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Abstract

A set of vertices in a graph is connected if it induces a connected subgraph.
Using Shearer’s entropy lemma and a computer search, we show that the number of
connected sets in a graph with n vertices and maximum vertex degree d is at most
O(1.9351n) for d = 3, O(1.9812n) for d = 4, and O(1.9940n) for d = 5. Dually, we
construct infinite families of graphs where the number of connected sets is at least
Ω(1.7651n) for d = 3, Ω(1.8925n) for d = 4, and Ω(1.9375n) for d = 5.

Mathematics Subject Classifications: 05C07, 05C30, 05C35, 05C40, 68R05,
68R10

1 Introduction

A connected set in an undirected graph is a subset of vertices that induces a connected
subgraph. Besides being fundamental combinatorial objects, connected sets play a key
role in various exponential-time graph algorithms. For instance, for an n-vertex graph one
can solve the traveling salesman problem [7], solve the maximum internal spanning tree

∗A preliminary version of this work was presented at the 40th International Workshop on Graph-
Theoretic Concepts in Computer Science [22]. The work was supported by the European Research
Council, under Grant 338077, and by the Academy of Finland, under Grant 276864.
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problem [4], and evaluate the Tutte polynomial [5] in time that is within an nO(1) factor
of the number of connected sets of the graph. Within the same time bound an algorithm
also finds an optimal Bayesian network having the input graph as its super-structure [26].

Relatively little is known about extremal combinatorics of connected sets in different
graph classes. What is immediate, however, is that an n-vertex graph can have at most
2n connected sets and that this bound is achieved by complete graphs. It is also easy
to see that sparsity alone does not imply a much smaller number of connected sets: an
n-star has an average degree less than 2, but the number of connected sets is 2n−1 + n.
In this light, graphs of bounded degree form a natural graph class to study; we define the
degree of a graph as the maximum degree of a vertex. Parameterizing by the size of the
connected set, Bollobás [8, pp. 129–130] provides two ways to prove that any graph of
degree d > 3 has at most (e(d− 1))k connected sets with k + 1 vertices, one of which is a
given vertex. For large k, this bound is, however, loose and of no use for bounding the total
number of connected sets of an n-vertex graph. The first nontrivial upper bound, namely
βnd + n, where βd = (2d+1 − 1)1/(d+1), was given by Björklund et al. [7]. In particular, we
have βd = 1.9680, 1.9874, 1.9948 for d = 3, 4, 5, respectively. We are not aware of better
bounds, prior to this work.

There is no reason to believe that the Björklund et al. bound is tight. First, its proof
applies Shearer’s entropy lemma, in essence, by taking the product of the number of pos-
sible projections of connected sets to the closed neighborhood of each vertex. Specifically,
the proof provides no means to construct a graph that would attain the upper bound.
Also, connectivity is an inherently global property that cannot be captured by looking
at individual local neighborhoods. Second, while it is easy to construct arbitrarily large
graphs that have an exponential number of connected sets, getting near the upper bounds
appears to be challenging.

In this paper, we seek improved upper bounds for the number of connected sets by
applying Shearer’s entropy lemma in an expanded context. Namely, we are interested
in projecting the connected sets not only to the immediate closed neighborhood of each
vertex but rather to the ball of radius r > 2 (the r-neighborhood) around each vertex.
By carrying out a computer search over the possible projections of connected sets to
r-neighborhoods, we obtain improved upper bounds for d 6 5.

Theorem 1. Every graph on n vertices with maximum degree d 6 5 has at most
bnd + n

(
2d

2+1 − 1
)

connected sets, where b3 = 1.9351, b4 = 1.9812, and b5 = 1.9940.

Dually, we show the following lower bounds for d 6 5.

Theorem 2. For each d 6 5 there is an infinite family of graphs with maximum degree
d where each graph of n vertices has at least Ω(and) connected sets, where a3 = 1.7651,
a4 = 1.8925, and a5 = 1.9375.

These lower bounds improve upon our preliminary results, which were obtained by
analyzing families of generalized ladder graphs [22]. The new lower bounds are due to
similar constructions where multiple “gadgets” of low degree are chained together, ad-
mitting a simple recursive characterization of the number of connected sets. We expect
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each of these bounds to be improved further by expanding the search over the space of
possible gadgets. The main obstacle here is the computational cost of analyzing a single
gadget, as it scales exponentially in the number of vertices of the gadget. The programs
and gadgets used to prove Theorems 1 and 2 are available in the online appendix.1

Finally, since we are not aware of any non-trivial lower bounds for graphs of arbitrary
degree in the literature, we present one such bound, based on a certain parameterized
family of the gadget constructions.

Theorem 3. For each d > 6 there is an infinite family of graphs where each graph of n
vertices has at least Ω(and) connected sets, with ad = (3 · 2d−5)1/(d−3).

