-level
complexity of C is the number of vertices that are contained in the interior of exactly k
elements of C.
∗Research partially supported by Grant 635/16 from the Israel Science Foundation, by the Shulamit

Aloni Post-Doctoral Fellowship of the Israeli Ministry of Science and Technology, and by the Kreitman
Foundation Post-Doctoral Fellowship.
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1Formally, the definition of the union complexity is slightly more complex: it is the total number of

faces of all dimensions of the arrangement of the boundaries of the objects, which lie on the boundary of
the union (see [1]). We use our simpler definition as in our context, both definitions are clearly equivalent
up to a constant factor.
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Bounding the union complexity of families of geometric objects is useful for ana-
lyzing the running time of various algorithms, and has applications to linear program-
ming, robotics, molecular modeling, and many other fields. In particular, Clarkson and
Varadarajan [5] showed that if the union complexity of a family R of r ranges with
V C dimension δ is sufficiently close to O(r), then R has an ε-net of size smaller than
O( δ

ε
log δ

ε
); Smorodinsky [11] showed that bounds on the union complexity and on the

level-1 complexity of families of geometric objects in the plane can be used in computing
the proper chromatic number and the conflict-free chromatic number of the corresponding
hypergraph. Union complexity of various families has been studied extensively; k-level
complexity was also the subject of extensive study and is sometimes considered harder to
evaluate. For example, finding the k-level complexity of a family of n half-planes is the
well-known ‘k-set problem’ posed by Lovász (1971) and Erdős et al. (1973), which is still
wide open (see, e.g., [6, 12]). For more on union complexity and k-level complexity, see
the survey [1] and [10, Chapter 11].

For several families of geometric objects, it was shown that the union complexity is
asymptotically lower than the trivial O(n2) bound. In particular, Kedem et al. [9] showed
that the union complexity of any family of n pseudo-discs in the plane is at most 6n− 12,
and Alt et al. [2] and Efrat et al. [7] proved a similar bound for any family of fat wedges.
An almost linear bound for families of γ-fat triangles was obtained by Ezra et al. [8].

For a general family of axis-parallel rectangles in the plane, the union complexity can
be quadratic – e.g., if the family is an n

2
-by-n

2
grid of long and thin rectangles. However,

one may note that such a family contains as many as n/2 pairwise disjoint sets. Hence,
it is natural to ask whether any family of axis-parallel rectangles with a quadratic union
complexity must contain a linear-sized sub-family whose elements are pairwise disjoint.

In this note we answer this question in the affirmative. We show that the union
complexity of any family R of axis-parallel rectangles is sub-quadratic if the packing
number of the family is sub-linear. Recall that the packing number of R, denoted ν(R),
is p − 1 if p is the smallest number such that among any p elements of R, two have a
non-empty intersection. Our main result is the following:

Theorem 1. Let R be a family of axis-parallel rectangles in general position with packing
number ν(R). Then for any k > 1, the (k − 1)-level complexity of R is O(n + kν(R)2).
In particular, the union complexity of R is O(n+ ν(R)2).

Both results are tight, as we show by an explicit example.2

2 Proof of Theorem 1

The proof of Theorem 1 consists of several steps, and for convenience we divide them into
separate subsections. We start with a few definitions and notations.

2We note that our upper bound on the union complexity is not hereditary, in the sense that there
may exist a sub-family of R (of size Θ(p), where ν(R) = p − 1 is the packing number of R) whose
union complexity is quadratic in its number of elements. Another non-hereditary bound on the union
complexity, for specific families of discs in the plane, was obtained by Aronov et al. [3].
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2.1 Definitions and Notations

Throughout this note, R denotes a family of axis-parallel rectangles in the plane, and we
assume that R is in general position, meaning that no two rectangles have more than 4
common points (i.e., no two rectangles share a segment of the boundary; this implies that
no three boundaries intersect at the same point). Put ν(R) = p− 1, so any p rectangles
in R contain two with a non-empty intersection.

For any x ∈ R2, the depth of x, denoted depth(x), is the number of rectangles in
R that contain x as an interior point. For k > 0, let Yk be the set of vertices (i.e.,
intersections of pairs of boundaries) of depth k. Of course, |Y0| is the union complexity
of R and |Yk| is the k-level complexity of R.