Related work. The maximum number of subsets of vertices satisfying a given property has
been studied for many different types of properties. In the case of maximal independent
sets (or dually, maximal cliques), the classical Moon–Moser [25, 23] upper bound is known
to be tight. Tight upper bounds have also been established in the case of maximal induced
matchings and other families of maximal induced r-regular subgraphs [20]. In the case of
maximal bicliques [15], the known upper bound is tight up to a polynomial factor. For
various other important properties the gap between the known lower and upper bounds
remains relatively large, such as in the case of minimal dominating sets [12], minimal
connected dominating sets [18], minimal feedback vertex sets (in general graphs [11] or in
tournaments [24, 17]), minimal independent feedback vertex sets [1], minimal connected
vertex covers [19], maximal induced bipartite subgraphs [9], minimal separators [16],
potential maximal cliques [13, 16], maximal induced d-degenerate subgraphs [27], and
irredundant sets [3]. In a typical case the upper bound is obtained by a careful analysis
of an appropriate branching algorithm.

Entropy methods, applied in the present work, have previously yielded tight bounds
for certain properties in bounded degree graphs. For independent sets in d-regular graphs
with n vertices the bound (2d+1−1)n/2d was conjectured to be tight by Alon [2]. Kahn [21]
showed that the conjecture holds for bipartite graphs. Later, Zhao [29] confirmed that the
conjecture holds in general by presenting an unexpectedly simple reduction to the bipartite
case; Galvin [14] reviews earlier developments. Björklund et al. [6] used Shearer’s entropy
lemma to show that the bound (2d+1−1)n/(d+1) is tight for the number of dominating sets
in n-vertex graphs of degree at most d.

In the case of connected sets, Björklund et al. [7] give further upper bounds for the
number of connected sets when the connected sets are also required to be dominating or
“transient” (a more strict condition that any prefix of a Hamiltonian cycle must satisfy),
or when the graph is assumed to be triangle-free. In particular, the traveling salesman
problem can also be solved within an nO(1) factor of the number of transient connected sets,
improving upon the bound based on connected sets alone. Motivated by an application
to structure learning in Bayesian networks, Perrier, Imoto, and Miyano [26] present an
empirical study on the number of connected sets in random bounded degree graphs.
Vince [28] gives degree-based conditions under which the number of connected sets grows
exponentially, as well as tight bounds in terms of the number of edges.

1https://github.com/jwkangas/connected-sets.
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2 Upper Bounds on the Number of Connected Sets

Our upper bounds are derived by extending the Shearer’s entropy lemma -based projection
approach of Björklund et al. [7] to consider neighborhoods whose radius r is greater than
one. Here the essential difficulty and our contribution is to develop computer-assisted
analytical tools to study projections of connected sets to neighborhoods of vertices.

We begin by reviewing a basic template suitable for any maximum degree d and any
radius r for vertex neighborhoods. We then proceed to characterize in more detail the
worst-case graphs induced by the neighborhoods. Making use of the characterization,
we give an algorithm that suffices to carry out a complete analysis of the cases d 6 5
and r 6 2, leading to Theorem 1. While a computer search would be feasible beyond
these parameters, we conclude this section by showing that our method of studying the
“boundary-connected” projections appears to be restricted to the case d 6 5 and r 6 2.
That is, beyond these parameters, an analysis based on boundary-connectivity appears
not to yield improved upper bounds over those obtained by simply taking r = 1.

2.1 The Projection Method

Our main tool for deriving upper bounds for the number of connected sets is Shearer’s
entropy lemma, which is most conveniently deployed in our context in the following com-
binatorial form:

Lemma 4 (Chung et al. [10]). Let V be an n-element set and let A1, A2, . . . , Ak be subsets
of V such that every v ∈ V occurs in at least δ of these subsets. Let F be a set of subsets
of V . For each 1 6 i 6 k, define the projections Fi := {F ∩ Ai : F ∈ F}. Then,

|F|δ 6
k∏
i=1

|Fi| .

Lemma 4 enables us to obtain control over the number of connected sets in a graph
by taking the sets Ai to be (augmented) neighborhoods of vertices.

In more precise terms, let G be an undirected graph with vertex set V and let S ⊆ V
be a subset of vertices. Let r = 0, 1, . . . be a radius parameter. Let us write N r

G[S] for the
set of all vertices u ∈ V such that there exists a vertex v ∈ S for which the shortest-path
distance between u and v is at most r. In particular, when S = {v} is a singleton set
consisting of the vertex v ∈ V only, we write N r

G[v] for N r
G[S] and say that N r

G[v] is the
(closed) neighborhood of the vertex v of radius r. When r = 1 we may omit the parameter
r from the notation. We observe that N0

G[S] = S and that N r
G[S] = NG[N r−1

G [S]] for
r > 1.

The following immediate lemma recalls the Moore bound δr for the size of N r
G[v].

Lemma 5. Suppose that the graph G has maximum vertex degree d. Then for all r =
0, 1, . . . and all vertices v ∈ V it holds that |N r

G[v]| 6 δr, where

δr := 1 + d
r−1∑
i=0

(d− 1)i =
d(d− 1)r − 2

d− 2
.
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Now let F be a set of subsets of V . For r = 0, 1, . . . and v ∈ V , let us write Fv,r =
{F ∩N r

G[v] : F ∈ F} for the projection of F into the neighborhood of v of radius r. We are
now ready to prove our main template for upper bounds. In essence, this lemma replaces
the application of Jensen’s inequality in the Björklund et al. [7] analysis with a uniform
bound (the parameter ρ) that is easier to deploy over larger neighborhoods.

Lemma 6. Let 0 6 ρ 6 1 be a number such that |Fv,r| 6 2|N
r
G[v]|ρ holds for all v ∈ V .

Then, |F| 6 (2ρ1/δr)n.

Proof. Our intent is to apply Lemma 4. Towards this end, start by setting Av := N r
G[v]

for each v ∈ V . Next, for each u ∈ V , if u is contained in k 6 δr − 1 subsets Av, then
add u to δr − k subsets not already containing u (it does not matter which). As a result,
each u is contained in exactly δr subsets Av.

Now define for each v ∈ V the set Fv := {F ∩ Av : F ∈ F}. Because N r
G[v] ⊆ Av, we

have
|Fv| 6 |Fv,r| · 2|Av |−|Nr

G[v]| 6 2|N
r
G[v]|ρ · 2|Av |−|Nr

G[v]| 6 2|Av |ρ .

Taking the product over all v ∈ V and observing that
∑

v∈V |Av| = δrn, the claim follows
by Lemma 4.

To illustrate the use of Lemma 6 in a simple setting, let us reprove the Björklund et
al. [7] upper bound for the number of connected sets of G:

Corollary 7. Let G be an n-vertex graph with maximum vertex degree at most d. Then
G has at most (2d+1 − 1)n/(d+1) + n connected sets.

Proof. Let F be the family of connected sets of G, with the n singleton sets consisting of
each individual vertex removed from F. Take r = 1 and observe that then δr = d + 1.
Furthermore, since the singleton sets {v} have been removed from F, we must have
F ∩ N r

G[v] 6= {v} for each v ∈ V and F ∈ F. It follows that we can take ρ = 1 − 1/2d+1

and the claim follows.

2.2 Neighborhoods with Radius r > 2

Let us now proceed to consider the case r > 2 and in particular the feasible projections of
connected sets to a vertex neighborhood N r

G[v]. Accordingly, assume that r > 2 is fixed.
Since our focus is on exponential growth rates as a function of the number of vertices, n,

we can simplify the analysis by omitting all nonempty connected sets that are completely
contained in at least one of the neighborhoods N r

G[v]. Let us call such sets local connected
sets. The following lemma is immediate.

Lemma 8. There are at most (2δr − 1)n local connected sets.

Our interest in what follows is thus to carry out a worst-case analysis of the number
of connected sets that are not local. Let F be the family of non-local connected sets of
G. Our intent is now to apply the projection method and Lemma 6 to F.
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(a) (b) (c)

v v v 

(d) (e) (f)

Figure 1: Vertex subsets that can (a–c) or cannot (d–f) belong to projections of non-local
connected sets, with d = 3 and r = 2.

Intuitively, a connected set that is not local must “exit” any neighborhood that it in-
tersects because otherwise the set would be localized in that neighborhood. In particular,
such “exit” requires us to have vertices at the “boundary” of the neighborhood.

Let us say that a subset S ⊆ N r
G[v] is boundary-connected relative to v if each connected

component of G[S] contains at least one vertex u ∈ N r
G[v]\N r−1

G [v] such that u is adjacent
to fewer than d vertices in N r

G[v]. (In particular, degree less than d is necessary so that we
can potentially “exit” from u to outside N r

G[v]. Note, however, that the definition does
not require that such an exit actually exists in G. In particular we want this to be the
case since we want to be able to check for boundary-connectivity without looking beyond
the subgraph induced by N r

G[v].) Figure 1 shows examples of sets that are and are not
boundary-connected for d = 3 and r = 2.

Lemma 9. Let C be a non-local connected set of G. Then it holds for each vertex v ∈ V
that the projection C ∩N r

G[v] is boundary-connected relative to v.

Proof. When C is empty the claim is trivial, so suppose that C is nonempty. Because C is
non-local, we must have C 6⊆ N r

G[v]. It suffices to show that S := C ∩N r
G[v] is boundary-

connected relative to v. Let t ∈ C \N r
G[v]. Let G[S ′] be a connected component of G[S]

and s ∈ S ′. Because C is a connected set, there is a path (v0, v1, . . . , vk) in G such that
v0 = s, vk = t and, for some i 6 k, s′ := vi−1 ∈ S ′ and t′ := vi ∈ C \ S ′. Now, t′

cannot belong to N r
G[v], since otherwise we would get a contradiction to the assumption

that G[S ′] is a connected component of G[S]. Thus it holds that s′ ∈ N r
G[v] \ N r−1

G [v].
It remains to observe that s′ is adjacent to at most d − 1 vertices in N r

G[v], since s′ is
adjacent to t′ and G is of degree at most d.

Now observe that Lemma 9 and Lemma 6 together imply that the number of non-local
connected sets of G is bounded from above by (2ρ

1/δr
d,r )n, where ρd,r is a constant such that

every neighborhood N r
G[v] has at most 2|N

r
G[v]|ρd,r boundary-connected sets S.

Our strategy for completing the proof of Theorem 1 is now to optimize the values ρd,r
for r = 2 and d 6 5 with computer search. Because boundary-connectivity is intrinsic
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to each neighborhood N r
G[v], we can carry out the optimization without paying attention

how this neighborhood is connected to the rest of the graph.