2.2 Partition of the rectangles into floors

Let R1 ∈ R be the rectangle whose upper boundary is the lowest (i.e., has the smallest y
coordinate) among the rectangles in R. If there are several such rectangles, we choose one
of them arbitrarily. Denote by `1 the horizontal line that contains the upper boundary of
R1.

Define inductively a sequence {`i}26i6p′ , for some p′ 6 p, as follows. Let Ri be the
rectangle whose upper boundary is the lowest between all elements of R whose lower
boundary is above `i−1. (Again, if there are several such rectangles, we pick one of them
arbitrarily.) Denote by `i the horizontal line that contains the upper boundary of Ri. If
there are no rectangles in R whose lower boundary is above `i−1, take `i to be an arbitrary
horizontal line above `i−1, set p′ = i, and stop the process. Note that by the construction,
the rectangles {Ri}16i6p′ are pairwise disjoint. As ν(R) = p − 1, this implies that the
process in indeed finite and that p′ 6 p.

We now define the partition of R into floors: we say that R ∈ R belongs to floor i,
1 6 i 6 p′ − 1, if the upper boundary of R is above or contained in `i and lower than
`i+1. We denote the set of all rectangles in floor i (1 6 i 6 p′ − 1) by Fi. It is clear from
the construction that {Fi}16i6p′−1 is a partition of R into p′− 1 6 p− 1 pairwise disjoint
families. In addition, we need the following observation:

Observation 2. For any 1 6 i 6 p′− 1, if R ∈ Fi then R∩ `i 6= ∅. Furthermore, i is the
largest index such that R intersects `i.

Proof. Let R ∈ Fi. If the lower boundary of R is above `i then by the definition of `i+1,
the upper boundary of R cannot lie strictly below `i+1, a contradiction. Hence, the lower
boundary of R is either below `i or on `i. As the upper boundary of R is either on `i or
above `i and also lower than `i+1, the assertion follows.

Observation 2 implies that R is pierced by the set of lines L = {`1, . . . , `p′−1}, meaning
that each R ∈ R has a non-empty intersection with (at least) one of the lines. A similar
argument shows that there exists a set H = {h1, h2, . . . , hp′′−1} (for some p′′ 6 p) of
vertical lines (arranged in increasing order of the x coordinate) that pierces R. We may
assume w.l.o.g. that p′′ = p. The set H will be used, along with L, in the sequel.
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Figure 1: Types of intersection of pairs of axis-parallel rectangles in general position.

2.3 Classification of the intersection points of type L

Intersection points of boundaries of two axis-parallel rectangles can be partitioned into
four types, depicted in Figure 1. The type described in Figure 1(a) (in which the inter-
section point is the rightmost-upmost point of the intersection of the rectangles) will be
called type L intersection. We denote by Xk the set of all points of type L in Yk. In what
follows, we obtain an upper bound on |Xk|. By symmetry, this will imply an upper bound
on the k-level complexity of R. As a preparation, we classify the intersection points of
type L.

For any intersection point x of type L, we denote by Ax the rectangle to whose upper
boundary x belongs, and by Bx the rectangle to whose right boundary x belongs.

Definition 3. Let x ∈ Xk. Denote by hx the rightmost amongst the vertical lines in the
set {h ∈ H : h ∩Bx 6= ∅}. We say that x is (Ax, hx)-contributed.

For A ∈ R, we say that x is A-contributed if there exists h ∈ H such that x is (A, h)-
contributed. Conversely, for h ∈ H, we say that x is h-contributed if there exists A ∈ R
such that x is (A, h)-contributed (see Figure 2(a)).

Observation 4. 1. For any given A, h, k, there exists at most a single point x with
depth(x) = k that is (A, h)-contributed.

2. It may be that x is (A, h)-contributed, while A ∩ h = ∅ (see Figure 2(b)).

Definition 5. An (A, h)-contributed point x is called an inner contribution of A if there
exist points y, z and lines h 6= h′, h′′ ∈ H, such that:

• y is (A, h′)-contributed and z is (A, h′′)-contributed, and

• x lies strictly between y and z. (Note that all of x, y, z belong to the upper boundary
of A. This induces a natural ordering between them.)