2.3 Extremal Neighborhood Graphs for r = 2

Let us say that a graph H with maximum degree d is a neighborhood graph with radius
r and root v if the vertex set of H is N r

H [v]. Clearly, a neighborhood graph has at
most δr vertices. Thus, for any fixed d and r we can optimize the constant ρd,r by
finding the maximum number of boundary-connected sets (relative to v) admitted by any
neighborhood graph (with root v) for the parameters d and r. This is what we proceed
to do, using computer search.

The following small observation is useful to reduce the number of neighborhood graphs
that need to be considered in the search.

Lemma 10. Let H be a neighborhood graph with radius r and root v. Let H ′ be the
neighborhood graph with radius r and root v obtained from H by removing each edge of
H that joins two vertices in N r

H [v] \ N r−1
H [v]. Then H ′ has at least as many boundary-

connected sets relative to v as H.

Proof. Because all deleted edges join two vertices at maximum distance (r) from v in
H, it is immediate that the H ′ is a neighborhood graph with radius r and root v. Let
S be a boundary-connected set in H relative to v. Because the removal of an edge
leaves two vertices of degree less than d, any new connected component contains a vertex
u ∈ N r

H′ [v] \N r−1
H′ [v] that is adjacent to fewer than d vertices of H ′. Thus, S is boundary-

connected in H ′ relative to v.

This lemma allows us to restrict our attention to neighborhood graphs in which the
boundary vertices, that is, the set N r

G[v]\N r−1
G [v], form an independent set. We call these

graphs essential neighborhood graphs.
Our focus on small parameters r = 2 and d 6 5 implies that the reduction to essential

neighborhood graphs, combined with lightweight isomorph rejection suffices to carry out
an optimization of ρd,r with exhaustive search.

Let us now turn to the details of the algorithm that we use to enumerate the essential
neighborhood graphs. Recall that we have fixed r = 2 and the maximum degree to be at
most d 6 5. Suppose the graph H has n vertices. Since r = 2 we can partition the set of
vertices V of H into three sets V0, V1, V2 based on distance from the root vertex v ∈ V .
Let us write |V0| = n0, |V1| = n1, and |V2| = n2. It is immediate that V0 = {v} and hence
n0 = 1. Furthermore, n = n0 + n1 + n2. Since the maximum degree is at most d, we have
1 6 n1 6 d and 1 6 n2 6 (d− 1)n1. Thus in particular we observe that 3 6 n 6 1 + d2.
Finally, we observe that we can characterize the edges of H as follows. First, each vertex
in V1 is adjacent to v. Second, the vertices in V1 may or may not be adjacent to each
other, we have to search through all possibilities within the degree bound. Third, each
vertex in V2 must be adjacent to at least one vertex in V1 and must not be adjacent to
v; again we have to search through all possibilities. Finally, because H is an essential
neighborhood graph, there are no edges joining the vertices in V2.
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Figure 2: Worst-case neighborhood graphs of radius 2, for degree 3, 4, and 5.

To reduce the number of isomorphic (and hence redundant) graphs encountered in the
search, we implement the following lightweight isomorph rejection. Suppose that there
is a total order on V1 and on V2. In the second stage of the algorithm, when we are
searching through all possible ways of joining vertices in V1 with edges, we require that
the degrees of the vertices in V1 form a non-increasing sequence if listed in the total order
of V1. Furthermore, in the third stage of the algorithm, when we are joining vertices in
V2 by edges to vertices in V1, we require that with respect to the lexicographic order of
subsets of V1 it holds that NH [u] 6 NH [u′] whenever u < u′ holds for u, u′ ∈ V2. It is
immediate that even with this isomorph rejection in place, the algorithm traverses at least
one representative from every isomorphism class of neighborhood graphs (with the root
individualized).

For each essential neighborhood graph H that survives our isomorph rejection, we test
whether the graph is not maximal, that is, whether it would be possible to add an edge
with both ends in V1 or an edge joining a vertex in V1 with a vertex V2 so that the affected
vertices have degree at most d in V1 and at most d − 1 in V2 after the addition. If H is
not maximal, we reject it from further consideration. (Indeed, for a fixed value of d, a
maximal graph maximizes the number of boundary-connected sets, and at least one such
maximal graph from each isomorphism class of maximal graphs will be encountered in
the search.)

Each H that survives the maximality test is passed to a final enumeration of the
boundary-connected sets, which proceeds as follows. First we add a new vertex z to H
and join it by an edge to every vertex u ∈ V2, provided that u has degree less than d.
Then we count the connected sets that contain z using the folklore algorithm; see, for
example, the description given by Björklund et al. [5].

The total time required to carry out the search was a few hours on a standard desktop
computer with an Intel Core i7-4770K CPU. Figure 2 shows the worst-case neighborhood
graphs found for d = 3, 4, 5. The corresponding numbers of boundary-connected sets are
184, 1744, and 15136, respectively, yielding the optimal ratios

ρ3,2 = 184/28, ρ4,2 = 1744/211, ρ5,2 = 15136/214 .

To complete the proof of Theorem 1 it remains to apply Lemma 6 and calculate

2ρ
1/10
3,2 = 1.9350 . . . , 2ρ

1/17
4,2 = 1.9811 . . . , 2ρ

1/26
5,2 = 1.9939 . . . .
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2.4 Limitations of the Method

A fundamental limitation of neighborhood graphs and boundary-connectivity is that we
have little control over what happens at the boundary vertices since these vertices may
be connected beyond the boundary. With increasing d or r this limitation becomes more
severe because the size of the boundary increases implying that we can exclude compar-
atively fewer and fewer projections when applying the projection method.

In fact, we can witness this limitation already for r = 2 and d > 6 as we now proceed
to demonstrate. Indeed, we observe that the worst-case neighborhood graphs shown in
Figure 2 follow a pattern which we can generalize as follows:

Definition 11. An undirected graph G is a d-mitten if its vertices can be partitioned
into singletons {v} and {u} and sets A, B, C, each of size d−1 with exactly the following
adjacencies: v is adjacent to u and every vertex in A. Every vertex in A is adjacent to
every vertex in B. Every vertex in C is adjacent to u. The vertex v is called the center
of the d-mitten. The vertices v and u are shown in Figure 2.

We aim to show that any d-mitten has a large number of boundary-connected sets,
and that particularly with d > 6 the number is large enough to only yield weak bounds for
the number of connected sets. For any fixed d, this could be verified by direct calculation,
possibly again aided by a computer. However, the simple structure of d-mittens allows
us to find a closed-form expression that, not only enables the analysis for an arbitrary d,
but also gives a way to check the correctness of the numbers computed for d = 3, 4, 5 by
the general algorithm.

Lemma 12. Let G be a d-mitten with center v. Then the number of boundary-connected
sets of G relative to v is given by 23d−1 − 5 · 22d−2 + 2d.

Proof. Let {u}, A, B, and C be the vertex subsets of G guaranteed in the definition of
d-mitten. We will count the number of vertex subsets S of G that are not boundary-
connected relative to v, or n.b.c. for short. We consider four disjoint cases and denote
their contributions to the count by c1, c2, c3, and c4.

Assume first that v ∈ S. Observe that now S is n.b.c. if and only if there is no path
in G[S] from v to a vertex in B or C. We consider separately the cases u ∈ S and u /∈ S.
Suppose u ∈ S. Then S cannot intersect C, since otherwise there would be a path in G[S]
from v to a vertex in C. Likewise, S can intersect only A or B but not both. Now, if S
does not intersect A, then S may contain any of the 2d−1 subsets of B, and vice versa,
yielding c1 := 2d − 1 possibilities for S in total, where the −1 is due to double counting
the case where S is disjoint from both A and B. Suppose then that u /∈ S. Again, we
have 2d − 1 possible intersections with A ∪ B, but now, in addition, any subset of C can
be contained in S, yielding c2 := (2d − 1)2d−1 possibilities for S in total.

Assume then that v /∈ S. Now S is n.b.c. if and only if X := S ∩ ({u}∪C) is n.b.c. or
Y := S ∩ (A ∪ B) is n.b.c. We count first the cases where X is n.b.c. This holds exactly
when u ∈ S and S does not intersect C. From A and B any subset can be contained in
S, yielding c3 := 22(d−1) possibilities. Finally, we count the cases where Y is n.b.c. but
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(a) (b) (c) (d)

Figure 3: Neighborhood graphs with a large number of boundary-connected sets.

X is not. The set Y is n.b.c. exactly when S intersects A but not B, yielding 2d−1 − 1
possibilities. The set X has 2d possible configurations of which exactly one is n.b.c. Thus,
we have c4 := (2d−1 − 1)(2d − 1) possibilities in total.

Summing up c1 + c2 + c3 + c4 yields 5 · 22d−2− 2d. It remains to note that G has 3d− 1
vertices and thus 23d−1 vertex subsets in total.

The following lemma shows that d-mittens, indeed, result in weak bounds compared
to the simple bound:

Lemma 13. Let d > 6. Then

(2d+1 − 1)1/(d+1) 6 2
(23d−1 − 5 · 22d−2 + 2d

23d−1

)1/(d2+1)

.

Proof. For d = 6, the inequality is verified by direct calculation (details omitted).
Suppose d > 7. Multiplying both sides by 2−1 and raising to the d2 + 1, the left-hand

side becomes 2−(d
2+1) · (2d+1 − 1)(d

2+1)/(d+1). Simplifying this product and the remaining
fraction on the right-hand side, we have that the inequality holds if and only if(

1− 2−d−1
)(d2+1)/(d+1)

6 1− 5 · 2−d−1 + 2−2d+1 .

We proceed by applying the Bonferroni inequality

(1− p)k 6 1− kp+

(
k

2

)
p2

with p := 2−d−1 and k := b(d2 + 1)/(d + 1)c. Observe that
(
k
2

)
6
(
d+1
2

)
6 2d+1 and

k > b(72 + 1)/(7 + 1)c = 6. Thus, we have (1 − p)k 6 1 − (k − 1)p 6 1 − 5 · 2−d−1,
completing the proof.

Finally, we turn to the case where the radius r is larger than 2. Here we only investigate
the cases where r equals 3 or 4 and the maximum degree d equals 3 and 4. For these
cases, the graphs shown in Figure 3 imply

ρ3,3 > 31/26 , ρ4,3 > 321/29 , ρ3,4 > 1480/212 , ρ4,4 > 459/210 .