If there are no such points, x is called an extremal contribution of A (see Figure 2(c)).

The following observation is crucial in the sequel.

Observation 6. Let x ∈ Xk be an (A, hi)-contributed intersection point. If x is an inner
contribution of A, then A intersects both hi and hi+1.
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Figure 2: An auxiliary figure for Section 2.3. In (a) and (b), the point x is (Ax, hx)-
contributed. In (c), x ∈ X0 is an inner contribution of A.

Proof. Denote the vertical lines that contain the left and right boundaries of A by lA
and rA, respectively. Note that if for some m there exists an (A, hm)-contributed point
x̄, then the line hm+1 must lie to the right of lA (as otherwise, Bx̄ must intersect hm+1,
contradicting the assumption that x̄ is contributed by hm). On the other hand, hm must
lie to the left of rA, since it intersects Bx̄ and the right boundary of Bx̄ is to the left of
rA (as the intersection point x̄ is of type L, see Figure 1(a)).

In our case, as x is an inner contribution of A, there exist some s1, s2 > 1 and points
y, z such that y is (A, hi−s1)-contributed and z is (A, hi+s2)-contributed. By the previous
paragraph, the former implies that hi−s1+1 lies to the right of lA while hi+s2 lies to the
left of rA. As s1, s2 > 1, this implies that both hi and hi+1 lie to the right of lA and to
the left of rA, and thus, both intersect A, as asserted.

2.4 Upper bound on ‘inner contributions’ to the k-level complexity

In this subsection we obtain an upper bound on the number of elements of Xk that are
inner contributions, by considering pairs of the form (Floor Fi, vertical line hj) separately,
and for each such pair, upper bounding the number of (A, hj)-contributed points for
A ∈ Fi that are inner contributions.

Proposition 7. For k > 0, 1 6 i 6 p′ − 1, and 1 6 j 6 p− 1, let

Si,jk = {x ∈ Xk : ∃A ∈ Fi, x is (A, hj)-contributed and x is an inner contribution of A}.

(Informally, Si,jk is the set of all contributions to the k-level complexity, that are con-
tributed by hj on the i-th floor in an ‘inner’ way). Then for all i, j,

|Si,jk | 6 k + 1. (1)

Proof. Fix 1 6 j 6 p− 1. Define, for any 1 6 i 6 p′ − 1,

Ai = {A ∈ Fi : ∃(A, hj)-contributed x ∈ Xk that is an inner contribution of A}.

(Informally, Ai is the set of all rectangles on the i-th floor, whose upper edge contains an
inner contribution to the k-level complexity, contributed by hj.) Denote |Ai| = mi, and
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Figure 3: An illustration to the proof of Proposition 7.

let the elements of Ai = {A1, A2, . . . , Ami
} be ordered in descending order of the height

of the upper boundary, as demonstrated in Figure 3. (So, A1 is the rectangle whose
upper boundary is the highest, A2’s upper boundary is the second highest, etc.. Note
that equality cannot occur here as by Observation 6, any A ∈ Ai intersects both hj and
hj+1, and so, if two of these rectangles had upper boundaries of the same height, they
would share part of the boundary, contradicting the assumption that the elements of R
are in general position.)

For each 1 6 l 6 mi, denote

Ql = {x ∈ Xk : x is (Al, hj)-inner contributed}.

By Observation 4, for each l we have |Ql| 6 1. It is clear that

|Si,jk | = |{x ∈ Xk : ∃A ∈ Ai such that x is (A, hj)-inner contributed}| =
mi∑
l=1

|Ql|. (2)

Hence, the assertion will follow once we show that Ql = ∅ for all l > k + 1. To see this,
we prove that for each l, each x ∈ Ql, and each 1 6 r 6 l− 1, x is an interior point of Ar
(and thus, each x ∈ Ql is of depth > l − 1). We use several simple observations.