Consequently,

2ρ
1/22
3,3 > 1.9351 , 2ρ

1/53
4,3 > 1.9824 , 2ρ

1/46
3,4 > 1.9562 , 2ρ

1/161
4,4 > 1.9900 ,

exceeding the respective values b3 = 1.9351 and b4 = 1.9812 given in Theorem 1.
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Figure 4: A gadget G of degree 3 (left) and the graph G5 (right) consisting of five gadgets
linked together by their join vertices.

3 Lower Bounds on the Number of Connected Sets

In this section we seek lower bounds on the maximum number of connected sets in graphs
of bounded degree. As noted by Perrier et al. [26] in an empirical analysis, graphs that
maximize the number of connected sets for a fixed number of vertices tend to resemble
trees locally; in other words, they are regular graphs of high girth and a diameter log-
arithmic in the number of vertices. While considering such graphs directly thus seems
promising, they appear to be tricky to both construct and analyze. Indeed, we are not
aware of any infinite family of regular graphs of unbounded girth or sublinear diameter
where the number of connected sets would admit a simple closed-form expression.

On the other hand, the number of connected sets can be recursively characterized in
several graph families where the graphs are obtained by chaining together “gadgets” of
bounded size. While the diameter of such graphs scales linearly in the number of gadgets
(and thus in the number of vertices), it turns out that using sufficiently large gadgets of
high girth is already enough to produce good lower bounds.

We prove Theorem 2 by considering two types of gadget constructions in Sections 3.1
and 3.2. In Section 3.3 we extend the construction to degrees larger than 5, proving
Theorem 3.

3.1 Gadgets of Type I and II

We start by considering a very simple construction where gadgets are joined to each other
along a path. Let G be a k-vertex graph of degree d, containing one special vertex of
degree at most d−2, called the join vertex. We call G a (d, k)-gadget of type I. We can use
G to construct an infinite family of graphs of degree d as follows: For each t = 1, 2, . . .,
let Gt be the graph obtained by taking the union of t copies of G and adding t − 1
edges between the join vertices so that they induce a path (see Figure 4). To analyze the
asymptotic growth of the number of connected sets in the family G1, G2, . . . it suffices to
consider connected sets that include all join vertices. To that end, let c be the number
of connected sets of G that include the join vertex of G. Then, Gt has at least ct = an

connected sets, where a = c1/k and n = tk is the number of vertices in Gt. Obtaining
good lower bounds thus comes down to finding gadgets where a is large.

As a second construction, we consider linking gadgets together by a single edge. Let
G be a k-vertex graph of degree d with four labeled vertices u, v, u′ and v′. Let G contain
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Figure 5: A (3, 10)-gadget G of Type II (left) and the graph G4 (right) consisting of four
gadgets linked together.

the edges {u, v} and {u′, v′} and any other edges such that

deg(u) + deg(u′) 6 d− 1 and deg(v) + deg(v′) 6 d− 1 . (1)

We call G a (d, k)-gadget of type II. We now construct an infinite family of graphs by
chaining gadgets so that for each gadget the vertices u′ and v′ are merged with the vertices
u and v of the next gadget, respectively (see Figure 5). Formally, for all t = 1, 2, . . . we
define the graph Gt recursively as follows: Let G0 be the graph consisting of exactly two
adjacent vertices, labeled u0 and v0. For t > 0 start by setting Gt to be the union of
Gt−1 and G. Then modify Gt by making ut−1 adjacent to every neighbor of u, and vt−1
adjacent to every neighbor of v. Note that it follows from condition (1) that adding the
edges will not result in vertex degrees greater than d. Afterwards remove both u and v
from Gt, and finally relabel the vertices u′ and v′ to be ut and vt, respectively, so that the
labeled vertices in Gt will be u0, u1, . . . , ut and v0, v1, . . . , vt.

We now characterize the number of connected sets of Gt recursively. For all t = 0, 1, . . .
let Ct denote the family of connected sets of Gt that intersect {ui, vi} for all i = 0, 1, . . . , t.
Partition Ct into three sets Xt, Yt, and Zt as follows. Let Xt contain the sets containing
both ut and vt, Yt the sets containing ut but not vt, and Zt the sets containing vt but not ut.
Denoting the sizes of these set families by xt, yt, zt, we have that x0 = y0 = z0 = 1, and for
all t > 1 the sizes can be obtained as a linear combination of the sizes for t−1. Specifically,
denote by cA the number of connected sets C of G such that {u, v, u′, v′} ∩ C = A, and
define the matrix

MG :=

c{u,v,u′,v′} c{u,u′,v′} c{v,u′,v′}
c{u,v,u′} c{u,u′} c{v,u′}
c{u,v,v′} c{u,v′} c{v,v′}

 .

Observe that the columns of MG correspond to combinations of u and v (except the empty
combination) and the rows correspond to combinations of u′ and v′. Then, for t > 1 we
have that xtyt

zt

 = MG

xt−1yt−1
zt−1

 , and thus

xtyt
zt

 = M t
G

1
1
1

 .

To analyze this recurrence, we make the sensible assumption that G is connected. For
now, assume also that there is a path from both u and v to {u′, v′} that does not use the
edge {u, v}. Symmetrically, assume that there is a path from both u′ and v′ to {u, v}
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Figure 6: The smallest gadgets of type II, L3 (left), L4 (middle), and L5 (right), which
can be concatenated to produce the generalized ladder graphs.

not using the edge {u′, v′}. We say that G is nice if it has these properties and prove the
following lemma.

Lemma 14. If G is nice, then MG is primitive, that is, there is an integer t > 0 such
that M t

G is (strictly) positive.

Proof. Since {u′, v′} is reachable from both u and v without using the edge {u, v}, we see
that all entries of the first row of MG are positive. By the symmetrical assumption the
entries on the first column are likewise positive. It is then easy to see that all entries of
M2

G are positive.

For a primitive matrix A, the Perron–Frobenius theorem guarantees that A has an
eigenvalue λA that is real and determines the asymptotic behavior of At, that is, we have
limt→∞A

t/λtA = P for a positive matrix P . It follows that |Ct| = xt + yt + zt = Θ(λtMG
) =

Θ(an), where a = λ
1/(k−2)
MG

and n is the number of vertices in Gt. Computing MG and the
number a for a given gadget G thus comes down to enumerating all connected sets of G.

To conclude the analysis, consider the case when G is not nice. Then it has at least one
row of zeroes and thus M t

G also has a column of zeroes for all t > 2. We may thus discard
the zero row and column, and the asymptotic behavior is then given by the dominant
eigenvalue of the remaining 2× 2 matrix.

For each gadget G of type I or II, we denote by g(G) the base of the asymptotic lower
bound that is implied by G, that is, we will have |Ct| = Ω(g(G)n). To prove Theorem 2
it remains to construct appropriate gadgets for each degree bound d.

3.2 Lower Bounds for Individual Degrees

To illustrate the use of the gadgets, let us first reprove the previous lower bounds for d 6 5
based on generalized ladder graphs. The ladder graphs are a special case of constructions
of type II; they are produced by the three smallest gadgets, L3, L4, and L5, illustrated in
Figure 6. The corresponding matrices are

ML3 =

1 1 1
1 1 0
1 0 1

 , ML4 =

1 1 1
1 1 0
1 1 1

 , ML5 =

1 1 1
1 1 1
1 1 1

 ,

and computing their eigenvalues yields the lower bounds g(L3) > 1.5537, g(L4) > 1.6180
and g(L5) > 1.7320.
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Figure 7: The development of the best lower bounds found as the gadget size k grows.
The results are shown here only for even k as gadgets with an odd number of vertices are
always non-regular for some d and typically result in relatively worse bounds.

It turns out that larger gadgets of high girth yield significantly better lower bounds
than the three simple gadgets. To investigate the relationship between gadgets and the
quality of the resulting bounds in depth, we carry out a computer search over gadgets
of type I and II. Since the number of possible gadgets grows very rapidly, we are able
to enumerate them only up to a very small number of vertices. For larger gadget sizes
we instead sample multiple gadgets and aim to optimize them via local search techniques
such as greedy hillclimbing with random restarts. We terminate the search at a size where
evaluating the asymptotic lower bound for a single gadget would require several days.

Figure 7 shows the improvement in the best lower bounds found for degree d ∈ {3, 4, 5}
as the gadget size grows. We observe that the bounds grow at a similar pace for both
gadget types and that gadgets of type II generally result in slightly better bounds. For
the explored range of gadgets (up to 50 vertices) there is no indication that the bounds
would reach a global optimum at a certain gadget size; rather, the results suggest that the
bounds might become increasingly better as gadgets become larger and more complex.
Similar observations can be made for gadgets of degree d > 5.

For all d > 3, we denote by Bd the best gadget of degree d found in the search. These
gadgets are all of type II. The respective lower bounds g(Bd) are shown in Table 1 for
small values of d, in comparison to the previous best lower bounds and the best known
upper bounds. This completes the proof of Theorem 2.

The gadgets Bd for d ∈ {3, 4, 5} and the corresponding matrices MBd
are presented in

the appendix. In the online appendix we further present all gadgets shown in Figure 7,
gadgets for higher vertex degrees, as well as any better gadgets discovered in the future.

the electronic journal of combinatorics 25(4) (2018), #P4.34 14



Table 1: Bases of exponential asymptotic lower and upper bounds on the number of
connected sets in graphs of degree at most d.

Degree bound Lower bound Estimate Upper bound

d g(Cd) g(Ld) g(Bd) γd [26] bd βd [7]

3 1.4142 1.5537 1.7651 1.81 1.9351 1.9680
4 1.5874 1.6180 1.8925 1.92 1.9812 1.9874
5 1.6817 1.7320 1.9375 1.96 1.9940 1.9948
6 1.7411 1.8171 1.9577 1.9978
7 1.7817 1.8612 1.9662 1.9991
8 1.8114 1.8881 1.9734 1.9996

3.3 Lower Bounds for the General Degree

While searching for good gadgets can yield improved lower bounds for any fixed vertex
degree, devising general constructions that yield a bound for all d > 3 appears to be more
challenging. As we are not aware of any such general bounds in the literature, we present
two simple constructions based on gadgets of type I and type II.