1. Any (Al, hj)-contributed x lies between the lines hj (inclusive) and hj+1 (non-
inclusive). Indeed, as x lies on the right boundary of Bx and hj intersects Bx,
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x must lie either on hj or to the right of hj. On the other hand, if x lies on hj+1 or
on the right of hj+1, then Bx must intersect hj+1, a contradiction.

2. Any such x lies above or on the line `i, since it belongs to the upper boundary of
Al ∈ Fi.

3. Each of the rectangles A1, . . . , Ami
intersects `i by Observation 2, and intersects

both hj and hj+1 by Observation 6.

By the simple observations, for each 1 6 r 6 l − 1, the rectangle Ar intersects `i, hj and
hj+1, and its upper boundary lies above x (since x lies on the upper boundary of Al). As
x lies between the lines hj and hj+1 and above `i, it follows that x is an interior point of
Ar. This completes the proof.

2.5 Finalizing the proof of Theorem 1

Now we are ready to prove Theorem 1. Actually, we prove the following exact version of
the theorem:

Theorem 8. Let R be a family of n axis-parallel rectangles in general position with
ν(R) = p − 1. For any k > 0, the k-level complexity of R is at most 8n + 4(p − 1)(p −
3)(k + 1). In particular, the union complexity of R is at most 8n+ 4(p− 1)(p− 3).

Proof. By symmetry considerations, the k-level complexity of R is at most 4|Xk|, so it is
sufficient to prove

|Xk| 6 2n+ (p− 1)(p− 3)(k + 1). (3)

We prove (3) by upper bounding the inner contributions and the extremal contributions
separately.

Inner contributions. By Proposition 7, for each i, j, the number of inner contributions
that correspond to Fi and hj is at most k+ 1. For j ∈ {1, p− 1}, any hj-contributed x is
an extremal contribution. Hence, the number of inner contributions that correspond to
Fi is at most (p − 3)(k + 1), and so, the total number of inner contributions is at most
(p− 1)(p− 3)(k + 1).

Extremal contributions. Let A ∈ R. By the definition of inner and extremal con-
tributions, all A-contributed points that are extremal contributions belong to one of two
vertical lines. By Observation 4, for any single pair (A, h), Xk contains at most one
(A, h)-contributed point. Therefore, there are at most two A-contributed points that are
extremal contributions. It follows that the total number of extremal contributions is at
most 2n. This completes the proof.

Remark 9. Theorem 8 implies that the (6 k)-level complexity of R is at most 8(k+1)n+
2(p− 1)(p− 3)(k+ 1)(k+ 2). We note that a similar bound on the (6 k)-level complexity
can be achieved by first obtaining an upper bound on the union complexity of R and then
applying the classical technique of Clarkson and Shor [4] (which bounds the (6 k)-level
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Figure 4: A family of axis-parallel rectangles that demonstrates the tightness of Theo-
rem 1.

complexity of a family R′ using a bound on the union complexity of a random sub-family
in which each element of R′ is selected with probability 1/k). It seems, however, that the
Clarkson-Shor technique does not provide an effective bound on the k-level complexity,
and thus is not sufficient for proving Theorem 8.

3 Tightness of Theorem 1

In this section we present a family R of n axis-parallel rectangles with ν(R) = p − 1
whose (k − 1)-level complexity is Θ(n + kp2), thus showing that Theorem 1 is tight (up
to a constant factor). We note that in our construction, we assume that k + 1 6 n

4(p−2)
.

The family R, presented in Figure 4, is a disjoint union of two subfamilies of n/2
rectangles each.

The subfamily drawn in the left of the figure consists of a sequence of pairwise-
intersecting rectangles in which each rectangle is taller and thinner than its successor.
This subfamily contributes O(n) points to the k-level complexity of R.

The subfamily drawn in the right of the figure is based on an (p−2)-by-(p−2) grid of
long thin rectangles. We replace each rectangle in the basic grid with n

4(p−2)
nested copies

to obtain a family of n/2 rectangles (for simplicity, we assume 4(p− 2)|n; note that only
the basic grid is depicted in the figure). This subfamily contributes Θ(kp2) points to the
k-level complexity of R. (Here we use the assumption n

4(p−2)
> k + 1.)

Hence, the (k − 1)-level complexity of R is Θ(n+ kp2), as asserted.
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