For gadgets of type I, consider the following construction for an arbitrary degree d > 3.
Let Cd be the complete graph on d− 1 vertices, with an arbitrary vertex (of degree d− 2)
chosen as the join vertex. Then Cd has 2d−2 connected sets that contain the join vertex,
and we thus have the lower bound g(Cd) = 2(d−2)/(d−1).

With gadgets of type II, we obtain a bound for all d > 3 by generalizing the ladder
graphs further as follows. For d > 5, define Ld by taking L5 and adding a complete graph
on new vertices u1, u2, . . . , ud−5 as well as the edges {u, ui} and {v, ui} for all 1 6 i 6 d−5.
Counting the connected sets of Ld that contain u, v, or both, we may take any combination
of the added d− 5 vertices and the bound g(Ld) = (3 · 2d−5)1/(d−3) easily follows without
constructing the matrix MLd

. This completes the proof of Theorem 3.
Values of g(Cd) and g(Ld) are shown in Table 1 for small values of d. We note that

searching for good gadgets for individual d > 6 will easily yield better lower bounds than
either of the general bounds.

4 Concluding Remarks

This paper has explored the possibility of extending the projection method to neighbor-
hoods with radius r > 2 to obtain improved upper bounds for the number of connected
sets in bounded degree graphs. Our improved bounds for d 6 5 present a rather modest
improvement, and there remains a significant gap between the upper and lower bounds
in Theorems 1 and 2. To strengthen the projection method it would appear that one
needs control on how the projections change as one moves from one neighborhood to the
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neighborhood of an adjacent vertex. To improve upon the lower bounds, one possible
avenue is to expand the search towards larger gadgets. To cope with the computational
challenge of evaluating the gadgets, it might be possible to resort to approximations or
to restrict focus to a more regular subset of gadgets, where computing the number of
connected sets would be easier.
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Appendix

We specify here the type II gadgets Bd that result in the current best lower bounds for
degree d ∈ {3, 4, 5}. The vertices are indexed from 0 to n − 1, and the indices 0, 1, 2, 3
represent the labeled vertices u, v, u′, v′, respectively. We list explicitly all adjacencies
between the vertices and also display the matrix MBd

.

B3, 48 vertices

0-1 4-16 6-15 8-31 10-45 12-46 15-18 19-33 21-37 25-27 29-39 39-40
0-4 4-37 6-47 8-35 11-14 13-27 15-23 19-47 21-41 25-36 30-40 39-42
1-19 5-23 7-17 9-17 11-16 13-41 16-38 20-31 22-25 26-30 33-36 42-47
2-3 5-27 7-34 9-22 11-28 13-43 17-31 20-38 22-28 26-44 34-35 43-45
2-42 5-30 7-45 9-32 12-23 14-26 18-35 20-40 24-32 29-32 37-46
3-24 6-10 8-28 10-36 12-44 14-43 18-44 21-33 24-46 29-34 38-41

MB3 =

 149380288329 75518316236 75113433080
74695588676 37323470959 36605863037
75394147007 39397707131 37302703013


B4, 42 vertices

0-1 4-7 5-41 7-36 9-40 11-35 13-33 15-37 19-38 22-26 24-39 30-39
0-2 4-9 6-20 8-16 10-15 11-36 13-37 16-35 20-26 22-30 26-38 31-41
1-29 4-23 6-25 8-18 10-19 12-13 14-25 17-19 20-34 22-35 27-31 32-33
2-3 4-29 6-30 8-36 10-27 12-19 14-27 17-21 20-35 23-34 27-32 34-41
2-41 5-25 6-40 8-38 10-36 12-31 14-34 17-23 21-28 24-26 28-31
3-16 5-32 7-21 9-15 11-28 12-39 14-38 18-23 21-30 24-33 28-40
3-39 5-40 7-32 9-18 11-29 13-17 15-16 18-37 22-25 24-37 29-33
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MB4 =

 74052300417 49548111633 25941109433
63360678728 30081845289 0
33177340176 15750317593 25941109433


B5, 40 vertices

0-1 3-17 5-26 7-22 9-14 11-23 13-25 16-24 19-20 22-25 24-38 29-34
0-3 4-5 5-30 7-23 9-19 11-25 13-32 16-37 19-33 22-30 25-39 29-35
0-25 4-10 6-8 7-28 9-35 11-30 13-39 16-39 20-27 23-29 26-32 30-35
1-13 4-12 6-9 7-39 10-15 11-31 14-18 17-26 20-31 23-36 26-33 31-35
1-15 4-13 6-14 8-15 10-18 12-19 14-28 17-34 20-34 23-38 27-32 32-37
2-3 4-19 6-21 8-18 10-21 12-21 14-33 17-37 20-38 24-31 27-38 33-37
2-9 5-16 6-32 8-34 10-27 12-31 15-30 18-26 21-27 24-33 28-29 34-36
2-28 5-22 7-15 8-35 11-17 12-39 16-22 18-36 21-29 24-36 28-38 36-37

MB5 =

 40571248665 25343886998 35402994593
36131010078 13876386956 26714905772
26168254403 21595708566 13917032744


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